1
|
Santiago-Sánchez GS, Fabian KP, Hodge JW. A landscape of checkpoint blockade resistance in cancer: underlying mechanisms and current strategies to overcome resistance. Cancer Biol Ther 2024; 25:2308097. [PMID: 38306161 PMCID: PMC10841019 DOI: 10.1080/15384047.2024.2308097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The discovery of immune checkpoints and the development of immune checkpoint inhibitors (ICI) have achieved a durable response in advanced-stage cancer patients. However, there is still a high proportion of patients who do not benefit from ICI therapy due to a lack of response when first treated (primary resistance) or detection of disease progression months after objective response is observed (acquired resistance). Here, we review the current FDA-approved ICI for the treatment of certain solid malignancies, evaluate the contrasting responses to checkpoint blockade in different cancer types, explore the known mechanisms associated with checkpoint blockade resistance (CBR), and assess current strategies in the field that seek to overcome these mechanisms. In order to improve current therapies and develop new ones, the immunotherapy field still has an unmet need in identifying other molecules that act as immune checkpoints, and uncovering other mechanisms that promote CBR.
Collapse
Affiliation(s)
- Ginette S. Santiago-Sánchez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kellsye P. Fabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Jiang H, Ye Y, Wang M, Sun X, Sun T, Chen Y, Li P, Zhang M, Wang T. The progress on the relationship between gut microbiota and immune checkpoint blockade in tumors. Biotechnol Genet Eng Rev 2024; 40:4446-4465. [PMID: 37191003 DOI: 10.1080/02648725.2023.2212526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a promising immunotherapeutic approach for the treatment of various tumors. However, the efficacy of this therapy is limited in a subset of patients, and it is important to develop strategies to enhance immune responses. Studies have demonstrated a critical role of gut microbiota in regulating the therapeutic response to ICB. Gut microbiota composition, diversity, and function are mediated by metabolites, such as short-chain fatty acids and secondary bile acids, that interact with host immune cells through specific receptors. In addition, gut bacteria may translocate to the tumor site and stimulate antitumor immune responses. Therefore, maintaining a healthy gut microbiota composition, for instance through avoiding the use of antibiotics or probiotic interventions, can be an effective approach to optimize ICB therapy. This review summarizes the current understanding of the microbiota-immunity interactions in the context of ICB therapy, and discusses potential clinical implications of these findings.
Collapse
Affiliation(s)
- Haili Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingqi Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Sun
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Li
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ting Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Ma H, Song D, Zhang H, Li T, Jin X. Phenotypic insights into genetic risk factors for immune-related adverse events in cancer immunotherapy. Cancer Immunol Immunother 2024; 74:1. [PMID: 39487892 PMCID: PMC11531409 DOI: 10.1007/s00262-024-03854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Immune-related adverse events (irAEs) pose substantial challenges in the realm of cancer immunotherapy, frequently affecting treatment efficacy and patient safety. To address the urgent need for identifying risk factors associated with irAEs, we conducted a comprehensive phenotype-wide Mendelian randomization analysis (MR-PheWAS). METHODS Utilizing publicly accessible genome-wide association study (GWAS) data, this investigation evaluated the impact of over 5000 exposure variables on susceptibility to irAEs using univariate Mendelian randomization (MR). We categorized these correlations and further explored potential mechanisms by which associated traits might influence irAEs through multivariate MR. RESULTS MR-PheWAS identified numerous risk factors for irAEs, encompassing both previously documented and novel associations. Specifically, we identified 105 traits with probable causal relationships to all-grade irAEs and 119 traits with suggestive associations. For high-grade irAEs, we categorized 122 traits as probably associated and 141 as suggestively associated. Notably, multivariate MR analyses uncovered intricate interactions, particularly highlighting how diabetes impacts all-grade irAEs through mediators such as body mass index and sex hormone-binding globulin. CONCLUSIONS This study has not only identified new risk factors for irAEs but also confirmed several well-established ones. Further investigation is crucial to validate and assess these identified risk factors within clinical trials. A mechanistic understanding of these causal factors is essential for improving the management and prevention of irAEs.
Collapse
Affiliation(s)
- Haochuan Ma
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Hospital of Chinese Medicine Postdoctoral Research Workstation, Guangzhou, Guangdong, China
| | - Dili Song
- Integrated Chinese and Western Treatment of Oncology Department, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China
| | - Haibo Zhang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Taidong Li
- Integrated Chinese and Western Treatment of Oncology Department, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China.
- Department of Thoracic Surgery, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China.
| | - Xing Jin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
4
|
Kim CW, Kim HJ, Lee HK. Microbiome dynamics in immune checkpoint blockade. Trends Endocrinol Metab 2024; 35:996-1005. [PMID: 38705760 DOI: 10.1016/j.tem.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Immune checkpoint blockade (ICB) is one of the leading immunotherapies, although a variable extent of resistance has been observed among patients and across cancer types. Among the efforts underway to overcome this challenge, the microbiome has emerged as a factor affecting the responsiveness and efficacy of ICB. Active research, facilitated by advances in sequencing techniques, is assessing the predominant influence of the intestinal microbiome, as well as the effects of the presence of an intratumoral microbiome. In this review, we describe recent findings from clinical trials, observational studies of human patients, and animal studies on the impact of the microbiome on the efficacy of ICB, highlighting the role of the intestinal and tumor microbiomes and the contribution of methodological advances in their study.
Collapse
Affiliation(s)
- Chae Won Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Life Science Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun-Jin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Life Science Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Heung Kyu Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Moon S, Jung M, Go S, Hong J, Sohn HS, Kim C, Kang M, Lee BJ, Kim J, Lim J, Kim BS. Engineered Nanoparticles for Enhanced Antitumoral Synergy Between Macrophages and T Cells in the Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410340. [PMID: 39252658 DOI: 10.1002/adma.202410340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Indexed: 09/11/2024]
Abstract
T cells and macrophages have the potential to collaborate to eliminate tumor cells efficiently. Macrophages can eliminate tumor cells through phagocytosis and subsequently activate T cells by presenting tumor antigens. The activated T cells, in turn, can kill tumor cells and redirect tumor-associated macrophages toward an antitumoral M1 phenotype. However, checkpoint molecules expressed on tumor cells impede the collaborative action of these immune cells. Meanwhile, monotherapy with a single immune checkpoint inhibitor (ICI) for either macrophages or T cells yields suboptimal efficacy in cancer patients. To address this challenge, here a nanoparticle capable of efficiently delivering dual ICIs to tumors for both macrophages and T cells is developed. These programmed cell death protein 1 (PD-1)-transfected macrophage membrane-derived nanoparticles (PMMNPs) can target tumors and provide signal-regulatory protein alpha and PD-1 to block CD47 and programmed cell death-ligand 1 (PD-L1), respectively, on tumor cells. PMMNPs enhance macrophage-mediated cancer cell phagocytosis and antigen presentation, promote T cell activation, and induce the reprogramming of macrophages toward an antitumoral phenotype. In syngeneic tumor-bearing mice, PMMNPs demonstrate superior therapeutic efficacy compared to nanoparticles delivering single ICIs and non-targeted delivery of anti-CD47 and anti-PD-L1 antibodies. PMMNPs capable of augmenting the antitumoral interplay between macrophages and T cells may offer a promising avenue for cancer immunotherapy.
Collapse
Affiliation(s)
- Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- School of Health and Environmental Science, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Joon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinwoong Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Institute of Chemical Processes, and BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Frederico SC, Raphael I, Nisnboym M, Huq S, Schlegel BT, Sneiderman CT, Jackson SA, Jain A, Olin MR, Rood BR, Pollack IF, Hwang EI, Rajasundaram D, Kohanbash G. Transcriptomic observations of intra and extracellular immunotherapy targets for pediatric brain tumors. Expert Rev Clin Immunol 2024; 20:1411-1420. [PMID: 39114885 DOI: 10.1080/1744666x.2024.2390023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES Despite surgical resection, chemoradiation, and targeted therapy, brain tumors remain a leading cause of cancer-related death in children. Immunotherapy has shown some promise and is actively being investigated for treating childhood brain tumors. However, a critical step in advancing immunotherapy for these patients is to uncover targets that can be effectively translated into therapeutic interventions. METHODS In this study, our team performed a transcriptomic analysis across pediatric brain tumor types to identify potential targets for immunotherapy. Additionally, we assessed components that may impact patient response to immunotherapy, including the expression of genes essential for antigen processing and presentation, inhibitory ligands and receptors, interferon signature, and overall predicted T cell infiltration. RESULTS We observed distinct expression patterns across tumor types. These included elevated expression of antigen genes and antigen processing machinery in some tumor types while other tumors had elevated inhibitory checkpoint receptors, known to be associated with response to checkpoint inhibitor immunotherapy. CONCLUSION These findings suggest that pediatric brain tumors exhibit distinct potential for specific immunotherapies. We believe our findings can guide investigators in their assessment of appropriate immunotherapy classes and targets in pediatric brain tumors.
Collapse
Affiliation(s)
- Stephen C Frederico
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michal Nisnboym
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent T Schlegel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney A Jackson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anya Jain
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Brian R Rood
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eugene I Hwang
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | | | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Zietse M, Malmberg R, van Leeuwen RWF, Thielen FW, Uyl-de Groot CA. The administration of immune checkpoint inhibitors via an elastomeric pump versus conventional intravenous infusion: an economic perspective. BMC Health Serv Res 2024; 24:1322. [PMID: 39482711 PMCID: PMC11526519 DOI: 10.1186/s12913-024-11719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Recent studies have underscored the potential of innovative administration methods to mitigate the capacity burden on healthcare systems, without compromising the quality of care. This study assessed and compared the resource utilization and associated costs of two distinct administration modes of immune checkpoint inhibitors: the innovative elastomeric pump and conventional intravenous infusion. This comparison can inform sustainable healthcare practices and healthcare decision-making to optimize treatment efficiency in an era of escalating healthcare demands. METHODS In this micro-costing study, data on resource use and time allocation for drug preparation and administration were collected using an observational, non-interventional study design. Data were registered at the oncology daycare unit and hospital pharmacy. Cost categories included drug acquisition, disposable materials, healthcare professional time for drug administration, drug preparation, and patient time spent at the oncology day care unit. RESULTS Drug administration through the elastomeric pump resulted in substantially lower healthcare costs when compared to conventional infusion, particularly due to reduced labor and chair time. The elastomeric pump reduced the total chair time by 78% and nurse time by 55%. Total average costs (excluding drug costs) were €103,47 and €77.99 for conventional infusion and the elastomeric pump, respectively, showcasing potential savings of €25.48 (P < 0.001) per administration. CONCLUSIONS This study demonstrated that the elastomeric pump not only offers substantial cost savings but also enhances the treatment capacity of the oncology day care unit. These findings support the adoption of the elastomeric pump in clinical settings as a cost-saving and efficient alternative to conventional infusion. TRIAL REGISTRATION This study has been registered in the National Trial Register (NTR), with the reference number NTR NL9473. Registration date: 05-05-2021.
