1
|
Yildiz B, Demirel R, Staudacher JJ, Beseren H, Yildiz G, Akpinar AE, Park SH, Ozden O. SIRT2 deacetylates and decreases the expression of FOXM1 in colon cancer. J Biochem Mol Toxicol 2024; 38:e70018. [PMID: 39425454 DOI: 10.1002/jbt.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
New FOXM1-specific inhibitors with the potential to be used for therapeutic purposes are under extensive research. We hypothesized that deacetylation of FOXM1 would decrease protein expression, thus providing novel therapeutic management of colon cancers. Immunostaining was used to determine FOXM1 and SIRT2 expressions in human colon cancer tissue microarrays (n = 90) from Stage I to Stage IV. SIRT2-FOXM1 interaction was evaluated in colon cancer cells using immunoprecipitation. Deacetylation of FOXM1 via SIRT2 was determined using in vitro deacetylation assays. FOXM1 could be hyper-acetylated when p300 and pCAF histone acetyltransferases were administered alongside deacetylase inhibitors. We detected that SIRT2 and FOXM1 physically interacted, and SIRT2 deacetylated FOXM1 in vitro. SIRT2 overexpression led to a significant decrease while knockdown of SIRT2 increased the FOXM1 expression in HCT116 human colon carcinoma cells. In the analysis of 90 human colorectal cancer samples, high SIRT2 expression was observed in about 49% of colorectal cancer, intermediate in 29%, and low or no staining in 22%. Strong SIRT2 expression was found to be negatively associated with the FOXM1 staining in our clinical cohort. This study reveals a molecular interaction and association between SIRT2 and FOXM1 expression in colon cancer cell lines and human colon cancer samples, and suggests that targeting SIRT2 activity using small molecule modulators may be a promising therapeutic approach for colorectal cancer.
Collapse
Affiliation(s)
- Baris Yildiz
- Department of Physiology, Institute of Health Sciences, Kafkas University, Kars, Türkiye
| | - Ramazan Demirel
- Department of Bioengineering, Institute of Natural and Applied Sciences, Kafkas University, Kars, Türkiye
| | - Jonas J Staudacher
- Medical Department, Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Hatice Beseren
- Department of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, Kars, Türkiye
| | - Gulden Yildiz
- Department of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, Kars, Türkiye
| | - Ali Emre Akpinar
- Department of Molecular Biology and Genetic, Faculty of Science, Cumhuriyet University, Sivas, Türkiye
| | - Seong-Hoon Park
- Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Ozkan Ozden
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Türkiye
| |
Collapse
|
2
|
Silencing PFKP restrains the stemness of hepatocellular carcinoma cells. Exp Cell Res 2021; 407:112789. [PMID: 34418458 DOI: 10.1016/j.yexcr.2021.112789] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/22/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycolysis reprogramming is deeply involved in the progression of hepatocellular carcinoma (HCC), in which HCC cells with stemness traits play important roles as well. Thus, whether platelet isoform of phosphofructokinase 1 (PFKP), a rate-limiting enzyme in glycolysis, contributes to the maintenance of stemness of HCC cells is worth investigation. METHODS PFKP levels were compared between human hepatocellular carcinoma and adjacent normal tissues by Western blotting and immunohistochemistry. The relationship between PFKP expression and clinic pathological features was also analyzed. Furthermore, the colony formation capabilities and the levels of stemness markers (ALDH1, CD44, CD133, Sox-2) as well as β-catenin were compared between HCC cells either undergoing PFKP silencing or overexpression. RESULTS PFKP levels were higher in HCC as compared to normal hepatic tissues. Silencing PFKP decreased HCC proliferation, colony formation capabilities, and levels of stemness markers and β-catenin; whereas overexpressing PFKP demonstrated the opposite effects. CONCLUSION PFKP promoted HCC proliferation and contributed to the maintenance of HCC stemness. Silencing PFKP could restrain the stemness of HCC, suggesting that PFKP may be a potential therapeutic target for HCC treatment.
