1
|
Zeng Y, Zeng D, Qi X, Wang H, Wang X, Dai X, Qu L. FHL1: A novel diagnostic marker for papillary thyroid carcinoma. Pathol Int 2024; 74:520-529. [PMID: 39119938 PMCID: PMC11551809 DOI: 10.1111/pin.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Although there are clear morphologic criteria for the diagnosis of papillary thyroid carcinoma (PTC), when the morphology is untypical or overlaps, accurate diagnostic indicators are necessary. Since few studies investigated the role of down-regulated genes in PTC, this article aims to further explore the molecular markers associated with PTC. We conducted bioinformatics analysis of gene microarrays of PTC and normal adjacent tissues. Besides, quantitative real-time quantitative polymerase chain reaction array and immunohistochemical staining were used to investigate the expression of the major down-regulated genes. The results indicated that several important down-regulated genes, including TLE1, BCL2, FHL1, GHR, KIT, and PPARGC1A were involved in the process of PTC. Compared to normal adjacent tissues, the mRNA expression of the major genes was down-regulated in PTC (p<0.05). Immunohistochemically, FHL1 shows negative or low expression in PTC tissues (p<0.05). BCL2 did not show a significant difference between PTC and normal thyroid tissues (p > 0.05). TLE1, KIT, PPARGC1A and GHR showed negative expression in both tumor and normal tissues. These results suggested that FHL1 could serve as a novel tumor marker for precise diagnosis of PTC.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/analysis
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/genetics
- Thyroid Cancer, Papillary/diagnosis
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/genetics
- LIM Domain Proteins/metabolism
- LIM Domain Proteins/genetics
- Male
- Female
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Middle Aged
- Adult
- Aged
- Gene Expression Regulation, Neoplastic
- Immunohistochemistry
- Carcinoma, Papillary/diagnosis
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/metabolism
Collapse
Affiliation(s)
- Yeting Zeng
- Department of PathologyJoint Logistic Support Force 900th HospitalFuzhouChina
| | - Dehua Zeng
- Department of PathologyJoint Logistic Support Force 900th HospitalFuzhouChina
| | - Xingfeng Qi
- Department of PathologyJoint Logistic Support Force 900th HospitalFuzhouChina
| | - Hanxi Wang
- Department of clinical pathology, Medical Research CenterFujian Medical UniversityFuzhouChina
| | - Xuzhou Wang
- Department of PathologyJoint Logistic Support Force 900th HospitalFuzhouChina
| | - Xiaodong Dai
- Department of PathologyJoint Logistic Support Force 900th HospitalFuzhouChina
| | - Lijuan Qu
- Department of PathologyJoint Logistic Support Force 900th HospitalFuzhouChina
| |
Collapse
|
2
|
Yao H, Cheng L, Chen D, Zhang Q, Qiu L, Ren SH, Dou BT, Wang H, Huang J, Fan FY. Role of the bone marrow microenvironment in multiple myeloma treatment using CAR-T therapy. Expert Rev Anticancer Ther 2023; 23:807-815. [PMID: 37343305 DOI: 10.1080/14737140.2023.2229029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignant tumor caused by abnormal proliferation of bone marrow (BM) plasma cells and is the second most common hematologic malignancy. A variety of CAR-T cells targeting multiple myeloma-specific markers have shown good efficacy in clinical trials. However, CAR-T therapy still limits the insufficient duration of efficacy and recurrence of the disease. AREAS COVERED This article reviews the cell populations in the bone marrow of MM, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow microenvironment. EXPERT OPINION The limits of CAR-T therapy in MM may related to the impairment of T cell activity in the bone marrow microenvironment. This article reviews the cell populations of the immune microenvironment and nonimmune microenvironment in the bone marrow of multiple myeloma, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow. This may provides a new idea for the CAR-T therapy of multiple myeloma.
Collapse
Affiliation(s)
- Hao Yao
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Lei Cheng
- Department of Pharmacy, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Dan Chen
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Qian Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Ling Qiu
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Shi-Hui Ren
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Bai-Tao Dou
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Huan Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
- University of Electronic Science and Technology of China, Chengdu, SiChuan, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
| | - Fang-Yi Fan
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| |
Collapse
|
3
|
Nian R, Li W, Li X, Zhang J, Li W, Pan F, Cheng J, Jin X. LncRNA MCM3AP-AS1 serves as a competing endogenous RNA of miR-218 to upregulate GLUT1 in papillary thyroid carcinoma. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:55-63. [PMID: 35929906 PMCID: PMC9983800 DOI: 10.20945/2359-3997000000510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective MCM3AP-AS1 has been characterized as an oncogenic long non-coding RNA (lncRNA) in several cancers including papillary thyroid cancer (PTC), but its role in PTC has not been fully elucidated. Considering the critical role of lncRNAs in cancer biology, further functional analysis of MCM3AP-AS1 in PTC may provide novel insights into PTC management. Subjects and methods Paired tumor and non-tumor tissues were collected from 63 papillary thyroid carcinoma (PTC) patients. Expression levels of MCM3AP-AS1, miR-218 and GLUT1 in tissue samples were analyzed by qRT-PCR. Cell transfection was performed to explore the interactions among MCM3AP-AS1, miR-218 and GLUT1. Cell proliferation assay was performed to evaluate the effects of MCM3AP-AS1 and miR-218 on cell proliferation. Results MCM3AP-AS1 accumulated to high levels in PTC tissues and was affected by clinical stage. MCM3AP-AS1 showed a positive correlation with GLUT1 across PTC tissues. RNA interaction prediction showed that MCM3AP-AS1 could bind to miR-218, which can directly target GLUT1. MCM3AP-AS1 and miR-218 showed no regulatory role regulating the expression of each other, but overexpression of MCM3AP-AS1 upregulated GLUT1 and enhanced cell proliferation. In contrast, overexpression of miR-218 downregulated GLUT1 and attenuated cell proliferation. In addition, miR-218 suppressed the role of MCM3AP-AS1 in regulating the expression of GLUT1 and cell proliferation. Conclusion MCM3AP-AS1 may serve as a competing endogenous RNA of miR-218 to upregulate GLUT1 in PTC, thereby promoting cell proliferation. The MCM3APAS1/ miR-218/GLUT1 pathway characterized in the present study might serve as a potential target to treat PTC.
Collapse
Affiliation(s)
- Rui Nian
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong City, Shaanxi Province, PR China
| | - Wanjun Li
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong City, Shaanxi Province, PR China,
| | - Xiang Li
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong City, Shaanxi Province, PR China
| | - Jiayu Zhang
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong City, Shaanxi Province, PR China
| | - Weihua Li
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong City, Shaanxi Province, PR China
| | - Fanfan Pan
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong City, Shaanxi Province, PR China
| | - Jing Cheng
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong City, Shaanxi Province, PR China
| | - Xin Jin
- Department of Pathology, Affiliated 3201 Hospital of Xi'an Jiaotong University, Hanzhong City, Shaanxi Province, PR China
| |
Collapse
|
4
|
Zhou C, Liu Y, Zhang R, Zheng X, Zhao G, Li F, Liu W, Yue B, Yang N. Chromosome-level Genome Assembly of the High-altitude Leopard (Panthera pardus) Sheds Light on Its Environmental Adaptation. Genome Biol Evol 2022; 14:6670020. [PMID: 35975810 PMCID: PMC9452791 DOI: 10.1093/gbe/evac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
The leopard (Panthera pardus) has the largest natural distribution from low- to high-altitude areas of any wild felid species, but recent studies have revealed that leopards have disappeared from large areas, probably owing to poaching, a decline of prey species, and habitat degradation. Here, we reported the chromosome-scale genome assembly of the high-altitude leopard (HL) based on nanopore sequencing and high-throughput chromatin conformation capture (Hi-C) technology. Panthera genomes revealed similar repeat composition, and there was an appreciably conserved synteny between HL and the other two Panthera genomes. Divergence time analysis based on the whole genomes revealed that the HL and the low-altitude leopard differentiate from a common ancestor ∼2.2 Ma. Through comparative genomics analyses, we found molecular genetic signatures that may reflect high-altitude adaptation of the HL. Three HL-specific missense mutations were detected in two positively selected genes, that is, ITGA7 (Ala112Gly, Asp113Val, and Gln115Pro) and NOTCH2 (Ala2398Ser), which are likely to be associated with hypoxia adaptation. The chromosome-level genome of the HL provides valuable resources for the investigation of high-altitude adaptation and protection management of the vulnerable leopard.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Yi Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Rusong Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Xiaofeng Zheng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Guangqing Zhao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Fengjun Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Wei Liu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, P. R.China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, P. R.China.,Collaborative Innovation Center for Ecological Animal Husbandry of Qinghai- Tibetan plateau, Southwest Minzu University, China
| |
Collapse
|
5
|
Shin HJ, Gil M, Lee IS. Association of Elevated Expression Levels of COL4A1 in Stromal Cells with an Immunosuppressive Tumor Microenvironment in Low-Grade Glioma, Pancreatic Adenocarcinoma, Skin Cutaneous Melanoma, and Stomach Adenocarcinoma. J Pers Med 2022; 12:534. [PMID: 35455650 PMCID: PMC9029283 DOI: 10.3390/jpm12040534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Aberrant expression of collagen type IV alpha chain 1 (COL4A1) can influence tumor cell behavior. To examine the association of COL4A1 expression in the tumor microenvironment (TME) with tumor progression, we performed bioinformatics analyses of The Cancer Genome Atlas RNA sequencing and RNA microarray datasets available in public databases and identified upregulated COL4A1 expression in most examined tumor types compared to their normal counterparts. The elevated expression of COL4A1 was correlated with low survival rates of patients with low-grade glioma, pancreatic adenocarcinoma, skin cutaneous melanoma, and stomach adenocarcinoma, thus suggesting its potential use as a biomarker for the poor prognosis of these tumors. However, COL4A1 was mostly expressed in adjacent stromal cells, such as cancer-associated fibroblasts (CAFs) and endothelial cells. Additionally, COL4A1 expression was highly correlated with the signatures of CAFs and endothelial cells in all four tumor types. The expression of marker genes for the infiltration of pro-tumoral immune cells, such as Treg, M2, and TAM, and those of immunosuppressive cytokines exhibited very strong positive correlations with COL4A1 expression. Collectively, our data suggest that COL4A1 overexpression in stromal cells may be a potential regulator of tumor-supporting TME composition associated with poor prognosis.
