1
|
El Saftawy E, Aboulhoda BE, Alghamdi MA, Abd Elkhalek MA, AlHariry NS. Heterogeneity of modulatory immune microenvironment in bladder cancer. Tissue Cell 2025; 93:102679. [PMID: 39700733 DOI: 10.1016/j.tice.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. The intra-tumor heterogeneity of the UBC microenvironment explains the variances in response to therapy among patients. Tumor immune microenvironment (TIME) is based on the balance between anti-tumor and pro-tumorigenic immunity that eventually determines the tumor fate. This review addresses the recent insights of the cytokines, immune checkpoints, receptors, enzymes, proteins, RNAs, cancer stem cells (CSCs), tissue-resident cells, growth factors, epithelial-mesenchymal transition, microbiological cofactor, and paracrine action of cancer cells that mutually cross-talk within the TIME. In-depth balance and alteration of these factors influence the TIME and the overall tumor progression. This, in turn, highlights the prospects of the new era of manipulating these co-factors for improving the diagnosis, prognosis, and treatment of UBC. CONCLUSION: The heterogenic architecture of the TIME orchestrates the fate of the tumor. Nevertheless, recognizing the mutual cross-talk between these key players seems useful in prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Centre for Medical and Heath Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry& Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt; Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
2
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Tarhini AA, Hedges D, Tan AC, Rodriguez P, Sukrithan V, Ratan A, McCarter MTD, Carpten J, Colman H, Ikeguchi AP, Puzanov I, Arnold SM, Churchman ML, Hwu P, Conejo-Garcia JR, Dalton WS, Weiner GJ, Eljilany I. Differences in Co-Expression of T Cell Co-Inhibitory and Co-Stimulatory Molecules with PD-1 Across Different Human Cancers. JOURNAL OF ONCOLOGY RESEARCH AND THERAPY 2024; 9:10224. [PMID: 40083977 PMCID: PMC11906192 DOI: 10.29011/2574-710x.10224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Purpose The promise of immune checkpoint inhibitor (ICI) therapy underlines the importance of comprehensively investigating the rationale for combinations with diverse immune modulators across different cancer types. Given the progress made with PD1 blockade to date, we examined mRNA co-expression levels of PD-1 with 13 immune checkpoints, including co-inhibitory receptors (LAG3, CTLA4, PD-L1, TIGIT, TIM3, VISTA, BTLA) and co-stimulatory molecules (CD28, OX40, GITR, CD137, CD27, HVEM), using RNA-Seq by Expectation-Maximization (RSEM). Methods We analyzed real-world clinical and transcriptomic data from the Total Cancer Care Protocol (NCT03977402) and Avatar® project of patients with cancer treated within the Oncology Research Information Exchange Network (ORIEN) network. Using anti-PD1 as a backbone, we intended to investigate the rationale for combinations in different cancers. Pearson's R coefficients and associated P-values were calculated using SciPy 1.7.0. Results The co-expression of PD1 with 13 immune checkpoints and PD-L1 varies across selected malignancies included. In cutaneous melanoma, PD1 expression correlated significantly with four co-inhibitory receptors (LAG3, TIM3, TIGIT, VISTA) and one co-stimulatory molecule (CD137). In urothelial carcinoma, PD1 expression significantly correlated with four co-inhibitory (TIGIT, CTLA4, LAG3, VISTA) and four co-stimulatory (OX40, CD27, CD137, HVEM) molecules. In pancreatic adenocarcinoma, only CD28 showed a significant correlation with PD1 expression. No significant correlations with PD1 expression were found in the ovarian cancer cohort. Notably, melanoma and urothelial carcinoma exhibited a dominant co-expression of co-inhibitory molecules with PD1, indicative of exhausted T cells, in contrast to the co-stimulatory molecule dominance in ovarian and pancreatic cancers, suggesting less differentiated T cells. Conclusions Our findings highlight the potential for diverse combination strategies in immunotherapy, particularly with PD1 blockade, across various cancers.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Aik Choon Tan
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
| | - Paulo Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Vineeth Sukrithan
- Department of Internal Medicine, Division of Medical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | | - John Carpten
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Howard Colman
- Huntsman Cancer Institute, Salt Lake City, UT 84132, USA
- Department of Neurosurgery, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Alexandra P Ikeguchi
- Oklahoma University Health Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Susanne M Arnold
- University of Kentucky Markey Cancer Center, Lexington, KY 40536, USA
| | | | - Patrick Hwu
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | - George J Weiner
- Department of Internal Medicine, Carver College of Medicine, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Islam Eljilany
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Chen Y, Han H, Cheng J, Cheng Q, Zhu S, Zhan P, Liu H, Song Y, Lv T. Efficacy and safety of anti-PD-1/PD-L1-based dual immunotherapies versus PD-1/PD-L1 inhibitor alone in patients with advanced solid tumor: a systematic review and meta-analysis. Cancer Immunol Immunother 2024; 73:155. [PMID: 38834888 PMCID: PMC11150353 DOI: 10.1007/s00262-024-03734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Numerous randomized controlled trials (RCTs) have investigated PD-1/PD-L1 inhibitor-based combination therapies. The debate surrounding the potential additive clinical benefits of combination of two immune-oncology (IO) therapies for cancer patients persists. METHODS Both published and grey sources of randomized clinical trials that compared anti-PD-1/PD-L1-based immunotherapy combinations with monotherapy in patients with advanced or metastatic solid tumors were encompassed. The primary outcome was progression-free survival (PFS), and secondary outcomes included objective response rate (ORR), overall survival (OS) and treatment-related adverse events (TRAEs). RESULTS Our analysis encompassed 31 studies comprising 10,341 patients, which covered 12 distinct immune-oncology combination regimens. Across all patients, the immunotherapy combinations exhibited the capability to enhance the ORR (OR = 1.23 [95% CI 1.13-1.34]) and extend PFS (HR = 0.91 [95% CI 0.87-0.95]). However, the observed enhancement in OS (HR = 0.96 [95% CI 0.91-1.01]) was of no significance. Greater benefits in terms of PFS (HR = 0.82 [95% CI 0.72 to 0.93]) and OS (HR = 0.85 [95% CI 0.73 to 0.99]) may be particularly pronounced in cases where PD-L1 expression is negative. Notably, despite a heightened risk of any-grade TRAEs (OR = 1.72 [95% CI 1.40-2.11]) and grade greater than or equal to 3 TRAEs (OR = 2.01 [95% CI 1.67-2.43]), toxicity was generally manageable. CONCLUSIONS This study suggests that incorporating an additional immunotherapy agent with PD-1/PD-L1 inhibitors can elevate the response rate and reduce the risk of disease progression, all while maintaining manageable toxicity. However, there remains a challenge in translating these primary clinical benefits into extended overall survival.