Collapse
|
3
|
Yang K, Jiang L, Hu Y, Yu J, Chen H, Yao Y, Zhu X. Correction to: Short hairpin RNA- mediated gene knockdown of FOXM1 inhibits the proliferation and metastasis of human colon cancer cells through reversal of epithelial-to-mesenchymal transformation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:130. [PMID: 33858498 PMCID: PMC8050900 DOI: 10.1186/s13046-021-01918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- KanKan Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - LinHua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - You Hu
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - Jing Yu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - HenFeng Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - YiZhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
| | - XinGuo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
4
|
Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications. Oncogene 2020; 40:1555-1569. [PMID: 33323976 DOI: 10.1038/s41388-020-01587-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a major cause of cancer mortality worldwide, however, the molecular mechanisms underlying the pathogenesis of CRC remain largely unclear. Recent studies have revealed crucial roles of transcription factors in CRC development. Transcription factors essential for the regulation of gene expression by interacting with transcription corepressor/enhancer complexes and they orchestrate downstream signal transduction. Deregulation of transcription factors is a frequent occurrence in CRC, and the accompanying drastic changes in gene expression profiles play fundamental roles in multistep process of tumorigenesis, from cellular transformation, disease progression to metastatic disease. Herein, we summarized current and emerging key transcription factors that participate in CRC tumorigenesis, and highlighted their oncogenic or tumor suppressive functions. Moreover, we presented critical transcription factors of CRC, emphasized the major molecular mechanisms underlying their effect on signal cascades associated with tumorigenesis, and summarized of their potential as molecular biomarkers for CRC prognosis therapeutic response, as well as drug targets for CRC treatment. A better understanding of transcription factors involved in the development of CRC will provide new insights into the pathological mechanisms and reveal novel prognostic biomarkers and therapeutic strategies for CRC.
Collapse
|
5
|
Yang H, Lin J, Jiang J, Ji J, Wang C, Zhang J. miR-20b-5p functions as tumor suppressor microRNA by targeting cyclinD1 in colon cancer. Cell Cycle 2020; 19:2939-2954. [PMID: 33044899 DOI: 10.1080/15384101.2020.1829824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA functions as an oncogenic regulator or tumor suppressor in various human tumors. Although bioinformatics analysis suggested that miRNA-20b-5p may be associated with the tumorigenesis, its role in colon cancer remains elusive. To investigate the role of miRNA-20b-5p, HCT116 cell, a human colon cancer cell line used in therapeutic research and drug screenings, was chosen as a model system for our in vitro studies. We first carried out bioinformatics and microarray analysis. To gain further mechanism insight, flow cytometry was performed to determine cell apoptosis and cell cycle, and western blot or immunohistochemistry were employed to check the expression of CCND1/CDK/FOXM1 axis in HCT116 cells. In addition, wound-healing migration assay and transwell assay were conducted to uncover the effect of miR-20b-5p on tumor migration and invasion. Finally, we examined the role of miR-20b-5p by subcutaneous xenograft mouse models. Our data have shown that miRNA-20b-5p inhibited the cell cycle, migration, and invasion in HCT116 cells, but had no effect on cell apoptosis. CyclinD1 (CCND1) was identified as a direct target of miR-20b-5p. Overexpression of miRNA-20b-5p downregulated CCND1 level in HCT-116 cells. Mechanically, the inhibition of cell cycle, migration, and invasion of CC cells mediated by miRNA-20b-5p are through regulating the CCND1/CDK4/FOXM1 axis. Furthermore, miRNA-20b-5p inhibited the tumorigenesis in Balb/c nude mice CC xenograft models. Our data demonstrated that miR-20b-5p may serve as a tumor suppressor in colon cancer by negatively regulating CCND1, implying that miR-20b-5p could be a potential therapeutic target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Jian Lin
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology , Shanghai, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| |
Collapse
|
6
|
Dey P, Wang A, Ziegler Y, Kim SH, El-Ashry D, Katzenellenbogen JA, Katzenellenbogen BS. Suppression of Tumor Growth, Metastasis, and Signaling Pathways by Reducing FOXM1 Activity in Triple Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092677. [PMID: 32961773 PMCID: PMC7565743 DOI: 10.3390/cancers12092677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Triple negative breast cancer is an aggressive subtype of breast cancer that frequently metastasizes. Because the transcription factor FOXM1 is highly upregulated in triple negative breast cancer and controls many cell activities that lead to cancer progression and metastasis, we sought to determine if FOXM1 inhibitory compounds could effectively suppress the invasiveness and progression of triple negative breast cancer cells and tumors. Our findings show that these compounds inhibit cell motility, invasiveness, and the expression of important proteins associated with epithelial to mesenchymal transition. These compounds also suppressed the proliferation and metastatic outgrowth of triple negative breast tumors. Thus, these findings highlight the crucial role of FOXM1 in promoting the progression and metastasis of these cancers, and suggest that FOXM1 inhibitory compounds may have therapeutic potential and prove beneficial in intervention against triple negative breast cancer. Abstract Metastasis-related complications account for the overwhelming majority of breast cancer mortalities. Triple negative breast cancer (TNBC), the most aggressive breast cancer subtype, has a high propensity to metastasize to distant organs, leading to poor patient survival. The forkhead transcription factor, FOXM1, is especially upregulated and overexpressed in TNBC and is known to regulate multiple signaling pathways that control many key cancer properties, including proliferation, invasiveness, stem cell renewal, and therapy resistance, making FOXM1 a critical therapeutic target for TNBC. In this study, we test the effectiveness of a novel class of 1,1-diarylethylene FOXM1 inhibitory compounds in suppressing TNBC cell migration, invasion, and metastasis using in vitro cell culture and in vivo tumor models. We show that these compounds inhibit the motility and invasiveness of TNBC MDA-MB-231 and DT28 cells, along with reducing the expression of important epithelial to mesenchymal transition (EMT) associated genes. Further, orthotopic tumor studies in NOD-SCID-gamma (NSG) mice demonstrate that these compounds reduce FOXM1 expression and suppress TNBC tumor growth as well as distant metastasis. Gene expression and protein analyses confirm the decreased levels of EMT factors and FOXM1-regulated target genes in tumors and metastatic lesions in the inhibitor-treated animals. The findings suggest that these FOXM1 suppressive compounds may have therapeutic potential in treating triple negative breast cancer, with the aim of reducing tumor progression and metastatic outgrowth.
