1
|
Xu Q, Yin Z, Li Y, Zhu X, Lou H, Ni J. Prognostic value of HER2 expression in cervical adenocarcinoma: A retrospective cohort study. Oncol Lett 2025; 29:217. [PMID: 40093868 PMCID: PMC11907399 DOI: 10.3892/ol.2025.14963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/30/2025] [Indexed: 03/19/2025] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is an important therapeutic target in various types of cancer, although the prognostic value and therapeutic potential of HER2 in cervical adenocarcinoma are still underexplored. The present study aimed to examine the association between HER2 expression levels and prognosis in cervical adenocarcinoma, offering new insights into targeted therapies for HER2-expressing cervical adenocarcinoma. A total of 179 patients with cervical cancer who received surgery were included, and HER2 status in surgical specimens of the included patients were assessed using two classification methods: Immunohistochemistry (IHC) alone and traditional combined IHC/fluorescence in situ hybridization (FISH). IHC alone was used to categorize patients into the HER2 zero expression (IHC 0) and HER2 expression (IHC 1+, 2+ and 3+) groups, while traditional combined IHC/FISH classified the HER2 expression as negative (IHC 0 and 1+ or IHC 2+/FISH-) or positive (IHC 3+ or IHC 2+/FISH+). Kaplan-Meier survival analysis and log-rank tests were used to assess the patients' survival prognosis. A Cox proportional hazards regression model was used to identify independent prognostic factors. The HER2 expression rate was 44.1% (79/179) according to IHC alone, while 5.0% (9/179) were classified as HER2-positive according to the traditional method. HER2 expression was significantly associated with advanced International Federation of Gynecology and Obstetrics stages, higher rates of lymph node metastasis, vascular or perineural invasion, elevated cancer antigen 125 levels and increased recurrence rate (P<0.05). Moreover, HER2 expression was significantly associated with shorter progression-free survival (PFS) time [51.02±2.75 vs. 56.01±2.22 months; hazard ratio (HR), 0.559; 95% confidence interval (CI), 0.313-0.998; P=0.049]. Additionally, programmed death-ligand 1 expression levels were significantly higher in HER2-expressing patients who died (P=0.039). When HER2 status was assessed using the traditional combined IHC/FISH method, HER2 positivity was significantly associated with poorer PFS time (36.44±7.85 vs. 55.17±1.78 months; HR, 0.125; 95% CI, 0.03033-0.5156; P=0.004). In conclusion, classification of HER2 status in patients with cervical adenocarcinoma using IHC alone may provide a promising method for predicting patient outcomes and optimizing therapeutic strategies to improve treatment efficacy.
Collapse
Affiliation(s)
- Qing Xu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Zhuomin Yin
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Yueqi Li
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiu Zhu
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Hanmei Lou
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Juan Ni
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
2
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
3
|
Zhang HL, Lin Z, Zhang Y. Developments in research and commercialization of PI3K and AKT targets: a patent-based landscape. Pharm Pat Anal 2025:1-8. [PMID: 39993965 DOI: 10.1080/20468954.2025.2470102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
PI3K and AKT signaling pathway has been linked to the pathophysiology of various diseases. This pathway has emerged as a crucial therapeutic strategy for cancer and other diseases. To better understand recent development of PI3K and AKT, a patent-based landscape study was performed. The results shows that both PI3K and AKT targets have shown prolific patent filings over the past 20 years. This study is the first to depict the therapeutic applications of both PI3K and AKT targets based on a patent big data analysis. Ten key therapeutic applications were identified, with over 77% of patents related to anti-cancer therapy for both PI3K and AKT targets. Additionally, our findings show that combination therapy is a distinguishing feature for drugs targeting both PI3K and AKT. The average time from patent application to drug approval for PI3K target drugs is 8.8 years. PI3K target drugs obtain market approval faster compared to AKT drugs. Approximately, 2 years of patent term extension could be obtained if the time from the patent application date to the drug approval date is less than 10 years.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Central International Intellectual Property (Baotou) Co. Ltd, Baotou, China
| | - Zhaochen Lin
- Hydrogen Medicine Research Centre, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong, China
| | - Ying Zhang
- Pharmacy Intravenous Admixture Services, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
4
|
Marangoni E. Patient-Derived Xenografts of Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:109-121. [PMID: 39821023 DOI: 10.1007/978-3-031-70875-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Patient-derived xenografts (PDX) of breast cancer, obtained from the engraftment of tumour samples into immunodeficient mice, are the most effective preclinical models for studying the biology of human breast cancer and for the evaluation of new anti-cancer treatments. Notably, breast cancer PDX preserve the phenotypic and molecular characteristics of the donor tumours and reproduce the diversity of breast cancer. This preservation of breast cancer biology involves a number of different aspects, including tumour architecture and morphology, patterns of genomic alterations and gene expression, mutational status, and intra-tumour heterogeneity. For these reasons, these models have a strong predictive value in the translation of cancer therapeutics into clinical settings and can be considered as powerful and clinically relevant research tools for the identification of new treatments, mechanisms of drug resistance, and predictive biomarkers. PDX models have also been successfully used to analyse breast cancer metastasis and persister cancer cells surviving chemotherapy. Limitations of breast cancer PDX include the lack of a human immune system and the low take rate, especially for estrogen receptor (ER) and HER2-positive subtypes.
Collapse
Affiliation(s)
- Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, Paris, France.
| |
Collapse
|
5
|
Sheng Y, Mills G, Zhao X. Identifying therapeutic strategies for triple-negative breast cancer via phosphoproteomics. Expert Rev Proteomics 2024:1-17. [PMID: 39588933 DOI: 10.1080/14789450.2024.2432477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Given the poor prognosis of patients with TNBC, it is urgent to identify new biomarkers and therapeutic targets to enable personalized treatment strategies and improve patient survival. Comprehensive insights beyond genomic and transcriptomic analysis are crucial to improved outcomes for patients. As proteins are the workhorses of cellular function with their activity primarily regulated by phosphorylation, advanced phosphoproteomics techniques, such as mass spectrometry and antibody arrays, are essential for elucidating kinase signaling pathways that drive TNBC progression and contribute to therapy resistance. AREA COVERED This review discusses the critical need to integrate phosphoproteomics into TNBC research, evaluates commonly used technologies and their applications, and explores their advantages and limitations. We highlight significant findings from phosphoproteomic analyses in TNBC and address the challenges of implementing these technologies into clinical practice. EXPERT OPINION Rapid advances in phosphoproteomics analysis facilitate subtype stratification, adaptive response monitoring, and identification of biomarkers and therapeutic targets in TNBC. However, challenges in analyzing protein phosphorylation, especially in deep spatially resolved analysis of malignant cells and the tumor ecosystem, hinder the translation of phosphoproteomics to the CLIA setting. Nonetheless, phosphoproteomics offers a powerful tool that, when integrated into routine clinical practice, has the potential to revolutionize patient care.