Collapse
Affiliation(s)
- Yueying Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hedong Han
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Cheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinpei Cheng
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Suhua Zhu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Lee SH, Kim Y, Jeon BN, Kim G, Sohn J, Yoon Y, Kim S, Kim Y, Kim H, Cha H, Lee NE, Yang H, Chung JY, Jeong AR, Kim YY, Kim SG, Seo Y, Park S, Jung HA, Sun JM, Ahn JS, Ahn MJ, Park H, Yoon KW. Intracellular Adhesion Molecule-1 Improves Responsiveness to Immune Checkpoint Inhibitor by Activating CD8 + T Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204378. [PMID: 37097643 DOI: 10.1002/advs.202204378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/01/2023] [Indexed: 06/15/2023]
Abstract
Immune checkpoint inhibitor (ICI) clinically benefits cancer treatment. However, the ICI responses are only achieved in a subset of patients, and the underlying mechanisms of the limited response remain unclear. 160 patients with non-small cell lung cancer treated with anti-programmed cell death protein-1 (anti-PD-1) or anti-programmed death ligand-1 (anti-PD-L1) are analyzed to understand the early determinants of response to ICI. It is observed that high levels of intracellular adhesion molecule-1 (ICAM-1) in tumors and plasma of patients are associated with prolonged survival. Further reverse translational studies using murine syngeneic tumor models reveal that soluble ICAM-1 (sICAM-1) is a key molecule that increases the efficacy of anti-PD-1 via activation of cytotoxic T cells. Moreover, chemokine (CXC motif) ligand 13 (CXCL13) in tumors and plasma is correlated with the level of ICAM-1 and ICI efficacy, suggesting that CXCL13 might be involved in the ICAM-1-mediated anti-tumor pathway. Using sICAM-1 alone and in combination with anti-PD-1 enhances anti-tumor efficacy in anti-PD-1-responsive tumors in murine models. Notably, combinatorial therapy with sICAM-1 and anti-PD-1 converts anti-PD-1-resistant tumors to responsive ones in a preclinical study. These findings provide a new immunotherapeutic strategy for treating cancers using ICAM-1.
Collapse
Affiliation(s)
- Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Yeongmin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Bu-Nam Jeon
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Jinyoung Sohn
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Youngmin Yoon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
- Division of Nephrology, Department of Medicine, Chosun University Hospital, Chosun University School of Medicine, Gwangju, 61452, South Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Hyemin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Hongui Cha
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Na-Eun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Hyunsuk Yang
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Joo-Yeon Chung
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - A-Reum Jeong
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Yun Yeon Kim
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Sang Gyun Kim
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | | | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Hyun Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| | - Kyoung Wan Yoon
- Genome and Company, Pangyo-ro 253, Bundang-gu., Seoungnam-si, Gyeonggi-do, 13486, South Korea
| |
Collapse
|
6
|
Gao ZX, Zhang ZS, Qin J, Zhang MZ, Cao JL, Li YY, Wang MQ, Hou LL, Fang D, Xie SQ. Aucubin enhances the antitumor activity of cisplatin through the inhibition of PD-L1 expression in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154715. [PMID: 36821999 DOI: 10.1016/j.phymed.2023.154715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/27/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality in the world. However, the anticancer effects of aucubin against HCC have yet to be reported. Cisplatin often decreased CD8+ tumor-infiltrating lymphocytes in the tumor microenvironment through increasing programmed death-ligand 1 (PD-L1) expression, which seriously affected the prognostic effect of cisplatin in the treatment of patients with HCC. Therefore, it is necessary to identify a novel therapeutic avenue to increase the sensitivity of cisplatin against HCC. PURPOSE This study aims to evaluate the anti-tumor effect of aucubin on HCC, and also to reveal the synergistic effects and mechanism of aucubin and cisplatin against HCC. STUDY DESIGN AND METHODS An H22 xenograft mouse model was established for the in vivo experiments. Cancer cell proliferation was detected by MTT assay. RT-qPCR was performed to analyze CD274 mRNA expression in vitro. Western blotting was employed to determine the expression levels of the PD-L1, p-Akt, Akt, p-β-catenin, and β-catenin in vitro. Immunofluorescence was carried out to examine β-catenin nuclear accumulation in HCC cells. Immunohistochemistry was used to detect tumoral PD-L1 and CD8α expression in xenograft mouse model. RESULTS Aucubin inhibits tumor growth in a xenograft HCC mouse model, but did not affect HCC cell viability in vitro. Aucubin treatment significantly inhibited PD-L1 expression through inactivating Akt/β-catenin signaling pathway in HCC cells. Overexpression of PD-L1 dramatically reversed aucubin-mediated tumoral CD8+ T cell infiltration and alleviated the antitumor activity of aucubin in xenograft mouse model. Moreover, Cisplatin could induce the expression of PD-L1 through the activation of the Akt/β-catenin signaling pathway in HCC cells, which can be blocked by aucubin in vitro. In xenograft mouse model, cisplatin treatment induced PD-L1 expression and alleviated the infiltration of CD8+ T lymphocytes in the tumor microenvironment. Aucubin not only abrogated cisplatin-induced PD-L1 expression but also enhanced the antitumor efficacy of cisplatin in a mouse xenograft model of HCC. CONCLUSION Aucubin exerts antitumor activity against HCC and also enhances the antitumor activity of cisplatin by suppressing the Akt/β-catenin/PD-L1 axis.
