1
|
Soliman N, Saharia A, Abdelrahim M, Connor AA. Molecular profiling in the management of hepatocellular carcinoma. Curr Opin Organ Transplant 2024; 29:10-22. [PMID: 38038621 DOI: 10.1097/mot.0000000000001124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to both summarize the current knowledge of hepatocellular carcinoma molecular biology and to suggest a framework in which to prospectively translate this knowledge into patient care. This is timely as recent guidelines recommend increased use of these technologies to advance personalized liver cancer care. RECENT FINDINGS The main themes covered here address germline and somatic genetic alterations recently discovered in hepatocellular carcinoma, largely owing to next generation sequencing technologies, and nascent efforts to translate these into contemporary practice. SUMMARY Early efforts of translating molecular profiling to hepatocellular carcinoma care demonstrate a growing number of potentially actionable alterations. Still lacking are a consensus on what biomarkers and technologies to adopt, at what scale and cost, and how to integrate them most effectively into care.
Collapse
|
2
|
Wang Y, Feng Z, Zhang Y, Zhang Y. Establishment and verification of a prognostic risk score model based on immune genes for hepatocellular carcinoma in an Asian population. Transl Cancer Res 2023; 12:2806-2822. [PMID: 37969383 PMCID: PMC10643976 DOI: 10.21037/tcr-23-128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/25/2023] [Indexed: 11/17/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, with the highest incidence in East Asia, and hepatitis B virus (HBV) infection is the most common cause of HCC in Asian population. The immune system is closely related to the development of HCC and plays an important role in the treatment of this disease. In this study, we analyzed the data of HCC from The Cancer Genome Atlas (TCGA) database and constructed a risk-score prognostic model based on immune genes of an Asian HCC population, aiming to provide new perspectives for clinical treatment and management of HCC in Asian population. Methods Data concerning clinical attributes and transcriptomic profiles of individuals in the Asian population diagnosed with HCC were retrieved from the TCGA database. Concurrently, immune-related genes were sourced from the Immport database for incorporation into our analysis. A total of 265 immune-related genes displaying differential expression were identified through wilcoxTest analysis in R. Further refinement using univariate and multivariate Cox regression analysis led to the identification of 15 genes that exhibited strong associations with prognosis. MICB/PSMD14/TRAF3/SP1/NDRG1/HDAC1/HRAS/NRAS/SEMA5B/GMFB/ACVR2B/BRD8/MMP12/KITLG/DCK, and a prognostic risk score model was constructed based on the above genes. Results The findings demonstrated notable differences in survival rates between the low-risk and high-risk groups, as depicted by the Kaplan-Meier (K-M) survival curves (P<0.001). Furthermore, the model's predictive capability was evidenced by receiver operating characteristic (ROC) curves, with area under the curve (AUC) =0.901. Finally, the relationship of the model with each clinical trait and immune cells was assessed by correlation analysis. Conclusions The prognostic risk score model constructed by immune genes based on the Asian HCC population has certain predictive capacity.
Collapse
Affiliation(s)
- Yanjie Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengyang Feng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yingtian Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yusong Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Tan G, Spillane KM, Maher J. The Role and Regulation of the NKG2D/NKG2D Ligand System in Cancer. BIOLOGY 2023; 12:1079. [PMID: 37626965 PMCID: PMC10452210 DOI: 10.3390/biology12081079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The family of human NKG2D ligands (NKG2DL) consists of eight stress-induced molecules. Over 80% of human cancers express these ligands on the surface of tumour cells and/or associated stromal elements. In mice, NKG2D deficiency increases susceptibility to some types of cancer, implicating this system in immune surveillance for malignancy. However, NKG2DL can also be shed, released via exosomes and trapped intracellularly, leading to immunosuppressive effects. Moreover, NKG2D can enhance chronic inflammatory processes which themselves can increase cancer risk and progression. Indeed, tumours commonly deploy a range of countermeasures that can neutralise or even corrupt this surveillance system, tipping the balance away from immune control towards tumour progression. Consequently, the prognostic impact of NKG2DL expression in human cancer is variable. In this review, we consider the underlying biology and regulation of the NKG2D/NKG2DL system and its expression and role in a range of cancer types. We also consider the opportunities for pharmacological modulation of NKG2DL expression while cautioning that such interventions need to be carefully calibrated according to the biology of the specific cancer type.
Collapse
Affiliation(s)
- Ge Tan
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
| | | | - John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK;
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
4
|
Chen D, Gao J, Ren L, Chen P, Yang Y, She S, Xie Y, Liao W, Chen H. A signature based on NKG2D ligands to predict the recurrence of hepatocellular carcinoma after radical resection. Cancer Med 2023; 12:6337-6347. [PMID: 36210637 PMCID: PMC10028019 DOI: 10.1002/cam4.5318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Due to the high recurrence, the HCC prognosis remains poor. Yet, the biomarkers for predicting the recurrence of high-risk patients are currently lacking. We aimed to develop a signature to predict the recurrence of HCC based on NKG2D ligands. METHODS The multivariate Cox proportional hazards regression was used to select recurrence-related variables of NKG2D ligands in HCC patients from The Cancer Genome Atlas (TCGA). HCC patients from the OEP000321 dataset and Guilin cohort were used to validate the predictive signature. The mRNA expression of NKG2D ligands was measured by QRT-PCR. Immunohistochemistry analysis of HCC tissue microarray samples was used to identify the expression of NKG2D ligands. RESULTS In this study, NKG2D ligands expression in the mRNA and protein level was both abnormally expressed in HCC and associated with recurrence-free survival (RFS). Then, the recurrence-related variables of NKG2D ligands in HCC were selected by the multivariate Cox proportional hazards regression. Among the eight NKG2D ligands, MICA (HR = 1.347; 95% CI = 1.012-1.793; p = 0.041), ULBP3 (HR = 0.453; 95% CI = 0.231-0.889; p = 0.021) and ULBP5 (HR = 3.617; 95% CI = 1.819-7.194; p < 0.001) were significantly correlated with RFS in the TCGA-LIHC cohort. Then, the signature was constructed by the three NKG2D ligands. The predictive effectiveness of this signature was also validated in the OEP000321 dataset and Guilin cohort. Further, HCC patients were classified into low-risk and high-risk subgroups by the predictive score. Compared with the low-risk group, the high-risk group had poor RFS in both training and validation cohorts. Importantly, compared with the low-risk patients with the G1-G2 stage, the levels of infiltrated NK-activated cells and NKG2D expression were both lower in the high-risk patients. CONCLUSIONS The signature based on MICA, ULBP3, and ULBP5 could predict HCC recurrence.
Collapse
Affiliation(s)
- Dongbo Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Liying Ren
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Pu Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Yao Yang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Shaoping She
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| | - Yong Xie
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Da Ren Biotech Limited, Hong Kong, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Hongsong Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for liver Disease, Beijing, China
| |
Collapse
|
5
|
Whalen KA, Rakhra K, Mehta NK, Steinle A, Michaelson JS, Baeuerle PA. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. MAbs 2023; 15:2208697. [PMID: 37165468 PMCID: PMC10173799 DOI: 10.1080/19420862.2023.2208697] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A).
Collapse
Affiliation(s)
- Kerry A. Whalen
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Kavya Rakhra
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Naveen K. Mehta
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Preclinical and Early Development, Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | | | - Patrick A. Baeuerle
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
6
|
Fan J, Shi J, Zhang Y, Liu J, An C, Zhu H, Wu P, Hu W, Qin R, Yao D, Shou X, Xu Y, Tong Z, Wen X, Xu J, Zhang J, Fang W, Lou J, Yin W, Chen W. NKG2D discriminates diverse ligands through selectively mechano-regulated ligand conformational changes. EMBO J 2022; 41:e107739. [PMID: 34913508 PMCID: PMC8762575 DOI: 10.15252/embj.2021107739] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.
Collapse
Affiliation(s)
- Juan Fan
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
| | - Yong Zhang
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huaying Zhu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peng Wu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danmei Yao
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xin Shou
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Yibing Xu
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhou Tong
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xue Wen
- Department of PathologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jianpo Xu
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jin Zhang
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
| | - Weijia Fang
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jizhong Lou
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Thoracic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalCollege of Biomedical Engineering and Instrument of ScienceZhejiang UniversityHangzhouChina
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- The MOE Frontier Science Center for Brain Science & Brain‐machine IntegrationZhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Zhang J, Han H, Wang L, Wang W, Yang M, Qin Y. Overcoming the therapeutic resistance of hepatomas by targeting the tumor microenvironment. Front Oncol 2022; 12:988956. [DOI: 10.3389/fonc.2022.988956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is the third leading cause of cancer-related mortality worldwide. Multifactorial drug resistance is regarded as the major cause of treatment failure in HCC. Accumulating evidence shows that the constituents of the tumor microenvironment (TME), including cancer-associated fibroblasts, tumor vasculature, immune cells, physical factors, cytokines, and exosomes may explain the therapeutic resistance mechanisms in HCC. In recent years, anti-angiogenic drugs and immune checkpoint inhibitors have shown satisfactory results in HCC patients. However, due to enhanced communication between the tumor and TME, the effect of heterogeneity of the microenvironment on therapeutic resistance is particularly complicated, which suggests a more challenging research direction. In addition, it has been reported that the three-dimensional (3D) organoid model derived from patient biopsies is more intuitive to fully understand the role of the TME in acquired resistance. Therefore, in this review, we have focused not only on the mechanisms and targets of therapeutic resistance related to the contents of the TME in HCC but also provide a comprehensive description of 3D models and how they contribute to the exploration of HCC therapies.