Collapse
Affiliation(s)
- Yuhan Sheng
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Xuejiao Zhao
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Sankarapandian V, Rajendran RL, Miruka CO, Sivamani P, Maran BAV, Krishnamoorthy R, Gangadaran P, Ahn BC. A review on tyrosine kinase inhibitors for targeted breast cancer therapy. Pathol Res Pract 2024; 263:155607. [PMID: 39326367 DOI: 10.1016/j.prp.2024.155607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Breast cancer is a heterogeneous disease with complex molecular pathogenesis. Overexpression of several tyrosine kinase receptors is associated with poor prognosis, therefore, they can be key targets in breast cancer therapy. Tyrosine kinase inhibitors (TKIs) have emerged as leading agents in targeted cancer therapy due to their effectiveness in disrupting key molecular pathways involved in tumor growth. TKIs target various tyrosine kinases, including the human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor (EGFR), Vascular endothelial growth factor receptor (VEGFR), anaplastic lymphoma kinase (ALK), vascular endothelial growth factor receptor (VEGFR)-associated multi-targets, rearranged during transfection (RET), fibroblast growth factor receptor (FGFR), receptor tyrosine kinase-like orphan signal 1 (ROS1), Mitogen-activated protein kinase (MAPK), and tropomyosin receptor kinase (TRK). These drugs target the tyrosine kinase domain of receptor tyrosine kinases and play a vital role in proliferation and migration of breast cancer cells. Several TKIs, including lapatinib, neratinib, and tucatinib, have been developed and are currently used in clinical settings, often in combination with chemotherapy, endocrine therapy, or other targeted agents. TKIs have demonstrated remarkable benefits in enhancing progression-free and overall survival in patients with breast cancer and have become a standard of care for this population. This review provides an overview of TKIs currently being examined in preclinical studies and clinical trials, especially in combination with drugs approved for breast cancer treatment. TKIs have emerged as a promising therapeutic option for patients with breast cancer and hold potential for treating other breast cancer subtypes. The development of new TKIs and their integration into personalized treatment strategies will continue to shape the future of breast cancer therapy.
Collapse
Affiliation(s)
- Vidya Sankarapandian
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Box 20000, Uganda
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Conrad Ondieki Miruka
- Department of Biochemistry, Kampala International University, Western Campus, Box 20000, Uganda
| | - Poornima Sivamani
- Department of Pharmacology and Clinical pharmacology, Christian Medical College, Vellore 632004, India
| | - Balu Alagar Venmathi Maran
- Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea..
| |
Collapse
|
7
|
Islam R, Yen KP, Rani NN'IM, Hossain MS. Recent advancement in developing small molecular inhibitors targeting key kinase pathways against triple-negative breast cancer. Bioorg Med Chem 2024; 112:117877. [PMID: 39159528 DOI: 10.1016/j.bmc.2024.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Triple-negative breast cancer (TNBC) stands out as the most formidable variant of breast cancer, predominantly affecting younger women and characterized by a bleak outlook and a high likelihood of spreading. The absence of safe and effective targeted treatments leaves standard cytotoxic chemotherapy as the primary option. The role of protein kinases, frequently altered in many cancers, is significant in the advancement and drug resistance of TNBC, making them a logical target for creating new, potent therapies against TNBC. Recently, an array of promising small molecules aimed at various kinases have been developed specifically for TNBC, with combination studies showing a synergistic improvement in combatting this condition. This review underscores the effectiveness of small molecule kinase inhibitors in battling the most lethal form of breast cancer and sheds light on prospective pathways for crafting novel treatments.
Collapse
Affiliation(s)
- Rajibul Islam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Khor Poh Yen
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Nur Najihah 'Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Md Selim Hossain
- Vascular Biology Centre, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Yan Q, Deng Y, Zhang Q. A comprehensive overview of metaplastic breast cancer: Features and treatments. Cancer Sci 2024; 115:2506-2514. [PMID: 38735837 PMCID: PMC11309924 DOI: 10.1111/cas.16208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
Metaplastic breast cancer is a rare, aggressive, and chemotherapy-resistant subtype of breast cancers, accounting for less than 1% of invasive breast cancers, characterized by adenocarcinoma with spindle cells, squamous epithelium, and/or mesenchymal tissue differentiation. The majority of metaplastic breast cancers exhibit the characteristics of triple-negative breast cancer and have unfavorable prognoses with a lower survival rate. This subtype often displays gene alterations in the PI3K/AKT pathway, Wnt/β-catenin pathway, and cell cycle dysregulation and demonstrates epithelial-mesenchymal transition, immune response changes, TP53 mutation, EGFR amplification, and so on. Currently, the optimal treatment of metaplastic breast cancer remains uncertain. This article provides a comprehensive review on the clinical features, molecular characteristics, invasion and metastasis patterns, and prognosis of metaplastic breast cancer, as well as recent advancements in treatment strategies.
Collapse
Affiliation(s)
- Qiaoke Yan
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbin CityHeilongjiang ProvinceChina
| | - Yuwei Deng
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbin CityHeilongjiang ProvinceChina
| | - Qingyuan Zhang
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbin CityHeilongjiang ProvinceChina
- Department of Medical OncologyHeilongjiang Cancer Prevention and Treatment InstituteHarbin CityHeilongjiang ProvinceChina
| |
Collapse
|
9
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
10
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway. J Transl Med 2024; 22:15. [PMID: 38172946 PMCID: PMC10765967 DOI: 10.1186/s12967-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Akrida I, Mulita F, Plachouri KM, Benetatos N, Maroulis I, Papadaki H. Epithelial to mesenchymal transition (EMT) in metaplastic breast cancer and phyllodes breast tumors. Med Oncol 2023; 41:20. [PMID: 38104042 DOI: 10.1007/s12032-023-02259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Epithelial-mesenchymal transition (EMT), a transdifferentiation program whereby epithelial cells acquire mesenchymal phenotype, is essential during embryonic development. EMT has also been implicated in cancer progression by conferring migratory and metastatic potential, as well as cell plasticity and stem cell like traits, to cancer cells. Metaplastic breast carcinoma (MBC) is a rare aggressive type of breast cancer characterized by the presence of heterologous elements, typically by the existence of epithelial and mesenchymal components. Phyllodes tumors (PTs) are uncommon fibroepithelial neoplasms consisting of epithelial and mesenchymal elements. Although various hypotheses have been proposed on the pathogenesis of these biphasic tumors, there is growing evidence supporting the theory that PTs and MBC could both correlate with cancer related EMT. This review summarizes the existing literature on the emerging role of EMT in the pathogenesis of MBC and PTs. Both malignant PTs and MBC are characterized by poor prognosis. Therefore, several anti-EMT targeting strategies such as blocking upstream signaling pathways, targeting the molecular drivers of EMT and targeting mesenchymal cells and the extracellular matrix, could potentially represent a promising therapeutic approach for patients suffering from these aggressive neoplasms.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece.