Collapse
Affiliation(s)
- Zi-Xuan Gao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Zhan-Sheng Zhang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Jia Qin
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Ming-Zhu Zhang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Jin-Lan Cao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Ying-Ying Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Meng-Qing Wang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China
| | - Dong Fang
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China.
| | - Song-Qiang Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng 475004, China; The Academy for Advanced Interdisplinary Studies, Henan University, N. Jinming Ave, Kaifeng 475004, China; Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng 475004, China.
| |
Collapse
|
7
|
Ota Y, Nagai Y, Hirose Y, Hori S, Koga-Yamakawa E, Eguchi K, Sumida K, Murata M, Umehara H, Yamamoto S. DSP-0509, a systemically available TLR7 agonist, exhibits combination effect with immune checkpoint blockade by activating anti-tumor immune effects. Front Immunol 2023; 14:1055671. [PMID: 36793737 PMCID: PMC9922899 DOI: 10.3389/fimmu.2023.1055671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
TLR7 is an innate immune receptor that recognizes single-stranded RNAs, and its activation leads to anti-tumor immune effects. Although it is the only approved TLR7 agonist in cancer therapy, imiquimod is allowed to be administered with topical formulation. Thus, systemic administrative TLR7 agonist is expected in terms of expanding applicable cancer types. Here, we demonstrated the identification and characterization of DSP-0509 as a novel small-molecule TLR7 agonist. DSP-0509 is designed to have unique physicochemical features that could be administered systemically with a short half-life. DSP-0509 activated bone marrow-derived dendritic cells (BMDCs) and induced inflammatory cytokines including type I interferons. In the LM8 tumor-bearing mouse model, DSP-0509 reduced tumor growth not only in subcutaneous primary lesions but also in lung metastatic lesions. DSP-0509 inhibited tumor growth in several syngeneic tumor-bearing mouse models. We found that the CD8+ T cell infiltration of tumor before treatment tended to be positively correlated with anti-tumor efficacy in several mouse tumor models. The combination of DSP-0509 with anti-PD-1 antibody significantly enhanced the tumor growth inhibition compared to each monotherapy in CT26 model mice. In addition, the effector memory T cells were expanded in both the peripheral blood and tumor, and rejection of tumor re-challenge occurred in the combination group. Moreover, synergistic anti-tumor efficacy and effector memory T cell upregulation were also observed for the combination with anti-CTLA-4 antibody. The analysis of the tumor-immune microenvironment by using the nCounter assay revealed that the combination of DSP-0509 with anti-PD-1 antibody enhanced infiltration by multiple immune cells including cytotoxic T cells. In addition, the T cell function pathway and antigen presentation pathway were activated in the combination group. We confirmed that DSP-0509 enhanced the anti-tumor immune effects of anti-PD-1 antibody by inducing type I interferons via activation of dendritic cells and even CTLs. In conclusion, we expect that DSP-0509, a new TLR7 agonist that synergistically induces anti-tumor effector memory T cells with immune checkpoint blockers (ICBs) and can be administered systemically, will be used in the treatment of multiple cancers.
Collapse
|
8
|
Wang Y, Lin X, Wang C, Liu X, Wu X, Qiu Y, Chen Y, Zhou Q, Zhao H, Chen J, Huang H. Identification of PDCD1 as a potential biomarker in acute rejection after kidney transplantation via comprehensive bioinformatic analysis. Front Immunol 2023; 13:1076546. [PMID: 36776400 PMCID: PMC9911868 DOI: 10.3389/fimmu.2022.1076546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023] Open
Abstract
Background Acute rejection is a determinant of prognosis following kidney transplantation. It is essential to search for novel noninvasive biomarkers for early diagnosis and prompt treatment. Methods Gene microarray data was downloaded from the Gene Expression Omnibus (GEO) expression profile database and the intersected differentially expressed genes (DEGs) was calculated. We conducted the DEGs with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Distribution of immune cell infiltration was calculated by CIBERSORT. A hub gene marker was identified by intersecting the rejection-related genes from WGCNA and a selected KEGG pathway-T cell receptor signaling pathway (hsa04660), and building a protein-protein interaction network using the STRING database and Cytoscape software. We performed flow-cytometry analysis to validate the hub gene. Results A total of 1450 integrated DEGs were obtained from five datasets (GSE1563, GSE174020, GSE98320, GSE36059, GSE25902). The GO, KEGG and immune infiltration analysis results showed that AR was mainly associated with T cell activation and various T-cell related pathways. Other immune cells, such as B cells, Macrophage and Dendritic cells were also associated with the progress. After utilizing the WGCNA and PPI network, PDCD1 was identified as the hub gene. The flow-cytometry analysis demonstrated that both in CD4+ and CD8+ T cells, PD1+CD57-, an exhausted T cell phenotype, were downregulated in the acute rejection whole blood samples. Conclusions Our study illustrated that PDCD1 may be a candidate diagnostic biomarker for acute kidney transplant rejection via integrative bioinformatic analysis.