Collapse
|
8
|
Expressional regulation of NKG2DLs is associated with the tumor development and shortened overall survival in lung adenocarcinoma. Immunobiology 2022; 227:152239. [PMID: 35780757 DOI: 10.1016/j.imbio.2022.152239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
Natural killer group 2D ligands (NKG2DLs) are expressed on tumor cells as a ligand for Natural killer group 2D (NKG2D) receptors. NKG2DLs interact with NKG2D to induce immune cell-mediated cytotoxicity for eliminating tumors. Studies demonstrated that tumor cells can reduce NKG2DLs' expression to escape from anti-tumor immunity, leading to an aggressive cancer phenotype and poor prognosis in some cancers. However, these studies are limited and there is no comprehensive work on the regulation of NKG2DLs in lung adenocarcinoma (LUAD) which is one of the deadliest cancers worldwide. Here, we conducted an in silico analysis to evaluate the changes in NKG2DLs in LUAD by analyzing The Cancer Genome Atlas and the Gene Expression Omnibus datasets including tumor vs. normal comparisons, TNM stages, survival and infiltrating immune estimation profile. Results indicated that some members of NKG2DL were downregulated in LUAD as compared to normal samples. We determined that MICA (MHC class I polypeptide-related sequence A) was the most and significantly downregulated ligand among others and the results were nearly consistent with the different datasets which we used. Furthermore, survival analysis revealed that down-regulated MICA transcript expression might be one of the prognostic indicators of LUAD. Interestingly, according to the immune cell infiltrating analysis, there wasn't a direct correlation between the MICA transcript expression and immune cell infiltration, while for MICB there was. In addition, in genetic alteration, DNA methylation and miRNA analyses, we did not observe critical outcomes that would clarify the down-regulated MICA expression in detail. Regardless, this study is highly comprehensive and contributes valuable suggestions to further functional studies about the regulation of NKG2DLs and promising immunotherapeutic approaches in LUAD.
Collapse
|
9
|
Xue JS, Ding ZN, Meng GX, Yan LJ, Liu H, Li HC, Yao SY, Tian BW, Dong ZR, Chen ZQ, Hong JG, Wang DX, Li T. The Prognostic Value of Natural Killer Cells and Their Receptors/Ligands in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:872353. [PMID: 35464489 PMCID: PMC9021421 DOI: 10.3389/fimmu.2022.872353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Natural killer (NK) cells play major roles in eliminating tumor cells. Preliminary studies have shown that NK cells and their receptors/ligands have prognostic value in malignant tumors. However, the relevance of NK cells and their receptors/ligands level to the prognosis of hepatocellular carcinoma (HCC) remains unclear. Methods Several electronic databases were searched from database inception to November 8, 2021. Random effects were introduced to this meta-analysis. The relevance of NK cells and their receptors/ligands level to the prognosis of HCC was evaluated using hazard ratios (HRs) with 95% confidence interval (95%CI). Results 26 studies were included in the analysis. The pooled results showed that high NK cells levels were associated with better overall survival (HR=0.70, 95%CI 0.57–0.86, P=0.001) and disease-free survival (HR=0.61, 95%CI 0.40-0.93, P=0.022) of HCC patients. In subgroup analysis for overall survival, CD57+ NK cells (HR=0.70, 95%CI 0.55-0.89, P=0.004) had better prognostic value over CD56+ NK cells (HR=0.69, 95%CI 0.38-1.25, P=0.224), and intratumor NK cells had better prognostic value (HR=0.71, 95%CI 0.55-0.90, P=0.005) over peripheral NK cells (HR=0.66, 95%CI 0.41-1.06, P=0.088). In addition, high level of NK cell inhibitory receptors predicted increased recurrence of HCC, while the prognostic role of NK cell activating receptors remained unclear. Conclusion NK cells and their inhibitory receptors have prognostic value for HCC. The prognostic role of NK cell activating receptors is unclear and more high-quality prospective studies are essential to evaluate the prognostic value of NK cells and their receptors/ligands for HCC.
Collapse
Affiliation(s)
- Jun-Shuai Xue
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Sheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
10
|
Barton A, Hill J, Bibi S, Chen L, Jones C, Jones E, Camara S, Shrestha S, Jin C, Gibani MM, Dobinson H, Waddington C, Darton TC, Blohmke CJ, Pollard AJ. Genetic Susceptibility to Enteric Fever in Experimentally Challenged Human Volunteers. Infect Immun 2022; 90:e0038921. [PMID: 35254093 PMCID: PMC9022534 DOI: 10.1128/iai.00389-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Infections with Salmonella enterica serovars Typhi and Paratyphi A cause an estimated 14 million cases of enteric fever annually. Here, the controlled nature of challenge studies is exploited to identify genetic variants associated with enteric fever susceptibility. Human challenge participants were genotyped by Illumina OmniExpress-24 BeadChip array (n = 176) and/or transcriptionally profiled by RNA sequencing (n = 174). While the study was underpowered to detect any single nucleotide polymorphisms (SNPs) significant at the whole-genome level, two SNPs within CAPN14 and MIATNB were identified with P < 10-5 for association with development of symptoms or bacteremia following oral S. Typhi or S. Paratyphi A challenge. Imputation of classical human leukocyte antigen (HLA) types from genomic and transcriptomic data identified HLA-B*27:05, previously associated with nontyphoidal Salmonella-induced reactive arthritis, as the HLA type most strongly associated with enteric fever susceptibility (P = 0.011). Gene sets relating to the unfolded protein response/heat shock and endoplasmic reticulum-associated protein degradation were overrepresented in HLA-B*27:05+ participants following challenge. Furthermore, intracellular replication of S. Typhi is higher in C1R cells transfected with HLA-B*27:05 (P = 0.02). These data suggest that activation of the unfolded protein response by HLA-B*27:05 misfolding may create an intracellular environment conducive to S. Typhi replication, increasing susceptibility to enteric fever.
Collapse
Affiliation(s)
- Amber Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Liye Chen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sonu Shrestha
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Malick M. Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Hazel Dobinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
- Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
11
|
Sun S, Yu F, Xu D, Zheng H, Li M. EZH2, a prominent orchestrator of genetic and epigenetic regulation of solid tumor microenvironment and immunotherapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188700. [PMID: 35217116 DOI: 10.1016/j.bbcan.2022.188700] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint blockade (ICB) is regarded as a promising strategy for cancer therapy. The histone methyltransferase, Enhancer of Zeste Homolog 2 (EZH2), has been implicated in the carcinogenesis of numerous solid tumors. However, the underlying mechanism of EZH2 in cancer immunotherapeutic resistance remains unknown. EZH2 orchestrates the regulation of the innate and adaptive immune systems of the tumor microenvironment (TME). Profound epigenetic and transcriptomic changes induced by EZH2 in tumor cells and immune cells mobilize the elements of the TME, leading to immune-suppressive activity of solid tumors. In this review, we summarized the dynamic functions of EZH2 on the different components of the TME, including tumor cells, T cells, macrophages, natural killer cells, myeloid-derived suppressor cells, dendritic cells, fibroblasts, and mesenchymal stem cells. Several ongoing anti-tumor clinical trials using EZH2 inhibitors have also been included as translational perspectives. In conclusion, based combinational therapy to enable ICB could offer a survival benefit in patients with cancer.
Collapse
Affiliation(s)
- Shanshan Sun
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Feng Yu
- Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Danying Xu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Cancer Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haiyan Zheng
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Min Li
- Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Department of Surgery, the University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America.
| |
Collapse
|
12
|
Recent updates on chimeric antigen receptor T cell therapy for hepatocellular carcinoma. Cancer Gene Ther 2021; 28:1075-1087. [PMID: 33500535 DOI: 10.1038/s41417-020-00259-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/30/2023]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is novel tumor immunotherapy that enables T cells to specifically recognize tumor-associated antigens through genetic engineering technology, thus exerting antitumor effects, and it has achieved encouraging outcomes in leukemia and lymphoma. Building on excellent progress, CAR-T therapy is also expected to work well in solid tumors. Hepatocellular carcinoma (HCC), the most common primary liver cancer, is usually diagnosed at an advanced stage. Current management options for HCC remain limited, and although previous studies have indicated the feasibility of CAR-T cells, ideal therapeutic effects have not yet been achieved. This is, in part, due to the heterogeneity of tumor antigens, high intratumor pressure, immunosuppressive microenvironment, CAR-T cell exhaustion, and serious adverse reactions, which compromise the therapeutic efficiency of CAR-T immunotherapy in HCC. To overcoming these challenges, many ongoing preclinical and clinical studies were conducted. This review summarizes current CAR-T therapy targets in the treatment of HCC, discusses current obstacles and possible solutions in the process, and describes potential strategies to improve the efficacy of CAR-T cells for patients with HCC.
Collapse
|
13
|
Bufalin enhances the killing efficacy of NK cells against hepatocellular carcinoma by inhibiting MICA shedding. Int Immunopharmacol 2021; 101:108195. [PMID: 34678691 DOI: 10.1016/j.intimp.2021.108195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
Bufalin, as a Chinese traditional anti-tumor agent, has been studied about inhibiting proliferation and promoting apoptosis of liver cancer, however, there are few reports on immune modulating function. We used the human liver cancer cell lines along with 91 pathologically-verified postoperative hepatocellular carcinoma (HCC) specimens to assess immune modulating function of bufalin. We found that bufalin directly balances stimulatory and inhibitory receptors on the surface of NK cells and indirectly activates natural killer (NK) cells by inhibiting MICA shedding, which prevented immune escape and indirectly enhanced NKG2D-dependent immune surveillance. This study showed that bufalin can directly or indirectly regulate the immune response, which provides a new theoretical basis for the clinical application of "Huachansu injection".