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece.
- Department of Surgery, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504, Rion, Greece.
| | - Francesk Mulita
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| | | | - Nikolaos Benetatos
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| | - Ioannis Maroulis
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece
| |
Collapse
|
12
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
13
|
Zhu Y, Tao L, Liu J, Wang Y, Huang H, Jiang Y, Qian W. Construction of a prognostic model for triple-negative breast cancer based on immune-related genes, and associations between the tumor immune microenvironment and immunological therapy. Cancer Med 2023; 12:15704-15719. [PMID: 37306188 PMCID: PMC10417082 DOI: 10.1002/cam4.6176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the subtype of breast cancer with the worst prognosis, and it is highly heterogeneous. There is growing evidence that the tumor immune microenvironment (TIME) plays a crucial role in tumor development, maintenance, and treatment responses. Notably however, the full effects of the TIME on prognosis, TIME characteristics, and immunotherapy responses in TNBC patients have not been fully elucidated. METHODS Gene Expression Omnibus and The Cancer Genome Atlas data were used to data analysis. Single-cell sequencing and tissue microarray analysis were used to investigate gene expression. The concentrations and distributions of immune cell types were determined and analyzed using the CIBERSORT strategy. Tumor immune dysfunction and exclusion score and the IMvigor210 cohort were used to estimate the sensitivity of TNBC patients with different prognostic statuses to immune checkpoint treatment. RESULTS Five immune-related genes associated with TNBC prognosis (IL6ST, NR2F1, CKLF, TCF7L2, and HSPA2) was identified and a prognostic evaluation model was constructed based on those genes. The respective areas under the curve of the prognostic nomogram model at 3 and 5 years were 0.791 and 0.859. The group with a lower nomogram score, with a better prognosis survival status and clinical treatment benefit rate. CONCLUSION A prognostic model for TNBC that was closely related to the immune landscape and therapeutic responses was constructed. This model may help clinicians to make more precise and personalized treatment decisions pertaining to TNBC patients.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Lin‐Feng Tao
- Department of Critical Care Medicinethe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Jin‐Yan Liu
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Yi‐Xuan Wang
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Hai Huang
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Yan‐Nan Jiang
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Wei‐Feng Qian
- Department of Breast and Thyroid Surgerythe Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhouChina
| |
Collapse
|
14
|
Zeng M, Ruan Z, Tang J, Liu M, Hu C, Fan P, Dai X. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int 2023; 23:120. [PMID: 37344821 DOI: 10.1186/s12935-023-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Establishing appropriate preclinical models is essential for cancer research. Evidence suggests that cancer is a highly heterogeneous disease. This follows the growing use of cancer models in cancer research to avoid these differences between xenograft tumor models and patient tumors. In recent years, a patient-derived xenograft (PDX) tumor model has been actively generated and applied, which preserves both cell-cell interactions and the microenvironment of tumors by directly transplanting cancer tissue from tumors into immunodeficient mice. In addition to this, the advent of alternative hosts, such as zebrafish hosts, or in vitro models (organoids and microfluidics), has also facilitated the advancement of cancer research. However, they still have a long way to go before they become reliable models. The development of immunodeficient mice has enabled PDX to become more mature and radiate new vitality. As one of the most reliable and standard preclinical models, the PDX model in immunodeficient mice (PDX-IM) exerts important effects in drug screening, biomarker development, personalized medicine, co-clinical trials, and immunotherapy. Here, we focus on the development procedures and application of PDX-IM in detail, summarize the implications that the evolution of immunodeficient mice has brought to PDX-IM, and cover the key issues in developing PDX-IM in preclinical studies.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Ruan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxi Tang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Hu J, Lang R, Zhao W, Jia Y, Tong Z, Shi Y. The mixed subtype has a worse prognosis than other histological subtypes: a retrospective analysis of 217 patients with metaplastic breast cancer. Breast Cancer Res Treat 2023; 200:23-36. [PMID: 37160814 DOI: 10.1007/s10549-023-06945-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Metaplastic breast cancer (MpBC) is an aggressive subtype of all breast cancer. We aimed to investigate the clinicopathological features, treatments and prognoses of MpBC patients. METHODS We collected the data from MpBC patients diagnosed at Tianjin Medical University Cancer Hospital from 2010 to 2017. Kaplan Meier curves and Cox regression model were used to evaluating clinical outcomes and prognostic factors. After removing baseline differences by propensity score matching (PSM), we analyzed the prognosis between MpBC patients and invasive ductal carcinomas of no special type (IDC-NST) patients. RESULTS A total of 217 MpBC patients were subsumed. Of all histological subtypes, 45.1% were mixed subtypes, followed by with mesenchymal differentiation (27.2%), pure squamous (15.2%) and pure spindle (12.4%) subtypes. 69.6% of MpBC were triple-negative, 25.3% and 6.5% were HR-positive and HER2-positive. MpBC patients had worse survival compared to IDC-NST patients, with 5-year RFS of 73.8 and 83.6% (HR = 1.177 95%CI (1.171-2.676) P = 0.0068), and 5-year BCSS of 79.0% and 89.7% (HR = 2.187 95%CI (1.357-3.523) P = 0.0013). In the multivariate COX model, AJCC stage, mixed subtype and chemotherapy were independent prognostic factors. Mixed MpBC is more aggressive than pure and with heterologous mesenchymal differentiation subtypes. And whether squamous or spindle MpBC, mixed forms have shorter outcomes than pure forms. CONCLUSIONS MpBCs are associated with poorer prognoses than IDC-NSTs. They are heterogeneous with different clinicopathological features and clinical outcomes between histological subtypes. Pure and with heterologous mesenchymal differentiation subtypes have more survival benefits than the mixed subtype.