Collapse
Affiliation(s)
- Parama Dey
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (P.D.); (A.W.); (Y.Z.)
| | - Alexander Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (P.D.); (A.W.); (Y.Z.)
| | - Yvonne Ziegler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (P.D.); (A.W.); (Y.Z.)
| | - Sung Hoon Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (S.H.K.); (J.A.K.)
| | - Dorraya El-Ashry
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - John A. Katzenellenbogen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (S.H.K.); (J.A.K.)
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Benita S. Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (P.D.); (A.W.); (Y.Z.)
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-217-333-9769
| |
Collapse
|
7
|
Shao X, Cheng Z, Xu M, Mao J, Wang J, Zhou C. Prognosis, Significance and Positive Correlation of Rab1A and p-S6K/Gli1 Expression in Gastric Cancer. Anticancer Agents Med Chem 2020; 19:1359-1367. [PMID: 31038077 DOI: 10.2174/1871520619666190416110851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/23/2018] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Gastric Cancer (GC) is a frequently common malignancy. Recent studies have reported Rab1A as an activator of mTORC1, and the mTOR1 pathway is involved in regulating Gli1 expression in several cancers. Only a few studies have been performed to explore the relationship between Rab1A and p-S6K/Gli1in GC. METHODS Immunohistochemistry (IHC) was performed to explore the association of Rab1A/p-S6K/Gli1 expression and prognosis in 117 GC tissue samples and adjacent normal tissues. RESULTS Our results indicated that Rab1A/p-S6K/Gli1 was significantly overexpressed in GC tissues. High expression of Rab1A was closely related to the tumor size and the depth of tumor invasion. In addition, Rab1A expression was closely related with p-S6K/Gli1 expression in GC, and high level of Rab1A/p-S6K/Gli1 caused worse prognosis of GC patients. The univariate and multivariate analysis indicated that the expression of Rab1A was an independent prognostic factor. Moreover, both high Rab1A and p-S6K expression led to a worse prognosis when compared to a single positive expression as well as both high Rab1A/Gli1 expression also led to a worse prognosis than the single positive expression of Rab1A/Gli1. Strikingly, the overexpression of p-S6K also led to a worse prognosis in Rab1A positive patients, as did Gli1. CONCLUSION Our results indicate that Rab1A/mTOR/S6K/Gli1 axis played a crucial role in GC, which may provide a novel field on targeted therapy of GC, especially for mTORC1-targeted therapy-resistant cancers.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Jiading Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215006, China
| |
Collapse
|
8
|
Cheng L, Wang Q, Tao X, Qin Y, Wu Q, Zheng D, Chai D, Zhang Y, Lu D, Ci H, Wang Z, Ma J, Wang D, Cheng Z, Wu S, Tao Y. FOXM 1 induces Vasculogenic mimicry in esophageal cancer through β-catenin /Tcf4 signaling. Diagn Pathol 2020; 15:14. [PMID: 32035486 PMCID: PMC7007660 DOI: 10.1186/s13000-020-00929-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Objective To investigate the role of FOXM1, β-catenin and TCF4 in esophageal cancer (EC) and their relationship to VM (Vasculogenic Mimicry). Methods CCK-8 were performed to examine EC cell proliferation in FOXM1 silenced cells. EC cell migration and invasion were investigated through wound healing and Transwell assays, respectively. The formation of pipe like structures were assessed in 3D cultures. The expression of Foxm1, β-catenin, Tcf4 and E-cadherin were investigated through western blot, RT-qPCR and immunohistochemistry (IHC) staining. The relationship between FOXM1 expression, clinic-pathological features, and overall survival (OS) were further analyzed. Results A loss of FOXM1 expression correlated with the OS of ESCC patients. FOXM1 silencing led to a loss of cell growth and suppressed cell migration and invasion in ESCC cells. VM structures were identified in ESCC tissues and human EC cell lines. Mechanistically, FOXM1 was found to promote tumorigenesis through the regulation of β-catenin, Tcf4, and E-cadherin in EC cells, leading to the formation of VM structures. Conclusions These findings highlight FoxM1 as a novel therapeutic target in ESCC.