Collapse
Affiliation(s)
- Michiel Zietse
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Ruben Malmberg
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Roelof W F van Leeuwen
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Frederick W Thielen
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus Centre for Health Economics Rotterdam (EsCHER), Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Carin A Uyl-de Groot
- Department of Health Technology Assessment, Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus Centre for Health Economics Rotterdam (EsCHER), Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Lutskovich D, Meleshko A, Katsin M. State of the art and perspectives of chimeric antigen receptor T cells cell therapy for neuroblastoma. Cytotherapy 2024; 26:1122-1131. [PMID: 38852096 DOI: 10.1016/j.jcyt.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 06/10/2024]
Abstract
Neuroblastoma (NB) is a solid, neuroendocrine pediatric solid tumor with divergent clinical behavior. Patients with high-risk diseases have poor prognoses despite complex multimodal therapy, which requires the search for new therapeutic approaches. Chimeric antigen receptor T cells (CAR-T) have led to dramatic improvements in the survival of cancer patients, most notably those with hematologic malignancies. Early-phase clinical trials of CAR-T cell therapy for NB have proven safe and feasible, but limited clinical efficacy. At the same time, multiple experimental and preclinical studies have shown that the most common in clinical trials single 2nd or 3rd generation CAR structure is not sufficient for a complete response in solid tumors. Here, we review the recent advances and future perspectives associated with engineered receptors, including several antigens binding, armored CAR-T of 4th and 5th generation and CAR-T cell combination strategies with other immunotherapy. We also summarize the results and shortcomings of ongoing clinical trials of CAR-T therapy for NB.
Collapse
Affiliation(s)
- Dzmitry Lutskovich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus.
| | - Alexander Meleshko
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Mikalai Katsin
- Vitebsk Regional Clinical Cancer Centre, Vitebsk, Belarus
| |
Collapse
|
9
|
Lin SW, Yu CP, Tsai JC, Shyong YJ. Delivery of extracellular vesicles loaded with immune checkpoint inhibitors for immunotherapeutic management of glioma. Mater Today Bio 2024; 28:101244. [PMID: 39318378 PMCID: PMC11421369 DOI: 10.1016/j.mtbio.2024.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Glioma is a common primary malignant brain tumor with low survival rate. Immunotherapy with immune checkpoints inhibitors (ICI) can be a choice for glioma management, and extracellular vesicles (EVs) are recognized as a potential drug delivery system for various disease management due to their enhanced barrier permeation ability and immunomodulatory effect. The aim of this study is to develop ICI-loaded EVs (ICI/EV) that have sufficient efficacy in managing glioma. Calcium phosphate particles (CaP) were used to stimulate the secretion of EVs from murine macrophage cells. CaP conditioning of cells showed an enhanced amount of EVs secretion and macrophage polarization toward a proinflammatory phenotype. The CaP-induced EVs were shown to polarize macrophages into proinflammatory phenotype in vitro, as correlated with the conditioning method. ICI/EVs were successfully prepared with high loading efficiency using the sonication method. The EVs can be distributed throughout the entire brain upon intranasal administration and facilitate ICIs distribution into glioma lesion. Combinatory treatment with ICI/EVs showed benefit in glioma-bearing mice by reducing their tumor volume and prolonging their survival. Cytotoxic T cell infiltration, polarization of tumor-associated macrophage, and lower tumor proliferation were observed in ICI/EVs-treated mice. The developed ICI/EVs showed promise in immunotherapeutic management of glioma.
Collapse
Affiliation(s)
- Shang-Wen Lin
- School of Pharmacy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan
| | - Cheng-Ping Yu
- School of Pharmacy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan
| | - Jui-Chen Tsai
- School of Pharmacy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan
| | - Yan-Jye Shyong
- School of Pharmacy, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan
| |
Collapse
|
10
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Beshr MS, Beshr IA, Al Hayek M, Alfaqaih SM, Abuajamieh M, Basheer E, Wali AK, Ekreer M, Chenfouh I, Khashan A, Hassan ET, Elnaami SM, Elhadi M. PD-1/PD-L1 Inhibitors in Combination With Chemo or as Monotherapy vs. Chemotherapy Alone in Advanced, Unresectable HER2-Negative Gastric, Gastroesophageal Junction, and Esophageal Adenocarcinoma: A Meta-Analysis. Clin Oncol (R Coll Radiol) 2024:S0936-6555(24)00385-6. [PMID: 39384455 DOI: 10.1016/j.clon.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
AIMS Advanced gastroesophageal cancers are still associated with poor outcomes. We aim to study PD-1/PD-L1 inhibitors in phase III clinical trials that have compared them to chemotherapy in gastric, gastroesophageal junction (GEJ), and esophageal adenocarcinoma. MATERIALS AND METHODS On March 28, 2024, we searched: PubMed, Embase, Cochrane Library, Web of Science, Scopus, and ClinicalTrials.gov. We only included randomized clinical trials for PD-1/PD-L1 inhibitors alone or with chemo vs chemotherapy in advanced gastric, GEJ, or esophageal adenocarcinoma. The primary endpoints were overall survival and progression-free survival. A subgroup analysis was conducted for the following variables: treatment line, type of intervention, age group, gender, ECOG Performance Status, combined positive scores (CPS), microsatellite instability (MSI) status, liver metastasis, and primary tumor location. RESULTS Only 10 out of 8,942 articles were included, involving 6,782 patients. PD-1/PD-L1 inhibitors showed a significant improvement in the overall survival compared to chemotherapy alone (hazard ratio (HR): 0.86, 95% CI: 0.80-0.93; p = 0.0002). Combining PD-1/PD-L1 inhibitors with chemotherapy significantly improved overall and progression-free survival compared to monotherapy (combined therapy HR 0.80; p < 0.00001 vs. monotherapy HR 0.98; p = 0.77). CPS ≥1 had an HR of 0.78 (95% CI: 0.73-0.84; p < 0.00001), CPS ≥10 had an HR of 0.67 (95% CI: 0.59-0.76; p < 0.00001), and MSI-high status had an HR of 0.35 (95% CI: 0.24-0.52; p < 0.00001). Esophageal adenocarcinoma, reported in three trials, did not show significant improvement in the overall survival (HR 0.89; 95% CI: 0.69-1.14; p = 0.37). CONCLUSION PD-1/PD-L1 inhibitors have significantly improved overall survival, and combining them with chemotherapy is more effective than monotherapy. Both CPS ≥10 and MSI-H showed an added benefit to overall survival and should be included in biomarker investigations. Clinical trials are needed for second-line treatments and esophageal adenocarcinoma.
Collapse
Affiliation(s)
- M S Beshr
- Sana'a University, Faculty of Medicine and Health Sciences, Sana'a, Yemen
| | - I A Beshr
- Sana'a University, Faculty of Medicine and Health Sciences, Sana'a, Yemen
| | - M Al Hayek
- Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
| | - S M Alfaqaih
- Faculty of Medicine, University of Misurata, Misurata, Libya
| | - M Abuajamieh
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - E Basheer
- Faculty of Medicine, Sebha University, Sabha, Libya
| | - A K Wali
- Faculty of Medicine, University of Tripoli, Libya
| | - M Ekreer
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - I Chenfouh
- Faculty of Medicine and Pharmacy, Oujda, Oujda-Angad, Morocco
| | - A Khashan
- Raritan Bay Medical Center, Perth Amboy, NJ, USA
| | - E T Hassan
- Tripoli University Hospital, Tripoli, Libya
| | | | - M Elhadi
- Faculty of Medicine, Cairo University, Cairo, Egypt; Faculty of Medicine, University of Tripoli, Tripoli, Libya.
| |
Collapse
|
12
|
Li TT, Hao QG, Teng ZW, Liu Y, Wu JF, Zhang J, Yang LR. SNAI2 as a Prognostic Biomarker Based on Cancer-Associated Fibroblasts in Patients With Lung Adenocarcinoma. Clin Med Insights Oncol 2024; 18:11795549241280506. [PMID: 39314798 PMCID: PMC11418231 DOI: 10.1177/11795549241280506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a common type of malignant tumor with therapeutic challenges. Cancer-associated fibroblasts (CAFs) promote LUAD growth and metastasis, regulate the tumor immune response, and influence tumor treatment responses and drug resistance. However, the molecular mechanisms through which CAFs control LUAD progression are largely unknown. In this study, we aimed to determine the correlations between CAF-related genes and overall survival (OS) in patients with LUAD. Methods We acquired the gene expression data and clinical information of 522 patients with LUAD patients from The Cancer Genome Atlas (TCGA) and 442 patients with LUAD from the Gene Expression Omnibus (GEO) databases. CAF infiltration levels were assessed using the Microenvironment Cell Population (MCP) counter, the Estimating the Proportions of Immune and Cancer cells (EPIC) algorithm, and Tumor Immune Dysfunction and Exclusion (TIDE) scores. A CAF-related gene network was constructed using the Weighted gene co-expression network analysis (WGCNA). Based on the CAF-related genes, univariate Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analyses were performed to identify prognostic genes. Gene expression levels within the prognostic model were validated using the Cancer Cell Line Encyclopedia (CCLE) databases and Western blotting. Results Our results demonstrated that high CAF scores were associated with lower survival rates in patients with LUAD. Gene modules that were highly correlated with high CAF scores were closely associated with tissue characteristics and extracellular matrix structures in LUAD. In addition, correlations between CAF scores and responses to immunotherapy and chemotherapy were observed. Finally, we found that SNAI2 expression was higher in lung cancer tissues than in normal tissues. Conclusion Deepening our understanding of the influence of CAFs on tumor progression and treatment response at the molecular level can aid the development of more effective therapeutic strategies. This study provides important insights into the functional mechanisms of action of CAFs in LUAD and highlights their clinical implications.
Collapse
Affiliation(s)
- Tian-Tian Li
- Department of pneumology, The Central Hospital of Wuhan, Wuhan, China
| | - Qing-Gang Hao
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhao-Wei Teng
- The Central Laboratory and Department of Orthopedic, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Liu
- Department of general surgery, Kunming Medical University, Kunming, China
| | - Jia-Fan Wu
- Department of general surgery, Kunming Medical University, Kunming, China
| | - Jun Zhang
- Department of Oncology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Li-Rong Yang
- Department of Oncology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
13
|
Ahmad W, Sajjad W, Zhou Q, Ge Z. Nanomedicine for combination of chemodynamic therapy and immunotherapy of cancers. Biomater Sci 2024; 12:4607-4629. [PMID: 39115141 DOI: 10.1039/d3bm02133e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chemodynamic therapy (CDT), as a new type of therapy, has received more and more attention in the field of tumor therapy in recent years. By virtue of the characteristics of weak acidity and excess H2O2 in the tumor microenvironment, CDT uses the Fenton or Fenton-like reactions to catalyze the transformation of H2O2 into strongly oxidizing ˙OH, resulting in increased intracellular oxidative stress for lipid oxidation, protein inactivation, or DNA damage, and finally inducing apoptosis of cancer cells. In particular, CDT has the advantage of tumor specificity. However, the therapeutic efficacy of CDT frequently depends on the catalytic efficiency of the Fenton reaction, which needs the presence of sufficient H2O2 and catalytic metal ions. Relatively low concentrations of H2O2 and the lack of catalytic metal ions usually limit the final therapeutic effect. The combination of CDT with immunotherapy will be an effective means to improve the therapeutic effect. In this review paper, the recent progress related to nanomedicine for the combination of CDT and immunotherapy is summarized. Immunogenic death of tumor cells, immune checkpoint inhibitors, and stimulator of interferon gene (STING) activation as the main immunotherapy strategies to combine with CDT are discussed. Finally, the challenges and prospects for the clinical translation and future development direction are discussed.