Collapse
|
14
|
Fang Y, Yang Y, Zhang X, Li N, Yuan B, Jin L, Bao S, Li M, Zhao D, Li L, Zeng Z, Huang H. A Co-Expression Network Reveals the Potential Regulatory Mechanism of lncRNAs in Relapsed Hepatocellular Carcinoma. Front Oncol 2021; 11:745166. [PMID: 34532296 PMCID: PMC8438305 DOI: 10.3389/fonc.2021.745166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background The mechanistic basis for relapsed hepatocellular carcinoma (HCC) remains poorly understood. Recent research has highlighted the important roles of long non-coding RNAs (lncRNAs) in HCC. However, there are only a few studies on the association between lncRNAs and HCC relapse. Methods Differentially expressed lncRNAs and mRNAs between a primary HCC group and relapsed HCC group were identified using the edge R package to analyze the GSE101432 dataset. The differentially expressed lncRNAs and mRNAs were used to construct a lncRNA–mRNA co-expression network. Weighted gene co-expression network analysis followed by Gene Ontology (GO) enrichment analyses were conducted on the database. Furthermore, correlation and survival analyses were performed using The Cancer Genome Atlas database, and expression in the clinical samples was verified by qRT-PCR. Thereafter, we inputted the genes from the two groups into the HCC TNM stage and tumor grade database from TCGA. Finally, we performed Kaplan–Meier survival analysis on the lncRNAs related to relapsed HCC. Results In this study, lncRNAs and mRNAs associated with HCC relapse were identified. Two gene modules were found to be closely linked to this. The GO terms in the yellow and black modules were related to cell proliferation, differentiation, and survival, as well as some transcription-related biological processes. Through qRT-PCR, we found that the expression levels of LINC00941 and LINC00668 in relapsed HCC were higher than those in primary HCC. Further, mRNA levels of LOX, OTX1, MICB, NDUFA4L2, BAIAP2L2, and KCTD17 were changed in relapsed HCC compared to levels in primary HCC. In addition, we verified that these genes could predict the overall survival and recurrence-free survival of HCC. Moreover, we found that LINC00668 and LINC00941 could affect tumor grade and TNM stages. In total, we identified and validated two lncRNAs (LINC00941 and LINC00668) and six mRNAs (LOX, MICB, OTX1, BAIAP2L2, KCTD17, NDUFA4L2) associated with HCC relapse. Conclusion In summary, we identified the key gene modules and central genes associated with relapsed HCC and constructed lncRNA–mRNA networks related to this. These genes are likely to have potential prognostic value for relapsed HCC and might shed new light on novel biomarkers or diagnostic targets for relapsed HCC.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Yang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - XiaoLi Zhang
- Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Li
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo Yuan
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Jin
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sheng Bao
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - MengGe Li
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Zhao
- Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LingRui Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - HanFei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. Int J Mol Sci 2021; 22:ijms22169044. [PMID: 34445750 PMCID: PMC8396475 DOI: 10.3390/ijms22169044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) are specific innate lymphoid cell subsets that are key for the detection and elimination of pathogens and cancer cells. In liver, while they share a number of characteristics, they differ in many features. These include their developmental pathways, tissue distribution, phenotype and functions. NK cells and ILC1 contribute to organ homeostasis through the production of key cytokines and chemokines and the elimination of potential harmful bacteria and viruses. In addition, they are equipped with a wide range of receptors, allowing them to detect “stressed cells’ such as cancer cells. Our understanding of the role of innate lymphoid cells in hepatocellular carcinoma (HCC) is growing owing to the development of mouse models, the progress in immunotherapeutic treatment and the recent use of scRNA sequencing analyses. In this review, we summarize the current understanding of NK cells and ILC1 in hepatocellular carcinoma and discuss future strategies to take advantage of these innate immune cells in anti-tumor immunity. Immunotherapies hold great promise in HCC, and a better understanding of the role and function of NK cells and ILC1 in liver cancer could pave the way for new NK cell and/or ILC1-targeted treatment.
Collapse
|
16
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Zhong X, Liao H, Hu S, Luo K, Zhu H. The diterpenoid adenanthin upregulates the expression of natural killer group 2D receptor ligands in hepatocellular carcinoma cells. Mol Cell Probes 2021; 59:101759. [PMID: 34265372 DOI: 10.1016/j.mcp.2021.101759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The natural killer (NK) group 2D (NKG2D) receptor plays a crucial role in NK cell-mediated anti-tumor immunity. NKG2D anti-proliferative effect is mediated by direct interactions of the receptor with its ligands that may be considered as a potential target for NK-based immunotherapeutic strategy in cancer cells. METHODS Here we report that a natural product adenanthin significantly promotes NKG2D ligands expression in hepatoma cells. The effect was determined using flow cytometry analysis. The activity of NK cell was evaluated by measuring its degranulation activity and cytotoxicity. RESULTS Our data indicates that the induction of NKG2D ligand binding to liver cancer cell surface receptors greatly improves the killing activity of NK cells against the cancer cells. CONCLUSIONS This is the first report of a new mechanism anti-cancer effects of adenanthin mediated by an indirect activation of NK cells. Our data suggests that adenanthin may be used to sensitize NK cells in tumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoming Zhong
- Neonatal Intensive Care Unit, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341400, China
| | - Hongqun Liao
- Neonatal Intensive Care Unit, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341400, China
| | - Shaowen Hu
- College of Basic Medicine, Gannan Medical University, Ganzhou, 341400, China
| | - Kaiyuan Luo
- Neonatal Intensive Care Unit, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341400, China; Children's Medical Research Institute, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341400, China.
| | - Huifang Zhu
- Neonatal Intensive Care Unit, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341400, China; Children's Medical Research Institute, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341400, China.
| |
Collapse
|
18
|
Lan T, Liu W, Lu Y, Luo H. A five-gene signature for predicting overall survival of esophagus adenocarcinoma. Medicine (Baltimore) 2021; 100:e25305. [PMID: 33832101 PMCID: PMC8036055 DOI: 10.1097/md.0000000000025305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is common and aggressive with increasing trend of incidence. Urgent need for an effective signature to assess EAC prognosis and facilitate tailored treatment is required.Differentially expressed mRNAs (DEMs) were identified by analyzing EAC tissues and adjacent normal samples from The Cancer Genome Atlas (TCGA). Then univariate regression analyses were performed to confirm prognostic DEMs. We used least absolute shrinkage and selection operator (LASSO) to build a prognostic mRNA signature whose performance was assessed by Kaplan-Meier curve, receiver operating characteristic (ROC). GSE72874 were used as an external test set. The performances of the signature were also validated in internal TCGA and external test sets. Gene set enrichment analysis (GSEA) and tumor immunity analysis were performed to decipher the biological mechanisms of the signature.A 5-mRNA signature consisted of SLC26A9, SINHCAF, MICB, KRT19, and MT1X was developed to predict prognosis of EAC. The 5-mRNA signature was promising as a biomarker for predicting 3-year survival rate of EAC in the internal test set, the entire TCGA set, and the external test set with areas under the curve (AUC) = 0.849, 0.924, and 0.747, respectively. Patients were divided into low- and high-risk groups based on risk scores of the signature. The high-risk group was mainly associated with cancer-related pathways and low levels of B cell infiltration.The 5-mRNA prognostic signature we identified can reliably predict prognosis and facilitate individualized treatment decisions for EAC patients.
Collapse
Affiliation(s)
- Tian Lan
- Department of Breast Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou Hospital of Traditional Chinese Medicine
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Weiguo Liu
- Department of Oncology, The People's Hospital of Jiangshan, Quzhou
| | - Yunyan Lu
- Department of Cardiology, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, People's Republic of China
| | - Hua Luo
- Department of Breast Surgery, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medicine University, Hangzhou Hospital of Traditional Chinese Medicine
| |
Collapse
|
19
|
Abstract
Unfolded protein response (UPR) is an evolutionarily conserved pathway triggered during perturbation of endoplasmic reticulum (ER) homeostasis in response to the accumulation of unfolded/misfolded proteins under various stress conditions like viral infection, diseased states etc. It is an adaptive signalling cascade with the main purpose of relieving the stress from the ER, which may otherwise lead to the initiation of cell death via apoptosis. ER stress if prolonged, contribute to the aetiology of various diseases like cancer, type II diabetes, neurodegenerative diseases, viral infections etc. Understanding the role of UPR in disease progression will help design pharmacological drugs targeting the sensors of signalling cascade acting as potential therapeutic agents against various diseases. The current review aims at highlighting the relevance of different pathways of UPR in disease progression and control, including the available pharmaceutical interventions responsible for ameliorating diseased state via modulating UPR pathways.
Collapse
|
20
|
Qiu Q, Lin Y, Ma Y, Li X, Liang J, Chen Z, Liu K, Huang Y, Luo H, Huang R, Luo L. Exploring the Emerging Role of the Gut Microbiota and Tumor Microenvironment in Cancer Immunotherapy. Front Immunol 2021; 11:612202. [PMID: 33488618 PMCID: PMC7817884 DOI: 10.3389/fimmu.2020.612202] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem, which includes many different types of cells, abnormal vascular systems, and immunosuppressive cytokines. TME serves an important function in tumor tolerance and escapes from immune surveillance leading to tumor progression. Indeed, there is increasing evidence that gut microbiome is associated with cancer in a variety of ways, as specific microbial signatures are known to promote cancer development and influence safety, tolerability, and efficacy of therapies. Studies over the past five years have shown that the composition of the intestinal microbiota has a significant impact on the efficacy of anticancer immunosurveillance, which contribute to the therapeutic activity of cancer immunotherapies based on targeting cytotoxic T lymphocyte protein 4 (CTLA-4) or programmed cell death protein 1 (PD-1)-programmed cell death 1 ligand 1 (PD-L1) axis. In this review, we mainly discuss the impact of TME on cancer and immunotherapy through immune-related mechanisms. We subsequently discuss the influence of gut microbiota and its metabolites on the host immune system and the formation of TME. In addition, this review also summarizes the latest research on the role of gut microbiota in cancer immunotherapy.
Collapse
Affiliation(s)
- Qin Qiu
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Yuqi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China
| | - Juan Liang
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Zhiyan Chen
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Yuge Huang
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
21
|
Mantovani S, Varchetta S, Mele D, Donadon M, Torzilli G, Soldani C, Franceschini B, Porta C, Chiellino S, Pedrazzoli P, Santambrogio R, Barabino M, Cigala C, Piccolo G, Opocher E, Maestri M, Sangiovanni A, Bernuzzi S, Lhospice F, Kraiem M, Mondelli MU, Oliviero B. An Anti-MICA/B Antibody and IL-15 Rescue Altered NKG2D-Dependent NK Cell Responses in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12123583. [PMID: 33266137 PMCID: PMC7761065 DOI: 10.3390/cancers12123583] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immune surveillance, and activating the receptor/ligand interaction may contribute to control the development and evolution of hepatocellular carcinoma (HCC). We investigated the role of the natural killer group 2 member D (NKG2D) activating receptor and its ligand, the major histocompatibility complex class I chain-related protein A and B (MICA/B) in patients with cirrhosis and HCC subjected to surgical resection, patients with cirrhosis and no HCC, and healthy donors (HD). The NKG2D-mediated function was determined in peripheral blood (PB), in tumor-infiltrating lymphocytes (NK-TIL), and in matched surrounding liver tissue (NK-LIL). A group of patients treated with sorafenib because of clinically advanced HCC was also studied. A humanized anti-MICA/B monoclonal antibody (mAb) was used in in vitro experiments to examine NK cell-mediated antibody-dependent cellular cytotoxicity. Serum concentrations of soluble MICA/B were evaluated by ELISA. IL-15 stimulation increased NKG2D-dependent activity which, however, remained dysfunctional in PB NK cells from HCC patients, in line with the reduced NKG2D expression on NK cells. NK-TIL showed a lower degranulation ability than NK-LIL, which was restored by IL-15 stimulation. Moreover, in vitro IL-15 stimulation enhanced degranulation and interferon-γ production by PB NK from patients at month one of treatment with sorafenib. Anti-MICA/B mAb associated with IL-15 was able to induce PB NK cytotoxicity for primary HCC cells in HD and patients with HCC, who also showed NK-TIL degranulation for autologous primary HCC cells. Our findings highlight the key role of the NKG2D-MICA/B axis in the regulation of NK cell responses in HCC and provide evidence in support of a potentially important role of anti-MICA/B mAb and IL-15 stimulation in HCC immunotherapy.