Collapse
Affiliation(s)
- Lili Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Qi Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Xiaoying Tao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Yanzi Qin
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Qiong Wu
- Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Dafang Zheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Damin Chai
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Yong Zhang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Dongbing Lu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Zhiwei Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China
| | - Jia Ma
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Zenong Cheng
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China
| | - Yisheng Tao
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, Anhui, 233000, People's Republic of China. .,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui Province, China.
| |
Collapse
|
9
|
Expression analysis and implication of Rab1A in gastrointestinal relevant tumor. Sci Rep 2019; 9:13384. [PMID: 31527621 PMCID: PMC6746845 DOI: 10.1038/s41598-019-49786-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/31/2019] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal cancers have become increasingly prevalent worldwide. Previous studies have reported an oncogenic function of Rab1A in colorectal cancer and hepatocellular carcinomas via the mTOR pathway. However, the exact role of Rab1A in gastrointestinal cancers remains elusive. We detected significantly higher expression of Rab1A in the gastrointestinal tumor tissues compared to that in other cancer types following an in silico analysis of TGCA and GTEX databases. Furthermore, Rab1A was overexpressed in the gastrointestinal tumor tissues compared to the para-tumor tissues. Although Rab1A expression levels were not associated with the tumor-lymph node-metastasis (TNM) stage, Rab1A overexpression in the tumor tissues of a gastric cancer (GC) cohort was strongly correlated with poor prognosis in the patients. In addition, Rab1A knockdown significantly inhibited the in vitro proliferation and migration abilities of GC cells, as well as the growth of GC xenografts in vivo. Furthermore, a positive correlation was observed between Rab1A expression levels and that of different upstream/downstream mTOR targets. Taken together, Rab1A regulates the PI3K-AKT-mTORC1 pathway through the mTORC1 complex consisting of mTORC1, Rheb and Rab1A, and is a promising therapeutic target in GC.
Collapse
|
10
|
Yang K, Jiang B, Lu Y, Shu Q, Zhai P, Zhi Q, Li Q. FOXM1 promotes the growth and metastasis of colorectal cancer via activation of β-catenin signaling pathway. Cancer Manag Res 2019; 11:3779-3790. [PMID: 31118796 PMCID: PMC6501701 DOI: 10.2147/cmar.s185438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Our previous study proved that FOXM1 regulates colorectal cancer (CRC) cell metastasis through epithelial–mesenchymal transition program. The aim of this study is to further explore the underlying mechanism of FOXM1 in CRC. Materials and methods In this study, we detected the mRNA and protein expressions of FOXM1 and β-catenin in CRC tissues and their corresponding normal-appearing tissues (NATs) by quantitative reverse transcription-PCR and western blot analysis, respectively. Then the potential link between FOXM1 and β-catenin in CRC tissues was analyzed. Furthermore, we systematically analyzed the biological functions of FOXM1 in CRC cells after reconstitution of FOXM1 expression in vitro. Moreover, the mechanism of FOXM1-promoted CRC progression by improving β-catenin nuclear translocation was also discussed. Results Our data demonstrated that FOXM1 and β-catenin were upregulated in CRC tissues compared with the corresponding NATs (P<0.05). Clinicopathologic analysis revealed that increased FOXM1 (or β-catenin) expression positively correlated with some clinicopathologic features, such as tumor size, TNM stage, lymphatic metastasis, and distant metastasis (P<0.05). Meanwhile, the possible relationships between FOXM1 and β-catenin in CRC samples were evaluated using SPSS software, and a significant positive correlation was found (P<0.05). In vitro data demonstrate that elevated FOXM1 expression exerted oncogenic effects on CRC via activation of β-catenin signaling pathway. The inhibition of β-catenin by siRNAs significantly attenuates FOXM1-induced malignant activities. Conclusion The data suggested that FOXM1/β-catenin is critical for malignancy of CRC, which may constitute a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Kankan Yang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Bing Jiang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Yecai Lu