Collapse
Affiliation(s)
- Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xiaoli Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xinyu Liu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Xiaoying Wu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Yingying Qiu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Ying Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Haige Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China
| | - Hongfeng Huang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, China,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Zhejiang, China,*Correspondence: Hongfeng Huang,
| |
Collapse
|
9
|
Hao J, He AY, Zhao X, Chen XQ, Liu QL, Sun N, Zhang RQ, Li PP. Pan-Cancer Study of the Prognosistic Value of Selenium Phosphate Synthase 1. Cancer Control 2023; 30:10732748231170485. [PMID: 37072373 PMCID: PMC10126790 DOI: 10.1177/10732748231170485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Objective: This study sought to determine the mean prognostic usefulness of seleniumphosphate synthase (SEPHS1) by investigating its expression in 33 human malignancies and its relationship to tumor immunity.Methods: The expression of selenophosphate synthase 1 (SEPHS1) in 33 human malignant tumors was examined using the Genotype-Tissue Expression (GTEx), Cancer Genome Atlas (TCGA), and TIMER databases. Furthermore, the TCGA cohort was used to investigate relationships between SEPHS1 and immunological checkpoint genes (ICGs), tumor mutation burden (TMB), microsatellite instability (MSI), and DNA mismatch repair genes (MMRs). To establish independent risk factors and calculate survival probabilities for liver hepatocellular carcinoma (LIHC) and brain lower-grade glioma (LGG), Cox regression models and Kaplan-Meier curves were utilized. Eventually, the Genomics of Cancer Drug Sensitivity (GDSC) database was used to evaluate the drug sensitivity in LGG and LIHC patients with high SEPHS1 expression.Results: Overall, in numerous tumor tissues, SEPHS1 was highly expressed, and it significantly linked with the prognosis of LGG, ACC, and LIHC (P < .05). Furthermore, in numerous cancers, SEPHS1 expression was linked to tumor-infiltrating immune cells (TIICs), TMB, MSI, and MMRs. According to univariate and multivariate Cox analyses, SEPHS1 expression was significant for patients with LGG and LIHC.Conclusion: High SEPHS1 expression has a better prognosis for LGG, while low SEPHS1 expression has a better prognosis for LIHC. Chemotherapy was advised for LGG patients, particularly for those with high SEPHS1 expression because it can predict how responsive patients will be to 5-Fluorouracil and Temozolomide. This interaction between SEPHS1 and chemoradiotherapy has a positive clinical impact and may be used as evidence for chemotherapy for LGG and LIHC patients.
Collapse
Affiliation(s)
- Jie Hao
- Shannxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Ao-Yue He
- Shannxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Xu Zhao
- Shannxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Xue-Qin Chen
- Shannxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Qi-Ling Liu
- Shannxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Na Sun
- Shannxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Rong-Qiang Zhang
- Shannxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Ping-Ping Li
- Department of Vip Center, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
10
|
Yi M, Li T, Niu M, Wu Y, Zhao Z, Wu K. TGF-β: A novel predictor and target for anti-PD-1/PD-L1 therapy. Front Immunol 2022; 13:1061394. [PMID: 36601124 PMCID: PMC9807229 DOI: 10.3389/fimmu.2022.1061394] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling regulates multiple physiological processes, such as cell proliferation, differentiation, immune homeostasis, and wound healing. Besides, TGF-β plays a vital role in diseases, including cancer. Accumulating evidence indicates that TGF-β controls the composition and behavior of immune components in the tumor microenvironment (TME). Advanced cancers leverage TGF-β to reshape the TME and escape immune surveillance. TGF-β-mediated immune evasion is an unfavorable factor for cancer immunotherapy, especially immune checkpoint inhibitors (ICI). Numerous preclinical and clinical studies have demonstrated that hyperactive TGF-β signaling is closely associated with ICI resistance. It has been validated that TGF-β blockade synergizes with ICI and overcomes treatment resistance. TGF-β-targeted therapies, including trap and bispecific antibodies, have shown immense potential for cancer immunotherapy. In this review, we summarized the predictive value of TGF-β signaling and the prospects of TGF-β-targeted therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Zhao
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Kongming Wu, ; Zhenyu Zhao,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Kongming Wu, ; Zhenyu Zhao,
| |
Collapse
|
11
|
Abstract
Gene therapy is a powerful biological tool that is reshaping therapeutic landscapes for several diseases. Researchers are using both non-viral and viral-based gene therapy methods with success in the lab and the clinic. In the cancer biology field, gene therapies are expanding treatment options and the possibility of favorable outcomes for patients. While cellular immunotherapies and oncolytic virotherapies have paved the way in cancer treatments based on genetic engineering, recombinant adeno-associated virus (rAAV), a viral-based module, is also emerging as a potential cancer therapeutic through its malleability, specificity, and broad application to common as well as rare tumor types, tumor microenvironments, and metastatic disease. A wide range of AAV serotypes, promoters, and transgenes have been successful at reducing tumor growth and burden in preclinical studies, suggesting more groundbreaking advances using rAAVs in cancer are on the horizon.
Collapse
Affiliation(s)
- Patrick L. Mulcrone
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University, Indianapolis, IN 46202, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Sun H, Li Y, Zhang P, Xing H, Zhao S, Song Y, Wan D, Yu J. Targeting toll-like receptor 7/8 for immunotherapy: recent advances and prospectives. Biomark Res 2022; 10:89. [PMID: 36476317 PMCID: PMC9727882 DOI: 10.1186/s40364-022-00436-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are a large family of proteins that are expressed in immune cells and various tumor cells. TLR7/8 are located in the intracellular endosomes, participate in tumor immune surveillance and play different roles in tumor growth. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response in the highly sophisticated process of innate immunity signaling with the recent research advances involving the small molecule activation of TLR 7 and 8. The wide range of expression and clinical significance of TLR7/TLR8 in different kinds of cancers have been extensively explored. TLR7/TLR8 can be used as novel diagnostic biomarkers, progression and prognostic indicators, and immunotherapeutic targets for various tumors. Although the mechanism of action of TLR7/8 in cancer immunotherapy is still incomplete, TLRs on T cells are involved in the regulation of T cell function and serve as co-stimulatory molecules and activate T cell immunity. TLR agonists can activate T cell-mediated antitumor responses with both innate and adaptive immune responses to improve tumor therapy. Recently, novel drugs of TLR7 or TLR8 agonists with different scaffolds have been developed. These agonists lead to the induction of certain cytokines and chemokines that can be applied to the treatment of some diseases and can be used as good adjutants for vaccines. Furthermore, TLR7/8 agonists as potential therapeutics for tumor-targeted immunotherapy have been developed. In this review, we summarize the recent advances in the development of immunotherapy strategies targeting TLR7/8 in patients with various cancers and chronic hepatitis B.