Collapse
Affiliation(s)
- Hyo-Jae Shin
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| |
Collapse
|
6
|
Cao X, Zhu J, Li X, Ma Y, He Q. Expression of CXCR4 and CXCR7 in papillary thyroid carcinoma and adjacent tissues and their relationship with pathologic indicators of tumor aggressiveness. Endocr J 2022; 69:189-197. [PMID: 34588386 DOI: 10.1507/endocrj.ej21-0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The receptors of chemokines play a significance role in the aggressiveness of tumor. CXCR4/CXCR7 promote metastasis of papillary thyroid carcinoma (PTC). This study examined the expresssion of chemokine receptors CXCR4/CXCR7 in human tissue specimens of PTC and peritumoral nonmalignant tissues. The correlation between CXCR4/CXCR7 and the clinicopathological factors in PTC was also determined. CXCR4/CXCR7 were examined in 115 PTC tissues from 115 patients using immunohistochemistry. Staining intensity was compared with patients and tumor characteristics including gender, age, tumor size, capsule invasion, multifocality, lymph node metastasis, and nature of paracancerous tissue. [Statistics: rank sum test, Spearman rank order correlation test; p < 0.05]. Higher expression rates of CXCR4/CXCR7 exhibited in PTC compared with peritumoral nonmalignant tissues. The expression of them was correlated in cancer and paracancerous specimens. A trend toward higher CXCR4/CXCR7 expression was found among tumors showing positive lymph nodes and capsule invasion, while no association with sex, age, tumor size, and nature of paracancerous tissue. Number of lymph nodes was associated with higher intensity IHC staining for CXCR4/CXCR7. Intense staining for CXCR4 was also associated with multifocality. Expression of CXCR4/CXCR7 by PTCs was correlated with lymph node metastasis and capsule invasion. Although multiple bias, they were thought to play a significance role in the aggressiveness of PTC, which provides potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Xianjiao Cao
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, 250031, Jinan, Shandong Province, China
| | - Jian Zhu
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, 250031, Jinan, Shandong Province, China
| | - Xiaolei Li
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, 250031, Jinan, Shandong Province, China
| | - Yunhan Ma
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, 250031, Jinan, Shandong Province, China
| | - Qingqing He
- Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, 250031, Jinan, Shandong Province, China
| |
Collapse
|
7
|
MicroRNAs Associated with Chronic Mucus Hypersecretion in COPD Are Involved in Fibroblast-Epithelium Crosstalk. Cells 2022; 11:cells11030526. [PMID: 35159335 PMCID: PMC8833971 DOI: 10.3390/cells11030526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
We recently identified microRNAs (miRNAs) associated with chronic mucus hypersecretion (CMH) in chronic obstructive pulmonary disease (COPD), which were expressed in both airway epithelial cells and fibroblasts. We hypothesized that these miRNAs are involved in communication between fibroblasts and epithelium, contributing to airway remodeling and CMH in COPD. Primary bronchial epithelial cells (PBECs) differentiated at the air–liquid interface, and airway fibroblasts (PAFs) from severe COPD patients with CMH were cultured alone or together. RNA was isolated and miRNA expression assessed. miRNAs differentially expressed after co-culturing were studied functionally using overexpression with mimics in mucus-expressing human lung A549 epithelial cells or normal human lung fibroblasts. In PBECs, we observed higher miR-708-5pexpression upon co-culture with fibroblasts, and miR-708-5p expression decreased upon mucociliary differentiation. In PAFs, let-7a-5p, miR-31-5p and miR-146a-5p expression was significantly increased upon co-culture. miR-708-5p overexpression suppressed mucin 5AC (MUC5AC) secretion in A549, while let-7a-5poverexpression suppressed its target gene COL4A1 in lung fibroblasts. Our findings suggest that let-7a-5p, miR-31-5p and miR-146a-5p may be involved in CMH via fibroblasts–epithelium crosstalk, including extracellular matrix gene regulation, while airway epithelial expression of miR-708-5p may be involved directly, regulating mucin production. These findings shed light on miRNA-mediated mechanisms underlying CMH, an important symptom in COPD.
Collapse
|
8
|
Wang Y, Wang J, Wang C, Chen Y, Chen J. DIO3OS as a potential biomarker of papillary thyroid cancer. Pathol Res Pract 2021; 229:153695. [PMID: 34929602 DOI: 10.1016/j.prp.2021.153695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is one of the common clinical tumors, where LncRNA plays an important role in tumorigenesis and its development. The purpose of this study was to explore the role of DIO3OS in PTC. METHOD Firstly, this study verified the expression of DIO3OS in PTC through the public database. Then, the differences in DIO3OS expression between the PTC group and paracancerous tissues were verified using the qRT-PCR. A series of in vitro experiments were conducted to verify the function of DIO3OS in PTC, while its involvement in possible pathways was analyzed by the GSEA. The ssGSEA algorithm estimated the immune status using the queue transcriptome graph derived from the TCGA database. Further, the correlation analysis was used to confirm the relationship between DIO3OS and the immune genes. RESULT The results showed that the expression of DIO3OS was low in PTC. The same results were also confirmed by qRT-PCR analysis (P= 0.0077). In vitro, DIO3OS was localized within the cytoplasm and exosomes. Overexpression of DIO3OS hindered the proliferation, invasion, and migration of PTC cells. According to the degree of immune cell infiltration, the tumor group was divided into high immune cell infiltration group, medium immune cell infiltration group, and low immune cell infiltration group. The results showed that the DIO3OS was highly expressed in the high immune cell infiltration group (P < 0.001), which was positively correlated with the immune cell infiltration and also correlated with multiple immune genes. CONCLUSION In summary, this study illustrated the expression pattern of DIO3OS in PTC, which may be involved in the immune-inflammatory pathway. Hence, our results may provide new diagnostic biomarkers and therapeutic targets for PTC.
Collapse
Affiliation(s)
- Ye Wang
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
| | - Junfu Wang
- The First Affiliated Hospital of Nanchang University, Department of General Surgery, Nanchang 330031, China
| | - Congjun Wang
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
| | - Yeyang Chen
- The First People's Hospital of Yulin, Departments of Gastrointestinal Surgery, Yulin, 537000, China
| | - Junqiang Chen
- The First Affiliated Hospital of Guangxi Medical University, Department of Gastrointestinal Gland Surgery, Nanning, 530021, Guangxi, China; Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China.
| |
Collapse
|
9
|
Cao H, Cheng L, Yu J, Zhang Z, Luo Z, Chen D. Identifying the mRNAs associated with Bladder cancer recurrence. Cancer Biomark 2021; 28:429-437. [PMID: 32390597 DOI: 10.3233/cbm-190617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To identify the mRNAs associated with bladder cancer (BC) recurrence. METHODS The transcription profile of GSE31684 including 39 recurrent BC tumor samples and 54 non-recurrent BC tumor samples as well as transcription profile of GSE13507 including 36 recurrent BC tumor samples and 67 non-recurrent BC tumor samples were downlaoded from the Gene Expression Omnibus. Then, the differentially expressed genes (DEGs) were identified using linear models for microarray data (limma) and the intersections of DEGs from the two datasets were further screened. The weighed gene co-expression network analysis (WGCNA) was used to screen the modules related to BC recurrence. Protein-protein interaction (PPI) network analysis was used to analyze the genes interaction. Their functions were predicted by Gene Ontology and KEGG pathway enrichment. Moreover, The Comparative Toxicogenomics Database 2017 update (CTD) was used to search the BC related pathway. The univariate cox regression analysis was used to identify DEGs associated to the recurrence. Kaplan-Meier plots were used to illustrate recurrence free survival time (RFS). RESULTS A total of 692 intersections DEGs were screened. WGCNA showed that 7 modules (2279 genes) were stable in both the datasets. A total of 169 intersection DEGs were mapped to the 7 modules. There existed 149 interaction relationships among 81 proteins (18 down-regulated and 63 up-regulated DEGs) in the PPI network. Two KEGG pathways including Focal adhesion and ECM-receptor interaction were enriched which were also found in the CTD. The univariate cox regression analysis showed that 3 DEGs (COL4A1, COL1A2 and COL5A1) were significant related to the prognosis. Multivariate cox regression analysis revealed that pathologic_N (N0-N1 vs N2-N3, p= 0.033) were independent prognostic factors for overall survival in patients with BC. CONCLUSION COL4A1, COL1A2 and COL5A1 could be associated with BC recurrence.
Collapse
Affiliation(s)
- Huifeng Cao
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi City, Heilongjiang, China
| | - Liang Cheng
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi City, Heilongjiang, China
| | - Junjuan Yu
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi City, Heilongjiang, China
| | - Zhihui Zhang
- Department of Urology, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang City, Heilongjiang, China
| | - Zhenguo Luo
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi City, Heilongjiang, China
| | - Dayin Chen
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi City, Heilongjiang, China
| |
Collapse
|
10
|
Zhang J, Wang H, Lv C, Han J, Hao M, Li J, Qiao H. Cartilage oligomeric matrix protein affects the biological behavior of papillary thyroid carcinoma cells by activating the PI3K/AKT/Bcl-2 pathway. J Cancer 2021; 12:1623-1633. [PMID: 33613749 PMCID: PMC7890313 DOI: 10.7150/jca.49144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
Objective: To explore the effect of cartilage oligomeric matrix protein (COMP) on papillary thyroid carcinoma (PTC). Methods: COMP expression levels in PTC tissues and matched adjacent normal tissues were measured using tissue microarrays. Human PTC cells were cultured and transduced with lentiviral short hairpin RNA against COMP (COMP-shRNA), a negative control (NC) shRNA, or mock transfected (Control). We used the Cell Counting Kit-8, performed colony formation assays, wound healing assays, Transwell invasion assays, flow cytometry, and measured the expression of apoptosis-related proteins at the mRNA and protein levels to explore the effects of COMP on the biological behavior of PTC cells and to discover the specific signaling pathway involved in these processes. Results: COMP expression was significantly higher in PTC tissues than in adjacent normal tissues. At the cellular level, COMP promoted cell migration, increased the invasiveness of PTC cells, and inhibited apoptosis. However, differences in cell proliferation were only observed within 72 hours. At the same time, colony formation assays showed that silencing COMP inhibited the proliferation of PTC cells. We also found that COMP regulated the behavior of PTC cells by activating the PI3K/AKT/Bcl-2 pathway. Conclusions: COMP is upregulated in PTC, which enhances cancer cell invasion and inhibits apoptosis, contributing to the development and progression of PTC. Thus, COMP may serve as a new biomarker for PTC.