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Qingbing Shu
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Pan Zhai
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China,
| | - Qixin Li
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, China,
| |
Collapse
|
11
|
Cheng Z, Shao X, Xu M, Wang J, Kuai X, Zhang L, Wu J, Zhou C, Mao J. Rab1A promotes proliferation and migration abilities via regulation of the HER2/AKT-independent mTOR/S6K1 pathway in colorectal cancer. Oncol Rep 2019; 41:2717-2728. [PMID: 30896866 PMCID: PMC6448090 DOI: 10.3892/or.2019.7071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal carcinoma (CRC) is one of the most common malignancies worldwide and the second leading cause of cancer-related deaths in the US. Recently, Rab1A has been reported to be an activator of mTORC1 and p-S6K1, which is downstream of mTORC1. However, the association between Rab1A and p-S6K1 in CRC remains elusive. In the present study, we first demonstrated that Rab1A was overexpressed in CRC tissues and Rab1A overexpression was positively related to lymph node invasion, degree of differentiation, venous invasion and tumor-node-metastasis (TNM) stage. In both TNM stage I–II and III–IV patients, Rab1A-positive patients had a shorter survival time than Rab1A-negative patients. Furthermore, in univariate and multivariate analyses, only Rab1A expression was verified as an independent prognostic factor for survival in CRC patients. The level of p-S6K1 was markedly high in CRC tissues and Rab1A expression level had a positive association with p-S6K1 level. In addition, high levels of both Rab1A and p-S6K1 were associated with a poorer prognosis compared with low expression of either Rab1A or p-S6K1 level. Moreover, high levels of both Rab1A and p-S6K1 were associated with a poorer prognosis than patients with high levels of either Rab1A or p-S6K1 alone. Finally, knockdown of Rab1A expression inhibited migration and proliferation of SW480 and HCT116 cell lines by targeting regulation of p-S6K1. Thus, our findings indicate that Rab1A plays an important role in CRC and may provide a therapeutic target for CRC, particularly for mTORC1-targeted therapy-resistant cancers.
Collapse
Affiliation(s)
- Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiaoyi Kuai
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Liping Zhang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiading Mao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
12
|
Perotti V, Baldassari P, Molla A, Nicolini G, Bersani I, Grazia G, Benigni F, Maurichi A, Santinami M, Anichini A, Mortarini R. An actionable axis linking NFATc2 to EZH2 controls the EMT-like program of melanoma cells. Oncogene 2019; 38:4384-4396. [PMID: 30710146 PMCID: PMC6756060 DOI: 10.1038/s41388-019-0729-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 01/30/2023]
Abstract
Discovery of new actionable targets and functional networks in melanoma is an urgent need as only a fraction of metastatic patients achieves durable clinical benefit by targeted therapy or immunotherapy approaches. Here we show that NFATc2 expression is associated with an EMT-like transcriptional program and with an invasive melanoma phenotype, as shown by analysis of melanoma cell lines at the mRNA and protein levels, interrogation of the TCGA melanoma dataset and characterization of melanoma lesions by immunohistochemistry. Gene silencing or pharmacological inhibition of NFATc2 downregulated EMT-related genes and AXL, and suppressed c-Myc, FOXM1, and EZH2. Targeting of c-Myc suppressed FOXM1 and EZH2, while targeting of FOXM1 suppressed EZH2. Inhibition of c-Myc, or FOXM1, or EZH2 downregulated EMT-related gene expression, upregulated MITF and suppressed migratory and invasive activity of neoplastic cells. Stable silencing of NFATc2 impaired melanoma cell proliferation in vitro and tumor growth in vivo in SCID mice. In NFATc2+ EZH2+ melanoma cell lines pharmacological co-targeting of NFATc2 and EZH2 exerted strong anti-proliferative and pro-apoptotic activity, irrespective of BRAF or NRAS mutations and of BRAF inhibitor resistance. These results provide preclinical evidence for a role of NFATc2 in shaping the EMT-like melanoma phenotype and reveal a targetable vulnerability associated with NFATc2 and EZH2 expression in melanoma cells belonging to different mutational subsets.