Collapse
Affiliation(s)
- Stefania Mantovani
- Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.M.); (S.V.); (D.M.); (B.O.)
| | - Stefania Varchetta
- Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.M.); (S.V.); (D.M.); (B.O.)
| | - Dalila Mele
- Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.M.); (S.V.); (D.M.); (B.O.)
| | - Matteo Donadon
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, 20089 Rozzano, Italy; (M.D.); (G.T.); (C.S.); (B.F.)
| | - Guido Torzilli
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, 20089 Rozzano, Italy; (M.D.); (G.T.); (C.S.); (B.F.)
| | - Cristiana Soldani
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, 20089 Rozzano, Italy; (M.D.); (G.T.); (C.S.); (B.F.)
| | - Barbara Franceschini
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center, Humanitas University, 20089 Rozzano, Italy; (M.D.); (G.T.); (C.S.); (B.F.)
| | - Camillo Porta
- Department of Medical Sciences and Human Oncology, “Aldo Moro” University of Bari and Policlinico Consorziale, 70124 Bari, Italy;
| | - Silvia Chiellino
- Division of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (P.P.)
| | - Paolo Pedrazzoli
- Division of Medical Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.C.); (P.P.)
| | | | - Matteo Barabino
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, 20142 Milan, Italy; (M.B.); (C.C.); (G.P.); (E.O.)
| | - Claudia Cigala
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, 20142 Milan, Italy; (M.B.); (C.C.); (G.P.); (E.O.)
| | - Gaetano Piccolo
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, 20142 Milan, Italy; (M.B.); (C.C.); (G.P.); (E.O.)
| | - Enrico Opocher
- Division of Gastrointestinal Surgery, ASST Santi Paolo e Carlo, and State University of Milan, 20142 Milan, Italy; (M.B.); (C.C.); (G.P.); (E.O.)
| | - Marcello Maestri
- Division of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Angelo Sangiovanni
- Division of Gastroenterology and Hepatology, CRC “A. M. and A. Migliavacca” Center for Liver Disease, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Stefano Bernuzzi
- Immunohematology and Transfusion Service, Centre of Transplantation Immunology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Manel Kraiem
- Innate Pharma, 13009 Marseille, France; (F.L.); (M.K.)
| | - Mario Umberto Mondelli
- Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.M.); (S.V.); (D.M.); (B.O.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-502-636; Fax: +39-0382-526-450
| | - Barbara Oliviero
- Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (S.M.); (S.V.); (D.M.); (B.O.)
| |
Collapse
|
22
|
Natural Killer Cell Responses in Hepatocellular Carcinoma: Implications for Novel Immunotherapeutic Approaches. Cancers (Basel) 2020; 12:cancers12040926. [PMID: 32283827 PMCID: PMC7226319 DOI: 10.3390/cancers12040926] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) still represents a significant complication of chronic liver disease, particularly when cirrhosis ensues. Current treatment options include surgery, loco-regional procedures and chemotherapy, according to specific clinical practice guidelines. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as second-line therapy with limited and variable success. Natural killer (NK) cells are an essential component of innate immunity against cancer and changes in phenotype and function have been described in patients with HCC, who also show perturbations of NK activating receptor/ligand axes. Here we discuss the current status of NK cell treatment of HCC on the basis of existing evidence and ongoing clinical trials on adoptive transfer of autologous or allogeneic NK cells ex vivo or after activation with cytokines such as IL-15 and use of antibodies to target cell-expressed molecules to promote antibody-dependent cellular cytotoxicity (ADCC). To this end, bi-, tri- and tetra-specific killer cell engagers are being devised to improve NK cell recognition of tumor cells, circumventing tumor immune escape and efficiently targeting NK cells to tumors. Moreover, the exciting technique of chimeric antigen receptor (CAR)-engineered NK cells offers unique opportunities to create CAR-NK with multiple specificities along the experience gained with CAR-T cells with potentially less adverse effects.
Collapse
|
23
|
Pinato DJ, Guerra N, Fessas P, Murphy R, Mineo T, Mauri FA, Mukherjee SK, Thursz M, Wong CN, Sharma R, Rimassa L. Immune-based therapies for hepatocellular carcinoma. Oncogene 2020; 39:3620-3637. [PMID: 32157213 PMCID: PMC7190571 DOI: 10.1038/s41388-020-1249-9] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer-related death. The immune-rich contexture of the HCC microenvironment makes this tumour an appealing target for immune-based therapies. Here, we discuss how the functional characteristics of the liver microenvironment can potentially be harnessed for the treatment of HCC. We will review the evidence supporting a therapeutic role for vaccines, cell-based therapies and immune-checkpoint inhibitors and discuss the potential for patient stratification in an attempt to overcome the series of failures that has characterised drug development in this disease area.
Collapse
Affiliation(s)
- David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK.
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK
| | - Petros Fessas
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Ravindhi Murphy
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | | | - Francesco A Mauri
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Sujit K Mukherjee
- Department of Metabolism, Digestion & Reproduction, Imperial College London, St. Mary's Hospital, Praed Street, London, UK
| | - Mark Thursz
- Department of Metabolism, Digestion & Reproduction, Imperial College London, St. Mary's Hospital, Praed Street, London, UK
| | - Ching Ngar Wong
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W120HS, UK
| | - Lorenza Rimassa
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center-IRCCS, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| |
Collapse
|
24
|
Clinicopathological relevance of tumor expression of NK group 2 member D ligands in resected non-small cell lung cancer. Oncotarget 2019; 10:6805-6815. [PMID: 31827723 PMCID: PMC6887580 DOI: 10.18632/oncotarget.27308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023] Open
Abstract
UL16-binding protein (ULBP) 1-6 and MHC class I chain-related molecule A and B (MICA/B) are NK group 2, member D (NKG2D) ligands, which are specifically expressed in infected or transformed cells and are recognized by NK cells via NKG2D-NKG2D ligand interactions. We previously reported that MICA/B overexpression predicted improved clinical outcomes in patients with resected non-small cell lung cancer (NSCLC). However, the clinicopathological features and prognostic significance of ULBPs in NSCLC remain unclear. Here,ULBP1-6 expression was evaluated based on immunohistochemistry of 91 NSCLC samples from patients following radical surgery. ULBPs were expressed by the majority of NSCLC. Either ULBP1 or ULBP2/5/6 overexpression was associated with squamous-cell carcinoma histology, whereas ULBP4 overexpression was associated with younger age and adenocarcinoma histology. Although overexpression of ULBP1-6 did not impact clinical outcomes in NSCLC patients, integrative profiling with cluster analysis classified patients into 3 subgroups based on the expression pattern of NKG2D ligands. The subgroup characterized by ULBP1 or ULBP2/5/6 high expressing but ULBP4 low expressing tumors showed poor overall survival. Taken together with previous results, NSCLC histological subtype strongly correlates with NKG2D ligands expression pattern. NKG2D ligands expression levels assessed by multiple immune parameters could predict clinical outcomes of patients with NSCLC.
Collapse
|
25
|
Sun B, Yang D, Dai H, Liu X, Jia R, Cui X, Li W, Cai C, Xu J, Zhao X. Eradication of Hepatocellular Carcinoma by NKG2D-Based CAR-T Cells. Cancer Immunol Res 2019; 7:1813-1823. [PMID: 31484657 DOI: 10.1158/2326-6066.cir-19-0026] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/01/2019] [Accepted: 08/29/2019] [Indexed: 02/05/2023]
Abstract
Despite the great success of chimeric antigen receptor T (CAR-T)-cell therapy in the treatment of hematologic malignancies, CAR-T-cell therapy is limited in solid tumors, including hepatocellular carcinoma (HCC). NK group 2 member D (NKG2D) ligands (NKG2DL) are generally absent on the surface of normal cells but are overexpressed on malignant cells, offering good targets for CAR-T therapy. Indeed, analysis of The Cancer Genome Atlas and HCC tumor samples showed that the expression of most NKG2DLs was elevated in tumors compared with normal tissues. Thus, we designed a novel NKG2D-based CAR comprising the extracellular domain of human NKG2D, 4-1BB, and CD3ζ signaling domains (BBz). NKG2D-BBz CAR-T cells efficiently killed the HCC cell lines SMMC-7721 and MHCC97H in vitro, which express high levels of NKG2DLs, whereas they less efficiently killed NKG2DL-silenced SMMC-7721 cells or NKG2DL-negative Hep3B cells. Overexpression of MICA or ULBP2 in Hep3B improved the killing capacity of NKG2D-BBz CAR-T cells. T cells expressing the NKG2D-BBz CAR effectively eradicated SMMC-7721 HCC xenografts. Collectively, these results suggested that NKG2D-BBz CAR-T cells could potently eliminate NKG2DL-high HCC cells both in vitro and in vivo, thereby providing a promising therapeutic intervention for patients with NKG2DL-positive HCC.