Collapse
Affiliation(s)
- Jirong Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Hongzhi Wang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Chunpeng Lv
- Epidemiology and Health Statistics, Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Jun Han
- Department of Endocrine and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Mingyu Hao
- Department of Endocrine and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Jingjing Li
- Department of Endocrine and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Hong Qiao
- Department of Endocrine and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
11
|
Huang R, Zeng Z, Yan P, Yin H, Zhu X, Hu P, Zhuang J, Li J, Li S, Song D, Meng T, Huang Z. Targeting Lymphotoxin Beta and Paired Box 5: a potential therapeutic strategy for soft tissue sarcoma metastasis. Cancer Cell Int 2021; 21:3. [PMID: 33397394 PMCID: PMC7784354 DOI: 10.1186/s12935-020-01632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Soft tissue sarcomas (STS) has a high rate of early metastasis. In this study, we aimed to uncover the potential metastasis mechanisms and related signaling pathways in STS with differentially expressed genes and tumor-infiltrating cells. Methods RNA-sequencing (RNA-seq) of 261 STS samples downloaded from the Cancer Genome Atlas (TCGA) database were used to identify metastasis-related differentially expressed immune genes and transcription factors (TFs), whose relationship was constructed by Pearson correlation analysis. Metastasis-related prediction model was established based on the most significant immune genes. CIBERSORT algorithm was performed to identify significant immune cells co-expressed with key immune genes. The GSVA and GSEA were performed to identify prognosis-related KEGG pathways. Ultimately, we used the Pearson correlation analysis to explore the relationship among immune genes, immune cells, and KEGG pathways. Additionally, key genes and regulatory mechanisms were validated by single-cell RNA sequencing and ChIP sequencing data. Results A total of 204 immune genes and 12 TFs, were identified. The prediction model achieved a satisfactory effectiveness in distant metastasis with the Area Under Curve (AUC) of 0.808. LTB was significantly correlated with PAX5 (P < 0.001, R = 0.829) and hematopoietic cell lineage pathway (P < 0.001, R = 0.375). The transcriptional regulatory pattern between PAX5 and LTB was validated by ChIP sequencing data. Conclusions We hypothesized that down-regulated LTB (immune gene) modulated by PAX5 (TF) in STSs may have the capability of inducing cancer cell metastasis in patients with STS.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China.,Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Zhiwei Zeng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China
| | - Xiaolong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Juanwei Zhuang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Jiaju Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China
| | - Siqi Li
- Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China. .,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, 100 Haining Road, Shanghai, China.
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, China.
| |
Collapse
|
12
|
Gao HX, Wang MB, Li SJ, Niu J, Xue J, Li J, Li XX. Identification of Hub Genes and Key Pathways Associated with Peripheral T-cell Lymphoma. Curr Med Sci 2020; 40:885-899. [PMID: 32980897 DOI: 10.1007/s11596-020-2250-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Peripheral T-cell lymphoma (PTCL) is a very aggressive and heterogeneous hematological malignancy and has no effective targeted therapy. The molecular pathogenesis of PTCL remains unknown. In this study, we chose the gene expression profile of GSE6338 from the Gene Expression Omnibus (GEO) database to identify hub genes and key pathways and explore possible molecular pathogenesis of PTCL by bioinformatic analysis. Differentially expressed genes (DEGs) between PTCL and normal T cells were selected using GEO2R tool. Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were performed using Database for Annotation, Visualization and Integrated Discovery (DAVID). Moreover, the Search Tool for the Retrieval of Interacting Genes (STRING) and Molecular Complex Detection (MCODE) were utilized to construct protein-protein interaction (PPI) network and perform module analysis of these DEGs. A total of 518 DEGs were identified, including 413 down-regulated and 105 up-regulated genes. The down-regulated genes were enriched in osteoclast differentiation, Chagas disease and mitogen-activated protein kinase (MAPK) signaling pathway. The up-regulated genes were mainly associated with extracellular matrix (ECM)-receptor interaction, focal adhesion and pertussis. Four important modules were detected from the PPI network by using MCODE software. Fifteen hub genes with a high degree of connectivity were selected. Our study identified DEGs, hub genes and pathways associated with PTCL by bioinformatic analysis. Results provide a basis for further study on the pathogenesis of PTCL.
Collapse
Affiliation(s)
- Hai-Xia Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.,Xinjiang Medical University, Urumqi, 830011, China.,Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Meng-Bo Wang
- Department of Ultrasound, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Si-Jing Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.,Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Niu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.,Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Xue
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.,Xinjiang Medical University, Urumqi, 830011, China
| | - Jun Li
- Department of Ultrasound, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Xin-Xia Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
13
|
Zeng X, Wang HY, Wang YP, Bai SY, Pu K, Zheng Y, Guo QH, Guan QL, Ji R, Zhou YN. COL4A family: potential prognostic biomarkers and therapeutic targets for gastric cancer. Transl Cancer Res 2020; 9:5218-5232. [PMID: 35117889 PMCID: PMC8799138 DOI: 10.21037/tcr-20-517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Background The type IV collagen alpha chain (COL4A) family is a major component of the basement membrane (BM) that has recently been found to be involved in tumor angiogenesis and progression. However, the expression levels and the exact roles of distinct COL4A family members in gastric cancer (GC) have not been completely understood. Methods Here, the expression levels of COL4As in GC and normal gastric tissues were calculated by using TCGA datasets and the predicted prognostic values by the GEPIA tool. Furthermore, the cBioPortal and Metascape tools were integrated to analyze the genetic alterations, correlations and potential functions of COL4As, and their frequently altered neighboring genes in GC. Results Notably, the expression levels of COL4A1/2/4 in GC were higher to those in normal gastric tissues, while the expression levels of COL4A3/5/6 were lower in GC than normal. Survival analysis revealed that lower expression levels of COL4A1/5 led to higher overall survival (OS) rate. Multivariate analysis using the Cox proportional-hazards model indicated that age, gender, pathological grade, metastasis and COL4A5 expression, are independent prognostic factors for OS. However, TNM stage, lymph node metastasis, Lauren’s classification, COL4A1-4 and COL4A6 were associated with poor OS but not independent prognostic factors. Function-enriched analysis of COL4As and their frequently altered neighboring genes was involved in tumor proliferation and metastasis in GC. Conclusions These results implied that COL4A1/2 were potential therapeutic targets for GC. COL4A3/4/6 might have an impact on gastric carcinogenesis and subsequent progression, whereas COL4A5 was an independent prognostic marker for GC.
Collapse
Affiliation(s)
- Xi Zeng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Hao-Ying Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yu-Ping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Su-Yang Bai
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ke Pu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Qing-Hong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Quan-Lin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yong-Ning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Diseases of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Comprehensive Analysis of a circRNA-miRNA-mRNA Network to Reveal Potential Inflammation-Related Targets for Gastric Adenocarcinoma. Mediators Inflamm 2020; 2020:9435608. [PMID: 32801999 PMCID: PMC7416288 DOI: 10.1155/2020/9435608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is the most common malignancy of the stomach. This study was aimed at elucidating the regulatory network of circRNA-miRNA-mRNA and identifying the precise inflammation-related targets in GC. The expression profiles of GSE83521, GSE78091, and GSE33651 were obtained from the GEO database. Interactions between miRNAs and circRNAs were investigated by the Circular RNA Interactome, and targets of miRNAs were predicted with miRTarBase. Then, a circRNA/miRNA/mRNA regulatory network was constructed. Also, functional enrichment analysis of selected differentially expressed genes (DEGs) was performed. The inflammation-/GC-related targets were collected in the GeneCards and GenLiP3 database, respectively. And a protein-protein interaction (PPI) network of DE mRNAs was constructed with STRING and Cytoscape to identify hub genes. The genetic alterations, neighboring gene networks, expression levels, and the poor prognosis of hub genes were investigated in cBioPortal, Oncomine, and Human Protein Atlas databases and Kaplan-Meier plotter, respectively. A total of 10 DE miRNAs and 33 DEGs were identified. The regulatory network contained 26 circRNAs, 10 miRNAs, and 1459 mRNAs. Functional enrichment analysis revealed that the selected 33 DEGs were involved in negative regulation of fat cell differentiation, response to wounding, extracellular matrix- (ECM-) receptor interaction, and regulation of cell growth pathways. THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 were selected as inflammation-related hub genes of GC in the PPI network. The genetic alterations in these hub genes were related to amplification and missense mutations. Furthermore, the genes RYR2, ERBB2, PI3KCA, and HELZ2 were connected to hub genes in this study. The hub gene levels in clinical specimens were markedly upregulated in GC tissues and correlated with poor overall survival (OS). Our results suggest that THBS1, FN1, CALM1, COL4A1, CTGF, and IGFBP5 were associated with the pathogenesis of gastric carcinogenesis and may serve as biomarkers and inflammation-related targets for GC.
Collapse
|
15
|
CXCR7 Inhibits Fibrosis via Wnt/ β-Catenin Pathways during the Process of Angiogenesis in Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1216926. [PMID: 32566651 PMCID: PMC7293734 DOI: 10.1155/2020/1216926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Although SDF-1/CXCR7 plays an important role in angiogenesis, the function and the pathway of the SDF-1/CXCR7 axis might depend on the cell type or tissue origin and not fully understood. In this study, we investigated the effect of CXCR7 in SDF-1-induced proliferation, migration, apoptosis, tube formation, and endothelial-to-mesenchymal transition (EndMT) of human umbilical vein endothelial cells (HUVECs), and the potential pathway of SDF-1/CXCR7. We confirmed that the silencing of CXCR7 inhibited the proliferation of HUVECs and contributed the apoptosis, while overexpressed CXCR7 increased SDF-1-induced HUVECs migration and tube formation. However, upregulated CXCR7 inhibited the expression of α-SMA, suggesting that CXCR7 might attenuate EndMT. In addition, overexpressed CXCR7 activated AKT and ERK signaling pathways but suppressed Wnt/β-catenin pathways in HUVECs. The inhibition of Wnt/β-catenin pathways decreased the expression of α-SMA. Altogether, these results suggest that CXCR7 might inhibit fibrosis via Wnt/β-catenin pathways during the process of angiogenesis.