Collapse
Affiliation(s)
- Valentina Perotti
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Paola Baldassari
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Alessandra Molla
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | | | - Ilaria Bersani
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Giulia Grazia
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Fabio Benigni
- HuMabs Biomed, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Andrea Maurichi
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Santinami
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Roberta Mortarini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy.
| |
Collapse
|
13
|
Yao Y, Wang X, Jiang L, Shao X, Zhu X, He S. Prognostic and clinicopathological value of FoxM1 expression in colorectal cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e13899. [PMID: 30593202 PMCID: PMC6314739 DOI: 10.1097/md.0000000000013899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The study aims to assess the relationship between FoxM1 expression and clinicopathological parameters and prognosis of patients diagnosed with colorectal cancer (CRC) by summarizing the studies included. METHODS PubMed, EMBASE, The Cochrane Library and other sources were searched for relative studies. Odds ratio (OR) and confidence interval (CI) were used to assess association between FoxM1 expression and clinical parameters and prognosis of CRC patients. RESULTS Eight studies were included in the final analysis, with 1149 CRC patients. The outcome revealed that expression of FoxM1 was associated with lymph node metastasis (OR = 0.33, 95%CI = 0.19-0.62, P < .001), distant metastasis (OR = 0.35, 95%CI = 0.24-0.46, P < .001) and tumor node metastasis (TNM) stage (OR = 0.45, 95%CI = 0.29-0.72, P < .001). Meanwhile, reduced FoxM1 expression indicated higher 5-year survival rate (OR = 0.38, 95%CI = 0.18-0.78, P = .01). Expression of FoxM1 was also increased obviously in CRC tissues (OR = 13.04, 95%CI = 4.07-41.71, P < .001). CONCLUSION This pooled analysis indicated that FoxM1 expression related to lymph node metastasis, distant metastasis, TNM stage and poor prognosis of the CRC patients.
Collapse
Affiliation(s)
- Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| | - Xuchao Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| | - Xinyu Shao
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University
| |
Collapse
|
14
|
Wang X, Yao Y, Zhu X. The influence of aberrant expression of GLI1/p-S6K on colorectal cancer. Biochem Biophys Res Commun 2018; 503:3198-3204. [PMID: 30143258 DOI: 10.1016/j.bbrc.2018.08.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Recent studies have reported that PI3K/AKT/mTOR pathway regulated the GLI1 expression level via SMO-independent pathway in a variety of tumor types. We detected the expression level of GLI1/p-S6K in CRC tissues. We found the expression of GLI1/p-S6K was apparently close with lymph node metastasis and TNM stage and patients with positive GLI1/p-S6K expression had shorter survival time and patients with both GLI1 and p-S6K positive expression had an even worse overall survival than those with single positive expression. Moreover, GLI1 and p-S6K expression was considered to be independent prognostic factors in CRC patient and the positive co-expression of GLI1/p-S6K had greater influence than single expression positive on the prognosis of postoperative patients with tumor size≥5 cm, well differentiation, positive lymph node metastasis, venous invasion, neural invasion and TNM III-IV. Meanwhile, the GLI1/p-S6K expression had impact on more clinicopathologic features in colon-side carcinoma than in rectum-side carcinoma and the mTOR/S6K/GLI1 axis played an important role in CRC especially in advanced stage. Hence, further studies are underway to explore the molecular mechanism between GLI1 and p-S6K in CRC, and in addition, it offers novel facilities for molecular targeting therapy for CRC.
Collapse
Affiliation(s)
- Xuchao Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
15
|
Yes-associated protein enhances proliferation and attenuates sensitivity to cisplatin in human gastric cancer cells. Biomed Pharmacother 2018; 105:1269-1275. [PMID: 30021363 DOI: 10.1016/j.biopha.2018.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Yes-associated protein (YAP) is upregulated in many cancer types, and its overexpression is involved in tumor cell proliferation, metastasis and resistance to chemotherapy. In the present study, we aimed to investigate the potential role of YAP in the development and progression of gastric cancer. METHODS YAP levels were analyzed in human gastric cancer and adjacent normal tissues by Western blotting and immunohistochemistry. Potential roles of YAP in regulating gastric cancer cell proliferation and sensitivity to cisplatin were examined by genetic manipulation in vitro. The molecular signaling was determined to understand the mechanisms of observed YAP effects. RESULTS YAP level was higher in gastric cancer tissues as compared to paired normal tissues. Knockdown of YAP attenuated gastric cancer cell proliferation and enhanced sensitivity to cisplatin in vitro while YAP overexpression possessed the opposite effects. YAP regulated Epidermal growth factor receptor (EGFR) expression and its downstream AKT and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway in gastric cancer cells. CONCLUSION YAP enhances gastric cancer cell proliferation and attenuates sensitivity to cisplatin potentially through targeting the EGFR signaling, indicating that YAP/EGFR signaling axis may serve as a potential target for treatment of gastric cancer.