Collapse
Affiliation(s)
- Waqas Ahmad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wasim Sajjad
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
14
|
Mima Y, Ohtsuka T, Ebato I, Nakazato Y, Norimatsu Y. A Case of Bullous Pemphigoid with Significant Infiltration of CD4-Positive T Cells during Treatment with Pembrolizumab, Accompanied by Pembrolizumab-Induced Multi-Organ Dysfunction. Diagnostics (Basel) 2024; 14:1958. [PMID: 39272742 PMCID: PMC11394162 DOI: 10.3390/diagnostics14171958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) activate T cells, causing immune-related adverse events (irAEs). Skin manifestations are common among irAEs, but ICI-associated bullous pemphigoid (BP) is rare. Inhibiting programmed death (PD)-1 signaling, in addition to causing epitope spreading, may disrupt B and T cell balance, causing excessive autoantibody production against the skin's basement membrane, leading to BP. A 70-year-old woman developed late-onset multi-organ irAEs, including diarrhea, thyroid dysfunction, and BP, while receiving pembrolizumab, a PD-1 inhibitor. This highlights the long-term risk of irAEs, which can occur 2-3 years after starting ICIs. In cases of multi-organ irAE, C-reactive protein levels and neutrophil/lymphocyte ratio are often low. These characteristics were observed in our case. Few papers address multiple organ involvement, highlighting the need to consider irAEs in a multi-organ context. While it is known that drug-induced skin reactions worsen as blood eosinophil counts increase, in our case, the eosinophil count remained normal, suggesting that ICI-associated BP might have been controlled without discontinuing the ICI and through tapering of low-dose oral prednisone treatment. Additionally, in this case, significant CD4-positive T cell infiltration was observed in the immunostaining examination of the blisters, indicating that severe CD4-positive T cell infiltration induced by the ICI might have led to multi-organ involvement, including severe diarrhea. Few reports focus on blood eosinophil counts in BP cases or discuss CD4 and CD8 immunostaining in BP cases. Therefore, future research should explore the relationship between blood eosinophil counts, immunostaining results, and the prognosis of irAEs, including BP, in treatment courses.
Collapse
Affiliation(s)
- Yoshihito Mima
- Department of Dermatology, Tokyo Metropolitan Police Hospital, Tokyo 164-8541, Japan
| | - Tsutomu Ohtsuka
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Ippei Ebato
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yoshimasa Nakazato
- Department of Diagnostic Pathology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yuta Norimatsu
- Department of Dermatology, International University of Health and Welfare Narita Hospital, Chiba 286-0124, Japan
| |
Collapse
|
15
|
Fu M, Li J, Xuan Z, Zheng Z, Liu Y, Zhang Z, Zheng J, Zhong M, Liu B, Du Y, Zhang L, Sun H. NDR1 mediates PD-L1 deubiquitination to promote prostate cancer immune escape via USP10. Cell Commun Signal 2024; 22:429. [PMID: 39227807 PMCID: PMC11370014 DOI: 10.1186/s12964-024-01805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common male genitourinary system malignancies. Despite the significant benefits of anti-PD-L1 immune checkpoint inhibitor therapy in other cancers, the reasons for its poor therapeutic efficacy in prostate cancer (PCa) remain unclear.NDR1 plays an important role in innate immunity, but its role in tumor immunity and immunotherapy has not been investigated. The role of NDR1 in the immune microenvironment of PCa and the related mechanisms are unknown. Here, we found a positive correlation between NDR1 and PD-L1 expression in PCa. NDR1 significantly inhibits CD8 + T cell infiltration and function, thereby promoting immune escape in prostate cancer.More importantly, NDR1 inhibition significantly enhanced CD8 + T cell activation, which enhanced the therapeutic effect of anti-PD-L1. Mechanistic studies revealed that NDR1 inhibits ubiquitination-mediated PD-L1 degradation via the deubiquitinase USP10, upregulates PD-L1, and promotes PCa immune escape. Thus, our study suggests a unique PD-L1 regulatory mechanism underlying PCa immunotherapy failure. The significance of NDR1 in PCa immune escape and its mechanism of action were clarified, and combined NDR1/PD-L1 inhibition was suggested as an approach to boost PCa immunotherapy effectiveness.
Collapse
Affiliation(s)
- Meiling Fu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Jinxin Li
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zuodong Xuan
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Zeyuan Zheng
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Yankuo Liu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Zeyi Zhang
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Jianzhong Zheng
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Min Zhong
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Bin Liu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Yifan Du
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Lei Zhang
- School of Public Health, Xiamen University, Xiamen, 361101, China.
| | - Huimin Sun
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China.
- Central Laboratory, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, 361101, China.
| |
Collapse
|
16
|
Yan M, Chen X, Li X, Liu Q, Yu B, Cen Y, Zhang W, Liu Y, Li X, Chen Y, Wang T, Li S. Transferrin receptor-targeted immunostimulant for photodynamic immunotherapy against metastatic tumors through β-catenin/CREB interruption. Acta Pharm Sin B 2024; 14:4118-4133. [PMID: 39309507 PMCID: PMC11413667 DOI: 10.1016/j.apsb.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 09/25/2024] Open
Abstract
The immunosuppressive phenotype of tumor cells extensively attenuates the immune activation effects of traditional treatments. In this work, a transferrin receptor (TfR) targeted immunostimulant (PTI) is fabricated for photodynamic immunotherapy against metastatic tumors by interrupting β-catenin signal pathway. To synthesize PTI, the photosensitizer conjugated TfR targeting peptide moiety (Palmitic-K(PpIX)-HAIYPRH) is unitized to encapsulate the transcription interrupter of ICG-001. On the one hand, the recognition of PTI and TfR can promote drug delivery into tumor cells to destruct primary tumors through photodynamic therapy and initiate an immunogenic cell death with the release of tumor-associated antigens. On the other hand, PTI will interrupt the binding between β-catenin and cAMP response element-binding protein (CREB), regulating the gene transcription to downregulate programmed death ligand 1 (PD-L1) while upregulating C-C motif chemokine ligand 4 (CCL4). Furthermore, the elevated CCL4 can recruit the dendritic cells to present tumor-specific antigens and promote T cells activation and infiltration, and the downregulated PD-L1 can avoid the immune evasion of tumor cells and activate systemic anti-tumor immunity to eradicate lung metastasis. This work may inspire the development of antibody antibody-free strategy to activate systemic immune response in consideration of immunosuppressive conditions.
Collapse
Affiliation(s)
- Mengyi Yan
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiayun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaotong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou 511436, China
| | - Qianqian Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Baixue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Zhang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yibin Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinxuan Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Ying Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, Guangzhou Institute of Respiratory Health, the first Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China
| | - Shiying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
17
|
Li X, Li Z, Ma H, Li X, Zhai H, Li X, Cheng X, Zhao X, Zhao Z, Hao Z. Ovarian cancer: Diagnosis and treatment strategies (Review). Oncol Lett 2024; 28:441. [PMID: 39099583 PMCID: PMC11294909 DOI: 10.3892/ol.2024.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Ovarian cancer is a malignant tumor that seriously endangers health. Early ovarian cancer symptoms are frequently challenging to detect, resulting in a large proportion of patients reaching an advanced stage when diagnosed. Conventional diagnosis relies heavily on serum biomarkers and pathological examination, but their sensitivity and specificity require improvement. Targeted therapy inhibits tumor growth by targeting certain characteristics of tumor cells, such as signaling pathways and gene mutations. However, the effectiveness of targeted therapy varies among individuals due to differences in their unique biological characteristics and requires individualized strategies. Immunotherapy is a promising treatment for ovarian cancer due to its long-lasting antitumor effect. Nevertheless, issues such as variable efficacy, immune-associated adverse effects and drug resistance remain to be resolved. The present review discusses the diagnostic strategies, rationale, treatment strategies and prospects of targeted therapy and immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhuocheng Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huiling Ma
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xinwei Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hongxiao Zhai
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xixi Li
- Department of Ultrasound, Zhengzhou First People's Hospital, Zhengzhou, Henan 450004, P.R. China
| | - Xiaofei Cheng
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaohui Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhilong Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Hao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
18
|
Xun Z, Zhou H, Shen M, Liu Y, Sun C, Du Y, Jiang Z, Yang L, Zhang Q, Lin C, Hu Q, Ye Y, Han L. Identification of Hypoxia-ALCAM high Macrophage- Exhausted T Cell Axis in Tumor Microenvironment Remodeling for Immunotherapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309885. [PMID: 38956900 PMCID: PMC11434037 DOI: 10.1002/advs.202309885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Indexed: 07/04/2024]
Abstract
Although hypoxia is known to be associated with immune resistance, the adaptability to hypoxia by different cell populations in the tumor microenvironment and the underlying mechanisms remain elusive. This knowledge gap has hindered the development of therapeutic strategies to overcome tumor immune resistance induced by hypoxia. Here, bulk, single-cell, and spatial transcriptomics are integrated to characterize hypoxia associated with immune escape during carcinogenesis and reveal a hypoxia-based intercellular communication hub consisting of malignant cells, ALCAMhigh macrophages, and exhausted CD8+ T cells around the tumor boundary. A hypoxic microenvironment promotes binding of HIF-1α complex is demonstrated to the ALCAM promoter therefore increasing its expression in macrophages, and the ALCAMhigh macrophages co-localize with exhausted CD8+ T cells in the tumor spatial microenvironment and promote T cell exhaustion. Preclinically, HIF-1ɑ inhibition reduces ALCAM expression in macrophages and exhausted CD8+ T cells and potentiates T cell antitumor function to enhance immunotherapy efficacy. This study reveals the systematic landscape of hypoxia at single-cell resolution and spatial architecture and highlights the effect of hypoxia on immunotherapy resistance through the ALCAMhigh macrophage-exhausted T cell axis, providing a novel immunotherapeutic strategy to overcome hypoxia-induced resistance in cancers.