Collapse
|
16
|
Xu G, Ou L, Liu Y, Wang X, Liu K, Li J, Li J, Wang S, Huang D, Zheng K, Wang S. Upregulated expression of MMP family genes is associated with poor survival in patients with esophageal squamous cell carcinoma via regulation of proliferation and epithelial‑mesenchymal transition. Oncol Rep 2020; 44:29-42. [PMID: 32627007 PMCID: PMC7251684 DOI: 10.3892/or.2020.7606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the cleavage of several components of the extracellular matrix and serve important roles in tumor growth, metastasis and invasion. Previous studies have focused on the expression of one or several MMPs in esophageal squamous cell carcinoma (ESCC); however, in the present study, the transcriptomics of all 23 MMPs were systematically investigated with a focus on the prognostic value of the combination of MMPs. In this study, 8 overlapping differentially expressed genes of the MMP family were identified based on data obtained from Gene Expression Omnibus and The Cancer Genome Atlas. The prognostic value of these MMPs were investigated; the receiver operating characteristic curves, survival curves and nomograms showed that the combination of 6 selected MMPs possessed a good predictive ability, which was more accurate than the prediction model based on Tumor‑Node‑Metastasis stage. Gene set enrichment analysis and gene co‑expression analysis were performed to investigate the potential mechanism of action of MMPs in ESCC. The MMP family was associated with several signaling pathways, such as epithelial‑mesenchymal transition (EMT), Notch, TGF‑β, mTOR and P53. Cell Counting Kit‑8, colony formation, wound healing assays and western blotting were used to determine the effect of BB‑94, a pan‑MMP inhibitor, on proliferation and migration of ESCC cells. BB‑94 treatment decreased ESCC cell growth, migration and EMT. Therefore, MMPs may serve both as diagnostic and prognostic biomarkers of ESCC, and MMP inhibition may be a promising preventive and therapeutic strategy for patients with ESCC.
Collapse
Affiliation(s)
- Guifeng Xu
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Ling Ou
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, P.R. China
| | - Ying Liu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, P.R. China
| | - Xiao Wang
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, P.R. China
| | - Kaisheng Liu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518020, P.R. China
| | - Jieling Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Junjun Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, P.R. China
| | - Shaoqi Wang
- Department of Oncology, Hubei Provincial Corps Hospital, Chinese People Armed Police Forces, Wuhan, Hubei 430061, P.R. China
| | - Dane Huang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P.R. China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| | - Shaoxiang Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
17
|
Fan X, He L, Dai Q, He J, Chen X, Dai X, Zhang C, Sun D, Meng X, Sun S, Huang J, Chen J, Lin L, Chen L, Tan Y, Yan X. Interleukin-1β augments the angiogenesis of endothelial progenitor cells in an NF-κB/CXCR7-dependent manner. J Cell Mol Med 2020; 24:5605-5614. [PMID: 32239650 PMCID: PMC7214148 DOI: 10.1111/jcmm.15220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are able to trigger angiogenesis, and pro‐inflammatory cytokines have beneficial effects on angiogenesis under physiological and pathological conditions. C‐X‐C chemokine receptor type 7 (CXCR‐7), receptor for stromal cell‐derived factor‐1, plays a critical role in enhancing EPC angiogenic function. Here, we examined whether CXCR7 mediates the pro‐angiogenic effects of the inflammatory cytokine interleukin‐1β (IL‐1β) in EPCs. EPCs were isolated by density gradient centrifugation and angiogenic capability was evaluated in vitro by Matrigel capillary formation assay and fibrin gel bead assay. IL‐1β elevated CXCR7 expression at both the transcriptional and translational levels in a dose‐ and time‐dependent manner, and blockade of the nuclear translocation of NF‐κB dramatically attenuated the IL‐1β‐mediated up‐regulation of CXCR7 expression. IL‐1β stimulation significantly promoted EPCs tube formation and this effect was largely impaired by CXCR7‐siRNA transfection. IL‐1β treatment stimulated extracellular signal‐regulated kinase 1/2 (Erk1/2) phosphorylation, and inhibition of Erk1/2 phosphorylation partially impaired IL‐1β‐induced tube formation of EPCs but without significant effects on CXCR7 expression. Moreover, blocking NF‐κB had no significant effects on IL‐1β‐stimulated Erk1/2 phosphorylation. These findings indicate that CXCR7 plays an important role in the IL‐1β‐enhanced angiogenic capability of EPCs and antagonizing CXCR7 is a potential strategy for inhibiting angiogenesis under inflammatory conditions.
Collapse
Affiliation(s)
- Xia Fan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luqing He
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Qiaoxia Dai
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Junhong He
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiangjuan Chen
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhen Dai
- School of Biomedicine, Chengdu Medical College, Chengdu, China
| | - Chi Zhang
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xue Meng
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Sun
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Jiameng Huang
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Lin Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangmiao Chen
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Yan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Guan Y, Bhandari A, Xia E, Kong L, Zhang X, Wang O. Downregulating integrin subunit alpha 7 (ITGA7) promotes proliferation, invasion, and migration of papillary thyroid carcinoma cells through regulating epithelial-to-mesenchymal transition. Acta Biochim Biophys Sin (Shanghai) 2020; 52:116-124. [PMID: 31942970 DOI: 10.1093/abbs/gmz144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Thyroid cancer is one of the common malignancies of the endocrine system and the number of thyroid cancer cases is increasing constantly. Significant work has focused on the molecular mechanisms of thyroid cancer, but many mechanisms remain undiscovered. In this study, we employed a comprehensive analysis of whole-transcriptome resequencing derived from paired papillary thyroid cancer (PTC) and normal thyroid tissues. We performed a massive parallel whole-transcriptome resequencing of matched PTC and normal thyroid tissues in 19 patients and found that integrin subunit alpha 7 (ITGA7) was downregulated in thyroid tumor tissues, but the function of ITGA7 in this cancer is still unclear. We also discovered that ITGA7 gene in thyroid cancer tissues was downregulated compared to paired adjacent non-tumor tissues by real-time quantitative polymerase chain reaction. After transfection with small interfering RNA to knock down ITGA7, the abilities of colony formation, proliferation, migration, and invasion were enhanced in PTC cell lines (TPC1 and KTC-1). Meanwhile, ITGA7 knockdown decreased apoptotic cell death in thyroid cells but promoted the expressions of N-cadherin and vimentin and decreased E-cadherin expression by epithelial-to-mesenchymal transition, which may induce invasion and migration. In conclusion, these results indicated that ITGA7 is involved in the progress of PTC and might act as a tumor suppressor gene.
Collapse
Affiliation(s)
- Yaoyao Guan
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Adheesh Bhandari
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Erjie Xia
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lingguo Kong
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaohua Zhang
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ouchen Wang
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
19
|
Lu S, Zhao R, Shen J, Zhang Y, Shi J, Xu C, Chen J, Lin R, Han W, Luo D. Integrated bioinformatics analysis to screen hub genes in the lymph node metastasis of thyroid cancer. Oncol Lett 2019; 19:1375-1383. [PMID: 31966069 PMCID: PMC6956406 DOI: 10.3892/ol.2019.11188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 10/22/2019] [Indexed: 01/13/2023] Open
Abstract
Thyroid cancer (TC) is one of the most common types of malignancy of the endocrine-system. At present, there is a lack of effective methods to predict neck lymph node metastasis (LNM) in TC. The present study compared the expression profiles from The Cancer Genome Atlas between N1M0 and N0M0 subgroups in each T1-4 stages TC in order to identify the four groups of TC LNM-associated differentially expressed genes (DEGs). Subsequently, DEGs were combined to obtain a total of 493 integrated DEGs by using the method of Robust Rank Aggregation. Furthermore, the underlying mechanisms of LNM were investigated. The results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that the identified DEGs may promote LNM via numerous pathways, including extracellular matrix-receptor interaction, PI3K-AKT signaling pathway and focal adhesion. Following construction of a protein-protein interaction network, the significance score for each gene was calculated and seven hub genes were screened, including interleukin 6, actinin α2, collagen type I α 1 chain, actin α1, calbindin 2, thrombospondin 1 and parathyroid hormone. These genes were predicted to serve crucial roles in TC with LNM. The results from the present study could therefore improve the understanding of LNM in TC. In addition, the seven DEGs identified may be considered as potential novel targets for the development of biomarkers that could be used in the diagnosis and therapy of TC.
Collapse
Affiliation(s)
- Si Lu
- Zhejiang Chinese Medical University Affiliated Hangzhou First Hospital, The Fourth Clinical College, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jie Shen
- Nanjing Medical University Affiliated Hangzhou Hospital, The First Clinical College, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jingjing Shi
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Chenke Xu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiali Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Renbin Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Dingcun Luo
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
20
|
Liu Y, Gao S, Jin Y, Yang Y, Tai J, Wang S, Yang H, Chu P, Han S, Lu J, Ni X, Yu Y, Guo Y. Bioinformatics analysis to screen key genes in papillary thyroid carcinoma. Oncol Lett 2019; 19:195-204. [PMID: 31897130 PMCID: PMC6924100 DOI: 10.3892/ol.2019.11100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid carcinoma, and its incidence has been on the increase in recent years. However, the molecular mechanism of PTC is unclear and misdiagnosis remains a major issue. Therefore, the present study aimed to investigate this mechanism, and to identify key prognostic biomarkers. Integrated analysis was used to explore differentially expressed genes (DEGs) between PTC and healthy thyroid tissue. To investigate the functions and pathways associated with DEGs, Gene Ontology, pathway and protein-protein interaction (PPI) network analyses were performed. The predictive accuracy of DEGs was evaluated using the receiver operating characteristic (ROC) curve. Based on the four microarray datasets obtained from the Gene Expression Omnibus database, namely GSE33630, GSE27155, GSE3467 and GSE3678, a total of 153 DEGs were identified, including 66 upregulated and 87 downregulated DEGs in PTC compared with controls. These DEGs were significantly enriched in cancer-related pathways and the phosphoinositide 3-kinase-AKT signaling pathway. PPI network analysis screened out key genes, including acetyl-CoA carboxylase beta, cyclin D1, BCL2, and serpin peptidase inhibitor clade A member 1, which may serve important roles in PTC pathogenesis. ROC analysis revealed that these DEGs had excellent predictive performance, thus verifying their potential for clinical diagnosis. Taken together, the findings of the present study suggest that these genes and related pathways are involved in key events of PTC progression and facilitate the identification of prognostic biomarkers.