Collapse
|
16
|
FoxM1 is an independent poor prognostic marker and therapeutic target for advanced Middle Eastern breast cancer. Oncotarget 2018; 9:17466-17482. [PMID: 29707121 PMCID: PMC5915129 DOI: 10.18632/oncotarget.24739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/02/2018] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) is the most common cause of cancer-related death in females in Saudi Arabia. BC in Saudi women tend to behave more aggressively than breast cancer in the West. Therefore, identification of new molecular targets and treatment strategies are highly warranted to improve patient outcome. FoxM1 has been shown to play a critical role in pathogenesis of various malignancies. In this study, we explored the prevalence and clinical implication of FoxM1 overexpression in Saudi breast cancer. FoxM1 protein overexpression was seen in 79% (770/975) of BC tissues and was associated with aggressive clinical parameters such as younger age (< 30 yrs) (p = 0.0172), high grade (p < 0.0001), mucinous histology (p < 0.0001) and triple negative phenotype (p < 0.0001). Overexpression of FoxM1 was significantly associated with activated AKT (p < 0.0001), Ki67 expression (p < 0.0001), VEGF (p < 0.0001), MMP-9 (p < 0.0001), XIAP (p < 0.0001) and Bcl-xL (p = 0.0300). Importantly, FoxM1 overexpression is found to be an independent prognostic marker in multivariate analysis in advanced stage (Stage III and IV) breast cancer (p = 0.0298). In vitro data using BC cell lines showed that down-regulation of FoxM1 using specific inhibitor, thiostrepton or siRNA inhibited cell migration, invasion and angiogenesis. In addition, treatment of BC cell lines with thiostrepton resulted in inhibition of proliferation and induction of apoptosis in a dose-dependent manner. In vivo, thiostrepton treatment regressed MDA-MB-231 cells generated xenografts via down-regulation of FoxM1 and its downstream targets. Our results suggest that FoxM1 may be a potential therapeutic target for the treatment of aggressive breast cancers.
Collapse
|
17
|
Shao X, Kuai X, Pang Z, Zhang L, Wu L, Xu L, Zhou C. Correlation of Gli1 and HER2 expression in gastric cancer: Identification of novel target. Sci Rep 2018; 8:397. [PMID: 29321573 PMCID: PMC5762756 DOI: 10.1038/s41598-017-17435-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
HER2 becomes the standard of care for guiding adjuvant treatment of gastric cancer with trastuzumab in recent years. However, the usage of this target agent is still limited because of the resistance to trastuzumab or the negative expression of HER2 in tumor tissues. The Gli1 and HER2 both play an important role in the pathogenesis of gastric cancer. However, the correlation of them is still unclear. Here we found Gli1 and HER2 are highly expressed in gastric cancer tissues, and they are positively related. Next, we found Gli1 positive patients live a shorter survival time no matter HER2 positive or negative. Furthermore, univariate and multivariate analysis revealed that venous invasion, HER2 expression, Gli1 expression were independent prognostic factors for the survival time in gastric cancer. In addition, suppressing the expression level of Gli1 can decrease the cell viability and migration ability in cells and subcutaneous tumors. Finally, we found that HER2 may regulate Gli1 by Akt-mTOR-p70S6K pathway. Inhibit of HER2 and SMO have synergistic effect on reduction of cell viability. In conclusion, Gli1 is a favorable prognostic indicator in gastric cancer. As a novel target, Gli1 worth further study, especially in Her2-targeted therapy-resistant cancers.
Collapse
Affiliation(s)
- Xinyu Shao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, P.R. China
| | - Xiaoyi Kuai
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, P.R. China
| | - Zhi Pang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, P.R. China
| | - Liping Zhang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, P.R. China
| | - Longyun Wu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, P.R. China
| | - Lijuan Xu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, P.R. China
| | - Chunli Zhou
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215006, P.R. China.
| |
Collapse
|
18
|
Yue M, Li S, Yan G, Li C, Kang Z. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells. Cell Cycle 2018; 17:240-249. [PMID: 29301438 DOI: 10.1080/15384101.2017.1407892] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.