Collapse
Affiliation(s)
- Zhenzhen Xun
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Huanran Zhou
- Department of EndocrinologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Mingyi Shen
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yao Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Chengcao Sun
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Yanhua Du
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhou Jiang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Liuqing Yang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qing Zhang
- Simmons Comprehensive Cancer CenterDepartment of PathologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Chunru Lin
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qingsong Hu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Youqiong Ye
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Leng Han
- Brown Center for ImmunotherapySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceSchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologyMcGovern Medical School at The University of Texas Health Science Center at HoustonHoustonTX77030USA
| |
Collapse
|
19
|
Cao W, Xie Y, Cai L, Wang M, Chen Z, Wang Z, Xv J, Wang Y, Li R, Liu X, Wang W. Pan‑cancer analysis on the role of KMT2C expression in tumor progression and immunotherapy. Oncol Lett 2024; 28:444. [PMID: 39091583 PMCID: PMC11292467 DOI: 10.3892/ol.2024.14577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/10/2024] [Indexed: 08/04/2024] Open
Abstract
Histone lysine N-methyltransferase 2C (KMT2C) is involved in transcriptional regulation and DNA damage repair. Mutations in KMT2C have been implicated in the progression, metastasis, and drug resistance of multiple cancer types. However, the roles of KMT2C in the regulation of tumor prognosis, immune cell infiltration and the immune microenvironment in these multiple cancer types remain unclear. Therefore, in the present study, data from The Cancer Genome Atlas and Genotype-Tissue Expression databases were used for KMT2C expression analyses. Kaplan-Meier and univariate Cox regression analyses were also performed to investigate the prognostic role of KMT2C. In addition, Gene Set Enrichment Analysis (GSEA) was conducted to study the KMT2C-related signaling pathways. Tumor immune estimation resource 2 and single-sample GSEA were conducted to investigate the correlation between KMT2C expression and immune cell infiltrations, and Spearman's analysis was conducted to study the correlations among KMT2C, tumor mutational burden, microsatellite instability, immune regulators, chemokines and immune receptors. Immunohistochemistry of patient kidney tumor samples was performed to verify the correlation between KMT2C and programmed death-ligand 1 (PD-L1) expression. Finally, RNA interference, wound healing and colony formation assays were conducted to evaluate the effects of KMT2C expression on cell proliferation and metastasis. The results of the present study demonstrated that KMT2C was highly expressed in multiple cancer types, was a protective factor in kidney renal clear cell carcinoma and ovarian serous cystadenocarcinoma, and a risk factor for lung squamous cell carcinoma and uveal melanoma. In addition, KMT2C levels were negatively correlated with immune-activated pathways and the infiltration of immune cells, and positively correlated with inhibitory immune factors and tumor angiogenesis. Patients with low KMT2C expression had higher objective response rates to immunotherapy, and drug sensitivity analysis indicated that topoisomerase, histone deacetylase, DOT1-like histone H3K79 methyltransferase and G9A nuclear histone lysine methyltransferase inhibitors could potentially be used to treat tumors with high KMT2C expression levels. Finally, the KMT2C and PD-L1 expression levels were shown to be positively correlated, and KMT2C knockdown markedly promoted the proliferation and invasion capacities of A549 cells. In conclusion, the present study revealed that low KMT2C expression may be a promising biomarker for predicting the response of patients with cancer to immunotherapy. Conversely, high KMT2C expression was shown to promote tumor angiogenesis, which may contribute to the formation of the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Wei Cao
- Department of Thoracic Surgery, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yawen Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Li Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Mengqing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zhuoying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Ziteng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jiajia Xv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuqing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xuesong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wenliang Wang
- Institute of Clinical Immunology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
20
|
Zhang X, Wu Y, Lin J, Lu S, Lu X, Cheng A, Chen H, Zhang W, Luan X. Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges. Acta Pharm Sin B 2024; 14:3818-3833. [PMID: 39309492 PMCID: PMC11413705 DOI: 10.1016/j.apsb.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapies hold immense potential for achieving durable potency and long-term survival opportunities in cancer therapy. As vital biological mediators, peptides with high tissue penetration and superior selectivity offer significant promise for enhancing cancer immunotherapies (CITs). However, physicochemical peptide features such as conformation and stability pose challenges to their on-target efficacy. This review provides a comprehensive overview of recent advancements in therapeutic peptides targeting key steps of the cancer-immunity cycle (CIC), including tumor antigen presentation, immune cell regulation, and immune checkpoint signaling. Particular attention is given to the opportunities and challenges associated with these peptides in boosting CIC within the context of clinical progress. Furthermore, possible future developments in this field are also discussed to provide insights into emerging CITs with robust efficacy and safety profiles.
Collapse
Affiliation(s)
- Xiaokun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science &, Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
21
|
Kamaraj R, Ghosh S, Das S, Sen S, Kumar P, Majumdar M, Dasgupta R, Mukherjee S, Das S, Ghose I, Pavek P, Raja Karuppiah MP, Chuturgoon AA, Anand K. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjug Chem 2024; 35:1089-1115. [PMID: 38990186 PMCID: PMC11342303 DOI: 10.1021/acs.bioconjchem.4c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Targeted protein degradation or TPD, is rapidly emerging as a treatment that utilizes small molecules to degrade proteins that cause diseases. TPD allows for the selective removal of disease-causing proteins, including proteasome-mediated degradation, lysosome-mediated degradation, and autophagy-mediated degradation. This approach has shown great promise in preclinical studies and is now being translated to treat numerous diseases, including neurodegenerative diseases, infectious diseases, and cancer. This review discusses the latest advances in TPD and its potential as a new chemical modality for immunotherapy, with a special focus on the innovative applications and cutting-edge research of PROTACs (Proteolysis TArgeting Chimeras) and their efficient translation from scientific discovery to technological achievements. Our review also addresses the significant obstacles and potential prospects in this domain, while also offering insights into the future of TPD for immunotherapeutic applications.
Collapse
Affiliation(s)
- Rajamanikkam Kamaraj
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Subhrojyoti Ghosh
- Department
of Biotechnology, Indian Institute of Technology
Madras, Chennai 600036, India
| | - Souvadra Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shinjini Sen
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Priyanka Kumar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Madhurima Majumdar
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Renesa Dasgupta
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Sampurna Mukherjee
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Shrimanti Das
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Indrilla Ghose
- Department
of Biotechnology, Heritage Institute of
Technology, Kolkata 700107, India
| | - Petr Pavek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Muruga Poopathi Raja Karuppiah
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod District, Kerala 671320, India
| | - Anil A. Chuturgoon
- Discipline
of Medical Biochemistry, School of Laboratory Medicine and Medical
Sciences, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Free State 9300, South Africa
| |
Collapse
|
22
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
23
|
Abdolmohammadi-Vahid S, Baradaran B, Adcock IM, Mortaz E. Immune checkpoint inhibitors and SARS-CoV2 infection. Int Immunopharmacol 2024; 137:112419. [PMID: 38865755 DOI: 10.1016/j.intimp.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm, together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
24
|
Mima Y, Ohtsuka T, Ebato I, Nakata Y, Tsujita A, Nakazato Y, Norimatsu Y. Review of T Helper 2-Type Inflammatory Diseases Following Immune Checkpoint Inhibitor Treatment. Biomedicines 2024; 12:1886. [PMID: 39200350 PMCID: PMC11352049 DOI: 10.3390/biomedicines12081886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Immune checkpoints are mechanisms that allow cancer cells to evade immune surveillance and avoid destruction by the body's immune system. Tumor cells exploit immune checkpoint proteins to inhibit T cell activation, thus enhancing their resistance to immune attacks. Immune checkpoint inhibitors, like nivolumab, work by reactivating these suppressed T cells to target cancer cells. However, this reactivation can disrupt immune balance and cause immune-related adverse events. This report presents a rare case of prurigo nodularis that developed six months after administering nivolumab for lung adenocarcinoma. While immune-related adverse events are commonly linked to T helper-1- or T helper-17-type inflammations, T helper-2-type inflammatory reactions, as observed in our case, are unusual. The PD-1-PD-L1 pathway is typically associated with T helper-1 and 17 responses, whereas the PD-1-PD-L2 pathway is linked to T helper-2 responses. Inhibition of PD-1 can enhance PD-L1 functions, potentially shifting the immune response towards T helper-1 and 17 types, but it may also influence T helper-2-type inflammation. This study reviews T helper-2-type inflammatory diseases emerging from immune checkpoint inhibitor treatment, highlighting the novelty of our findings.
Collapse
Affiliation(s)
- Yoshihito Mima
- Department of Dermatology, Tokyo Metropolitan Police Hospital, Tokyo 164-8541, Japan
| | - Tsutomu Ohtsuka
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Ippei Ebato
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yukihiro Nakata
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Akihiro Tsujita
- Department of Respiratory Medicine, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yoshimasa Nakazato
- Department of Diagnostic Pathology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yuta Norimatsu
- Department of Dermatology, International University of Health and Welfare Narita Hospital, Chiba 286-0124, Japan;
| |
Collapse
|
25
|
Simões JLB, Braga GDC, Coiado JV, Scaramussa AB, Rodrigues APB, Bagatini MD. Takotsubo syndrome as an outcome of the use of checkpoint inhibitor therapy in patients with COVID-19. Biochem Pharmacol 2024; 226:116388. [PMID: 38914315 DOI: 10.1016/j.bcp.2024.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Takotsubo Syndrome (TS) is a heart disease caused by extreme exposure of the body to physical or psychological stress. In the context of COVID-19, the virus can be a significant source of stress, with particular attention being paid to the cytokine storm as a cause of damage to the body. New research shows that the production of specific cytokines is linked to the activation of immune checkpoint proteins such as PD-1, PD-L1, and CTLA-4 on T cells. Although initially beneficial in combating infections, it can suppress defense and aid in disease progression. Therefore, checkpoint inhibitor therapy has been highlighted beyond oncological therapies, given its effectiveness in strengthening the immune system. However, this treatment can lead to excessive immune responses, inflammation, and stress on the heart, which can cause Takotsubo Syndrome in patients. Several studies investigate the direct link between this therapy and cardiac injuries in these patients, which can trigger TS. From this perspective, we must delve deeper into this treatment and consider its effects on the prognosis against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - João Victor Coiado
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | | | | |
Collapse
|
26
|
Wang Y, Chen Y, Ji DK, Huang Y, Huang W, Dong X, Yao D, Wang D. Bio-orthogonal click chemistry strategy for PD-L1-targeted imaging and pyroptosis-mediated chemo-immunotherapy of triple-negative breast cancer. J Nanobiotechnology 2024; 22:461. [PMID: 39090622 PMCID: PMC11293135 DOI: 10.1186/s12951-024-02727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The combination of programmed cell death ligand-1 (PD-L1) immune checkpoint blockade (ICB) and immunogenic cell death (ICD)-inducing chemotherapy has shown promise in cancer immunotherapy. However, triple-negative breast cancer (TNBC) patients undergoing this treatment often face obstacles such as systemic toxicity and low response rates, primarily attributed to the immunosuppressive tumor microenvironment (TME). METHODS AND RESULTS In this study, PD-L1-targeted theranostic systems were developed utilizing anti-PD-L1 peptide (APP) conjugated with a bio-orthogonal click chemistry group. Initially, TNBC was treated with azide-modified sugar to introduce azide groups onto tumor cell surfaces through metabolic glycoengineering. A PD-L1-targeted probe was developed to evaluate the PD-L1 status of TNBC using magnetic resonance/near-infrared fluorescence imaging. Subsequently, an acidic pH-responsive prodrug was employed to enhance tumor accumulation via bio-orthogonal click chemistry, which enhances PD-L1-targeted ICB, the pH-responsive DOX release and induction of pyroptosis-mediated ICD of TNBC. Combined PD-L1-targeted chemo-immunotherapy effectively reversed the immune-tolerant TME and elicited robust tumor-specific immune responses, resulting in significant inhibition of tumor progression. CONCLUSIONS Our study has successfully engineered a bio-orthogonal multifunctional theranostic system, which employs bio-orthogonal click chemistry in conjunction with a PD-L1 targeting strategy. This innovative approach has been demonstrated to exhibit significant promise for both the targeted imaging and therapeutic intervention of TNBC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yanhong Chen
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ding-Kun Ji
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Yuelin Huang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Weixi Huang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xue Dong
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
27
|
Godakhindi V, Tarannum M, Dam SK, Vivero-Escoto JL. Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions. Adv Healthc Mater 2024; 13:e2400323. [PMID: 38653190 PMCID: PMC11305940 DOI: 10.1002/adhm.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mubin Tarannum
- Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sudip Kumar Dam
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
28
|
Ligon JA, Cupit-Link MC, Yu C, Levine J, Foley T, Rotz S, Sharma A, Gomez-Lobo V, Shah NN. Pediatric Cancer Immunotherapy and Potential for Impact on Fertility: A Need for Evidence-Based Guidance. Transplant Cell Ther 2024; 30:737-749. [PMID: 38866240 DOI: 10.1016/j.jtct.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
The use of immunotherapies for the treatment of cancer in children, adolescents, and young adults has become common. As the use of immunotherapy has expanded, including in earlier lines of therapy, it has become evident that several aspects of how these immunotherapies impact longer-term outcomes among survivors are understudied. Traditional cancer therapies like alkylating and platin agents carry the greatest risk of infertility, but little is known about the impact of novel immunotherapies on fertility. This topic is of great interest to patients, patient advocates, and clinicians. In this article, we review immunotherapeutic agents used to treat childhood and young adult cancers and discuss potential mechanisms by which they may impact fertility based on the known interplay between the immune system and reproductive organs. We highlight the relative paucity of high-quality literature examining these late effects. We discuss interventions to optimize fertility preservation (FP) for our patients. Conducting longitudinal, collaborative, and prospective research on the fertility outcomes of pediatric and young adult patients with cancer who receive immunotherapy is critical to learn how to effectively counsel our patients on long-term fertility outcomes and indications for FP procedures. Collection of patient-level data will be necessary to draft evidence-based guidelines on which providers can make therapy recommendations.