Collapse
Affiliation(s)
- Yuanhu Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Shuwei Gao
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Hui Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China.,Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| |
Collapse
|
21
|
Han J, Chen M, Fang Q, Zhang Y, Wang Y, Esma J, Qiao H. Prediction of the Prognosis Based on Chromosomal Instability-Related DNA Methylation Patterns of ELOVL2 and UBAC2 in PTCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:650-660. [PMID: 31698312 PMCID: PMC6906861 DOI: 10.1016/j.omtn.2019.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/12/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
Abstract
Papillary thyroid carcinoma (PTC) is the most common malignant tumor of endocrine systems. Chromosomal instability (CIN) is crucial to the clinical prognoses of tumor patients. DNA methylation plays an important role in the regulation of gene expression and CIN. Based on PTC samples from The Cancer Genome Atlas database, we used multiple regression analyses to identify methylation patterns of CpG sites with the strongest correlation with gene expression. A total of 4,997 genes were obtained through combining the CpG sites, which were represented as featured DNA methylation patterns. In order to identify CIN-related epigenetic markers of PTC survival, we developed a method to characterize CIN based on DNA methylation patterns of genes using the Student’s t statistics. We found that 1,239 genes were highly associated with CIN. With the use of the log-rank test, univariate Cox regression analyses, and the Kaplan-Meier method, DNA methylation patterns of UBAC2 and ELOVL2, highly correlated with CIN, provided potential prognostic values for PTC. The higher these two genes, risk scores were correlated with worse PTC patient prognoses. Moreover, the ELOVL2 risk score was significantly different in the four stages of PTC, suggesting that it was related to the progress of PTC. The DNA methylation pattern associated with CIN may therefore be a good predictor of PTC survival.
Collapse
Affiliation(s)
- Jun Han
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Meijun Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Qingxiao Fang
- Surgical Oncology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yanqing Zhang
- Hematological Department, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150001, China
| | - Jamaspishvili Esma
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hong Qiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
22
|
Down-regulated HSDL2 expression suppresses cell proliferation and promotes apoptosis in papillary thyroid carcinoma. Biosci Rep 2019; 39:BSR20190425. [PMID: 31101684 PMCID: PMC6549096 DOI: 10.1042/bsr20190425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/23/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Hydroxysteroid dehydrogenase like 2 (HSDL2) can regulate lipid metabolism and take part in cell proliferation. The purpose of the present study was to explore functional role of HSDL2 gene in PTC. The expression of HSDL2 protein in PTC tissues was estimated using immunohistochemistry analysis (IHC). HSDL2 mRNA level was detected through quantitative real-time polymerase chain reaction (qRT-PCR). Effects of HSDL2 gene on cell proliferation and apoptosis were assessed using the shRNA method for both in vitro and in vivo experiments. Potential target genes of HSDL2 were determined via bioinformatics analyses and Western blotting. HSDL2 was up-regulated in PTC tissues and cell lines compared with the controls (all P<0.05). Inhibiting HSDL expression could suppress PTC cell proliferation and cycle, and promote apoptosis in vitro. In vivo, the knockdown of HSDL2 gene could significantly suppress tumor growth (all P<0.05). Furthermore, AKT3, NFATc2 and PPP3CA genes might be potential targets of HSDL2 in PTC. HSDL2 expression was increased in PTC tissues and cells, which could promote tumor progression in vitro and in vivo.
Collapse
|
23
|
Tang X, Huang X, Wang D, Yan R, Lu F, Cheng C, Li Y, Xu J. Identifying gene modules of thyroid cancer associated with pathological stage by weighted gene co-expression network analysis. Gene 2019; 704:142-148. [PMID: 30965127 DOI: 10.1016/j.gene.2019.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
Abstract
Thyroid cancer is the most common type of endocrine tumor. The TNM classification remains a standard for treatment determination and predicting prognosis in thyroid cancer. The genes modules associated with the progression of papillary thyroid carcinoma (PTC) were not clear. We applied a weighted gene co-expression network analysis (WGCNA) and differential expression analysis to systematically identified co-expressed gene modules and hub genes associated with PTC progression based on The Cancer Genome Atlas (TCGA) PTC transcriptome sequencing data. An independent validation cohort, GSE27155, was used to evaluate the preservation of gene modules. We identified two co-expressed genes modules associated with progression of PTC. Enrichment analysis indicated that the two modules were enriched in angiogenesis and extracellular matrix organization. DCN, COL1A1, COL1A2, COL5A2 and COL3A1 were hub genes in the co-expressed network. We systematically identified co-expressed gene modules and hub genes associated with PTC progression for the first time, which provided insights into the mechanisms underlying PTC progression and some potential targets for the treatment of PTC.
Collapse
Affiliation(s)
- Xiaozhun Tang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Xiaoliang Huang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Duoping Wang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Ruogu Yan
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, PR China
| | - Fen Lu
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Chen Cheng
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Yulan Li
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Jian Xu
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
24
|
Shang J, Ding Q, Yuan S, Liu JX, Li F, Zhang H. Network Analyses of Integrated Differentially Expressed Genes in Papillary Thyroid Carcinoma to Identify Characteristic Genes. Genes (Basel) 2019; 10:E45. [PMID: 30646607 PMCID: PMC6356810 DOI: 10.3390/genes10010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Identifying characteristic genes of PTC are of great importance to reveal its potential genetic mechanisms. In this paper, we proposed a framework, as well as a measure named Normalized Centrality Measure (NCM), to identify characteristic genes of PTC. The framework consisted of four steps. First, both up-regulated genes and down-regulated genes, collectively called differentially expressed genes (DEGs), were screened and integrated together from four datasets, that is, GSE3467, GSE3678, GSE33630, and GSE58545; second, an interaction network of DEGs was constructed, where each node represented a gene and each edge represented an interaction between linking nodes; third, both traditional measures and the NCM measure were used to analyze the topological properties of each node in the network. Compared with traditional measures, more genes related to PTC were identified by the NCM measure; fourth, by mining the high-density subgraphs of this network and performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, several meaningful results were captured, most of which were demonstrated to be associated with PTC. The experimental results proved that this network framework and the NCM measure are useful for identifying more characteristic genes of PTC.
Collapse
Affiliation(s)
- Junliang Shang
- School of Statistics, Qufu Normal University, Qufu 273165, China.
- School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China.
| | - Qian Ding
- School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China.
| | - Shasha Yuan
- School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China.
| | - Jin-Xing Liu
- School of Information Science and Engineering, Qufu Normal University, Rizhao 276800, China.
| | - Feng Li
- School of Computer Science and Technology, Xidian University, Xi'an 710071, China.
| | - Honghai Zhang
- College of Life Science, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
25
|
Han J, Chen M, Wang Y, Gong B, Zhuang T, Liang L, Qiao H. Identification of Biomarkers Based on Differentially Expressed Genes in Papillary Thyroid Carcinoma. Sci Rep 2018; 8:9912. [PMID: 29967488 PMCID: PMC6028435 DOI: 10.1038/s41598-018-28299-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 05/29/2018] [Indexed: 12/29/2022] Open
Abstract
The incidence of papillary thyroid carcinoma (PTC) is increasing rapidly throughout the world. Hence, there is an urgent need for identifying more specific and sensitive biomarkers to explorate the pathogenesis of PTC. In this study, three pairs of stage I PTC tissues and matched normal adjacent tissues were sequenced by RNA-Seq, and 719 differentially expressed genes (DEGs) were screened. KEGG pathway enrichment analyses indicated that the DEGs were significantly enriched in 28 pathways. A total of 18 nodes consisting of 20 DEGs were identified in the top 10% of KEGG integrated networks. The functions of DEGs were further analysed by GO. The 13 selected genes were confirmed by qRT-PCR in 16 stage I PTC patients and by The Cancer Genome Atlas (TCGA) database. The relationship interactions between DEGs were analysed by protein-protein interaction networks and chromosome localizations. Finally, four newly discovered genes, COMP, COL3A1, ZAP70, and CD247, were found to be related with PTC clinical phenotypes, and were confirmed by Spearman’s correlation analyses in TCGA database. These four DEGs might be promising biomarkers for early-stage PTC, and provide an experimental foundation for further exploration of the pathogenesis of early-stage PTC.
Collapse
Affiliation(s)
- Jun Han
- Department of Endoerinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Meijun Chen
- Department of Endoerinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Boxuan Gong
- Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian, 116024, China
| | - Tianwei Zhuang
- Department of Endoerinology and Metabolism, Mu danjiang Medical University Affiliated Hongqi Hospital, Mu danjiang, 157000, China
| | - Lingyu Liang
- Internal medicine, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Hong Qiao
- Department of Endoerinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
26
|
Miyake M, Hori S, Morizawa Y, Tatsumi Y, Toritsuka M, Ohnishi S, Shimada K, Furuya H, Khadka VS, Deng Y, Ohnishi K, Iida K, Gotoh D, Nakai Y, Inoue T, Anai S, Torimoto K, Aoki K, Tanaka N, Konishi N, Fujimoto K. Collagen type IV alpha 1 (COL4A1) and collagen type XIII alpha 1 (COL13A1) produced in cancer cells promote tumor budding at the invasion front in human urothelial carcinoma of the bladder. Oncotarget 2018; 8:36099-36114. [PMID: 28415608 PMCID: PMC5482641 DOI: 10.18632/oncotarget.16432] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Current knowledge of the molecular mechanism driving tumor budding is limited. Here, we focused on elucidating the detailed mechanism underlying tumor budding in urothelial cancer of the bladder. Invasive urothelial cancer was pathologically classified into three groups as follows: nodular, trabecular, and infiltrative (tumor budding). Pathohistological analysis of the orthotopic tumor model revealed that human urothelial cancer cell lines MGH-U3, UM-UC-14, and UM-UC-3 displayed typical nodular, trabecular, and infiltrative patterns, respectively. Based on the results of comprehensive gene expression analysis using microarray (25 K Human Oligo chip), we identified two collagens, COL4A1 and COL13A1, which may contribute to the formation of the infiltrative pattern. Visualization of protein interaction networks revealed that proteins associated with connective tissue disorders, epithelial-mesenchymal transition, growth hormone, and estrogen were pivotal factors in tumor cells. To evaluate the invasion pattern of tumor cells in vitro, 3-D collective cell invasion assay using Matrigel was performed. Invadopodial formation was evaluated using Gelatin Invadopodia Assay. Knockdown of collagens with siRNA led to dramatic changes in invasion patterns and a decrease in invasion capability through decreased invadopodia. The in vivo orthotopic experimental model of bladder tumors showed that intravesical treatment with siRNA targeting COL4A1 and COL13A1 inhibited the formation of the infiltrative pattern. COL4A1 and COL13A1 production by cancer cells plays a pivotal role in tumor invasion through the induction of tumor budding. Blocking of these collagens may be an attractive therapeutic approach for treatment of human urothelial cancer of the bladder.