Collapse
Affiliation(s)
- Bin Sun
- Laboratory of Animal Tumor Models, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Nanjing Kaedi Biotech Co. Ltd., Nanjing, Jiangsu, China
| | - Dong Yang
- Laboratory of Animal Tumor Models, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Nanjing Kaedi Biotech Co. Ltd., Nanjing, Jiangsu, China
| | - Hongjiu Dai
- Nanjing Kaedi Biotech Co. Ltd., Nanjing, Jiangsu, China.
| | - Xiuyun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ru Jia
- Department of GI Oncology, the 307 Hospital of Academy of Military Medical Science, Beijing, China
| | - Xiaoyue Cui
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Department of Gastroenterology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Wenxuan Li
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changchun Cai
- Department of Gastroenterology, The Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Jianming Xu
- Department of GI Oncology, the 307 Hospital of Academy of Military Medical Science, Beijing, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China. .,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
26
|
Parvifoline AA Promotes Susceptibility of Hepatocarcinoma to Natural Killer Cell-Mediated Cytolysis by Targeting Peroxiredoxin. Cell Chem Biol 2019; 26:1122-1132.e6. [DOI: 10.1016/j.chembiol.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/24/2019] [Accepted: 04/02/2019] [Indexed: 12/23/2022]
|
27
|
Juengpanich S, Shi L, Iranmanesh Y, Chen J, Cheng Z, Khoo AKJ, Pan L, Wang Y, Cai X. The role of natural killer cells in hepatocellular carcinoma development and treatment: A narrative review. Transl Oncol 2019; 12:1092-1107. [PMID: 31176993 PMCID: PMC6558093 DOI: 10.1016/j.tranon.2019.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
A major obstacle for treatment of HCC is the inadequate efficacy and limitation of the available therapeutic options. Despite the recent advances in developing novel treatment options, HCC still remains one of the major causes of cancer morbidity and mortality around the world. Achieving effective treatment and eradication of HCC is a challenging task, however recent studies have shown that targeting Natural Killer cells, as major regulators of immune system, can help with the complete treatment of HCC, restoration of normal liver function and subsequently higher survival rate of HCC patients. Studies have shown that decrease in the frequency of NK cells, their dysfunction due to several factors such as dysregulation of receptors and their ligands, and imbalance of different types of inhibitory and stimulating microRNA expression is associated with higher rate of HCC progression and development, and poor survival outcome. Here in our review, we mainly focused on the importance of NK cells in HCC development and treatment.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Liang Shi
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | | | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Zhenzhe Cheng
- School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Aaron Kah-Jin Khoo
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4027, Australia.
| | - Long Pan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yifan Wang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| |
Collapse
|
28
|
Sakiyama MJ, Espinoza I, Reddy A, de Carlo F, Kumar A, Levenson AS, Bae S, Zhou X, Claudio PP, Lewin J, Manucha V, Pound CR, Vijayakumar S, Gomez CR. Race-associated expression of MHC class I polypeptide-related sequence A (MICA) in prostate cancer. Exp Mol Pathol 2019; 108:173-182. [PMID: 31004600 DOI: 10.1016/j.yexmp.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/04/2019] [Accepted: 04/16/2019] [Indexed: 01/07/2023]
Abstract
Despite the lack of a complete understanding of the disparities involved, prostate cancer (PCa) has both higher incidence and death rates in African American Men (AAM) relative to those of Caucasian American Men (CAM). MHC class I polypeptide related sequence A (MICA) is an innate immunity protein involved in tumor immunoevasion. Due to a lack of reports of race-specific expression of MICA in PCa, we evaluated MICA expression in patients' tumors and in cell lines from a racially diverse origin. Immunohistochemistry was done on a tissue microarray (TMA) with antibodies against MICA. Tumor MICA mRNA was assessed by data mining using Oncomine and PROGeneV2. Surface MICA and release rate of soluble (s) MICA was evaluated in PCa cell lines originally derived from African American (MDA-PCa-2b) or Caucasian (LNCaP and DU-145) PCa patients. Prostate tumor tissue had a 1.7-fold higher MICA expression relative to normal tissue (p < .0001). MICA immunoreactivity in PCa tissue from AAM was 24% lower (p = .002) compared to CAM. Survival analysis revealed a marginal association of low MICA with poor overall survival (OS) (p = .058). By data mining analysis, a 2.9-fold higher level of MICA mRNA was evidenced in tumor compared to normal tissue (p < .0001). Tumors from AAM had 24% lower levels of MICA mRNA compared to tumors from CAM (p = .038), and poor prognosis was found for patients with lower MICA mRNA (p = .028). By flow cytometry analysis, cell fraction positive for surface MICA was of 3% in MDA-PCa-2b cells, 54% in DU-145 cells, and 67% in LNCaP cells (p < .0001). sMICA was detected in DU-145 and LNCaP cells, but was not detected in MDA-PCa-2b cells. Both LNCaP and DU-145 cells were sensitive to cytolysis mediated by Natural killer (NK) cells. MDA-PCa-2b cells, however were between 1.3-fold at 10:1 Effector:Target (E:T) ratio (p < .0001) and 2-fold at 50:1 E:T ratio (p < .0001) more resistant to NK-mediated cytolysis relative to cells from Caucasian origin. These results suggest that MICA expression may be related to the aggressive nature of PCa. Our findings also demonstrate for the first time that there are variations in MICA expression in the context of racial differences. This study establishes a rationale for further investigation of MICA as a potential race-specific prognostic marker in PCa.
Collapse
Affiliation(s)
- Marcelo J Sakiyama
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil
| | - Ingrid Espinoza
- Department of Preventive Medicine, University of Mississippi Medical Center, Jackson, MS, USA; Center for Clinical and Translational Science (CCTS), University of Mississippi School of Pharmacy & University of Mississippi Medical Center, Jackson, MS, USA
| | - Amit Reddy
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Flavia de Carlo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA; Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Avinash Kumar
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Anait S Levenson
- College of Veterinary Medicine, Long Island University, Brookville, NY, USA
| | - Sejong Bae
- Division of Preventive Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pier Paolo Claudio
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA; Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jack Lewin
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Varsha Manucha
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charles R Pound
- Department of Urology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Srinivasan Vijayakumar
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Christian R Gomez
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA; Center for Clinical and Translational Science (CCTS), University of Mississippi School of Pharmacy & University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
29
|
Natural killer cells involved in tumour immune escape of hepatocellular carcinomar. Int Immunopharmacol 2019; 73:10-16. [PMID: 31078921 DOI: 10.1016/j.intimp.2019.04.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/21/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023]
Abstract
Natural killer cells are the first line of host immune surveillance and play major roles in the defence against infection and tumours. Hepatic NK cells exhibit unique phenotypic and functional characteristics compared to circulating and spleen NK cells, such as higher levels of cytolytic activity and cytotoxicity mediators against tumour cells. However, the activities of NK cells may be reversed during tumour progression. Recent studies demonstrated that hepatic NK cells were exhausted in hepatocellular carcinoma (HCC) and exhibited impaired cytolytic activity and decreased production of effector cytokines. The present review discusses current knowledge on the role of exhausted NK cells in promoting HCC development and the mechanisms contributing to tumour immune escape, including an imbalance of activating and inhibitory receptors on NK cells, abnormal receptor-ligand interaction, and cross-talk with immune cells and other stromal cells in the tumour environment. We provide a fundamental basis for further study of innate immunity in tumour progression and serve the purpose of exploring new HCC treatment strategies.
Collapse
|
30
|
Abstract
Previous studies have shown that interleukin-24 (IL-24) has tumor-suppressing activity by multiple pathways. However, the immunogenicity moderation effect of IL-24 on malignant cells has not been explored extensively. In this study, we investigated the role of IL-24 in immunogenicity modulation of the myelogenous leukemia cells. Data show that myelogenous leukemia cells express low levels of immunogenicity molecules. Treatment with IL-24 could enhance leukemia cell immunogenicity, predominantly regulate leukemia cells to produce immune-associated cytokines, and improve the cytotoxic sensitivity of these cells to immune effector cells. IL-24 expression could retard transplanted leukemia cell tumor growth in vivo in athymic nude mice. Moreover, IL-24 had marked effects on downregulating the expression of angiogenesis-related proteins vascular endothelial growth factor, cluster of differentiation (CD) 31, CD34, collagen IV and metastasis-related factors CD147, membrane type-1 matrix metalloproteinase (MMP), and MMP-2 and MMP-9 in transplanted tumors. These findings indicated novel functions of this antitumor gene and characterized IL-24 as a promising agent for further clinical trial for hematologic malignancy immunotherapy.
Collapse
|
31
|
NK Cell-Based Immunotherapy in Cancer Metastasis. Cancers (Basel) 2018; 11:cancers11010029. [PMID: 30597841 PMCID: PMC6357056 DOI: 10.3390/cancers11010029] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023] Open
Abstract
Metastasis represents the leading cause of cancer-related death mainly owing to the limited efficacy of current anticancer therapies on advanced malignancies. Although immunotherapy is rendering promising results in the treatment of cancer, many adverse events and factors hampering therapeutic efficacy, especially in solid tumors and metastases, still need to be solved. Moreover, immunotherapeutic strategies have mainly focused on modulating the activity of T cells, while Natural Killer (NK) cells have only recently been taken into consideration. NK cells represent an attractive target for cancer immunotherapy owing to their innate capacity to eliminate malignant tumors in a non-Major Histocompatibility Complex (MHC) and non-tumor antigen-restricted manner. In this review, we analyze the mechanisms and efficacy of NK cells in the control of metastasis and we detail the immunosubversive strategies developed by metastatic cells to evade NK cell-mediated immunosurveillance. We also share current and cutting-edge clinical approaches aimed at unleashing the full anti-metastatic potential of NK cells, including the adoptive transfer of NK cells, boosting of NK cell activity, redirecting NK cell activity against metastatic cells and the release of evasion mechanisms dampening NK cell immunosurveillance.
Collapse
|
32
|
Obiedat A, Seidel E, Mahameed M, Berhani O, Tsukerman P, Voutetakis K, Chatziioannou A, McMahon M, Avril T, Chevet E, Mandelboim O, Tirosh B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1. FASEB J 2018; 33:3481-3495. [PMID: 30452881 DOI: 10.1096/fj.201801350rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The unfolded protein response (UPR) is an adaptive signaling pathway activated in response to endoplasmic reticulum (ER) stress. The effectors of the UPR are potent transcription activators; however, some genes are suppressed by ER stress at the mRNA level. The mechanisms underlying UPR-mediated gene suppression are less known. Exploration of the effect of UPR on NK cells ligand expression found that the transcription of NK group 2 member D (NKG2D) ligand major histocompatibility complex class I polypeptide-related sequence A/B (MICA/B) is suppressed by the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) pathway of the UPR. Deletion of IRE1 or XBP1 was sufficient to promote mRNA and surface levels of MICA. Accordingly, NKG2D played a greater role in the killing of IRE1/XBP1 knockout target cells. Analysis of effectors downstream to XBP1s identified E2F transcription factor 1 (E2F1) as linking UPR and MICA transcription. The inverse correlation between XBP1 and E2F1 or MICA expression was corroborated in RNA-Seq analysis of 470 primary melanoma tumors. While mechanisms that connect XBP1 to E2F1 are not fully understood, we implicate a few microRNA molecules that are modulated by ER stress and possess dual suppression of E2F1 and MICA. Because of the importance of E2F1 and MICA in cancer progression and recognition, these observations could be exploited for cancer therapy by manipulating the UPR in tumor cells.-Obiedat, A., Seidel, E., Mahameed, M., Berhani, O., Tsukerman, P., Voutetakis, K., Chatziioannou, A., McMahon, M., Avril, T., Chevet, E., Mandelboim, O., Tirosh, B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1.