Collapse
Affiliation(s)
- Jiayue Hu
- Department of Breast Oncology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ronggang Lang
- Department of Breast Pathology and Lab, Department of Breast Oncology, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Weipeng Zhao
- Department of Breast Oncology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yongsheng Jia
- Department of Breast Oncology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Zhongsheng Tong
- Department of Breast Oncology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yehui Shi
- Department of Breast Oncology, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
16
|
Zhang J, Croft J, Le A. Familial CCM Genes Might Not Be Main Drivers for Pathogenesis of Sporadic CCMs-Genetic Similarity between Cancers and Vascular Malformations. J Pers Med 2023; 13:jpm13040673. [PMID: 37109059 PMCID: PMC10143507 DOI: 10.3390/jpm13040673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are abnormally dilated intracranial capillaries that form cerebrovascular lesions with a high risk of hemorrhagic stroke. Recently, several somatic "activating" gain-of-function (GOF) point mutations in PIK3CA (phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit p110α) were discovered as a dominant mutation in the lesions of sporadic forms of cerebral cavernous malformation (sCCM), raising the possibility that CCMs, like other types of vascular malformations, fall in the PIK3CA-related overgrowth spectrum (PROS). However, this possibility has been challenged with different interpretations. In this review, we will continue our efforts to expound the phenomenon of the coexistence of gain-of-function (GOF) point mutations in the PIK3CA gene and loss-of-function (LOF) mutations in CCM genes in the CCM lesions of sCCM and try to delineate the relationship between mutagenic events with CCM lesions in a temporospatial manner. Since GOF PIK3CA point mutations have been well studied in reproductive cancers, especially breast cancer as a driver oncogene, we will perform a comparative meta-analysis for GOF PIK3CA point mutations in an attempt to demonstrate the genetic similarities shared by both cancers and vascular anomalies.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Jacob Croft
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Alexander Le
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
17
|
Abuhadra N, Sun R, Bassett RL, Huo L, Chang JT, Teshome M, Clayborn AR, White JB, Ravenberg EE, Adrada BE, Candelaria RP, Yang W, Ding Q, Symmans WF, Arun B, Damodaran S, Koenig KB, Layman RM, Lim B, Litton JK, Thompson A, Ueno NT, Piwnica-Worms H, Hortobagyi GN, Valero V, Tripathy D, Rauch GM, Moulder S, Yam C. Targeting chemotherapy resistance in mesenchymal triple-negative breast cancer: a phase II trial of neoadjuvant angiogenic and mTOR inhibition with chemotherapy. Invest New Drugs 2023:10.1007/s10637-023-01357-4. [PMID: 37043123 DOI: 10.1007/s10637-023-01357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023]
Affiliation(s)
- Nour Abuhadra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland L Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mediget Teshome
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alyson R Clayborn
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jason B White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Elizabeth E Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Beatriz E Adrada
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosalind P Candelaria
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Yang
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kimberly B Koenig
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Rachel M Layman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Alastair Thompson
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel N Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Gaiane M Rauch
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther 2023; 8:160. [PMID: 37045827 PMCID: PMC10097874 DOI: 10.1038/s41392-023-01419-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Patient-derived xenograft (PDX) models, in which tumor tissues from patients are implanted into immunocompromised or humanized mice, have shown superiority in recapitulating the characteristics of cancer, such as the spatial structure of cancer and the intratumor heterogeneity of cancer. Moreover, PDX models retain the genomic features of patients across different stages, subtypes, and diversified treatment backgrounds. Optimized PDX engraftment procedures and modern technologies such as multi-omics and deep learning have enabled a more comprehensive depiction of the PDX molecular landscape and boosted the utilization of PDX models. These irreplaceable advantages make PDX models an ideal choice in cancer treatment studies, such as preclinical trials of novel drugs, validating novel drug combinations, screening drug-sensitive patients, and exploring drug resistance mechanisms. In this review, we gave an overview of the history of PDX models and the process of PDX model establishment. Subsequently, the review presents the strengths and weaknesses of PDX models and highlights the integration of novel technologies in PDX model research. Finally, we delineated the broad application of PDX models in chemotherapy, targeted therapy, immunotherapy, and other novel therapies.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
19
|
Dong S, Fang Y, Syed S. A rare case of advanced metaplastic breast carcinoma with response to treatment with Sacituzumab govitecan. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2023. [DOI: 10.1016/j.cpccr.2023.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
20
|
Yang X, Zhu W. ERBB3 mediates the PI3K/AKT/mTOR pathway to alter the epithelial‑mesenchymal transition in cervical cancer and predict immunity filtration outcome. Exp Ther Med 2023; 25:146. [PMID: 36911370 PMCID: PMC9995796 DOI: 10.3892/etm.2023.11845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/02/2022] [Indexed: 02/17/2023] Open
Abstract
Cervical cancer is the fourth most common cancer among women worldwide, and the prognosis of advanced/recurrent cervical cancer remains poor. Metastasis and invasion of this type of cancer are closely associated with the tumor microenvironment. Studying the complex interactions between tumor progression and immune cells or stromal cells can provide new insights into treatment for patients with aggressive tumor, recurrence and drug resistance. In the present study, a bioinformatics method (Gene Expression Profiling Interactive Analysis, differentially expressed genes, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interactions and survival analysis) was used to explore the mRNA and protein level discrepancy gene signature of ERBB3 via the PI3K/AKT/mTOR pathway from the speculation in immuno-oncology and experimental verification of different cervical cancer cell lines. The high expression of ERBB3 in cervical cancer tissues (especially HPV-positive and adenocarcinoma-related) promoted the activation of the PI3K/AKT/mTOR pathway. The increased expression of MMP9 changed the macrophage infiltration in the tumor microenvironment and affected prognosis of patients with cervical cancer. In conclusion, the present study identified 14 EMT-related genes and 30 genes involved in the PI3K/AKT/mTOR pathway in cervical cancer, and they might provide novel clues for future treatment. The MMP family may be a notable factor associated with tumor cells and immune cells.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
21
|
Liu R, Chen Z, Hu G, Yu Z, Li Q, Liu D, Li L, Liu Z. A Novel PDK1/MEK Dual Inhibitor Induces Cytoprotective Autophagy via the PDK1/Akt Signaling Pathway in Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2023; 16:244. [PMID: 37259393 PMCID: PMC9961937 DOI: 10.3390/ph16020244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 10/29/2024] Open
Abstract
In a preliminary study, we synthesized a series of new PDK1/MEK dual inhibitors. Antitumor activity screening showed that Compound YZT exerts a strong inhibitory action in A549 cells. However, the specific mechanism of YZT against non-small cell lung cancer (NSCLC) is largely unknown. This work confirmed the anti-proliferation and pro-apoptosis effects of YZT in NSCLC cells. Furthermore, YZT promotes autophagy and provokes complete autophagic flux in NSCLC cells. Notably, compared with YZT alone, the combination of YZT with the autophagy inhibitor chloroquine (CQ) or 3-methyladenine (3-MA) markedly strengthened the anti-proliferative and pro-apoptotic actions, suggesting that YZT-induced autophagy is cytoprotective. We further found that YZT-induced autophagy may exert a cytoprotective function by preserving the integrity of mitochondria and decreasing mitochondrial apoptosis. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that PDK1 is an upstream protein of the Akt/mTOR axis and western blotting verified that YZT induces autophagy by the PDK1/Akt/mTOR signaling axis. Finally, YZT plus CQ significantly enhanced the anticancer activities compared to YZT alone in an animal study and immunohistochemistry showed that the level of LC3 was increased by YZT, which is in line with the in vitro results. In short, our study provides reliable experimental basis for developing Compound YZT as a new chemotherapeutic drug candidate and suggests that combined administration of YZT with CQ is a potential therapy against NSCLC.