Collapse
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology Oncology, University of Florida, Gainesville, Florida; University of Florida Health Cancer Center, Gainesville, Florida.
| | | | - Christine Yu
- Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jennifer Levine
- Center for Cancer and Blood Disorders, Division of Oncology, Children's National Hospital, Washington District of Columbia
| | - Toni Foley
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Seth Rotz
- Division of Pediatric Hematology and Oncology and Blood and Marrow Transplantation, Cleveland Clinic, Cleveland, Ohio
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Veronica Gomez-Lobo
- Pediatric and Adolescent Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Pediatric and Adolescent Gynecology, Children's National Hospital, Washington, District of Columbia
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Zhang D, Fang J, Shan J, Xu L, Wu Y, Lu B, Zhang X, Wang C, Sun P, Wang Q. SCARB2 associates with tumor-infiltrating neutrophils and predicts poor prognosis in breast cancer. Breast Cancer Res Treat 2024; 207:15-24. [PMID: 38914918 DOI: 10.1007/s10549-024-07401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) plays a crucial role in various aspects of breast cancer development and metastasis. Nevertheless, the expression, prognostic significance, and correlation with clinical features of SCARB2 in breast cancer, as well as the infiltrative characteristics of TME, remain largely unknown. METHODS We analyzed the differential presentation of SCARB2 mRNA in breast cancer tissues and nontumorous breast tissues and prognosis by The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Additionally, the Tumor Immunity Estimation Resource (TIMER) was taken to evaluate the correlation between SCARB2 mRNA presence and tumor-infiltrating immune cells and immune checkpoints in the TME in breast cancer. We performed multiple immunohistochemical staining to verify the SCARB2 protein expression in breast cancer tissues and its relationship to immune cells and checkpoints and clinicopathological features. RESULTS We identified elevated SCARB2 expression in breast cancer tissues, and high SCARB2 protein presentation was associated with advanced clinical stage and unfavorable prognosis. In addition, enhanced SCARB2 protein presence was closely correlated with up-regulation CD66b+ neutrophils infiltration in tumor tissues (r = 0.210, P < 0.05) and CD68 + CD163+ M2 macrophages in the interstitium (r = 0.233, P < 0.05), as well as the immune checkpoints, including PD-1 (r = 0.314, P < 0.01) protein expression. CONCLUSION SCARB2 holds promise for predicting the clinical outcome of breast cancer patients and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Dan Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jun Fang
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jiali Shan
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Lijun Xu
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yunxi Wu
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Lu
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaojing Zhang
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chongyu Wang
- Department of Medicine, Xinglin College, Nantong University, Nantong, 226007, Jiangsu, China
| | - Pingping Sun
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
30
|
Mondal J, Chakraborty K, Bunggulawa EJ, An JM, Revuri V, Nurunnabi M, Lee YK. Recent advancements of hydrogels in immunotherapy: Breast cancer treatment. J Control Release 2024; 372:1-30. [PMID: 38849092 DOI: 10.1016/j.jconrel.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
Breast cancer is the most prevalent cancer among women and the leading cause of cancer-related deaths in this population. Recent advances in Immunotherapy, or combined immunotherapy, offering a more targeted and less toxic approach, expand the survival rate of patients more than conventional treatment. Notably, hydrogels, a versatile platform provided promising avenues to combat breast cancer in preclinical studies and extended to clinical practices. With advantages such as the alternation of tumor microenvironment, immunomodulation, targeted delivery of therapeutic agents, and their sustained release at specific sites of interest, hydrogels can potentially be used for the treatment of breast cancer. This review highlights the advantages, mechanisms of action, stimuli-responsiveness properties, and recent advancements of hydrogels for treating breast cancer immunotherapy. Moreover, post-treatment and its clinical translations are discussed in this review. The integration of hydrogels in immunotherapy strategies may pave the way for more effective, personalized, and patient-friendly approaches to combat breast cancer, ultimately contributing to a brighter future for breast cancer patients.
Collapse
Affiliation(s)
- Jagannath Mondal
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, USA
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Edwin J Bunggulawa
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79902, United States; Biomedical Engineering Program, College of Engineering, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - Yong-Kyu Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea; Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
31
|
Nie JJ, Zhang B, Luo P, Luo M, Luo Y, Cao J, Wang H, Mao J, Xing Y, Liu W, Cheng Y, Wang R, Liu Y, Wu X, Jiang X, Cheng X, Zhang C, Chen DF. Enhanced pyroptosis induction with pore-forming gene delivery for osteosarcoma microenvironment reshaping. Bioact Mater 2024; 38:455-471. [PMID: 38770426 PMCID: PMC11103790 DOI: 10.1016/j.bioactmat.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024] Open
Abstract
Osteosarcoma is the most common malignant bone tumor without efficient management for improving 5-year event-free survival. Immunotherapy is also limited due to its highly immunosuppressive tumor microenvironment (TME). Pore-forming gasdermins (GSDMs)-mediated pyroptosis has gained increasing concern in reshaping TME, however, the expressions and relationships of GSDMs with osteosarcoma remain unclear. Herein, gasdermin E (GSDME) expression is found to be positively correlated with the prognosis and immune infiltration of osteosarcoma patients, and low GSDME expression was observed. A vector termed as LPAD contains abundant hydroxyl groups for hydrating layer formation was then prepared to deliver the GSDME gene to upregulate protein expression in osteosarcoma for efficient TME reshaping via enhanced pyroptosis induction. Atomistic molecular dynamics simulations analysis proved that the hydroxyl groups increased LPAD hydration abilities by enhancing coulombic interaction. The upregulated GSDME expression together with cleaved caspase-3 provided impressive pyroptosis induction. The pyroptosis further initiated proinflammatory cytokines release, increased immune cell infiltration, activated adaptive immune responses and create a favorable immunogenic hot TME. The study not only confirms the role of GSDME in the immune infiltration and prognosis of osteosarcoma, but also provides a promising strategy for the inhibition of osteosarcoma by pore-forming GSDME gene delivery induced enhanced pyroptosis to reshape the TME of osteosarcoma.
Collapse
Affiliation(s)
- Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Bowen Zhang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, National Center for Orthopaedics, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Peng Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Maoguo Luo
- Biological & Medical Engineering Core Facilities, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuwen Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Cao
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Honggang Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jianping Mao
- Department of Spine Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Xing
- Department of Spine Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yuning Cheng
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yajun Liu
- Department of Spine Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xinbao Wu
- Department of Orthopedic Trauma, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xieyuan Jiang
- Department of Orthopedic Trauma, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Cheng
- Department of Radiology, National Center for Orthopaedics, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
| | - Da-Fu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Szereday L, Nagy DU, Vastag F, Mezosi L, Meggyes M. Immunological Profiling of CD8 + and CD8 - NK Cell Subpopulations and Immune Checkpoint Alterations in Early-Onset Preeclampsia and Healthy Pregnancy. Int J Mol Sci 2024; 25:8378. [PMID: 39125946 PMCID: PMC11313567 DOI: 10.3390/ijms25158378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Despite the numerous studies on the clinical aspects of early-onset preeclampsia, our understanding of the immunological consequences of inadequate placenta development remains incomplete. The Th1-predominance characteristic of early-onset preeclampsia significantly impacts maternal immunotolerance, and the role of immune checkpoint molecules in these mechanisms is yet to be fully elucidated. Our study aims to fill these crucial knowledge gaps. A total of 34 pregnant women diagnosed with early-onset preeclampsia and 34 healthy pregnant women were enrolled in this study. A mononuclear cell fragment from the venous blood was separated and frozen. The CD8+ and CD8- NK cell subpopulations were identified and compared to their immune checkpoint molecule expressions using multicolor flow cytometry. The serum CD226 levels were measured by ELISA. Based on our measures, the frequency of the CD8- subpopulation was significantly higher than that of the CD8+ counterpart in both the NKdim and NKbright subsets. Significantly lower CD226 surface expressions were detected in the preeclamptic group compared to healthy women in all the investigated subpopulations. However, while no difference was observed in the level of the soluble CD226 molecule between the two groups, the CD112 and CD155 surface expressions were significantly different. Our study's findings underscore the significant role of the CD8+ and CD8- NK subpopulations in the Th1-dominated immune environment. This deepens our understanding of early-onset preeclampsia and suggests that each subpopulation could contribute to the compensation mechanisms and the restoration of the immunological balance in this condition, a crucial step toward developing effective interventions.
Collapse
Affiliation(s)
- Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (L.S.); (L.M.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Große Steinstraße 79/80, D-06108 Halle (Saale), Germany;
| | - Fanni Vastag
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Livia Mezosi
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (L.S.); (L.M.)
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary; (L.S.); (L.M.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| |
Collapse
|
33
|
Yang XJ, Xu YF, Zhu Q. SPOP expression is associated with tumor-infiltrating lymphocytes in pancreatic cancer. PLoS One 2024; 19:e0306994. [PMID: 39074086 DOI: 10.1371/journal.pone.0306994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Speckle Type POZ Protein (SPOP), despite its tumor type-dependent role in tumorigenesis, primarily as a tumor suppressor gene is associated with a variety of different cancers. However, its function in pancreatic cancer remains uncertain. METHODS SPOP expression and the association between its expression and patient prognosis and immune function were evaluated using The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), The Tumor Immune Estimation Resource 2.0 (TIMER2.0) database, cBioportal, and various bioinformatic databases. Enrichment analysis of SPOP and the association between SPOP expression with clinical stage and grade were analyzed using the R software package. Then immunohistochemistry (IHC) was used to estimate the correlation between SPOP and tumor-infiltrating lymphocytes (TILs) in patients with pancreatic cancer. RESULTS As part of our study, we assessed that SPOP was anomalously expressed in kinds of cancers, associated with clinical stage and outcomes. Meanwhile, SPOP also played a crucial role in the tumor microenvironment (TME). The expression level of SPOP was significantly correlated to tumor-infiltrating immune cells (TICs) in pancreatic cancer. CONCLUSIONS Our study uncovered the potential corrections in SPOP with TICs, suggesting that SPOP may act as a biomarker for immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Xiao Juan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yong Feng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
34
|
Chamorro-Pareja N, Faje AT, Miller KK. Pituitary Complications of Checkpoint Inhibitor Use. Endocrinology 2024; 165:bqae084. [PMID: 39001874 DOI: 10.1210/endocr/bqae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024]
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy but are associated with a risk of endocrine immune-related adverse events, including pituitary complications. Autoimmune hypophysitis, traditionally a rare diagnosis, has become a more frequently encountered clinical entity with the emergence of antitumor immunotherapy. This mini-review aims to consolidate current knowledge, encompassing the epidemiology, pathophysiology, clinical presentation, diagnosis, and management of pituitary complications of immune checkpoint inhibitor use.