Collapse
Affiliation(s)
- Akram Obiedat
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Seidel
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Mohamed Mahameed
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Berhani
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Konstantinos Voutetakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,e-Noesis Inspired Operational Systems Applications Private Company PC, Kallithea-Athens, Greece
| | - Mari McMahon
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and.,Apoptosis Research Centre (ARC), National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Tony Avril
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
33
|
Madden E, Logue SE, Healy SJ, Manie S, Samali A. The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biol Cell 2018; 111:1-17. [PMID: 30302777 DOI: 10.1111/boc.201800050] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 12/12/2022]
Abstract
Tumour cells endure both oncogenic and environmental stresses during cancer progression. Transformed cells must meet increased demands for protein and lipid production needed for rapid proliferation and must adapt to exist in an oxygen- and nutrient-deprived environment. To overcome such challenges, cancer cells exploit intrinsic adaptive mechanisms such as the unfolded protein response (UPR). The UPR is a pro-survival mechanism triggered by accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER), a condition referred to as ER stress. IRE1, PERK and ATF6 are three ER anchored transmembrane receptors. Upon induction of ER stress, they signal in a coordinated fashion to re-establish ER homoeostasis, thus aiding cell survival. Over the past decade, evidence has emerged supporting a role for the UPR in the establishment and progression of several cancers, including breast cancer, prostate cancer and glioblastoma multiforme. This review discusses our current knowledge of the UPR during oncogenesis, tumour growth, metastasis and chemoresistance.
Collapse
Affiliation(s)
- Emma Madden
- Apoptosis Research Centre, NUI Galway, Ireland.,School of Natural Sciences, NUI Galway, Ireland
| | - Susan E Logue
- Apoptosis Research Centre, NUI Galway, Ireland.,School of Natural Sciences, NUI Galway, Ireland
| | - Sandra J Healy
- Apoptosis Research Centre, NUI Galway, Ireland.,School of Natural Sciences, NUI Galway, Ireland
| | - Serge Manie
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Afshin Samali
- Apoptosis Research Centre, NUI Galway, Ireland.,School of Natural Sciences, NUI Galway, Ireland
| |
Collapse
|
34
|
Zhu H, Wang F, Ju X, Kong L, An T, Zhao Z, Liu J, Li Y. Aurovertin B sensitizes colorectal cancer cells to NK cell recognition and lysis. Biochem Biophys Res Commun 2018; 503:3057-3063. [DOI: 10.1016/j.bbrc.2018.08.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 01/26/2023]
|
35
|
Liu X, Chen X, Wei X, Meng Y, Liu L, Dai S. Genetic polymorphism analysis of MICB gene in Jing ethnic minority of Southern China. HLA 2018; 92:224-230. [PMID: 29934983 DOI: 10.1111/tan.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 12/01/2022]
Abstract
In the present study, the polymorphism in the 5'-upstream regulation region (5'-URR), coding region (exons 2-4), and the 3'-untranslated region (3'-UTR) of MICB gene were investigated for 150 healthy unrelated Jing individuals in Guangxi Zhuang Autonomous Region, by using PCR-SBT method. A total of 14 variation sites in the 5'-URR, 9 in coding region, and 6 in the 3'-UTR were detected in the Jing population. The MICB gene seems to present two different lineages showing functional variations mainly in nucleotides of the promoter region. Nineteen different MICB extended haplotypes (EHs) encompassing the 5'-URR, exons 2-4, and 3'-UTR were found in this population, and the most frequent was EH2 (20.33%). The findings here are of importance for future studies on the potential role of regulation region of MICB gene in disease association, transplantation, viral infection, and tumor progression among Jing population.
Collapse
Affiliation(s)
- Xuexiang Liu
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Xiang Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Xiaomou Wei
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Yuming Meng
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Limin Liu
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| | - Shengming Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, China
| |
Collapse
|
36
|
Sheppard S, Ferry A, Guedes J, Guerra N. The Paradoxical Role of NKG2D in Cancer Immunity. Front Immunol 2018; 9:1808. [PMID: 30150983 PMCID: PMC6099450 DOI: 10.3389/fimmu.2018.01808] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The activating receptor NKG2D and its ligands are recognized as a potent immune axis that controls tumor growth and microbial infections. With regards to cancer surveillance, various studies have demonstrated the antitumor function mediated by NKG2D on natural killer cells and on conventional and unconventional T cells. The use of NKG2D-deficient mice established the importance of NKG2D in delaying tumor development in transgenic mouse models of cancer. However, we recently demonstrated an unexpected, flip side to this coin, the ability for NKG2D to contribute to tumor growth in a model of inflammation-driven liver cancer. With a focus on the liver, here, we review current knowledge of NKG2D-mediated tumor surveillance and discuss evidence supporting a dual role for NKG2D in cancer immunity. We postulate that in certain advanced cancers, expression of ligands for NKG2D can drive cancer progression rather than rejection. We propose that the nature of the microenvironment within and surrounding tumors impacts the outcome of NKG2D activation. In a form of autoimmune attack, NKG2D promotes tissue damage, mostly in the inflamed tissue adjacent to the tumor, facilitating tumor progression while being ineffective at rejecting transformed cells in the tumor bed.
Collapse
Affiliation(s)
- Sam Sheppard
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, New York, NY, United States
| | - Amir Ferry
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joana Guedes
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Bugide S, Janostiak R, Wajapeyee N. Epigenetic Mechanisms Dictating Eradication of Cancer by Natural Killer Cells. Trends Cancer 2018; 4:553-566. [PMID: 30064663 PMCID: PMC6085095 DOI: 10.1016/j.trecan.2018.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Natural killer (NK) cells of the innate immune system are the first line of defense against infectious agents and cancer cells. However, only a few mechanisms that regulate eradication of tumors by NK cells have been identified. In this review, we present an account of epigenetic mechanisms that modulate the ability of NK cells to eradicate cancer cells. To date, several drugs that target epigenetic modifiers have shown clinical efficacy in cancer. Therefore, once a given epigenetic modifier is validated as a regulator of NK cell function, it can be targeted for NK cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Suresh Bugide
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
38
|
Pommier A, Anaparthy N, Memos N, Kelley ZL, Gouronnec A, Yan R, Auffray C, Albrengues J, Egeblad M, Iacobuzio-Donahue CA, Lyons SK, Fearon DT. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 2018; 360:science.aao4908. [PMID: 29773669 DOI: 10.1126/science.aao4908] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/13/2018] [Indexed: 01/18/2023]
Abstract
The majority of patients with pancreatic ductal adenocarcinoma (PDA) develop metastatic disease after resection of their primary tumor. We found that livers from patients and mice with PDA harbor single disseminated cancer cells (DCCs) lacking expression of cytokeratin 19 (CK19) and major histocompatibility complex class I (MHCI). We created a mouse model to determine how these DCCs develop. Intraportal injection of immunogenic PDA cells into preimmunized mice seeded livers only with single, nonreplicating DCCs that were CK19- and MHCI- The DCCs exhibited an endoplasmic reticulum (ER) stress response but paradoxically lacked both inositol-requiring enzyme 1α activation and expression of the spliced form of transcription factor XBP1 (XBP1s). Inducible expression of XBP1s in DCCs, in combination with T cell depletion, stimulated the outgrowth of macrometastatic lesions that expressed CK19 and MHCI. Thus, unresolved ER stress enables DCCs to escape immunity and establish latent metastases.
Collapse
Affiliation(s)
- Arnaud Pommier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Naishitha Anaparthy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Department of Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nicoletta Memos
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Alizée Gouronnec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ran Yan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Cédric Auffray
- Institut Cochin, Paris Descartes Université, CNRS UMR8104, INSERM U1016, 75014 Paris, France
| | - Jean Albrengues
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Douglas T Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. .,Weill Cornell Medicine, New York, NY 10065, USA.,Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
39
|
Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proc Natl Acad Sci U S A 2018; 115:E3509-E3518. [PMID: 29581297 DOI: 10.1073/pnas.1802691115] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cell-mediated tumor cell eradication could inhibit tumor initiation and progression. However, the factors that regulate NK cell-mediated cancer cell eradication remain unclear. We determined that hepatocellular carcinoma (HCC) cells exhibit transcriptional down-regulation of NK group 2D (NKG2D) ligands and are largely resistant to NK cell-mediated eradication. Because the down-regulation of NKG2D ligands occurred at the transcriptional level, we tested 32 chemical inhibitors of epigenetic regulators for their ability to re-express NKG2D ligands and enhance HCC cell eradication by NK cells and found that Enhancer of zeste homolog 2 (EZH2) was a transcriptional repressor of NKG2D ligands. The inhibition of EZH2 by small-molecule inhibitors or genetic means enhanced HCC cell eradication by NK cells in a NKG2D ligand-dependent manner. Collectively, these results demonstrate that EZH2 inhibition enhances HCC eradication by NK cells and that EZH2 functions, in part, as an oncogene by inhibiting immune response.
Collapse
|
40
|
Prognostic value of MICA/B in cancers: a systematic review and meta-analysis. Oncotarget 2017; 8:96384-96395. [PMID: 29221214 PMCID: PMC5707108 DOI: 10.18632/oncotarget.21466] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose MHC class I chain related-proteins A (MICA) and B (MICB) are natural killer group 2D ligands that mediate tumor surveillance. Several studies have suggested that MICA/B levels predict clinical outcomes in patients with cancer; however, this remains contentious. Here, we present a systematic review and meta-analysis of available studies of the prognostic value of MICA/B in cancer. Materials and Methods We searched PubMed, Embase, Clinicaltrials.gov, and Cochrane Library to identify studies published from inception to July 2017 that assessed MICA/B in patients with cancer. The hazard ratio (HR) and 95% confidence interval (CI) of MICA/B were extracted for overall survival (OS) analysis. Results A total of 19 studies comprising 2,588 patients with 10 different types of cancer were included in the study. Low sMICA/B levels were found associated with significantly longer OS (HR = 1.65, 95% CI [1.42–1.92], P < 0.00001). Patients with cancers of digestive system that exhibited high MICA/B expression had significantly longer OS in (HR = 0.56, 95% CI [0.39–0.80], P = 0.002) compared with those with lower MICA/B expression (I2 = 35%, P = 0.18). Conclusions Serum soluble MICA/B represents a potential prognostic marker in various human cancers. High cell-surface MICA/B expression in cancers of the digestive system was found associated with increased survival.