Collapse
Affiliation(s)
- Makito Miyake
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Yoshihiro Tatsumi
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan.,Department of Pathology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Sayuri Ohnishi
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Keiji Shimada
- Department of Pathology, Nara City Hospital, Nara-shi, Nara, 630-8305, Japan
| | - Hideki Furuya
- Clinical and Translational Research Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Vedbar S Khadka
- Bioinformatics Core, Department of Complementary and Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Youping Deng
- Bioinformatics Core, Department of Complementary and Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Kenta Ohnishi
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Kota Iida
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Daisuke Gotoh
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Takeshi Inoue
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Satoshi Anai
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Katsuya Aoki
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Noboru Konishi
- Department of Pathology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara-shi, Nara 634-8522, Japan
| |
Collapse
|
27
|
Werner TA, Forster CM, Dizdar L, Verde PE, Raba K, Schott M, Knoefel WT, Krieg A. CXCR4/CXCR7/CXCL12-Axis in Follicular Thyroid Carcinoma. J Cancer 2018; 9:929-940. [PMID: 29581772 PMCID: PMC5868160 DOI: 10.7150/jca.23042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/13/2018] [Indexed: 12/28/2022] Open
Abstract
Background: Follicular thyroid carcinoma's (FTC) often benign course is partially due to adjuvant radioactive iodine (RAI) treatment. However, once the tumour has spread and fails to retain RAI, the therapeutic options are limited and the outcome is poor. In this subset of patients, the identification of novel druggable biomarkers appears invaluable. Here, we investigated the stage dependent expression and functional role of the C-X-C chemokine receptors type 4 and 7 (CXCR4/7) in FTC. Methods: CXCR4/7 expression was examined in 44 FTC and corresponding non-neoplastic thyroid specimens as well as 10 FTC distant metastases and 18 follicular adenomas using tissue microarray technology. Expression levels were correlated with clinicopathological variables as well as overall and recurrence free survival. Changes regarding cell cycle activation, tumour cell invasiveness and mRNA expression of genes related to epithelial-mesenchymal transition (EMT) were investigated after treatment with recombinant human SDF1α/CXCL12 (rh-SDF1α) and CXCR4 antagonists AMD3100 and WZ811. Results: CXCR4/7 expression was associated with large tumour size, advanced UICC stage as well as shorter overall and recurrence free survival. CXCR4 was significantly higher expressed in distant metastases than in primary tumour cores. In addition, rh-SDF1α induced invasive growth, cell cycle activation and EMT, while CXCR4 antagonists significantly reduced FTC invasiveness in vitro. Conclusion: Here we provide first evidence of the biological importance of the CXCR4/CXCR7/CXCL12 axis in FTC. Our findings underscore the therapeutic potential of this chemokine receptor family in advanced FTC and offer new valuable insight into the oncogenesis of metastatic FTC.
Collapse
Affiliation(s)
- Thomas Artur Werner
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Christina Maria Forster
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Pablo Emilio Verde
- Coordination Centre for Clinical Trials, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Matthias Schott
- Division of Endocrinology, Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Wolfram Trudo Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| |
Collapse
|
28
|
Abstract
Acute leukemias are hematologic malignancies with aggressive behavior especially in adult population. With the introduction of new gene expression and sequencing technologies there have been advances in the knowledge of the genetic landscape of acute leukemias. A more detailed analysis allows for the identification of additional alterations in epigenetic regulators that have a profound impact in cellular biology without changes in DNA sequence. These epigenetic alterations disturb the physiological balance between gene activation and gene repression and contribute to aberrant gene expression, contributing significantly to the leukemic pathogenesis and maintenance. We review epigenetic changes in acute leukemia in relation to what is known about their mechanism of action, their prognostic role and their potential use as therapeutic targets, with important implications for precision medicine.
Collapse
|
29
|
Sindoni A, Fama' F, Rosano' A, Scisca C, Dionigi G, Koch CA, Gioffrè-Florio M, Benvenga S. Thyroid nodules coexisting with either cystic or solid breast nodules: a new clue for this association between nodules coming from ultrasonography. Gland Surg 2017; 6:630-637. [PMID: 29302478 DOI: 10.21037/gs.2017.09.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Thyroid and breast nodules (BNs) are common, their prevalence varying based mainly on the population (including age, residence in area of different iodine availability) studied and methods used. The coincidence of thyroid and breast diseases remains controversial and the majority of the studies evaluate the association between breast cancer and thyroid disorders. Here we describe our experience of such association in a non-oncological series. Methods Between the years 2000 and 2005, 3,372 patients from outpatient clinics were referred for thyroid ultrasonography (US) at our University Hospital; concurrent breast US in the 1,896 women revealed the presence of BNs in 127. The 127 women were divided into two groups, based on the cystic or solid nature of the BN(s). Results In 84/127 (66.1%) the single or multiple BN was/were cystic (group 1), while in the remaining 43 (33.9%) the single or multiple BN was/were solid [group 2; 19/43 had one thyroid nodule (TN) and the remaining 24/43 had ≥2 TNs]. When BN were cystic the coexisting TN(s) was/were more likely to be concordant in localization (i.e., right/right or left/left localization) whereas, when the BN were solid, the coexisting thyroid nodule/nodules was/were more likely to be discordant. In women with cystic BNs (CBNs), TNs were more frequently multiple (64% of cases), whereas in cases with solid BNs (SBNs), the frequency of single and multiple TNs was approximately the same. In patients with TNs/CBNs, TNs tend to be subcentimetric and localized in the inferior pole of either thyroid lobe. In patients with TNs/SBNs, TNs tend to be larger and localized in the middle of either thyroid lobe. Conclusions In women with BNs associated with TNs, there are interesting differences concerning TNs when patients are stratified based on the cystic or solid nature of the BN.
Collapse
Affiliation(s)
- Alessandro Sindoni
- Unit of Nuclear Medicine, IRCCS-CRO Aviano National Cancer Institute, Aviano, Pordenone, Italy
| | - Fausto Fama'
- Division of Endocrine Surgery, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University Hospital of Messina, Messina, Italy
| | - Antonio Rosano'
- Master Program on Childhood, Adolescence and Women's Endocrine Health, University of Messina, Messina, Italy
| | - Claudio Scisca
- Department of Clinical & Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Gianlorenzo Dionigi
- Division of Endocrine Surgery, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University Hospital of Messina, Messina, Italy
| | - Christian A Koch
- Division of Endocrinology, Endocrine Tumor Program, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Maria Gioffrè-Florio
- Division of Endocrine Surgery, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University Hospital of Messina, Messina, Italy
| | - Salvatore Benvenga
- Master Program on Childhood, Adolescence and Women's Endocrine Health, University of Messina, Messina, Italy.,Department of Clinical & Experimental Medicine, University Hospital of Messina, Messina, Italy.,Interdepartmental Program of Molecular & Clinical Endocrinology, and Women's Endocrine Health, University Hospital of Messina, Messina, Italy
| |
Collapse
|
30
|
Identification of core genes and outcome in gastric cancer using bioinformatics analysis. Oncotarget 2017; 8:70271-70280. [PMID: 29050278 PMCID: PMC5642553 DOI: 10.18632/oncotarget.20082] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is a common malignant neoplasm of gastrointestinal tract. We chose gene expression profile of GSE54129 from GEO database aiming to find key genes during the occurrence and development of GC. 132 samples, including 111 cancer and 21 normal gastric mucosa epitheliums, were included in this analysis. Differentially expressed genes (DEGs) between GC patients and health people were picked out using GEO2R tool, then we performed gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using The Database for Annotation, Visualization and Integrated Discovery (DAVID). Moreover, Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING) and Molecular Complex Detection (MCODE) plug-in was utilized to visualize protein-protein interaction (PPI) of these DEGs. There were 971 DEGs, including 468 up-regulated genes enriched in focal adhesion, ECM-receptor interaction and PI3K-Akt signaling pathway, while 503 down-regulated genes enriched in metabolism of xenbiotics and drug by cytochrome P450, chemical carcinogenesis, retinol metabolism and gastric acid secretion. Three important modules were detected from PPI network using MCODE software. Besides, Fifteen hub genes with high degree of connectivity were selected, including BGN, MMP2, COL1A1, and FN1. Moreover, the Kaplan–Meier analysis for overall survival and correlation analysis were applied among those genes. In conclusion, this bioinformatics analysis demonstrated that DEGs and hub genes, such as BGN, might promote the development of gastric cancer, especially in tumor metastasis. In addition, it could be used as a new biomarker for diagnosis and to guide the combination medicine of gastric cancer.
Collapse
|
31
|
Zhang H, Yang L, Liu Z, Liu C, Teng X, Zhang L, Yin B, Liu Z. iTRAQ-coupled 2D LC/MS-MS analysis of CXCR7-transfected papillary thyroid carcinoma cells: A new insight into CXCR7 regulation of papillary thyroid carcinoma progression and identification of potential biomarkers. Oncol Lett 2017; 14:3734-3740. [PMID: 28927140 DOI: 10.3892/ol.2017.6574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have demonstrated that C-X-C chemokine receptor type 7 (CXCR7) regulates papillary thyroid carcinoma (PTC) growth and metastasis; however, the molecular mechanisms underlying this regulation remain unclear. In the present study, the protein expression profiles of the PTC cell line GLAG-66 and GLAG-66 cells stably transfected with CXCR7 cDNA were analyzed and compared using isobaric tag for relative and absolute quantification-coupled two-dimensional liquid chromatography-tandem mass spectrometry. In total, 2,983 proteins were quantified and 130 proteins were identified to be differentially expressed, of which 87 were significantly upregulated and 43 were significantly downregulated. Gene Ontology enrichment analysis revealed that the differentially expressed proteins were primarily enriched in a number of biological processes, including metabolism-related processes, cellular component organization, transport, cellular development process and the immune response. The differentially expressed proteins identified included fibronectin 1, basigin, periplakin and serpin family B member 5, all of which are associated with cellular junctions and cancer progression. In addition, transgelin-2 and AHNAK nucleoprotein 2 were identified as potential novel biomarkers for the prognosis and treatment of PTC.