Collapse
Affiliation(s)
- Natalia Chamorro-Pareja
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Alexander T Faje
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Karen K Miller
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
35
|
Xing Y, Huang Y, Tang Z, Lin Y, Zou Y, Huang Y, He Z, Huang Q, Wu J. Impact of mitochondrial damage on tumor microenvironment and immune response: a comprehensive bibliometric analysis. Front Immunol 2024; 15:1442027. [PMID: 39104527 PMCID: PMC11298338 DOI: 10.3389/fimmu.2024.1442027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Background Mitochondrial damage contributes to apoptosis, oxidative stress, and inflammation, which collectively impact the immune system's function and the tumor microenvironment (TME). These processes, in turn, influence tumor cell growth, migration, and response to treatment. Objective We conducted a bibliometric analysis to elucidate the complex interactions between mitochondrial damage, the immune system, and the TME. Methods Data were sourced from the Science Citation Index Core Collection (WoSCC) and analyzed using advanced tools like VOSviewer and Citespace. Our focus was on literature published between 1999 and 2023 concerning the interactions between mitochondrial damage and the TME, as well as immune responses to tumors. The analysis included regional contributions, journal influence, institutional collaborations, authorship, co-cited authors, and keyword citation bursts. Results Our research encompassed 2,039 publications, revealing an increasing trend in annual output exploring the relationship between mitochondrial damage, TME dynamics, and immune responses. China, the United States, and South Korea emerged as the leading contributors. Prominent institutions included Institut National de la Santé et de la Recherche Médicale, University of Texas System, China Medical University, and Sun Yat-sen University. Key journals in this field are the International Journal of Molecular Sciences, Mitochondrion, and the European Journal of Pharmacology. Liang H and Wallace DC were identified as the most productive and co-cited authors, respectively. Keyword analysis highlighted the critical roles of inflammatory responses, oxidative stress, and the immune system in recent research. Conclusion This bibliometric analysis provides a comprehensive overview of historical and current research trends, underscoring the pivotal role of mitochondrial damage in the TME and immune system.
Collapse
Affiliation(s)
- Yichun Xing
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yi Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Urology, The Third People’s Hospital of Chengdu/The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhicheng Tang
- Department of Urology, the Eighth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ying Lin
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yitong Zou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yaqiang Huang
- Department of Urology, Zhongshan City People’s Hospital, Sunwen East Road, Zhongshan, Guangdong, China
| | - Zhaohui He
- Department of Urology, the Eighth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qunxiong Huang
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jieying Wu
- Department of Urology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Esen BH, Özbek L, Oğuz S, Selçukbiricik F. Characterizing immune checkpoint inhibitor-related cutaneous adverse reactions: A comprehensive analysis of FDA adverse event reporting system (FAERS) database. Heliyon 2024; 10:e33765. [PMID: 39071598 PMCID: PMC11283008 DOI: 10.1016/j.heliyon.2024.e33765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Background The increasing adoption of immune checkpoint inhibitors (ICIs) in clinical settings highlights their efficacy in treating diverse conditions, while also emphasizing the potential for common cutaneous adverse reactions to arise. The aim of this study is to investigate a multitude of impacting factors and determinants among patients presenting with ICI-associated cutaneous adverse reactions. Methods We conducted a comprehensive analysis of ICI-associated cutaneous adverse reactions using data from the FAERS. Our study spans from January 1, 2015, to March 31, 2023, focusing on ICIs, including anti-PD-1, anti-PD-L1, and anti-CTLA-4 agents. Findings Among the 334,293 reported irAR, 17,431 were identified as cutaneous adverse reactions (ARs). Predominant cutaneous ARs included rash (21.01 %), pruritus (11.22 %), and pemphigoid (3.90 %). Stevens-Johnson syndrome emerged as the most reported severe cutaneous adverse reaction (SCAR) (2.08 %). Anti-CTLA-4 agents exhibited higher cutaneous toxicity compared to anti-PD-1 and anti-PD-L1 agents. Anti-PD-1 agents demonstrated an elevated mortality rate. The combined use of ICIs with chemotherapy amplified the risk of SCAR and mortality. Targeted therapy was a risk factor for cutaneous ARs but was associated with reduced mortality. The median onset day for cutaneous toxicity was 21 days, while for SCAR, it was 23 days. Weight and age were identified as predictors of SCAR, cutaneous toxicity, and mortality. Skin cancer increased skin toxicity, while lung cancer heightened SCAR formation. The number of administered ICIs positively correlated with SCAR, skin toxicity, and mortality. Interpretation This study highlights the significance of early identification and effective management of cutaneous toxicities, along with personalized follow-up care, as essential strategies for minimizing risks and preventing treatment disruptions.
Collapse
Affiliation(s)
| | - Laşin Özbek
- Koç University, School of Medicine, İstanbul, Turkey
| | - Sinem Oğuz
- Koç University, School of Medicine, İstanbul, Turkey
| | - Fatih Selçukbiricik
- Koç University, School of Medicine, İstanbul, Turkey
- Koç University Hospital, Department of Medical Oncology, İstanbul, Turkey
| |
Collapse
|
37
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
38
|
Tolomeo M, Cascio A. The Complex Dysregulations of CD4 T Cell Subtypes in HIV Infection. Int J Mol Sci 2024; 25:7512. [PMID: 39062756 PMCID: PMC11276885 DOI: 10.3390/ijms25147512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains an important global public health problem. About 40 million people are infected with HIV, and this infection caused about 630,000 deaths in 2022. The hallmark of HIV infection is the depletion of CD4+ T helper lymphocytes (Th cells). There are at least seven different Th subtypes, and not all are the main targets of HIV. Moreover, the effect of the virus in a specific subtype can be completely different from that of the others. Although the most compromised Th subtype in HIV infection is Th17, HIV can induce important dysregulations in other subtypes, such as follicular Th (Tfh) cells and regulatory Th cells (Treg cells or Tregs). Several studies have shown that HIV can induce an increase in the immunosuppressive activity of Tregs without causing a significant reduction in their numbers, at least in the early phase of infection. The increased activity of this Th subtype seems to play an important role in determining the immunodeficiency status of HIV-infected patients, and Tregs may represent a new target for innovative anti-HIV therapies, including the so-called "Kick and Kill" therapeutic method whose goal is the complete elimination of the virus and the healing of HIV infection. In this review, we report the most important findings on the effects of HIV on different CD4+ T cell subtypes, the molecular mechanisms by which the virus impairs the functions of these cells, and the implications for new anti-HIV therapeutic strategies.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
- Department of Infectious Diseases, A.O.U.P. Palermo, 90127 Palermo, Italy
| |
Collapse
|
39
|
Jiang C, Sun H, Jiang Z, Tian W, Cang S, Yu J. Targeting the CD47/SIRPα pathway in malignancies: recent progress, difficulties and future perspectives. Front Oncol 2024; 14:1378647. [PMID: 39040441 PMCID: PMC11261161 DOI: 10.3389/fonc.2024.1378647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Since its initial report in 2015, CD47 has garnered significant attention as an innate immune checkpoint, raising expectations to become the next "PD-1." The optimistic early stages of clinical development spurred a flurry of licensing deals for CD47-targeted molecules and company mergers or acquisitions for related assets. However, a series of setbacks unfolded recently, starting with the July 2023 announcement of discontinuing the phase 3 ENHANCE study on Magrolimab plus Azacitidine for higher-risk myelodysplastic syndromes (MDS). Subsequently, in August 2023, the termination of the ASPEN-02 program, assessing Evorpacept in combination with Azacitidine in MDS patients, was disclosed due to insufficient improvement compared to Azacitidine alone. These setbacks have cast doubt on the feasibility of targeting CD47 in the industry. In this review, we delve into the challenges of developing CD47-SIRPα-targeted drugs, analyze factors contributing to the mentioned setbacks, discuss future perspectives, and explore potential solutions for enhancing CD47-SIRPα-targeted drug development.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, Henan University People’s Hospital and Zhengzhou University, Zhengzhou, Henan, China
| | - Hao Sun
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Shundong Cang
- Department of Oncology, Henan Key Laboratory for Precision Medicine in Cancer, Henan Provincial People’s Hospital, Henan University People’s Hospital and Zhengzhou University, Zhengzhou, Henan, China
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Chae YJ, Lee KG, Oh D, Lee SK, Park Y, Kim J. Antibody-Conjugated Nanogel with Two Immune Checkpoint Inhibitors for Enhanced Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2400235. [PMID: 38569198 DOI: 10.1002/adhm.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Cancer immunotherapy by immune checkpoint inhibitors (ICIs) acts on antitumor responses by stimulating the immune system to attack cancer cells. However, this powerful therapy is hampered by its high treatment cost and limited efficacy. Here, it is shown that the development of an antibody-conjugated nanogel (ANGel), consisting of N-isopropylacrylamide-co-acrylic acid and antibody-binding protein (protein A), potentiates the efficacy of two ICI monoclonal antibodies (mAbs) (cytotoxic-T-lymphocyte-associated antigen 4 and programmed death ligand-1 mAbs). Compared with mAb treatment alone, treatment with a bispecific ANGel surface-conjugated with the mAbs significantly decreases both the survival of Michigan Cancer Foundation-7 (MCF-7) and M D Anderson-Metastatic Breast-231 (MDA-MB-231) breast cancer cells in vitro and the burden of 4T1-luciferase-2-derived orthotopic syngeneic tumors in vivo. The bispecific ANGel is also more potent than the conventional treatment at prolonging survival in animals with triple-negative breast cancer. The advantage of the bispecific ANGel over other engineered bispecific antibodies arises not only from the adaptability to link multiple antibodies quickly and easily, but also from the capability to maintain the anticancer effect steadily at subcutaneously delivered tumor site. This finding has an important implication for cancer immunotherapy, opening a new paradigm to treat solid tumors.
Collapse
Affiliation(s)
- Yun Jin Chae
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Doogie Oh
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Su-Kyoung Lee
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Jongseong Kim
- R&D Center, Scholar Foxtrot Co. Ltd., Seoul, 02796, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
41
|
Lenti MV, Ribaldone DG, Borrelli de Andreis F, Vernero M, Barberio B, De Ruvo M, Savarino EV, Kav T, Blesl A, Franzoi M, Gröchenig HP, Pugliese D, Ianiro G, Porcari S, Cammarota G, Gasbarrini A, Spagnuolo R, Ellul P, Foteinogiannopoulou K, Koutroubakis I, Argyriou K, Cappello M, Jauregui-Amezaga A, Demarzo MG, Silvestris N, Armuzzi A, Sottotetti F, Bertani L, Festa S, Eder P, Pedrazzoli P, Lasagna A, Vanoli A, Gambini G, Santacroce G, Rossi CM, Delliponti M, Klersy C, Corazza GR, Di Sabatino A. A 1-year follow-up study on checkpoint inhibitor-induced colitis: results from a European consortium. ESMO Open 2024; 9:103632. [PMID: 38970840 PMCID: PMC11360400 DOI: 10.1016/j.esmoop.2024.103632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Data regarding the clinical outcome of patients with immune checkpoint inhibitor (ICI)-induced colitis are scant. We aimed to describe the 12-month clinical outcome of patients with ICI-induced colitis. MATERIALS AND METHODS This was a retrospective, European, multicentre study. Endoscopy/histology-proven ICI-induced colitis patients were enrolled. The 12-month clinical remission rate, defined as a Common Terminology Criteria for Adverse Events diarrhoea grade of 0-1, and the correlates of 12-month remission were assessed. RESULTS Ninety-six patients [male:female ratio 1.5:1; median age 65 years, interquartile range (IQR) 55.5-71.5 years] were included. Lung cancer (41, 42.7%) and melanoma (30, 31.2%) were the most common cancers. ICI-related gastrointestinal symptoms occurred at a median time of 4 months (IQR 2-7 months). An inflammatory bowel disease (IBD)-like pattern was present in 74 patients (77.1%) [35 (47.3%) ulcerative colitis (UC)-like, 11 (14.9%) Crohn's disease (CD)-like, 28 (37.8%) IBD-like unclassified], while microscopic colitis was present in 19 patients (19.8%). As a first line, systemic steroids were the most prescribed drugs (65, 67.7%). The 12-month clinical remission rate was 47.7 per 100 person-years [95% confidence interval (CI) 33.5-67.8). ICI was discontinued due to colitis in 66 patients (79.5%). A CD-like pattern was associated with remission failure (hazard ratio 3.84, 95% CI 1.16-12.69). Having histopathological signs of microscopic colitis (P = 0.049) and microscopic versus UC-/CD-like colitis (P = 0.014) were associated with a better outcome. Discontinuing the ICI was not related to the 12-month remission (P = 0.483). Four patients (3.1%) died from ICI-induced colitis. CONCLUSIONS Patients with IBD-like colitis may need an early and more aggressive treatment. Future studies should focus on how to improve long-term clinical outcomes.