Collapse
Affiliation(s)
- Rangru Liu
- Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410008, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Disease, School of Pharmacy, Hainan Medical University, Haikou 570100, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Zutao Yu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Danqi Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, National Clinical Research Center for Geriatric Disorders, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
22
|
Zhou H, Yun X, Shu Y, Xu K. Aspirin increases the efficacy of gemcitabine in pancreatic cancer by modulating the PI3K/AKT/mTOR signaling pathway and reversing epithelial‑mesenchymal transition. Oncol Lett 2023; 25:101. [PMID: 36817049 PMCID: PMC9932045 DOI: 10.3892/ol.2023.13687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/15/2022] [Indexed: 02/04/2023] Open
Abstract
Gemcitabine is regarded as a standard medication for patients with pancreatic cancer. The aim of the present study was to investigate the impact of aspirin (ASA) on the efficacy of gemcitabine in pancreatic cancer and the potential mechanism. The SW1990 and BxPC-3 human pancreatic cell lines were treated with 2 mmol/l ASA and/or 1 mg/l gemcitabine. The effects of the treatments were tested on the viability, migration and invasion of the cells using MTT, wound healing and Transwell invasion assays. In addition, cell apoptosis was evaluated via flow cytometry with Annexin V-FITC/PI and the western blotting of Bax and Bcl-2. The expression of epithelial-mesenchymal transition (EMT)-associated proteins and activation of the PI3K/AKT/mTOR pathway were also assessed using western blotting. The results reveal that ASA increased the efficacy of gemcitabine in reducing the proliferation, migration and invasion of pancreatic cancer cells and increasing their apoptosis. These effects are associated with inhibition of the PI3K/AKT/mTOR pathway and the reversal of EMT. Thus, the combined use of ASA and gemcitabine is suggested to be a potential therapeutic strategy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Hanyu Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China,Department of Oncology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China,Department of Oncology, Suzhou Municipal Hospital, Suzhou, Jiangsu 215001, P.R. China,Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, P.R. China
| | - Xiao Yun
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China,Department of Oncology, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China,Department of Oncology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China,Dr Yongqian Shu, Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou, Nanjing, Jiangsu 210029, P.R. China, E-mail:
| | - Kequn Xu
- Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China,Correspondence to: Dr Kequn Xu, Department of Oncology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Lane, Tianning, Changzhou, Jiangsu 213003, P.R. China, E-mail:
| |
Collapse
|
23
|
Thomas HR, Hu B, Boyraz B, Johnson A, Bossuyt VI, Spring L, Jimenez RB. Metaplastic breast cancer: A review. Crit Rev Oncol Hematol 2023; 182:103924. [PMID: 36696934 DOI: 10.1016/j.critrevonc.2023.103924] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 01/23/2023] Open
Abstract
Metaplastic breast cancer (MpBC) is an uncommon aggressive malignancy that is associated with a poor prognosis. Due to its rarity, the relationships between the clinical and pathological features of MpBC, treatment approach, and clinical outcomes remain underexplored. In the following review article, we synthesize the existing data on the clinical, pathological and genomic features, management, and outcomes of MpBC. We also identify potential targets for future clinical trials.
Collapse
Affiliation(s)
- Horatio R Thomas
- Department of Radiation Oncology, University of California, San Francisco, United States.
| | - Bonnie Hu
- Department of Radiation Oncology, Massachusetts General Hospital, United States
| | - Baris Boyraz
- Department of Pathology, Massachusetts General Hospital, United States
| | - Andrew Johnson
- Department of Radiation Oncology, Massachusetts General Hospital, United States
| | - Veerle I Bossuyt
- Department of Pathology, Massachusetts General Hospital, United States
| | - Laura Spring
- Department of Medicine, Division of Medical Oncology, Massachusetts General Hospital, United States
| | - Rachel B Jimenez
- Department of Radiation Oncology, Massachusetts General Hospital, United States
| |
Collapse
|
24
|
Bistrovic P, Sabljic A, Kovacevic I, Cikara T, Keres T, Lucijanic T, Mitrovic J, Delic-Brkljacic D, Manola S, Lucijanic M. Risks associated with prior oral anticoagulation use in hospitalized COVID-19 patients - A retrospective cohort study on 5392 patients from a tertiary centre. Int J Cardiol 2023; 372:144-149. [PMID: 36471534 PMCID: PMC9701577 DOI: 10.1016/j.ijcard.2022.11.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION There are conflicting data on prior oral-anticoagulant (OAC) use and outcomes of hospitalized COVID-19 patients. Due to uncertainties regarding associated risks with the prior OAC use, we have investigated this issue in a large cohort of hospitalized COVID-19 patients from our institution. METHODS We have retrospectively evaluated a total of 5392 consecutive COVID-19 patients hospitalized in our tertiary center institution in period 3/2020 to 6/2021. Majority of patients received low-molecular-weight-heparin thromboprophylaxis and corticosteroids during hospitalization. Patients' characteristics and clinical outcomes were documented as a part of a hospital registry project and were evaluated according to the prior non-OAC, warfarin and direct oral anticoagulants (DOAC) use. RESULTS Median age was 72 years, median Charlson comorbidity index (CCI) was 4 points. There were 56.2% male patients. Majority of patients had severe (70.5%) or critical (15.8%) COVID-19 on admission. A total of 84.8% patients did not receive prior OAC, 9% were previously anticoagulated with warfarin and 6.2% were previously anticoagulated with DOACs. In the multivariate regression analyses, prior warfarin use was associated increased in-hospital mortality (OR 1.24, P = 0.048) independently of older age (OR 2.12, P < 0.001), male sex (OR 1.27, P < 0.001), higher CCI (OR 1.26, P < 0.001) and severe or critical COVID-19 on admission (OR 22.66, P < 0.001). Prior DOAC use was associated with higher occurrence of major bleeding (OR 1.72, P = 0.045) independently of higher CCI (OR 1.08, P = 0.017). CONCLUSION Prior OAC use could be associated with worse clinical outcomes during COVID-19 hospitalization. These phenomena might be OAC type specific and persist after multivariate adjustments.