Collapse
Affiliation(s)
- Hao Sun
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Haizhou Xing
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004 Henan China
| |
Collapse
|
13
|
Yi M, Wu Y, Niu M, Zhu S, Zhang J, Yan Y, Zhou P, Dai Z, Wu K. Anti-TGF-β/PD-L1 bispecific antibody promotes T cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J Immunother Cancer 2022; 10:jitc-2022-005543. [PMID: 36460337 PMCID: PMC9723957 DOI: 10.1136/jitc-2022-005543] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Agents blocking programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) have been approved for triple-negative breast cancer (TNBC). However, the response rate of anti-PD-1/PD-L1 is still unsatisfactory, partly due to immunosuppressive factors such as transforming growth factor-beta (TGF-β). In our previous pilot study, the bispecific antibody targeting TGF-β and murine PD-L1 (termed YM101) showed potent antitumor effect. In this work, we constructed a bispecific antibody targeting TGF-β and human PD-L1 (termed BiTP) and explored the antitumor effect of BiTP in TNBC. METHODS BiTP was developed using Check-BODYTM bispecific platform. The binding affinity of BiTP was measured by surface plasmon resonance, ELISA, and flow cytometry. The bioactivity was assessed by Smad and NFAT luciferase reporter assays, immunofluorescence, western blotting, and superantigen stimulation assays. The antitumor activity of BiTP was explored in humanized epithelial-mesenchymal transition-6-hPDL1 and 4T1-hPDL1 murine TNBC models. Immunohistochemical staining, flow cytometry, and bulk RNA-seq were used to investigate the effect of BiTP on immune cell infiltration. RESULTS BiTP exhibited high binding affinity to dual targets. In vitro experiments verified that BiTP effectively counteracted TGF-β-Smad and PD-L1-PD-1-NFAT signaling. In vivo animal experiments demonstrated that BiTP had superior antitumor activity relative to anti-PD-L1 and anti-TGF-β monotherapy. Mechanistically, BiTP decreased collagen deposition, enhanced CD8+ T cell penetration, and increased tumor-infiltrating lymphocytes. This improved tumor microenvironment contributed to the potent antitumor activity of BiTP. CONCLUSION BiTP retains parent antibodies' binding affinity and bioactivity, with superior antitumor activity to parent antibodies in TNBC. Our data suggest that BiTP might be a promising agent for TNBC treatment.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Wuhan YZY Biopharma Co Ltd, Wuhan, China
| | | | | | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
14
|
Miao J, Sise ME, Herrmann SM. Immune checkpoint inhibitor related nephrotoxicity: Advances in clinicopathologic features, noninvasive approaches, and therapeutic strategy and rechallenge. FRONTIERS IN NEPHROLOGY 2022; 2:1017921. [PMID: 37674988 PMCID: PMC10479679 DOI: 10.3389/fneph.2022.1017921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 09/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are used increasingly to treat more than 17 cancers and have shown promising therapeutic results. However, ICI use can result in a variety of immune-related adverse events (IRAEs) which can occur in any organ, including the kidneys. Acute kidney injury (AKI) is the most common nephrotoxicity, classically related to acute interstitial nephritis. Much more diverse patterns and presentations of ICI-related kidney injury can occur, and have implications for diagnostic and therapeutic management approaches. In this review, we summarize the recently approved ICIs for cancer, the incidence and risk factors for nephrotoxicity, our current understanding of the pathophysiological mechanisms and the key clinicopathological features of ICI-related AKI, and therapeutic strategies. We also explore important knowledge that require further investigation, such as the risks/benefits of ICI rechallenge in patients who recover from an episode of ICI-related AKI, and the application of liquid biopsy and microbiome to identify noninvasive biomarkers to diagnose and predict kidney injury and guide ICI therapy.