Collapse
Affiliation(s)
- M V Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - D G Ribaldone
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - F Borrelli de Andreis
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Digestive Endoscopy Unit, Isola Tiberina - Gemelli Isola Hospital, Rome, Italy
| | - M Vernero
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - B Barberio
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - M De Ruvo
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - E V Savarino
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - T Kav
- Department of Gastroenterology, Hacettepe University School of Medicine, Ankara, Türkiye
| | - A Blesl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - M Franzoi
- Department of Internal Medicine and Gastroenterology, Academic Teaching Hospital Brothers of St John of God, St Veit an der Glan, Austria
| | - H P Gröchenig
- Department of Internal Medicine and Gastroenterology, Academic Teaching Hospital Brothers of St John of God, St Veit an der Glan, Austria
| | - D Pugliese
- Department of Medical and Surgical Sciences, CEMAD (Digestive Disease Center), Policlinico Universitario 'A. Gemelli' IRCCS Foundation, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore Roma, Rome, Italy; UOS Gastroenterologia, Ospedale Isola Tiberina Gemelli Isola, Rome, Italy
| | - G Ianiro
- Department of Medical and Surgical Sciences, CEMAD (Digestive Disease Center), Policlinico Universitario 'A. Gemelli' IRCCS Foundation, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore Roma, Rome, Italy
| | - S Porcari
- Department of Medical and Surgical Sciences, CEMAD (Digestive Disease Center), Policlinico Universitario 'A. Gemelli' IRCCS Foundation, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore Roma, Rome, Italy
| | - G Cammarota
- Department of Medical and Surgical Sciences, CEMAD (Digestive Disease Center), Policlinico Universitario 'A. Gemelli' IRCCS Foundation, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore Roma, Rome, Italy
| | - A Gasbarrini
- Department of Medical and Surgical Sciences, CEMAD (Digestive Disease Center), Policlinico Universitario 'A. Gemelli' IRCCS Foundation, Rome, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore Roma, Rome, Italy
| | - R Spagnuolo
- Department of Health Sciences, University 'Magna Graecia', Catanzaro, Italy
| | - P Ellul
- Division of Gastroenterology, Department of Medicine, Mater Dei Hospital, Msida, Malta
| | - K Foteinogiannopoulou
- Department of Gastroenterology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - I Koutroubakis
- Department of Gastroenterology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - K Argyriou
- Department of Gastroenterology, University Hospital of Larisa, Larisa, Greece
| | - M Cappello
- Gastroenterology & Hepatology Section, PROMISE, University of Palermo, Palermo, Italy
| | - A Jauregui-Amezaga
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - M G Demarzo
- Department of Internal Medicine, Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Gastroenterology Unit, University of Genoa, Genoa, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology of Adulthood and Childhood DETEV 'G. Barresi', University of Messina, Messina, Italy
| | - A Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - F Sottotetti
- Istituti Clinici Scientifici Maugeri IRCCS, Medical Oncology Unit, Pavia, Italy
| | - L Bertani
- Department of General Surgery and Gastroenterology, Tuscany North West ASL, Pontedera Hospital, Pontedera, Italy
| | - S Festa
- IBD Unit, Ospedale S. Filippo Neri, Rome, Italy
| | - P Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - P Pedrazzoli
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - A Lasagna
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - A Vanoli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital Foundation, Pavia, Italy
| | - G Gambini
- Clinical Epidemiology and Biometry Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - G Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - C M Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - M Delliponti
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - C Klersy
- Clinical Epidemiology and Biometry Service, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - G R Corazza
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - A Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy; First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
42
|
Nishihama K, Okano Y, Inoue C, Maki K, Eguchi K, Tanaka S, Takeshita A, Uemura M, Yasuma T, Suzuki T, Gabazza EC, Yano Y. A case of rapidly progressive insulin-dependent diabetes mellitus without islet autoantibodies developed over two years after the first dose of nivolumab. Diabetol Int 2024; 15:583-588. [PMID: 39101192 PMCID: PMC11291771 DOI: 10.1007/s13340-024-00703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/15/2024] [Indexed: 08/06/2024]
Abstract
The case was an 80-year-old Japanese man. He was diagnosed with right renal cell carcinoma when he was 74. After laparoscopic radical nephrectomy, the patient received interferon, sorafenib, axitinib, and nivolumab therapy. The patient developed rapid progressive insulin-dependent diabetes mellitus (DM) after 46 courses of nivolumab monotherapy (772 days from the first nivolumab treatment). Glutamic acid decarboxylase antibody, islet cell cytoplasmic antibody, islet cell antigen-2 antibody, insulin antibody, and zinc transporter 8 antibody were all negative. Human leukocyte antigen (HLA) typing showed DRB1*09:01, DRB1 *13:02, DQB1*03:03, and DQB1 *06:04. Multiple daily insulin injections were started. However, controlling his blood glucose by standard multiple daily insulin injection treatments was difficult. The patient survived more than two years after the onset of immune checkpoint inhibitor-associated DM (ICI-DM). This is a valuable report of late-onset ICI-DM with a detailed patient background and clinical course over two years after the first dose of nivolumab.
Collapse
Affiliation(s)
- Kota Nishihama
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Yuko Okano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Chisa Inoue
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Kanako Maki
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Kazuhito Eguchi
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Soichiro Tanaka
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Atsuro Takeshita
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Mei Uemura
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Taro Yasuma
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Toshinari Suzuki
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yutaka Yano
- Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu City, Mie 514-8507 Japan
| |
Collapse
|
43
|
Huang Q, Liang H, Shi S, Ke Y, Wang J. Identification of TNFAIP6 as a reliable prognostic indicator of low-grade glioma. Heliyon 2024; 10:e33030. [PMID: 38948040 PMCID: PMC11211890 DOI: 10.1016/j.heliyon.2024.e33030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024] Open
Abstract
Glioma is the most common primary malignant tumor in the brain, characterizing by high disability rate and high recurrence rate. Although low-grade glioma (LGG) has a relative benign biological behavior, the prognosis of LGG patients still varies greatly. Glioma stem cells (GSCs) are considered as the chief offenders of glioma cell proliferation, invasion and resistance to therapies. Our study screened a series of glioma stem cell-related genes (GSCRG) based on mDNAsi and WCGNA, and finally established a reliable single-gene prognostic model through 101 combinations of 10 machine learning methods. Our result suggested that the expression level of TNFAIP6 is negatively correlated with the prognosis of LGG patients, which may be the result of pro-cancer signaling pathways activation and immunosuppression. In general, this study revealed that TNFAIP6 is a robust and valuable prognostic factor in LGG, and may be a new target for LGG treatment.
Collapse
Affiliation(s)
| | | | - Shenbao Shi
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
44
|
Kim G, Jarhad DB, Lee G, Kim G, Hou X, Yu J, Lee CS, Warnick E, Gao ZG, Ahn SY, Kwak D, Park K, Lee SD, Park TU, Jung SY, Lee JH, Choi JR, Kim M, Kim D, Kim B, Jacobson KA, Jeong LS. Structural Modification and Biological Evaluation of 2,8-Disubstituted Adenine and Its Nucleosides as A 2A Adenosine Receptor Antagonists: Exploring the Roles of Ribose at Adenosine Receptors. J Med Chem 2024; 67:10490-10507. [PMID: 38845345 PMCID: PMC11302573 DOI: 10.1021/acs.jmedchem.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Building on the preceding structural analysis and a structure-activity relationship (SAR) of 8-aryl-2-hexynyl nucleoside hA2AAR antagonist 2a, we strategically inverted C2/C8 substituents and eliminated the ribose moiety. These modifications aimed to mitigate potential steric interactions between ribose and adenosine receptors. The SAR findings indicated that such inversions significantly modulated hA3AR binding affinities depending on the type of ribose, whereas removal of ribose altered the functional efficacy via hA2AAR. Among the synthesized derivatives, 2-aryl-8-hexynyl adenine 4a demonstrated the highest selectivity for hA2AAR (Ki,hA2A = 5.0 ± 0.5 nM, Ki,hA3/Ki,hA2A = 86) and effectively blocked cAMP production and restored IL-2 secretion in PBMCs. Favorable pharmacokinetic properties and a notable enhancement of anticancer effects in combination with an mAb immune checkpoint blockade were observed upon oral administration of 4a. These findings establish 4a as a viable immune-oncology therapeutic candidate.
Collapse
Affiliation(s)
- Gibae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Grim Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiyan Hou
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Life Science, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Soo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eugene Warnick
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sang Yeop Ahn
- Future Medicine Co., Ltd., 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Dongik Kwak
- Future Medicine Co., Ltd., 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Kichul Park
- LNPsolution, R&D Laboratory, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Summer Dabin Lee
- LNPsolution, R&D Laboratory, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Tae-Uk Park
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - So-Young Jung
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | | | | | | | | | - Bongtae Kim
- HK inno.N Corp., Seoul 04551, Republic of Korea
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Future Medicine Co., Ltd., 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea
| |
Collapse
|
45
|
Rakitina OA, Kuzmich AI, Bezborodova OA, Kondratieva SA, Pleshkan VV, Zinovyeva MV, Didych DA, Sass AV, Snezhkov EV, Kostina MB, Koksharov MO, Alekseenko IV. Non-viral-mediated gene transfer of OX40 ligand for tumor immunotherapy. Front Immunol 2024; 15:1410564. [PMID: 39007148 PMCID: PMC11245119 DOI: 10.3389/fimmu.2024.1410564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024] Open
Abstract
Background Immune checkpoint blockade (ICB) is rapidly becoming a standard of care in the treatment of many cancer types. However, the subset of patients who respond to this type of therapy is limited. Another way to promote antitumoral immunity is the use of immunostimulatory molecules, such as cytokines or T cell co-stimulators. The systemic administration of immunotherapeutics leads to significant immune-related adverse events (irAEs), therefore, the localized antitumoral action is needed. One way to achieve this is intratumoral non-viral gene-immune therapy, which allows for prolonged and localized gene expression, and multiple drug administration. In this study, we combined the previously described non-viral gene delivery system, PEG-PEI-TAT copolymer, PPT, with murine OX40L-encoding plasmid DNA. Methods The resulting OX40L/PPT nanoparticles were characterized via gel mobility assay, dynamic light scattering analysis and in vitro transfection efficiency evaluation. The antitumoral efficacy of intratumorally (i.t.) administered nanoparticles was estimated using subcutaneously (s.c.) implanted CT26 (colon cancer), B16F0 (melanoma) and 4T1 (breast cancer) tumor models. The dynamics of stromal immune cell populations was analyzed using flow cytometry. Weight loss and cachexia were used as irAE indicators. The effect of combination of i.t. OX40L/PPT with intraperitoneal PD-1 ICB was estimated in s.c. CT26 tumor model. Results The obtained OX40L/PPT nanoparticles had properties applicable for cell transfection and provided OX40L protein expression in vitro in all three investigated cancer models. We observed that OX40L/PPT treatment successfully inhibited tumor growth in B16F0 and CT26 tumor models and showed a tendency to inhibit 4T1 tumor growth. In B16F0 tumor model, OX40L/PPT treatment led to the increase in antitumoral effector NK and T killer cells and to the decrease in pro-tumoral myeloid cells populations within tumor stroma. No irAE signs were observed in all 3 tumor models, which indicates good treatment tolerability in mice. Combining OX40L/PPT with PD-1 ICB significantly improved treatment efficacy in the CT26 subcutaneous colon cancer model, providing protective immunity against CT26 colon cancer cells. Conclusion Overall, the anti-tumor efficacy observed with OX40L non-viral gene therapy, whether administered alone or in combination with ICB, highlights its potential to revolutionize cancer gene therapy, thus paving the way for unprecedented advancements in the cancer therapy field.