Collapse
Affiliation(s)
- Hengwei Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lei Yang
- Department of General Surgery, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhangyi Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Chenxi Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xuyong Teng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lei Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bo Yin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhen Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
32
|
CXCL12 methylation-mediated epigenetic regulation of gene expression in papillary thyroid carcinoma. Sci Rep 2017; 7:44033. [PMID: 28272462 PMCID: PMC5356381 DOI: 10.1038/srep44033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/31/2017] [Indexed: 01/13/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, and its incidence rate is rapidly growing. It is necessary to understand the pathogenesis of PTC to develop effective diagnosis methods. Promoter methylation has been recognized to contribute to the alterations in gene expression observed in tumorigenesis. Our RNA-seq data identified 1191 differentially expressed mRNAs and 147 differentially expressed lncRNAs in PTC. Next, promoter methylation of these genes was detected by reduced representation bisulfite sequencing (RRBS) technology and comprehensively analyzed to identify differential methylation. In total, 14 genes (13 mRNAs and 1 lncRNA), in which methylation was intimately involved in regulating gene expression, were proposed as novel diagnostic biomarkers. To gain insights into the relationships among these 14 genes, a core co-function network was constructed based on co-expression, co-function and co-methylation data. Notably, CXCL12 was identified as an essential gene in the network that was closely connected with the other genes. These data suggested that CXCL12 down-regulation in PTC may be caused by promoter hypermethylation. Our study was the first to perform an RRBS analysis for PTC and suggested that CXCL12 may contribute to PTC development by methylation-mediated epigenetic regulation of gene expression.
Collapse
|
33
|
Qu T, Li YP, Li XH, Chen Y. Identification of potential biomarkers and drugs for papillary thyroid cancer based on gene expression profile analysis. Mol Med Rep 2016; 14:5041-5048. [PMID: 27779685 PMCID: PMC5355717 DOI: 10.3892/mmr.2016.5855] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
The present study aimed to systematically examine the molecular mechanisms of papillary thyroid cancer (PTC), and identify potential biomarkers and drugs for the treatment of PTC. Two microarray data sets (GSE3467 and GSE3678), containing 16 PTC samples and 16 paired normal samples, were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified using the Linear Models for Microarray Analysis package. Subsequently, the common DEGs were screened for functional and pathway enrichment analysis using the Database for Annotation Visualization and Integrated Discovery. The representative interaction subnetwork was further derived using Molecular Complex Detection software. In addition, the potential drugs for the hub DEGs in the subnetwork were screened from DrugBank and the potential drug-like ligands, which interacted with genes, were selected using MTiOpenScreen. A total of 167 common DEGs, including 77 upregulated and 90 downregulated DEGs, were screened. The common DEGs were associated with the functions of plasma membrane, extracellular matrix, response to steroid hormone stimulus and cell adhesion, and the pathways of tyrosine metabolism and cell adhesion molecules were significantly enriched. A total of eight common DEGs (MET, SERPINA1, LGALS3, FN1, TNFRSF11B, LAMB3 and COL13A1) were involved in the subnetwork. The two drugs, lanoteplase and ocriplasmin, and four drugs, β-mercaptoethanol, recombinant α 1-antitrypsin, PPL-100 and API, were found for FN1 and SERPINA1, respectively. The common DEGs identified may be potential biomarkers for PCT. FN1 and SERPINA1 may be involved in PTC by regulating epithelial-to-mesenchymal transition and responding to steroid hormone stimuli, respectively. Ocriplasmin, β-mercaptoethanol and recombinant α 1-antitrypsin may be potential drugs for the treatment of PTC.
Collapse
Affiliation(s)
- Ting Qu
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan-Ping Li
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Hong Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yan Chen
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
34
|
Xu J, Li Z, Su Q, Zhao J, Ma J. Embryonic develop-associated gene 1 is overexpressed and acts as a tumor promoter in thyroid carcinoma. Biomed Pharmacother 2016; 81:86-92. [DOI: 10.1016/j.biopha.2016.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/15/2022] Open
|
35
|
Tang J, Zhu Y, Xie K, Zhang X, Zhi X, Wang W, Li Z, Zhang Q, Wang L, Wang J, Xu Z. The role of the AMOP domain in MUC4/Y-promoted tumour angiogenesis and metastasis in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:91. [PMID: 27287498 PMCID: PMC4902942 DOI: 10.1186/s13046-016-0369-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND MUC4 is a high molecular weight membrane protein that is overexpressed in pancreatic cancer (PC) and is associated with the development and progression of this disease. However, the exact mechanisms through which MUC4 domains promote these biological processes have rarely been studied, partly because of its high molecular weight, difficulty to overexpress it. Here, we use MUC4/Y, one of the MUC4 transcript variants, as a model molecule to investigate the AMOP-domain of MUC4(MUC/Y). METHODS We used cell proliferation, migration, invasion and tube formation assays in vitro to explore the abilities of AMOP domain in PC. In vivo, the matrigel plug assay, orthotopic implantation and Kaplan-Meier survival curves were used to check the results we observed in vitro. Finally, we discovered the underlying mechanism through western blot and immunofluorescence. RESULTS We found that MUC4/Y overexpression could enhance the angiogenic and metastatic properties of PC cells, both in vitro and in vivo. However, the deletion of AMOP domain could cutback these phenomena. Additionally, Kaplan-Meier survival curves showed that mice injected with MUC4/Y overexpressed cells had shorter survival time, compared with empty-vector-transfected cells (MUC4/Y-EV), or cells expressing MUC4/Y without the AMOP domain (MUC4/Y-AMOP(△)). Our data also showed that overexpression of MUC4/Y could activate NOTCH3 signaling, increasing the expression of downstream genes: VEGF-A, MMP-9 and ANG-2. CONCLUSIONS The AMOP domain had an important role in MUC4/Y (MUC4)-mediated tumour angiogenesis and metastasis of PC cells; and the NOTCH3 signaling was involved. These findings provided new insights into PC therapies. Our study also supplies a new method to study other high molecular membrane proteins.
Collapse
Affiliation(s)
- Jie Tang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pediatric Surgery, Nanjing Children's Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Zhu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kunling Xie
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, the People's Hospital of Bozhou, Bozhou, Anhui, China
| | - Xiaoyu Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, Huai'an People's Hospital, Xuzhou Medical College, Huai'an, Jiangsu, China
| | - Xiaofei Zhi
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weizhi Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qun Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjun Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiwei Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
36
|
Wang J, Jiang W, Yan Y, Chen C, Yu Y, Wang B, Zhao H. Knockdown of EWSR1/FLI1 expression alters the transcriptome of Ewing sarcoma cells in vitro. J Bone Oncol 2016; 5:153-158. [PMID: 28008375 PMCID: PMC5154700 DOI: 10.1016/j.jbo.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 12/22/2022] Open
Abstract
Ewing sarcoma breakpoint region 1 (EWSR1) fusion with Friend leukemia integration 1 transcription factor (FLI1) induced by a translocation of chromosome 11 with 22 contributes to Ewing sarcoma development. To date, the precise molecular mechanisms about EWSR1/FLI1 involving in Ewing sarcoma development remains to be defined. This study explored the potential critical gene targets of EWSR1/FLI1 knockdown in Ewing sarcoma cells on the gene expression profile based on online dataset, performed Limma algorithm for differentially expressed genes identification, constructed the transcriptional factor (TF)-gene regulatory network based on integrate transcriptional regulatory element database (TRED). The data showed up- and down-regulation of differentially expressed genes over time and peaked at 72 h after EWSR1/FLI1 knockdown in Ewing sarcoma cells. SMAD3 were up-regulated and FLI1, MYB, E2F1, ETS2, WT1 were down-regulated with more than half of their targets were down-regulated after EWSR1/FLI1 knockdown. The Gene Ontology (GO) and pathway annotation of these differentially expressed genes showed a consistent trend in each group of samples. Totally, there were 355 differentially expressed genes occurring in all five comparison groups of different time points, in which 39 genes constructed a dysregulated TF-gene network in Ewing sarcoma cell line A673 after EWSR1/FLI1 knockdown. These data demonstrated that knockdown of EWSR1/FLI1 expression led to transcriptome changes in Ewing sarcoma cells and that Ewing sarcoma development and progression caused by altered EWSR1/FLI1 expression may be associated with more complex transcriptome changes.