Collapse
Affiliation(s)
- Jing Miao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Meghan E. Sise
- Department of Internal Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, United States
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Yi M, Niu M, Wu Y, Ge H, Jiao D, Zhu S, Zhang J, Yan Y, Zhou P, Chu Q, Wu K. Combination of oral STING agonist MSA-2 and anti-TGF-β/PD-L1 bispecific antibody YM101: a novel immune cocktail therapy for non-inflamed tumors. J Hematol Oncol 2022; 15:142. [PMID: 36209176 PMCID: PMC9548169 DOI: 10.1186/s13045-022-01363-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-inflamed tumors, including immune-excluded and immune-desert tumors, are commonly resistant to anti-PD-1/PD-L1 (α-PD-1/PD-L1) therapy. Our previous study reported the potent antitumor activity of anti-TGF-β/PD-L1 bispecific antibody YM101 in immune-excluded tumors. However, YM101 had limited antitumor activity in immune-desert models. MSA-2 is a novel oral stimulator of interferon genes (STING) agonist, which activates the innate immune system and may synergize with YM101 in overcoming immunotherapy resistance. METHODS The dose-dependent effect of MSA-2 on STING signaling was determined by interferon-β level. The maturation and function of dendritic cell (DC) were measured by flow cytometry, RNA-seq, one-way mixed lymphocyte reaction (MLR), OVA peptide pulse, and cytokine/chemokine detection. The synergistic effect between MSA-2 and YM101 was assessed by one-way MLR. The macrophage activation was measured by flow cytometry and cytokine/chemokine detection. The in vivo antitumor activity of MSA-2 combined with YM101 was explored in syngeneic murine tumor models. After treatments, the alterations in the tumor microenvironment (TME) were detected by flow cytometry, immunohistochemistry staining, immunofluorescence staining, RNA-seq, and single-cell RNA-seq (scRNA-seq). RESULTS MSA-2 could promote the maturation and antigen presentation capability of murine DC. In the one-way MLR assay, MSA-2 synergized with YM101 in enhancing naive T cell activation. Moreover, MSA-2 stimulated the classical activation of macrophage, without significant influence on alternative activation. Further in vivo explorations showed that MSA-2 increased multiple proinflammatory cytokines and chemokines in the TME. MSA-2 combined with YM101 remarkedly retarded tumor growth in immune-excluded and immune-desert models, with superior antitumor activity to monotherapies. Flow cytometry, bulk RNA-seq, and scRNA-seq assays indicated that the combination therapy simultaneously boosted the innate and adaptive immunity, promoted antigen presentation, improved T cell migration and chemotaxis, and upregulated the numbers and activities of tumor-infiltrating lymphocytes. CONCLUSION Our results demonstrate that MSA-2 synergizes with YM101 in boosting antitumor immunity. This immune cocktail therapy effectively overcomes immunotherapy resistance in immune-excluded and immune-desert models.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.,Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, C2-1, No.666 Gaoxin Road, Biolake, Wuhan, 430075, People's Republic of China
| | - Yongxiang Yan
- Wuhan YZY Biopharma Co., Ltd, C2-1, No.666 Gaoxin Road, Biolake, Wuhan, 430075, People's Republic of China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, C2-1, No.666 Gaoxin Road, Biolake, Wuhan, 430075, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China. .,Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
16
|
Li W, Wang F, Guo R, Bian Z, Song Y. Targeting macrophages in hematological malignancies: recent advances and future directions. J Hematol Oncol 2022; 15:110. [PMID: 35978372 PMCID: PMC9387027 DOI: 10.1186/s13045-022-01328-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/06/2022] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that the detection and clearance of cancer cells via phagocytosis induced by innate immune checkpoints play significant roles in tumor-mediated immune escape. The most well-described innate immune checkpoints are the "don't eat me" signals, including the CD47/signal regulatory protein α axis (SIRPα), PD-1/PD-L1 axis, CD24/SIGLEC-10 axis, and MHC-I/LILRB1 axis. Molecules have been developed to block these pathways and enhance the phagocytic activity against tumors. Several clinical studies have investigated the safety and efficacy of CD47 blockades, either alone or in combination with existing therapy in hematological malignancies, including myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and lymphoma. However, only a minority of patients have significant responses to these treatments alone. Combining CD47 blockades with other treatment modalities are in clinical studies, with early results suggesting a synergistic therapeutic effect. Targeting macrophages with bispecific antibodies are being explored in blood cancer therapy. Furthermore, reprogramming of pro-tumor macrophages to anti-tumor macrophages, and CAR macrophages (CAR-M) demonstrate anti-tumor activities. In this review, we elucidated distinct types of macrophage-targeted strategies in hematological malignancies, from preclinical experiments to clinical trials, and outlined potential therapeutic approaches being developed.
Collapse
Affiliation(s)
- Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
17
|
Ding Y, Wang Y, Hu Q. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210106. [PMID: 37323702 PMCID: PMC10190958 DOI: 10.1002/exp.20210106] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy strategies that use cell-based delivery systems have sparked much interest in the treatment of malignancies, owing to their high biocompatibility, excellent tumor targeting capability, and unique biofunctionalities in the tumor growth process. A variety of design principles for cell-based immunotherapy, including cell surface decoration, cell membrane coating, cell encapsulation, genetically engineered cell, and cell-derived exosomes, give cancer immunotherapy great potential to improve therapeutic efficacy and reduce adverse effects. However, the treatment efficacy of cell-based delivery methods for immunotherapy is still limited, and practical uses are hampered due to complex physiological and immunological obstacles, such as physical barriers to immune infiltration, immunosuppressive tumor microenvironment, upregulation of immunosuppressive pathways, and metabolic restriction. In this review, we present an overview of the design principles of cell-based delivery systems in cancer immunotherapy to maximize the therapeutic impact, along with anatomical, metabolic, and immunological impediments in using cell-based immunotherapy to treat cancer. Following that, a summary of novel delivery strategies that have been created to overcome these obstacles to cell-based immunotherapeutic delivery systems is provided. Also, the obstacles and prospects of next-step development of cell-based delivery systems for cancer immunotherapy are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Yixin Wang
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Quanyin Hu
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| |
Collapse
|
18
|
Vuong JT, Stein-Merlob AF, Nayeri A, Sallam T, Neilan TG, Yang EH. Immune Checkpoint Therapies and Atherosclerosis: Mechanisms and Clinical Implications: JACC State-of-the-Art Review. J Am Coll Cardiol 2022; 79:577-593. [PMID: 35144750 PMCID: PMC8983019 DOI: 10.1016/j.jacc.2021.11.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitor therapy has revolutionized the treatment of advanced malignancies in recent years. Numerous reports have detailed the myriad of possible adverse inflammatory effects of immune checkpoint therapies, including within the cardiovascular system. However, these reports have been largely limited to myocarditis. The critical role of inflammation and adaptive immunity in atherosclerosis has been well characterized in preclinical studies, and several emerging clinical studies indicate a potential role of immune checkpoint targeting therapies in the development and exacerbation of atherosclerosis. In this review, we provide an overview of the role of T-cell immunity in atherogenesis and describe the molecular effects and clinical associations of both approved and investigational immune checkpoint therapy on atherosclerosis. We also highlight the role of cholesterol metabolism in oncogenesis and discuss the implications of these associations on future treatment and monitoring of atherosclerotic cardiovascular disease in the oncologic population receiving immune checkpoint therapy.