Collapse
|
41
|
Zhang J, Wu N, Lian Z, Feng H, Jiang Q, Chen X, Gong J, Qiao Z. The Combined Antitumor Effects of 125I Radioactive Particle Implantation and Cytokine-Induced Killer Cell Therapy on Xenograft Hepatocellular Carcinoma in a Mouse Model. Technol Cancer Res Treat 2017; 16:1083-1091. [PMID: 29332456 PMCID: PMC5762075 DOI: 10.1177/1533034617732204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The combination of radiotherapy and immunotherapy has shown great promise in eradicating tumors. For example, 125I radioactive particle implantation and cytokine-induced killer cell therapies have demonstrated efficacy in treating hepatocellular carcinoma. However, the mechanism of this combination therapy remains unknown. In this study, we utilized cytokine-induced killer cells obtained from human peripheral blood mononuclear cells along with 125I radioactive particle implantation to treat subcutaneous hepatocellular carcinoma xenograft tumors in BALB/c nude mice. The effects of combination therapy on tumor growth, tumor cell apoptosis and proliferation, animal survival, and immune indexes were then assessed. The results indicated that 125I radioactive particle implantation combined with cytokine-induced killer cells shows a much greater antitumor therapeutic effect than either of the therapies alone when compared to control treatments. Mice treated with a combination of radiotherapy and immunotherapy displayed significantly reduced tumor growth. 125I radioactive particle implantation upregulated the expression of major histocompatibility complex (MHC) class I chain-related gene A in hepatocellular carcinoma cells and enhanced cytokine-induced killer cell–mediated apoptosis through activation of caspase-3. Furthermore, cytokine-induced killer cells supplied immune substrates to induce a strong immune response after 125I radioactive particle implantation therapy. In conclusion, 125I radioactive particle implantation combined with cytokine-induced killer cell therapy significantly inhibits the growth of human hepatocellular carcinoma cells in vivo and improves animal survival times through mutual promotion of antitumor immunity, presenting a promising therapy for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Junyong Zhang
- 1 Chongqing Key Laboratory of Hepatobiliary Surgery, Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,2 Department of Urology Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Nian Wu
- 3 Department of General Surgery, the Fifth People's Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Zhengrong Lian
- 4 Department of Clinical Epidemiology and Biostatistics, Population Health Research Institution, McMaster University, Hamilton, Ontario, Canada
| | - Huyi Feng
- 3 Department of General Surgery, the Fifth People's Hospital of Chongqing City, Chongqing, People's Republic of China
| | - Qing Jiang
- 2 Department of Urology Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xianfeng Chen
- 5 Department of Hepatobiliary Surgery, Fuling Center Hospital, Fuling District, Chongqing, People's Republic of China
| | - Jianping Gong
- 1 Chongqing Key Laboratory of Hepatobiliary Surgery, Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhengrong Qiao
- 6 Department of General Surgery, People's Hospital of Changshou District, Chongqing, People's Republic of China
| |
Collapse
|
42
|
Vanacker H, Vetters J, Moudombi L, Caux C, Janssens S, Michallet MC. Emerging Role of the Unfolded Protein Response in Tumor Immunosurveillance. Trends Cancer 2017; 3:491-505. [PMID: 28718404 DOI: 10.1016/j.trecan.2017.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Disruption of endoplasmic reticulum (ER) homeostasis results in ER stress and activation of the unfolded protein response (UPR). This response alleviates cell stress, and is activated in both tumor cells and tumor infiltrating immune cells. The UPR plays a dual function in cancer biology, acting as a barrier to tumorigenesis at the premalignant stage, while fostering cancer maintenance in established tumors. In infiltrating immune cells, the UPR has been involved in both immunosurveillance and immunosuppressive functions. This review aims to decipher the role of the UPR at different stages of tumorigenesis and how the UPR shapes the balance between immunosurveillance and immune escape. This knowledge may improve existing UPR-targeted therapies and the design of novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hélène Vanacker
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - Jessica Vetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium and Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Lyvia Moudombi
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - Christophe Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France
| | - Sophie Janssens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium and Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Marie-Cécile Michallet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, 69008, France.
| |
Collapse
|
43
|
Demoulin B, Cook WJ, Murad J, Graber DJ, Sentman ML, Lonez C, Gilham DE, Sentman CL, Agaugue S. Exploiting natural killer group 2D receptors for CAR T-cell therapy. Future Oncol 2017; 13:1593-1605. [PMID: 28613086 DOI: 10.2217/fon-2017-0102] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.
Collapse
Affiliation(s)
- Benjamin Demoulin
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - W James Cook
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | | | - David J Graber
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Marie-Louise Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Caroline Lonez
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - David E Gilham
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| | - Charles L Sentman
- Center for Sy+nthetic Immunity, Department of Microbiology & Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Sophie Agaugue
- Research & Development Department, Celyad SA, Mont-Saint-Guibert, Belgium
| |
Collapse
|
44
|
Xie H, Zhang Q, Zhou H, Zhou J, Zhang J, Jiang Y, Wang J, Meng X, Zeng L, Jiang X. microRNA-889 is downregulated by histone deacetylase inhibitors and confers resistance to natural killer cytotoxicity in hepatocellular carcinoma cells. Cytotechnology 2017; 70:513-521. [PMID: 28550492 DOI: 10.1007/s10616-017-0108-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/11/2017] [Indexed: 12/17/2022] Open
Abstract
Major histocompatibility complex class I chain-related gene B (MICB) is expressed on tumor cells and participates in natural killer (NK) cell-mediated antitumor immune response through engagement with the NKG2D receptor. This study was undertaken to identify novel microRNA (miRNA) regulators of MICB and clarify their functions in NK cell-mediated cytotoxicity to hepatocellular carcinoma (HCC) cells. Bioinformatic analysis and luciferase reporter assay were conducted to search for MICB-targeting miRNAs. Overexpression and knockdown experiments were performed to determine the roles of candidate miRNAs in the susceptibility of HCC cells to NK lysis. miR-889 was identified as a novel MICB-targeting miRNA and overexpression of miR-889 significantly inhibited the mRNA and protein expression of MICB in HepG2 and SMMC7721 HCC cells. miR-889 expression had a negative correlation with MICB mRNA levels in HCC specimens (r = -0.392, P = 0.0146). NK cell-mediated cytotoxicity was reduced in miR-889-overexpressing HCC cells, which was reversed by restoration of MICB expression. In contrast, knockdown of miR-889 led to more pronounced NK cell-mediated lysis in HCC cells. HCC cells exposed to the histone deacetylase (HDAC) inhibitor sodium valproate showed downregulation of miR-889. Enforced expression of miR-889 prevented the upregulation of MICB and enhancement of NK cell-mediated lysis by HDAC inhibitors. In conclusion, miR-889 upregulation attenuates the susceptibility of HCC cells to NK lysis and represents a potential target for improving NK cell-based antitumor therapies.
Collapse
Affiliation(s)
- Haitao Xie
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Qiugui Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hui Zhou
- Tumor Hospital Xiangya School of Medicine of Central South University, Changsha, China
| | - Jun Zhou
- Department of Rehabilitation, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Ji Zhang
- Laboratory of Rheumatology and Immunology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yan Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Jinghong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xianglin Meng
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Leping Zeng
- Department of Anatomy and Neurobiology, Biology Postdoctoral Workstation, Basic School of Medicine, Central South University, Changsha, China.
| | - Xiaoxin Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital, University of South China, Hengyang, China.
| |
Collapse
|
45
|
Cai X, Caballero-Benitez A, Gewe MM, Jenkins IC, Drescher CW, Strong RK, Spies T, Groh V. Control of Tumor Initiation by NKG2D Naturally Expressed on Ovarian Cancer Cells. Neoplasia 2017; 19:471-482. [PMID: 28499126 PMCID: PMC5429243 DOI: 10.1016/j.neo.2017.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer cells may co-opt the NKG2D lymphocyte receptor to complement the presence of its ligands for autonomous stimulation of oncogenic signaling. Previous studies raise the possibility that cancer cell NKG2D may induce high malignancy traits, but its full oncogenic impact is unknown. Using epithelial ovarian cancer as model setting, we show here that ex vivo NKG2D+ cancer cells have stem-like capacities, and provide formal in vivo evidence linking NKG2D stimulation with the development and maintenance of these functional states. NKG2D+ ovarian cancer cell populations harbor substantially greater capacities for self-renewing in vitro sphere formation and in vivo tumor initiation in immunodeficient (NOD scid gamma) mice than NKG2D− controls. Sphere formation and tumor initiation are impaired by NKG2D silencing or ligand blockade using antibodies or a newly designed pan ligand-masking NKG2D multimer. In further support of pathophysiological significance, a prospective study of 47 high-grade serous ovarian cancer cases revealed that the odds of disease recurrence were significantly greater and median progression-free survival rates higher among patients with above and below median NKG2D+ cancer cell frequencies, respectively. Collectively, our results define cancer cell NKG2D as an important regulator of tumor initiation in ovarian cancer and presumably other malignancies and thus challenge current efforts in immunotherapy aimed at enhancing NKG2D function.
Collapse
Affiliation(s)
- Xin Cai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98112, USA.
| | - Andrea Caballero-Benitez
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98112, USA.
| | - Mesfin M Gewe
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98112, USA.
| | - Isaac C Jenkins
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98112, USA.
| | - Charles W Drescher
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98112, USA.
| | - Roland K Strong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98112, USA.
| | - Thomas Spies
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98112, USA.
| | - Veronika Groh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 98112, USA.
| |
Collapse
|
46
|
Shen J, Pan J, Du C, Si W, Yao M, Xu L, Zheng H, Xu M, Chen D, Wang S, Fu P, Fan W. Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer. Cell Death Dis 2017; 8:e2740. [PMID: 28383557 PMCID: PMC5477582 DOI: 10.1038/cddis.2017.158] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Abstract
NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DLs). NKG2DLs are expressed on malignant cells and sensitize them to early elimination by cytotoxic lymphocytes. We investigated the clinical importance of NKG2DLs and the mechanism of NKG2DL regulation in breast cancer (BC). Among the NKG2DLs MICA/B and ULBP1/2/3, the expression levels of MICA/B in BC tissues were inversely associated with the Tumor Node Metastasis stage. We first found that the high expression of MICB, but not MICA, was an independent prognostic factor for overall survival in patients with BC. Investigation into the mechanism revealed that a group of microRNAs (miRNAs) belonging to the miR-17-92 cluster, especially miR-20a, decreased the expression of ULBP2 and MICA/B. These miRNAs downregulated the expression of MICA/B by targeting the MICA/B 3'-untranslated region and downregulated ULBP2 by inhibiting the MAPK/ERK signaling pathway. Functional analysis showed that the silencing of NKG2DL-targeting miRNAs in BC cells increased NK cell-mediated cytotoxicity in vitro and inhibited immune escape in vivo. In addition, histone deacetylase inhibitors (HDACis) increased NKG2DL expression in BC cells by inhibiting members of the miR-17-92 cluster. Thus, targeting miRNAs with antisense inhibitors or HDACis may represent a novel approach for increasing the immunogenicity of BC.