Collapse
Affiliation(s)
- Jihan Wang
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Wenyan Jiang
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Yuzhu Yan
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Chu Chen
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Yan Yu
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Biao Wang
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Heping Zhao
- Clinical Laboratory of Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| |
Collapse
|
37
|
Cruz-Rodriguez N, Combita AL, Enciso LJ, Quijano SM, Pinzon PL, Lozano OC, Castillo JS, Li L, Bareño J, Cardozo C, Solano J, Herrera MV, Cudris J, Zabaleta J. High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-acute lymphoblastic leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:64. [PMID: 27044543 PMCID: PMC4820984 DOI: 10.1186/s13046-016-0333-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
Abstract
Background B-Acute lymphoblastic leukemia (B-ALL) represents a hematologic malignancy with poor clinical outcome and low survival rates in adult patients. Remission rates in Hispanic population are almost 30 % lower and Overall Survival (OS) nearly two years inferior than those reported in other ethnic groups. Only 61 % of Colombian adult patients with ALL achieve complete remission (CR), median overall survival is 11.3 months and event-free survival (EFS) is 7.34 months. Identification of prognostic factors is crucial for the application of proper treatment strategies and subsequently for successful outcome. Our goal was to identify a gene expression signature that might correlate with response to therapy and evaluate the utility of these as prognostic tool in hispanic patients. Methods We included 43 adult patients newly diagnosed with B-ALL. We used microarray analysis in order to identify genes that distinguish poor from good response to treatment using differential gene expression analysis. The expression profile was validated by real-time PCR (RT-PCT). Results We identified 442 differentially expressed genes between responders and non-responders to induction treatment. Hierarchical analysis according to the expression of a 7-gene signature revealed 2 subsets of patients that differed in their clinical characteristics and outcome. Conclusions Our study suggests that response to induction treatment and clinical outcome of Hispanic patients can be predicted from the onset of the disease and that gene expression profiles can be used to stratify patient risk adequately and accurately. The present study represents the first that shows the gene expression profiling of B-ALL Colombian adults and its relevance for stratification in the early course of disease. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0333-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nataly Cruz-Rodriguez
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia.,Group of Investigation in Biology of Cancer, Instituto Nacional de Cancerología, Calle 1 # 9-85, Bogotá, Colombia.,Programa de Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alba L Combita
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia. .,Group of Investigation in Biology of Cancer, Instituto Nacional de Cancerología, Calle 1 # 9-85, Bogotá, Colombia. .,Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Leonardo J Enciso
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia.,Grupo de Hemato Oncología, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Sandra M Quijano
- Grupo de Inmunobiología y Biología Celular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Paula L Pinzon
- Group of Investigation in Biology of Cancer, Instituto Nacional de Cancerología, Calle 1 # 9-85, Bogotá, Colombia
| | - Olga C Lozano
- Group of Investigation in Biology of Cancer, Instituto Nacional de Cancerología, Calle 1 # 9-85, Bogotá, Colombia
| | - Juan S Castillo
- Programa de Investigación e Innovación en Leucemias Agudas y Crónicas (PILAC), Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Li Li
- Stanley S. Scott Cancer Center, Center Louisiana State University Health Sciences Center Louisiana Cancer Research Center, 1700 Tulane Ave, Room 909, New Orleans, LA, USA
| | | | | | - Julio Solano
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | | | | | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, Center Louisiana State University Health Sciences Center Louisiana Cancer Research Center, 1700 Tulane Ave, Room 909, New Orleans, LA, USA. .,Department of Pediatrics, Center Louisiana State University Health Sciences Center Louisiana Cancer Research Center, 1700 Tulane Ave, Room 909, New Orleans, LA, USA.
| |
Collapse
|
38
|
RNA sequencing identifies crucial genes in papillary thyroid carcinoma (PTC) progression. Exp Mol Pathol 2015; 100:151-9. [PMID: 26708423 DOI: 10.1016/j.yexmp.2015.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 11/21/2022]
Abstract
PURPOSE The study aims to uncover molecular mechanisms of PTC (papillary thyroid carcinoma) progression and provide therapeutic biomarkers. METHODS The paired tumor and control tissues were obtained from 5 PTC patients. RNA was extracted and cDNA libraries were constructed. RNA-sequencing (RNA-seq) was performed on the Illumina HiSeq2000 platform using paired-end method. After preprocessing of the RNA-seq data, gene expression value was calculated by RPKM. Then the differentially expressed genes (DEGs) were identified with edgeR. Functional enrichment and protein-protein interaction (PPI) network analyses were conducted for the DEGs. Module analysis of the PPI network was also performed. Transcription factors (TFs) of DEGs were predicted. RESULTS A cohort of 496 up-regulated DEGs mainly correlating with the ECM degradation pathways, and 440 down-regulated DEGs predominantly enriching in transmembrane transport process were identified. Hub nodes in the PPI network were RRM2 and a set of collagens (COL1A1, COL3A1 and COL5A1), which were also remarkable in module 3 and module 5, respectively. Genes in module 3 were associated with cell cycle pathways, while in module 5 were related to ECM degradation pathways. PLAU, PSG1 and EGR2 were the crucial TFs with higher transcriptional activity in PTC than in control. CONCLUSION Several genes including COL1A1, COL3A1, RRM2, PLAU, and EGR2 might be used as biomarkers of PTC therapy. Among them, COL1A1 and COL3A1 might exert their functions via involving in ECM degradation pathway, while RRM2 through cell cycle pathway. PLAU might be an active TF, whereas EGR2 might be a tumor suppressor.
Collapse
|
39
|
Zhao S, Wang Q, Li Z, Ma X, Wu L, Ji H, Qin G. LDOC1 inhibits proliferation and promotes apoptosis by repressing NF-κB activation in papillary thyroid carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:146. [PMID: 26637328 PMCID: PMC4670541 DOI: 10.1186/s13046-015-0265-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/01/2015] [Indexed: 02/01/2023]
Abstract
Background The incidence of thyroid cancer has progressively increased over the past few decades, and the most frequent types of this cancer are papillary thyroid carcinoma (PTC) and small primary tumors. In PTC, oncogene activation is known to occur at a high frequency. However, the potential roles of tumor suppressor genes in thyroid carcinogenesis remain unclear. LDOC1 was first identified as a gene encoding a leucine zipper protein whose expression was decreased in a series of pancreatic and gastric cancer cell lines. In this study, we aimed to determine the status of LDOC1 in PTC and identify its mechanistic role in PTC pathogenesis. Methods LDOC1 expression was evaluated in fresh samples and stored specimens of human PTC and contralateral normal tissues by performing quantitative reverse transcription-PCR and immunohistochemical staining. The correlation to nuclear p65 content in the stored specimens was analyzed. Moreover, the basal level of LDOC1 in two human PTC-derived cell lines (BCPAP and TPC-1) compared with normal thyroid tissue was determined. Human LDOC1 cDNA was inserted into a lentiviral vector and transduced into TPC-1 cells. TPC-1 cells overexpressing LDOC1/GFP (Lv-LDOC1) or negative control GFP (Lv-NC) were stimulated with TNFα or recombinant TGF-β1, and then cell proliferation, cell cycle distribution, and apoptosis were assessed. Western blotting was used to examine the expression of p65, IκBα, c-Myc, Bax, and Bcl-xL, and a luciferase reporter assay was used to measure NF-κB activity stimulated by TNFα. Statistical significance was determined using Student’s t tests or ANOVA and Newman-Keuls multiple comparison tests. Pearson chi-square test was used to analyze possible associations. Results LDOC1 expression was significantly downregulated in PTC specimens as compared with the expression in normal thyroid tissues, and this downregulation was associated with an increase in tumor size (P < 0.05). There is a correlation between LDOC1 and nuclear P65 expression in human PTC tissues (P < 0.01). Lentivirus-mediated restoration of LDOC1 expression in TPC-1 cells characterized by low level of LDOC1 expression suppressed proliferation and induced apoptosis by inhibiting NF-κB activation, and LDOC1-overexpressing TPC-1 cells recovered responsiveness to TGF-β1 antiproliferative signaling. Conclusions LDOC1 might function as a tumor suppressor gene in PTC by inhibiting NF-κΒ signaling, and thus might represent a promising therapeutic target in patients with PTC.
Collapse
Affiliation(s)
- Shuiying Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China. .,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Qingzhu Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhizhen Li
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China. .,Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
40
|
Ma Y, Zhu B, Liu X, Yu H, Yong L, Liu X, Shao J, Liu Z. Inhibition of oleandrin on the proliferation show and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:115. [PMID: 26444270 PMCID: PMC4596494 DOI: 10.1186/s13046-015-0232-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/30/2015] [Indexed: 01/02/2023]
Abstract
Background Osteosarcoma (OS) is a high-grade bone sarcoma with early metastasis potential, and the clinical chemotherapy drugs that are currently used for its treatment have some limitations. Recently, several studies have reported the selective antitumor effect of oleandrin on various tumor cells. In this study, we aimed to evaluate the effects and underlying mechanisms of oleandrin on OS cells. Methods The effect of oleandrin on the proliferation, morphology, and apoptosis of U2OS and SaOS-2 cells were analyzed in vitro. The activity of the Wnt/β-catenin signaling pathway was determined using a dual luciferase assay. Semi-quantitative RT-PCR and western blot assays were performed to evaluate the mRNA and total protein expression of the downstream target genes. Changes of β-catenin in intracellular localization were also explored using a western blot after separating the nucleus and cytoplasm proteins. The MMP-2 and MMP-9 enzymatic activities were determined using gelatin zymography. Results Oleandrin significantly inhibited the proliferation and invasion of OS cells in vitro, and induced their apoptosis. After treatment with oleandrin, the TOP/FOP flash ratio in OS cells was noticeably decreased, which indicated that the Wnt/β-catenin signaling pathway was repressed. The expression of related Wnt target genes and total β-catenin was downregulated, and a reduced nuclear β-catenin level by oleandrin was observed as well. In addition, oleandrin suppressed the activities of MMP-2 and MMP-9. Conclusions Oleandrin, in vitro, exerted a strong antitumor effect on human OS cells by suppressing the Wnt/β-catenin signaling pathway, which interfered with the proliferation and invasion of OS cells, as well as induced cells apoptosis. Moreover, the expression and activities of MMP-2 and MMP-9 were downregulated by oleandrin, which contributed to the cells’ lower invasiveness.
Collapse
Affiliation(s)
- Yunlong Ma
- Department of Orthopaedics, Peking University Third Hospital, North Garden Street No. 49, Haidian District, Beijing, 100191, People's Republic of China.
| | - Bin Zhu
- Department of Orthopaedics, Peking University Third Hospital, North Garden Street No. 49, Haidian District, Beijing, 100191, People's Republic of China.
| | - Xiaoguang Liu
- Department of Orthopaedics, Peking University Third Hospital, North Garden Street No. 49, Haidian District, Beijing, 100191, People's Republic of China.
| | - Huilei Yu
- Department of Orthopaedics, Peking University Third Hospital, North Garden Street No. 49, Haidian District, Beijing, 100191, People's Republic of China.
| | - Lei Yong
- Department of Orthopaedics, Peking University Third Hospital, North Garden Street No. 49, Haidian District, Beijing, 100191, People's Republic of China.
| | - Xiao Liu
- Department of Orthopaedics, Peking University Third Hospital, North Garden Street No. 49, Haidian District, Beijing, 100191, People's Republic of China.
| | - Jia Shao
- Department of Orthopaedics, Peking University Third Hospital, North Garden Street No. 49, Haidian District, Beijing, 100191, People's Republic of China.
| | - Zhongjun Liu
- Department of Orthopaedics, Peking University Third Hospital, North Garden Street No. 49, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|