Collapse
Affiliation(s)
- Jacqueline T Vuong
- Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Ashley F Stein-Merlob
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Arash Nayeri
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Tomas G Neilan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eric H Yang
- Division of Cardiology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, USA; UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
19
|
Yi M, Zheng X, Niu M, Zhu S, Ge H, Wu K. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer 2022; 21:28. [PMID: 35062949 PMCID: PMC8780712 DOI: 10.1186/s12943-021-01489-2] [Citation(s) in RCA: 704] [Impact Index Per Article: 234.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
Antibodies targeting programmed cell death protein-1 (PD-1) or its ligand PD-L1 rescue T cells from exhausted status and revive immune response against cancer cells. Based on the immense success in clinical trials, ten α-PD-1 (nivolumab, pembrolizumab, cemiplimab, sintilimab, camrelizumab, toripalimab, tislelizumab, zimberelimab, prolgolimab, and dostarlimab) and three α-PD-L1 antibodies (atezolizumab, durvalumab, and avelumab) have been approved for various types of cancers. Nevertheless, the low response rate of α-PD-1/PD-L1 therapy remains to be resolved. For most cancer patients, PD-1/PD-L1 pathway is not the sole speed-limiting factor of antitumor immunity, and it is insufficient to motivate effective antitumor immune response by blocking PD-1/PD-L1 axis. It has been validated that some combination therapies, including α-PD-1/PD-L1 plus chemotherapy, radiotherapy, angiogenesis inhibitors, targeted therapy, other immune checkpoint inhibitors, agonists of the co-stimulatory molecule, stimulator of interferon genes agonists, fecal microbiota transplantation, epigenetic modulators, or metabolic modulators, have superior antitumor efficacies and higher response rates. Moreover, bifunctional or bispecific antibodies containing α-PD-1/PD-L1 moiety also elicited more potent antitumor activity. These combination strategies simultaneously boost multiple processes in cancer-immunity cycle, remove immunosuppressive brakes, and orchestrate an immunosupportive tumor microenvironment. In this review, we summarized the synergistic antitumor efficacies and mechanisms of α-PD-1/PD-L1 in combination with other therapies. Moreover, we focused on the advances of α-PD-1/PD-L1-based immunomodulatory strategies in clinical studies. Given the heterogeneity across patients and cancer types, individualized combination selection could improve the effects of α-PD-1/PD-L1-based immunomodulatory strategies and relieve treatment resistance.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
20
|
Yan M, Yin X, Zhang L, Cui Y, Ma X. High expression of HOXB3 predicts poor prognosis and correlates with tumor immunity in lung adenocarcinoma. Mol Biol Rep 2022; 49:2607-2618. [PMID: 35028857 DOI: 10.1007/s11033-021-07064-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most prevalent human cancers worldwide. The homeobox-B (HOXB) gene cluster has been reported to contribute to cancer development. Nevertheless, the expression status, clinical significance and biological role of HOXB genes in LUAD remain largely unclear. METHODS AND RESULTS This study comprehensively investigated the transcriptional levels and prognostic values of the HOXB genes in LUAD based on The Cancer Genome Atlas (TCGA) database. Flow cytometry, CCK-8, and Transwell assays were used for detecting apoptosis, proliferation, and migration, respectively. We discovered that eight members of the HOXB cluster genes (HOXB2, HOXB3, HOXB4, HOXB6, HOXB7, HOXB8, HOXB9, and HOXB13) were dysregulated in LUAD tumor tissues. Increased expression of HOXB3, HOXB6, HOXB7, HOXB8, or HOXB9 was independently associated with unsatisfactory overall survival (OS) in LUAD patients. In addition, a high level of HOXB3 also predicted poor patient relapse-free survival (RFS), suggesting that HOXB3 may play a vital role in the progression of LUAD compared to other members of the HOXB cluster. Additionally, further analysis by TIMER and TISIDB algorithms revealed that HOXB3 was positively correlated with a panel of immune checkpoint molecules (ICMs), tumor-infiltrating lymphocytes (TILs), and tumor immune regulators (TIRs). Gene enrichment analysis based on KEGG showed that HOXB3 was closely associated with multiple tumor-related biological processes and signaling pathways. Functionally, the in vitro experiments revealed that depletion of HOXB3 significantly alleviated the resistance of LUAD cells to apoptosis, and suppressed cell proliferation and migration. CONCLUSION Our study suggests that HOXB3 may play an oncogenic role in LUAD and correlate with tumor immunity.
Collapse
Affiliation(s)
- Ming Yan
- Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaojun Yin
- Kunshan Second People's Hospital, Suzhou, 215300, China
| | - Luan Zhang
- Jiangsu Mai Jian Biotechnology Development Company, Wuxi, 214135, China
| | - Yuanbo Cui
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China.
| | - Xiwen Ma
- Department of Endocrinology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China.
| |
Collapse
|
21
|
Corke L, Sacher A. New Strategies and Combinations to Improve Outcomes in Immunotherapy in Metastatic Non-Small-Cell Lung Cancer. Curr Oncol 2021; 29:38-55. [PMID: 35049678 PMCID: PMC8774728 DOI: 10.3390/curroncol29010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors have transformed the treatment of metastatic non-small-cell lung cancer, yielding marked improvements in survival and the potential for durable clinical responses. Primary and acquired resistance to current immune checkpoint inhibitors constitute a key challenge despite the remarkable responses observed in a subset of patients. Multiple novel combination immunotherapy and adoptive cell therapy strategies are presently being developed to address treatment resistance. The success of these strategies hinges upon rational clinical trial design as well as careful consideration of the immunologic mechanisms within the variable tumor immune microenvironment (TIME) which underpin resistance to immunotherapy. Further research is needed to facilitate a deeper understanding of these complex mechanisms within the TIME, which may ultimately provide the key to restoring and enhancing an effective anti-tumor immune response. This review aims to provide an introduction to some of the recent and notable combination immunotherapy and cell therapy strategies used in advanced non-small-cell lung cancer (NSCLC), and the rationale for their use based on current understanding of the anti-tumor immune response and mechanisms of resistance within the TIME.