Collapse
Affiliation(s)
- Petra Bistrovic
- Cardiology department, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Anica Sabljic
- Hematology Department, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Ivona Kovacevic
- Pulmology Department, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Tomislav Cikara
- Cardiology department, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Tatjana Keres
- Intensive Care Department, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Tomo Lucijanic
- Endocrinology, Diabetology and Metabolic Disease Department, Clinical Hospital Dubrava; Primary respiratory and intensive care center, Clinical Hospital Dubrava, Zagreb, Croatia
| | - Josko Mitrovic
- University of Zagreb, School of Medicine; Rheumatology, Immunology and Allergology Department, Clinical Hospital Dubrava
| | - Diana Delic-Brkljacic
- University of Zagreb, School of Medicine; Cardiology department, Clinical Hospital Center Sisters of Mercy, Zagreb, Croatia
| | - Sime Manola
- Cardiology department, Clinical Hospital Dubrava, Zagreb, Croatia; University of Zagreb, School of Medicine
| | - Marko Lucijanic
- Hematology Department, Clinical Hospital Dubrava, Zagreb, Croatia; University of Zagreb, School of Medicine.
| |
Collapse
|
25
|
Ajkunic A, Skenderi F, Shaker N, Akhtar S, Lamovec J, Gatalica Z, Vranic S. Acinic cell carcinoma of the breast: A comprehensive review. Breast 2022; 66:208-216. [PMID: 36332545 PMCID: PMC9636467 DOI: 10.1016/j.breast.2022.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Acinic cell carcinoma of the breast is a rare special subtype of breast cancer in the category of salivary gland-type tumors. It is morphologically similar to acinic cell carcinomas of salivary glands and pancreas and has a triple-negative phenotype (estrogen receptor-negative, progesterone receptor-negative, and Her-2/neu negative). Its molecular genomic features are more similar to triple-negative breast cancer of no special type than to its salivary gland counterpart. However, the clinical course of the mammary acinic cell carcinoma appears to be less aggressive than the usual triple-negative breast carcinomas. This review comprehensively summarizes the current literature on the clinicopathologic, immunohistochemical, and molecular features of this rare and distinct subtype of breast cancer.
Collapse
Affiliation(s)
- Azra Ajkunic
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Faruk Skenderi
- Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Nada Shaker
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Janez Lamovec
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Zoran Gatalica
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar,Corresponding author. College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
26
|
Zhu K, Wu Y, He P, Fan Y, Zhong X, Zheng H, Luo T. PI3K/AKT/mTOR-Targeted Therapy for Breast Cancer. Cells 2022; 11:2508. [PMID: 36010585 PMCID: PMC9406657 DOI: 10.3390/cells11162508] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 12/25/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB/AKT) and mechanistic target of rapamycin (mTOR) (PAM) pathways play important roles in breast tumorigenesis and confer worse prognosis in breast cancer patients. The inhibitors targeting three key nodes of these pathways, PI3K, AKT and mTOR, are continuously developed. For breast cancer patients to truly benefit from PAM pathway inhibitors, it is necessary to clarify the frequency and mechanism of abnormal alterations in the PAM pathway in different breast cancer subtypes, and further explore reliable biomarkers to identify the appropriate population for precision therapy. Some PI3K and mTOR inhibitors have been approved by regulatory authorities for the treatment of specific breast cancer patient populations, and many new-generation PI3K/mTOR inhibitors and AKT isoform inhibitors have also been shown to have good prospects for cancer therapy. This review summarizes the changes in the PAM signaling pathway in different subtypes of breast cancer, and the latest research progress about the biomarkers and clinical application of PAM-targeted inhibitors.
Collapse
Affiliation(s)
- Kunrui Zhu
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yanqi Wu
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ping He
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yu Fan
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xiaorong Zhong
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Hong Zheng
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Ting Luo
- Breast Disease Center, Cancer Center, West China Hospital, Sichuan University, Chengdu 610000, China
- Multi-Omics Laboratory of Breast Diseases, State Key Laboratory of Biotherapy, National Collaborative, Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, China
| |
Collapse
|
27
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Heynen GJJE, Lisek K, Vogel R, Wulf-Goldenberg A, Alcaniz J, Montaudon E, Marangoni E, Birchmeier W. Targeting SHP2 phosphatase in breast cancer overcomes RTK-mediated resistance to PI3K inhibitors. Breast Cancer Res 2022; 24:23. [PMID: 35365185 PMCID: PMC8974145 DOI: 10.1186/s13058-022-01521-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background PI3K signaling is frequently activated in breast cancer and is targeted by PI3K inhibitors. However, resistance of tumor cells to PI3K inhibition, often mediated by activated receptor tyrosine kinases, is commonly observed and reduces the potency of PI3K inhibitors. Therefore, new treatment strategies to overcome resistance to PI3K inhibitors are urgently needed to boost their efficacy. The phosphatase SHP2, which plays a crucial role in mediating signal transduction between receptor tyrosine kinases and both the PI3K and MAPK pathways, is a potential target for combination treatment. Methods We tested combinations of PI3K and SHP2 inhibitors in several experimental breast cancer models that are resistant to PI3K inhibition. Using cell culturing, biochemical and genetic approaches, we evaluated tumor cell proliferation and signaling output in cells treated with PI3K and SHP2 inhibitors. Results Combination treatment with PI3K and SHP2 inhibitors counteracted both acquired and intrinsic breast cancer cell resistance to PI3K inhibition that is mediated by activated receptor tyrosine kinases. Dual PI3K and SHP2 inhibition blocked proliferation and led to sustained inactivation of PI3K and MAPK signaling, where resistant cells rapidly re-activated these pathways upon PI3K inhibitor monotreatment. In addition, we demonstrate that overexpression of SHP2 induced resistance to PI3K inhibition, and that SHP2 was frequently activated during the development of PI3K inhibitor resistance after prolonged treatment of sensitive cells. Conclusions Our results highlight the importance of SHP2 as a player in resistance to PI3K inhibitors. Combination treatment with PI3K and SHP2 inhibitors could pave the way for significant improvements in therapies for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01521-3.