Collapse
Affiliation(s)
- Jiaying Shen
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Jie Pan
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Chengyong Du
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Wengong Si
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Minya Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Liang Xu
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China.,Clinical Research Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Huilin Zheng
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Mingjie Xu
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Danni Chen
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China
| | - Shu Wang
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Weimin Fan
- Program of Cancer Innovative Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310000, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
47
|
Goto K, Annan DA, Morita T, Li W, Muroyama R, Matsubara Y, Ito S, Nakagawa R, Tanoue Y, Jinushi M, Kato N. Novel chemoimmunotherapeutic strategy for hepatocellular carcinoma based on a genome-wide association study. Sci Rep 2016; 6:38407. [PMID: 27910927 PMCID: PMC5133582 DOI: 10.1038/srep38407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Pharmacotherapeutic options are limited for hepatocellular carcinoma (HCC). Recently, we identified the anti-tumor ligand MHC class I polypeptide-related sequence A (MICA) gene as a susceptibility gene for hepatitis C virus-induced HCC in a genome-wide association study (GWAS). To prove the concept of HCC immunotherapy based on the results of a GWAS, in the present study, we searched for drugs that could restore MICA expression. A screen of the FDA-approved drug library identified the anti-cancer agent vorinostat as the strongest hit, suggesting histone deacetylase inhibitors (HDACis) as potent candidates. Indeed, the HDACi-induced expression of MICA specific to HCC cells enhanced natural killer (NK) cell-mediated cytotoxicity in co-culture, which was further reinforced by treatment with an inhibitor of MICA sheddase. Similarly augmented anti-tumor activity of NK cells via NK group 2D was observed in vivo. Metabolomics analysis revealed HDACi-mediated alterations in energy supply and stresses for MICA induction and HCC inhibition, providing a mechanism for the chemoimmunotherapeutic actions. These data are indicative of promising strategies for selective HCC innate immunotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Coculture Techniques
- Combined Modality Therapy
- Cytotoxicity, Immunologic/drug effects
- Gene Expression Regulation, Neoplastic
- Genome-Wide Association Study
- Hep G2 Cells
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histone Deacetylase Inhibitors/pharmacology
- Humans
- Hydroxamic Acids/pharmacology
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Metabolome/drug effects
- Metabolome/genetics
- Metabolome/immunology
- Mice
- Mice, Nude
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Peptide Hydrolases/pharmacology
- Small Molecule Libraries/pharmacology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Vorinostat
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kaku Goto
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Dorcas A. Annan
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan
| | - Tomoko Morita
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan
| | - Wenwen Li
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryosuke Muroyama
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasuo Matsubara
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Sayaka Ito
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryo Nakagawa
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasushi Tanoue
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masahisa Jinushi
- Institute for Advanced Medical Research, Keio University Graduate School of Medicine, Tokyo 160-8582, Japan
| | - Naoya Kato
- The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
48
|
Okita R, Yukawa T, Nojima Y, Maeda A, Saisho S, Shimizu K, Nakata M. MHC class I chain-related molecule A and B expression is upregulated by cisplatin and associated with good prognosis in patients with non-small cell lung cancer. Cancer Immunol Immunother 2016; 65:499-509. [PMID: 26940474 PMCID: PMC11029019 DOI: 10.1007/s00262-016-1814-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/22/2016] [Indexed: 01/05/2023]
Abstract
MHC class I chain-related molecule A and B (MICA/B) are NK group 2 member D (NKG2D) ligands, which are broadly expressed in transformed cells. Both DNA damage-induced ataxia-telangiectasia-mutated (ATM)- and ATM and Rad3-related protein kinases (ATM-ATR) signaling and oncogene-induced PI3K-AKT signaling regulate the expression of NKG2D ligands, which promote NK cell-mediated cytotoxicity via NKG2D-NKG2D ligand interactions. NKG2D ligand overexpression was recently reported to be correlated with good prognosis in several types of cancer. However, the prognostic significance of NKG2D ligands in non-small cell lung cancer (NSCLC) remains unclear. Here, MICA/B expression was evaluated based on immunohistochemistry of 91 NSCLC samples from patients following radical surgery. In addition, expression of MICA/B was assessed in NSCLC cell lines treated with cisplatin in order to evaluate the regulatory mechanisms of MICA/B expression. Overall, 28 out of 91 (30.8%) specimens showed high expression level of MICA/B, which was associated with low (18)F-fluorodeoxyglucose uptake and manifestation of adenocarcinoma. After a median follow-up of 48.2 months, high MICA/B expression was associated with good recurrence-free survival (p = 0.037). In vitro assays using cell lines revealed that MICA/B expression was upregulated by cisplatin via ATM-ATR signaling, resulting in enhanced NK cell-mediated cytotoxicity. Upregulated MICA/B expressions in patients with radically resected NSCLC are predictive of good disease prognosis. Cisplatin-induced MICA/B upregulation is possibly an indirect mechanism by which the innate immune system eliminates tumor cells. NKG2D-NKG2D ligand-targeting therapy is a promising avenue for future immune-chemotherapy development.
Collapse
Affiliation(s)
- Riki Okita
- Department of General Thoracic Surgery, Kawasaki Medical School, Matsushima 577, Kurashiki, 7010192, Japan.
| | - Takuro Yukawa
- Department of General Thoracic Surgery, Kawasaki Medical School, Matsushima 577, Kurashiki, 7010192, Japan
| | - Yuji Nojima
- Department of General Thoracic Surgery, Kawasaki Medical School, Matsushima 577, Kurashiki, 7010192, Japan
| | - Ai Maeda
- Department of General Thoracic Surgery, Kawasaki Medical School, Matsushima 577, Kurashiki, 7010192, Japan
| | - Shinsuke Saisho
- Department of General Thoracic Surgery, Kawasaki Medical School, Matsushima 577, Kurashiki, 7010192, Japan
| | - Katsuhiko Shimizu
- Department of General Thoracic Surgery, Kawasaki Medical School, Matsushima 577, Kurashiki, 7010192, Japan
| | - Masao Nakata
- Department of General Thoracic Surgery, Kawasaki Medical School, Matsushima 577, Kurashiki, 7010192, Japan
| |
Collapse
|
49
|
Chen H, Zhidan W, Xia R, Zhaoxia W, Qing J, Qiang G, Haipeng Y, Hengxiao W. Scorpion venom activates natural killer cells in hepatocellular carcinoma via the NKG2D-MICA pathway. Int Immunopharmacol 2016; 35:307-314. [PMID: 27089390 DOI: 10.1016/j.intimp.2016.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/23/2022]
Abstract
Previous studies have demonstrated that polypeptides extracted from scorpion venom (PESV) inhibited cell proliferation in several tumors, however, the effect on dysfunctional and exhausted natural killer cells which contribute to tumor escape from immune surveillance remain to be elucidated. In this study, we determined the effect of PESV on NK infiltration into H22 cells orthotopic transplantation tumors and on the expression of MHC class I chain-related proteins A (MICA) in HepG2 cells. We found that tumor growth in mice was significantly inhibited by PESV and the survival time of tumor-bearing mice treated with PESV was significantly prolonged. Moreover, levels of tumor-infiltrating NK cells, NKG2D protein, perforin and granzyme B mRNA were significantly increased in the group treated with PESV compared with the tumor-bearing control group. In addition, In addition, up-regulation of MICA by PESV enhances the susceptibility of HepG2 cells to NK lysis in vitro. These results indicate that the inhibitory effects of PESV on hepatic carcinoma are likely mediated by up-regulation of NK cell activity via the MICA-NKG2D pathway.
Collapse
Affiliation(s)
- Han Chen
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Wang Zhidan
- Department of Frontier Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo, Japan
| | - Ren Xia
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Wang Zhaoxia
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Jia Qing
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Guo Qiang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Yin Haipeng
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Wang Hengxiao
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, China.
| |
Collapse
|
50
|
Lv X, Li L, Lv L, Qu X, Jin S, Li K, Deng X, Cheng L, He H, Dong L. HOXD9 promotes epithelial-mesenchymal transition and cancer metastasis by ZEB1 regulation in hepatocellular carcinoma. J Exp Clin Cancer Res 2015; 34:133. [PMID: 26514226 PMCID: PMC4625617 DOI: 10.1186/s13046-015-0245-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor that severely threatens human health. The poor prognosis of HCC is mainly attributed to intrahepatic and extrahepatic metastases. HOXD9 proteins belong to a superfamily that regulates the development and control of many cellular processes, including proliferation, apoptosis, cell shape, and cell migration. HOXD9 can also function as an oncogene in several cancer cells. However, its biological function in human HCC requires further investigation. In this study, HOXD9 exhibited high expression in invasive HCC cells. HOXD9 overexpression can significantly enhance HCC cell migration, invasion, and metastasis, whereas silencing HOXD9 inhibits these processes. HOXD9 also promotes the epithelial-mesenchymal transition (EMT) of HCC cells. Microarray analysis suggests that ZEB1 can function as a downstream factor of HOXD9. HOXD9 can interact with the promoter region of ZEB1 and promotes ZEB1 expression. ZEB1 knockdown inhibits HOXD9-induced migration and invasion, as well as EMT in HCC cells. This study helps elucidates the oncogenic functions of HOXD9 in HCC.
Collapse
Affiliation(s)
- Xiupeng Lv
- Department of Radiation Oncology, First Affiliated Hospital, Dalian Medical University, Dalian, 116001, China.
| | - Linlin Li
- Department of the 4th Internal Medical, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| | - Li Lv
- Department of Pathology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Xiaotong Qu
- Department of Second Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Shi Jin
- Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Kejun Li
- Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Xiaoqin Deng
- Department of Radiation Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Lei Cheng
- Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Hui He
- Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Lei Dong
- Department of Laparoscopic Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116001, China.
| |
Collapse
|