Collapse
Affiliation(s)
- Lucy Corke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
22
|
Lin T, Zhang Y, Lin Z, Peng L. Roles of HMGBs in Prognosis and Immunotherapy: A Pan-Cancer Analysis. Front Genet 2021; 12:764245. [PMID: 34777483 PMCID: PMC8585836 DOI: 10.3389/fgene.2021.764245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Background: High mobility group box (HMGB) proteins are DNA chaperones involved in transcription, DNA repair, and genome stability. Extracellular HMGBs also act as cytokines to promote inflammatory and immune responses. Accumulating evidence has suggested that HMGBs are implicated in cancer pathogenesis; however, their prognostic and immunological values in pan-cancer are not completely clear. Methods: Multiple tools were applied to analyze the expression, genetic alternations, and prognostic and clinicopathological relevance of HMGB in pan-cancer. Correlations between HMGB expression and tumor immune-infiltrating cells (TIICs), immune checkpoint (ICP) expression, microsatellite instability (MSI), and tumor mutational burden (TMB) in pan-cancer were investigated to uncover their interactions with the tumor immune microenvironment (TIME). Gene set enrichment analysis (GSEA) was conducted for correlated genes of HMGBs to expound potential mechanisms. Results: HMGB expression was significantly elevated in various cancers. Both prognostic and clinicopathological significance was observed for HMGB1 in ACC; HMGB2 in ACC, LGG, LIHC, and SKCM; and HMGB3 in ESCA. Prognostic values were also found for HMGB2 in KIRP and MESO and HMGB3 in BRCA, SARC, SKCM, OV, and LAML. The global alternation of HMGBs showed prognostic significance in ACC, KIRC, and UCEC. Furthermore, HMGBs were significantly correlated with TIIC infiltration, ICP expression, MSI, and TMB in various cancers, indicating their regulations on the TIME. Lastly, results of GSEA-illuminated genes positively correlated with HMGBs which were similarly chromosome components participating in DNA activity-associated events. Conclusion: This study demonstrated that HMGBs might be promising predictive biomarkers for the prognosis and immunotherapeutic response, also immunotherapy targets of multiple cancers.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yingzhao Zhang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhimei Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lisheng Peng
- Department of Science and Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
23
|
Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, Ping Y, Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol 2021; 14:187. [PMID: 34742349 PMCID: PMC8572421 DOI: 10.1186/s13045-021-01200-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Complex interactions between the immune system and tumor cells exist throughout the initiation and development of cancer. Although the immune system eliminates malignantly transformed cells in the early stage, surviving tumor cells evade host immune defense through various methods and even reprogram the anti-tumor immune response to a pro-tumor phenotype to obtain unlimited growth and metastasis. The high proliferation rate of tumor cells increases the demand for local nutrients and oxygen. Poorly organized vessels can barely satisfy this requirement, which results in an acidic, hypoxic, and glucose-deficient tumor microenvironment. As a result, lipids in the tumor microenvironment are activated and utilized as a primary source of energy and critical regulators in both tumor cells and related immune cells. However, the exact role of lipid metabolism reprogramming in tumor immune response remains unclear. A comprehensive understanding of lipid metabolism dysfunction in the tumor microenvironment and its dual effects on the immune response is critical for mapping the detailed landscape of tumor immunology and developing specific treatments for cancer patients. In this review, we have focused on the dysregulation of lipid metabolism in the tumor microenvironment and have discussed its contradictory roles in the tumor immune response. In addition, we have summarized the current therapeutic strategies targeting lipid metabolism in tumor immunotherapy. This review provides a comprehensive summary of lipid metabolism in the tumor immune response.
Collapse
Affiliation(s)
- Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
24
|
Meng X, Gao JZ, Gomendoza SMT, Li JW, Yang S. Recent Advances of WEE1 Inhibitors and Statins in Cancers With p53 Mutations. Front Med (Lausanne) 2021; 8:737951. [PMID: 34671620 PMCID: PMC8520942 DOI: 10.3389/fmed.2021.737951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/01/2021] [Indexed: 01/12/2023] Open
Abstract
p53 is among the most frequently mutated tumor suppressor genes given its prevalence in >50% of all human cancers. One critical tumor suppression function of p53 is to regulate transcription of downstream genes and maintain genomic stability by inducing the G1/S checkpoint in response to DNA damage. Tumor cells lacking functional p53 are defective in the G1/S checkpoint and become highly dependent on the G2/M checkpoint to maintain genomic stability and are consequently vulnerable to Wee1 inhibitors, which override the cell cycle G2/M checkpoint and induce cell death through mitotic catastrophe. In addition to the lost tumor suppression function, many mutated p53 (Mutp53) proteins acquire gain-of-function (GOF) activities as oncogenes to promote cancer progression, which manifest through aberrant expression of p53. In cancer cells with GOF Mutp53, statins can induce CHIP-mediated degradation of Mutp53 within the mevalonate pathway by blocking the interaction between mutp53 and DNAJA1. Therefore, targeting critical downstream pathways of Mutp53 provides an alternative strategy for treating cancers expressing Mutp53. In this review, we summarize recent advances with Wee1 inhibitors, statins, and mevalonate pathway inhibitors in cancers with p53 mutations.
Collapse
Affiliation(s)
- Xiangbing Meng
- Department of Pathology, The University of Iowa, Iowa City, IA, United States.,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Jason Z Gao
- Department of Pathology, The University of Iowa, Iowa City, IA, United States
| | | | - John W Li
- Department of Pathology, The University of Iowa, Iowa City, IA, United States.,Department of Human and Evolutionary Biology, University of Southern California, Los Angeles, CA, United States
| | - Shujie Yang
- Department of Pathology, The University of Iowa, Iowa City, IA, United States.,Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|