Collapse
Affiliation(s)
- Guus J J E Heynen
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Kamil Lisek
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Regina Vogel
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Annika Wulf-Goldenberg
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Joshua Alcaniz
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Elodie Montaudon
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Elisabetta Marangoni
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
29
|
Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun 2021; 12:6276. [PMID: 34725325 PMCID: PMC8560912 DOI: 10.1038/s41467-021-26502-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a collection of biologically diverse cancers characterized by distinct transcriptional patterns, biology, and immune composition. TNBCs subtypes include two basal-like (BL1, BL2), a mesenchymal (M) and a luminal androgen receptor (LAR) subtype. Through a comprehensive analysis of mutation, copy number, transcriptomic, epigenetic, proteomic, and phospho-proteomic patterns we describe the genomic landscape of TNBC subtypes. Mesenchymal subtype tumors display high mutation loads, genomic instability, absence of immune cells, low PD-L1 expression, decreased global DNA methylation, and transcriptional repression of antigen presentation genes. We demonstrate that major histocompatibility complex I (MHC-I) is transcriptionally suppressed by H3K27me3 modifications by the polycomb repressor complex 2 (PRC2). Pharmacological inhibition of PRC2 subunits EZH2 or EED restores MHC-I expression and enhances chemotherapy efficacy in murine tumor models, providing a rationale for using PRC2 inhibitors in PD-L1 negative mesenchymal tumors. Subtype-specific differences in immune cell composition and differential genetic/pharmacological vulnerabilities suggest additional treatment strategies for TNBC. Triple negative breast cancer can be divided into additional subtypes. Here, using omics analyses, the authors show that in the mesenchymal subtype expression of MHC-1 is repressed and that this can be restored by using drugs that target subunits of the epigenetic modifier PRC2.
Collapse
|
30
|
Kaboli PJ, Imani S, Jomhori M, Ling KH. Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs the current chemotherapy. Am J Cancer Res 2021; 11:5155-5183. [PMID: 34765318 PMCID: PMC8569340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is the most prevalent type of cancer among women. Several types of drugs, targeting the specific proteins expressed on the breast cancer cell surface (such as receptor tyrosine kinases and immune checkpoint regulators) and proteins involved in cell cycle and motility (including cyclin-dependent kinases, DNA stabilisers, and cytoskeleton modulators) are approved for different subtypes of breast cancer. However, breast cancer also has a poor response to conventional chemotherapy due to intrinsic and acquired resistance, and an Akt fingerprint is detectable in most drug-resistant cases. Overactivation of Akt and its upstream and downstream regulators in resistant breast cancer cells is considered a major potential target for novel anti-cancer therapies, suggesting that Akt signalling acts as a cellular mechanism against chemotherapy. The present review has shown that sustained activation of Akt results in resistance to different types of chemotherapy. Akt signalling plays a cellular defence role against chemotherapy and (1) enhances multi-drug resistance, (2) increases reactive oxygen species at breast tumor microenvironment, (3) enhances anaerobic metabolism, (4) inhibits the tricarboxylic cycle, (5) promotes PD-L1 upregulation, (6) inhibits apoptosis, (7) increases glucose uptake, and more importantly (8) recruits and interconnects the plasma membrane, nucleus, endoplasmic reticulum, and mitochondria to hijack breast cancer cells and rescue these cells from chemotherapy. Therefore, Akt signalling is considered a cellular defence mechanism employed against chemotherapeutic effects. In addition, interfering roles of PI3K/Akt signalling on the current cytotoxic and molecularly targeted therapy as well as immunotherapy of breast cancer are discussed with a clinical approach. Although, alpelisib, a PIK3CA inhibitor, is the only PI3K/Akt pathway inhibitor approved for breast cancer, we also highlight well-evaluated inhibitors of PI3K/Akt signalling based on different subtypes of breast cancer, which are under clinical trials whether as monotherapy or in combination with other types of chemotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical UniversityLuzhou, Sichuan 646000, P. R. China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research InstituteMashhad, Iran
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra MalaysiaSerdang, Selangor 43400, Malaysia
- Department of Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| |
Collapse
|
31
|
Shah VV, Duncan AD, Jiang S, Stratton SA, Allton KL, Yam C, Jain A, Krause PM, Lu Y, Cai S, Tu Y, Zhou X, Zhang X, Jiang Y, Carroll CL, Kang Z, Liu B, Shen J, Gagea M, Manu SM, Huo L, Gilcrease M, Powell RT, Guo L, Stephan C, Davies PJ, Parker-Thornburg J, Lozano G, Behringer RR, Piwnica-Worms H, Chang JT, Moulder SL, Barton MC. Mammary-specific expression of Trim24 establishes a mouse model of human metaplastic breast cancer. Nat Commun 2021; 12:5389. [PMID: 34508101 PMCID: PMC8433435 DOI: 10.1038/s41467-021-25650-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Conditional overexpression of histone reader Tripartite motif containing protein 24 (TRIM24) in mouse mammary epithelia (Trim24COE) drives spontaneous development of mammary carcinosarcoma tumors, lacking ER, PR and HER2. Human carcinosarcomas or metaplastic breast cancers (MpBC) are a rare, chemorefractory subclass of triple-negative breast cancers (TNBC). Comparison of Trim24COE metaplastic carcinosarcoma morphology, TRIM24 protein levels and a derived Trim24COE gene signature reveals strong correlation with human MpBC tumors and MpBC patient-derived xenograft (PDX) models. Global and single-cell tumor profiling reveal Met as a direct oncogenic target of TRIM24, leading to aberrant PI3K/mTOR activation. Here, we find that pharmacological inhibition of these pathways in primary Trim24COE tumor cells and TRIM24-PROTAC treatment of MpBC TNBC PDX tumorspheres decreased cellular viability, suggesting potential in therapeutically targeting TRIM24 and its regulated pathways in TRIM24-expressing TNBC.
Collapse
Affiliation(s)
- Vrutant V Shah
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aundrietta D Duncan
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
- Salarius Pharmaceuticals, Houston, TX, USA
| | - Shiming Jiang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Thoracic Head and Neck Medicine Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sabrina A Stratton
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kendra L Allton
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Neurodegeneration Consortium, Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhinav Jain
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Patrick M Krause
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shirong Cai
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yizheng Tu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhui Zhou
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaomei Zhang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Jiang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher L Carroll
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhijun Kang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Shen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastian M Manu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Gilcrease
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reid T Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Lei Guo
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Peter J Davies
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
| | - Helen Piwnica-Worms
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T Chang
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA.