Collapse
Affiliation(s)
- Olga A. Rakitina
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey I. Kuzmich
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Olga A. Bezborodova
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Sofia A. Kondratieva
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Victor V. Pleshkan
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Marina V. Zinovyeva
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Didych
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr V. Sass
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Eugene V. Snezhkov
- Laboratory of Human Gene Structure and Functions, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Maria B. Kostina
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Maksim O. Koksharov
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Stagen LLC, Moscow, Russia
| | - Irina V. Alekseenko
- Group of Gene Immuno-Oncotherapy, Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Stagen LLC, Moscow, Russia
| |
Collapse
|
46
|
Zhang Y, Sun Q, Liang Y, Yang X, Wang H, Song S, Wang Y, Feng Y. FAM20A: a potential diagnostic biomarker for lung squamous cell carcinoma. Front Immunol 2024; 15:1424197. [PMID: 38983866 PMCID: PMC11231076 DOI: 10.3389/fimmu.2024.1424197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) ranks among the carcinomas with the highest incidence and dismal survival rates, suffering from a lack of effective therapeutic strategies. Consequently, biomarkers facilitating early diagnosis of LUSC could significantly enhance patient survival. This study aims to identify novel biomarkers for LUSC. Methods Utilizing the TCGA, GTEx, and CGGA databases, we focused on the gene encoding Family with Sequence Similarity 20, Member A (FAM20A) across various cancers. We then corroborated these bioinformatic predictions with clinical samples. A range of analytical tools, including Kaplan-Meier, MethSurv database, Wilcoxon rank-sum, Kruskal-Wallis tests, Gene Set Enrichment Analysis, and TIMER database, were employed to assess the diagnostic and prognostic value of FAM20A in LUSC. These tools also helped evaluate immune cell infiltration, immune checkpoint genes, DNA repair-related genes, DNA methylation, and tumor-related pathways. Results FAM20A expression was found to be significantly reduced in LUSC, correlating with lower survival rates. It exhibited a negative correlation with key proteins in DNA repair signaling pathways, potentially contributing to LUSC's radiotherapy resistance. Additionally, FAM20A showed a positive correlation with immune checkpoints like CTLA-4, indicating potential heightened sensitivity to immunotherapies targeting these checkpoints. Conclusion FAM20A emerges as a promising diagnostic and prognostic biomarker for LUSC, offering potential clinical applications.
Collapse
Affiliation(s)
- Yalin Zhang
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qin Sun
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yangbo Liang
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xian Yang
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Center for Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yong Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
47
|
Wei L, Meng J, Xiang D, Yang Q, Zhou Y, Xu L, Chen J, Han Y. The Pan-Cancer Analysis Uncovers the Prognostic and Immunotherapeutic Significance of CD19 as an Immune Marker in Tumor. Int J Gen Med 2024; 17:2593-2612. [PMID: 38855424 PMCID: PMC11162214 DOI: 10.2147/ijgm.s459914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Background The specific cytotoxic effects of anti-CD19 chimeric antigen receptor (CAR) T-cell therapy have led to impressive outcomes in individuals previously treated for B-cell malignancies. However, the specific biological role of CD19(+) target cells, which exert antitumor immunity against some solid tumors, remains to be elucidated. Methods We collected information regarding the level of CD19 mRNA and protein expression from various databases including The Cancer Genome Atlas (TCGA), Tumor Immune Estimation Resource (TIMER), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) for both tumor and normal samples. To evaluate the patient's prognosis according to CD19 expression, a Kaplan-Meier (KM) analysis and univariate Cox regression were performed. Furthermore, using the Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using the Expression Data (ESTIMATE) algorithm, we estimated the ratio of immune cells infiltrating malignant tumor tissues. Afterward, the GSCALite repository was employed to evaluate the vulnerability of tumors expressing CD19 to drugs used in chemotherapy. To validate the results in clinical samples of certain cancer types, immunohistochemistry was then performed. Results Most tumor types exhibited CD19 expression differently, apart from colon adenocarcinoma (COAD). The early diagnostic value of CD19 has been demonstrated in 9 different tumor types, and the overexpression of CD19 has the potential to extend the survival duration of patients. Multiple tumors showed a positive correlation between CD19 expression and tumor mutation burden (TMB), microsatellite instability (MSI), and ESTIMATE score. Furthermore, a direct association was discovered between the expression of CD19 and the infiltration of immune cells, particularly in cases of breast invasive carcinoma (BRCA). Moreover, CD19 is highly sensitive to a variety of chemotherapy drugs. Conclusion The study reveals the potential of CD19 as both a predictive biomarker and a target for different cancer immunotherapies.
Collapse
Affiliation(s)
- Lanyi Wei
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Jingjing Meng
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Danfeng Xiang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Yangyun Zhou
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Lingyan Xu
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Junjun Chen
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People’s Republic of China
| |
Collapse
|
48
|
Li W, Wan L. Cost-utility of sintilimab plus chemotherapy vs chemotherapy as first-line treatment of advanced gastric or gastroesophageal junction cancer in China. Expert Rev Pharmacoecon Outcomes Res 2024; 24:671-678. [PMID: 38594905 DOI: 10.1080/14737167.2024.2341859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVES ORIENT-16, a phase III clinical trial conducted at 62 hospitals in China, reported that add-on sintilimab (Sin) to chemotherapy (Chemo) had favorable efficacy (p < 0.05) for patients with advanced HER2-negative gastric or gastroesophageal junction cancer (GC/GEJC). This study aimed to evaluate the cost-utility of the Sin+Chemo based on results of ORIENT-16 from the perspective of Chinese healthcare payers. METHODS A three-state partitioned survival model was developed to simulate the 10-year life expectancy and total healthcare costs for patients with advanced HER2-negative GC/GEJC. Primary measure outcomes were: cost, quality-adjusted life-years (QALYs), and incremental cost-utility ratios (ICURs). Sensitivity/scenario analyses were conducted to assess the model robustness. RESULTS In all patients, Sin+Chemo vs Chemo increased costs by $6,472, additionally providing 0.61 QALYs, resulting in an ICUR of $10,610/QALY. While, in PD-L1 combined positive score ≥ 5 cohort, the ICUR was $9,738/QALYs. The ICUR was most sensitive to the utility of progression-free survival. The probabilistic sensitivity analysis showed that add-on Sin had a 100% probability of being cost-effective at a willingness-to-pay threshold of $18,625/QALY gained. CONCLUSIONS Sin+Chemo is a cost-effective first-line treatment option for advanced HER2-negative GC/GEJC in China. CLINICAL TRIAL REGISTRATION ORIENT-16, www.clinicaltrials.gov, identifier is NCT03745170.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmacy, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wan
- Department of Pharmacy, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Li X, Eastham J, Giltnane JM, Zou W, Zijlstra A, Tabatsky E, Banchereau R, Chang CW, Nabet BY, Patil NS, Molinero L, Chui S, Harryman M, Lau S, Rangell L, Waumans Y, Kockx M, Orlova D, Koeppen H. Automated tumor immunophenotyping predicts clinical benefit from anti-PD-L1 immunotherapy. J Pathol 2024; 263:190-202. [PMID: 38525811 DOI: 10.1002/path.6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/22/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Cancer immunotherapy has transformed the clinical approach to patients with malignancies, as profound benefits can be seen in a subset of patients. To identify this subset, biomarker analyses increasingly focus on phenotypic and functional evaluation of the tumor microenvironment to determine if density, spatial distribution, and cellular composition of immune cell infiltrates can provide prognostic and/or predictive information. Attempts have been made to develop standardized methods to evaluate immune infiltrates in the routine assessment of certain tumor types; however, broad adoption of this approach in clinical decision-making is still missing. We developed approaches to categorize solid tumors into 'desert', 'excluded', and 'inflamed' types according to the spatial distribution of CD8+ immune effector cells to determine the prognostic and/or predictive implications of such labels. To overcome the limitations of this subjective approach, we incrementally developed four automated analysis pipelines of increasing granularity and complexity for density and pattern assessment of immune effector cells. We show that categorization based on 'manual' observation is predictive for clinical benefit from anti-programmed death ligand 1 therapy in two large cohorts of patients with non-small cell lung cancer or triple-negative breast cancer. For the automated analysis we demonstrate that a combined approach outperforms individual pipelines and successfully relates spatial features to pathologist-based readouts and the patient's response to therapy. Our findings suggest that tumor immunophenotype generated by automated analysis pipelines should be evaluated further as potential predictive biomarkers for cancer immunotherapy. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xiao Li
- Genentech, South San Francisco, CA, USA
| | | | | | - Wei Zou
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | - Shari Lau
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
50
|
Sferruzza G, Consoli S, Dono F, Evangelista G, Giugno A, Pronello E, Rollo E, Romozzi M, Rossi L, Pensato U. A systematic review of immunotherapy in high-grade glioma: learning from the past to shape future perspectives. Neurol Sci 2024; 45:2561-2578. [PMID: 38308708 DOI: 10.1007/s10072-024-07350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
High-grade gliomas (HGGs) constitute the most common malignant primary brain tumor with a poor prognosis despite the standard multimodal therapy. In recent years, immunotherapy has changed the prognosis of many cancers, increasing the hope for HGG therapy. We conducted a comprehensive search on PubMed, Scopus, Embase, and Web of Science databases to include relevant studies. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Fifty-two papers were finally included (44 phase II and eight phase III clinical trials) and further divided into four different subgroups: 14 peptide vaccine trials, 15 dendritic cell vaccination (DCV) trials, six immune checkpoint inhibitor (ICI) trials, and 17 miscellaneous group trials that included both "active" and "passive" immunotherapies. In the last decade, immunotherapy created great hope to increase the survival of patients affected by HGGs; however, it has yielded mostly dismal results in the setting of phase III clinical trials. An in-depth analysis of these clinical results provides clues about common patterns that have led to failures at the clinical level and helps shape the perspective for the next generation of immunotherapies in neuro-oncology.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS Ospedale San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessia Giugno
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Edoardo Pronello
- Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Eleonora Rollo
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marina Romozzi
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucrezia Rossi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, ASUGI, University of Trieste, Trieste, Italy
| | - Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| |
Collapse
|