- Department of Integrative Biology and Pharmacology, University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| | - Stacy L Moulder
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michelle Craig Barton
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas, Houston, TX, USA.
- Division of Oncological Sciences, Cancer Early Detection Advanced Research, Center Knight Cancer Institute Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
32
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
33
|
Koh SB, Ross K, Isakoff SJ, Melkonjan N, He L, Matissek KJ, Schultz A, Mayer EL, Traina TA, Carey LA, Rugo HS, Liu MC, Stearns V, Langenbucher A, Saladi SV, Ramaswamy S, Lawrence MS, Ellisen LW. RASAL2 Confers Collateral MEK/EGFR Dependency in Chemoresistant Triple-Negative Breast Cancer. Clin Cancer Res 2021; 27:4883-4897. [PMID: 34168046 DOI: 10.1158/1078-0432.ccr-21-0714] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE While chemotherapy remains the standard treatment for triple-negative breast cancer (TNBC), identifying and managing chemoresistant tumors has proven elusive. We sought to discover hallmarks and therapeutically actionable features of refractory TNBC through molecular analysis of primary chemoresistant TNBC specimens. EXPERIMENTAL DESIGN We performed transcriptional profiling of tumors from a phase II clinical trial of platinum chemotherapy for advanced TNBC (TBCRC-009), revealing a gene expression signature that identified de novo chemorefractory tumors. We then employed pharmacogenomic data mining, proteomic and other molecular studies to define the therapeutic vulnerabilities of these tumors. RESULTS We reveal the RAS-GTPase-activating protein (RAS-GAP) RASAL2 as an upregulated factor that mediates chemotherapy resistance but also an exquisite collateral sensitivity to combination MAP kinase kinase (MEK1/2) and EGFR inhibitors in TNBC. Mechanistically, RASAL2 GAP activity is required to confer kinase inhibitor sensitivity, as RASAL2-high TNBCs sustain basal RAS activity through suppression of negative feedback regulators SPRY1/2, together with EGFR upregulation. Consequently, RASAL2 expression results in failed feedback compensation upon co-inhibition of MEK1/2 and EGFR that induces synergistic apoptosis in vitro and in vivo. In patients with TNBC, high RASAL2 levels predict clinical chemotherapy response and long-term outcomes, and are associated via direct transcriptional regulation with activated oncogenic Yes-Associated Protein (YAP). Accordingly, chemorefractory patient-derived TNBC models exhibit YAP activation, high RASAL2 expression, and tumor regression in response to MEK/EGFR inhibitor combinations despite well-tolerated intermittent dosing. CONCLUSIONS These findings identify RASAL2 as a mediator of TNBC chemoresistance that rewires MAPK feedback and cross-talk to confer profound collateral sensitivity to combination MEK1/2 and EGFR inhibitors.
Collapse
Affiliation(s)
- Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kenneth Ross
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Nsan Melkonjan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Lei He
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Karina J Matissek
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Andrew Schultz
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Erica L Mayer
- Harvard Medical School, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Lisa A Carey
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hope S Rugo
- University of California San Francisco, San Francisco, California
| | - Minetta C Liu
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Vered Stearns
- Johns Hopkins University and Sidney Kimmel Cancer Center, Baltimore, Maryland
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Srinivas Vinod Saladi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts.,Ludwig Center at Harvard, Harvard University, Boston, Massachusetts
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Harvard, Harvard University, Boston, Massachusetts
| |
Collapse
|
34
|
McCart Reed AE, Kalaw EM, Lakhani SR. An Update on the Molecular Pathology of Metaplastic Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2021; 13:161-170. [PMID: 33664587 PMCID: PMC7924111 DOI: 10.2147/bctt.s296784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Metaplastic breast cancer (MpBC) is a fascinating morphologic sub-type of breast cancer, characterised by intra-tumoural heterogeneity. By definition, these tumors show regions of metaplasia that can present as spindle, squamous, chondroid or even osseous differentiation. MpBC are typically triple-negative, and are therefore not targetable with hormone therapy or anti-HER2 therapies, leaving only chemotherapeutics for management. MpBC are known for their aggressive course and poor response to chemotherapy. We review herein the pathology and molecular landscape of MpBC and discuss opportunities for targetted therapies as well as immunotherapies.
Collapse
Affiliation(s)
- Amy E McCart Reed
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Emarene M Kalaw
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Sunil R Lakhani
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.,Pathology Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Jiang H, Hu Y, Mei H. Consolidative allogeneic hematopoietic stem cell transplantation after chimeric antigen receptor T-cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia: who? When? Why? Biomark Res 2020; 8:66. [PMID: 33292685 PMCID: PMC7687790 DOI: 10.1186/s40364-020-00247-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
Although anti-CD19 chimeric antigen receptor (CAR) T-cell therapy shows good efficacy in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL), it fails to improve long-term leukemia-free survival (LFS). Allogeneic hematopoietic stem cell transplantation (allo-HSCT) after CAR T-cell therapy has emerged as a promising strategy to prolong LFS. Nevertheless, which patients are likely to benefit from consolidative allo-HSCT, as well as the optimal therapeutic window, remain to be explored. Recent clinical data indicate that patients with complex karyotypes, adverse genes, and high pre-infusion minimal residual disease (MRD) by flow cytometry in the bone marrow, were at high risk of relapse after CAR T-cell therapy. High pre-lymphodepletion lactate dehydrogenase, low pre-lymphodepletion platelet count, absence of fludarabine in lymphodepletion, persistent leukemic sequence by high throughput sequencing in bone marrow after CAR T-cell infusion, and early loss of CAR T cells have also been linked to relapse after CAR T-cell therapy. In patients having these risk factors, consolidative allo-HSCT after CAR T-cell therapy may prolong LFS. Allo-HSCT provides optimal clinical benefit in patients with MRD-negative complete remission, typically within three months after CAR T-cell therapy. Herein, we summarize the clinical data on consolidative allo-HSCT after anti-CD19 CAR T-cell therapy, as well as the potential factors associated with allo-HSCT benefit. We also discuss the optimal therapeutic window and regimen of consolidative allo-HSCT. Finally, and most importantly, we provide recommendations for the assessment and management of r/r B-ALL patients undergoing anti-CD19 CAR T-cell therapy.
Collapse
Affiliation(s)
- Huiwen Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
| |
Collapse
|
36
|
Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 2020; 13:113. [PMID: 32807225 PMCID: PMC7433213 DOI: 10.1186/s13045-020-00949-4] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Jimin Yuan
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Geriatric Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xiaoduo Dong
- Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|