Collapse
Affiliation(s)
- Meng Yue
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Shiquan Li
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Guoqiang Yan
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Chenyao Li
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Zhenhua Kang
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| |
Collapse
|
19
|
NRF2 facilitates breast cancer cell growth via HIF1ɑ-mediated metabolic reprogramming. Int J Biochem Cell Biol 2017; 95:85-92. [PMID: 29275212 DOI: 10.1016/j.biocel.2017.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/25/2017] [Accepted: 12/19/2017] [Indexed: 02/05/2023]
Abstract
High aerobic glycolysis not only provides energy to breast cancer cells, but also supports their anabolic growth. The redox sensitive transcription factor NRF2 is over-expressed in multiple cancers, including breast cancer. It is unclear whether NRF2 could promote breast cancer cell growth through enhancing glycolysis. In this study, we found that NRF2 and HIF1α mRNA and protein levels were significantly increased in MCF-7 and MDA-MB-231 breast cancer cells as compared to MCF-10A benign breast epithelial cells. Down-regulation of NRF2 decreased MCF7 and MBA-DA-231 breast cell proliferation, while it reversed by hypoxia inducible factor 1α (HIF1α). Knockdown of NRF2 inhibited glycolysis by decreasing the expression of genes participated in glucose metabolism, including HK2, PFKFB3, PKM2 and LDHA. Our results further indicated that the AKT activation and AMPK inhibition were required for NRF2-mediated up-regulation of glycolytic enzymes. Consistent with these results, a positive correlation existed between NRF2 or HIF1α and several key glycolytic genes in human breast cancer cell samples and breast cancer patients with high NRF2 or HIF1α expression had poorer overall survival. In conclusion, our study demonstrates that NRF2 promotes breast cancer progression by enhancing glycolysis through coactivation of HIF1α, implicating that NRF2 is a potential molecular target for breast cancer treatment.
Collapse
|
20
|
Fei BY, He X, Ma J, Zhang M, Chai R. FoxM1 is associated with metastasis in colorectal cancer through induction of the epithelial-mesenchymal transition. Oncol Lett 2017; 14:6553-6561. [PMID: 29163688 PMCID: PMC5686434 DOI: 10.3892/ol.2017.7022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 02/03/2017] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to investigate the role of forkhead box M1 (FoxM1) in epithelial-mesenchymal transition (EMT) and metastasis in colorectal cancer (CRC). Immunohistochemical assays were performed to detect FoxM1 and epithelial (E-) cadherin protein expression in 92 CRC, 61 colonic adenoma and 32 wild-type colonic tissue samples. Quantitative polymerase chain reaction (qPCR) assays were performed to determine the expression levels of FoxM1 and E-cadherin mRNAs in 30 CRC and adjacent normal mucosal tissues. RNA interference was used to knock down endogenous FoxM1 expression in CRC cell lines, and the migratory and invasive capacity of the CRC cells was analyzed. The expression of FoxM1, E-cadherin and neuronal (N-) cadherin in the CRC cell lines was evaluated using qPCR and Western blot analysis. The relative expression levels of FoxM1 mRNA and protein were significantly increased in the CRC tissues compared with those in the colonic adenoma and wild-type mucosal tissue samples (P<0.01). In contrast, the relative expression levels of E-cadherin mRNA and protein were significantly decreased in the CRC tissues compared with in the colonic adenoma and normal mucosal tissues (P<0.01). FoxM1 overexpression and decreased E-cadherin expression were significantly associated with poor colonic tissue differentiation, lymph node metastasis and an advanced tumor-node-metastasis stage. Additionally, the increased expression of FoxM1 was associated with a decrease in E-cadherin expression (P<0.01). Furthermore, RNA interference-mediated FoxM1 knockdown significantly inhibited the proliferation, migration and invasion of CRC cells. Downregulation of FoxM1 expression significantly increased E-cadherin expression and decreased N-cadherin expression. The results of the present study suggest that FoxM1 overexpression in tumor tissues is significantly associated with metastasis in CRC through the induction of EMT.
Collapse
Affiliation(s)
- Bao-Ying Fei
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jie Ma
- Department of Pathology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Mei Zhang
- Department of Pathology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Rui Chai
- Department of Anorectal Surgery, Zhejiang Province People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
21
|
Nandi D, Cheema PS, Jaiswal N, Nag A. FoxM1: Repurposing an oncogene as a biomarker. Semin Cancer Biol 2017; 52:74-84. [PMID: 28855104 DOI: 10.1016/j.semcancer.2017.08.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
The past few decades have witnessed a tremendous progress in understanding the biology of cancer, which has led to more comprehensive approaches for global gene expression profiling and genome-wide analysis. This has helped to determine more sophisticated prognostic and predictive signature markers for the prompt diagnosis and precise screening of cancer patients. In the search for novel biomarkers, there has been increased interest in FoxM1, an extensively studied transcription factor that encompasses most of the hallmarks of malignancy. Considering the attractive potential of this multifarious oncogene, FoxM1 has emerged as an important molecule implicated in initiation, development and progression of cancer. Bolstered with the skill to maneuver the proliferation signals, FoxM1 bestows resistance to contemporary anti-cancer therapy as well. This review sheds light on the large body of literature that has accumulated in recent years that implies that FoxM1 neoplastic functions can be used as a novel predictive, prognostic and therapeutic marker for different cancers. This assessment also highlights the key features of FoxM1 that can be effectively harnessed to establish FoxM1 as a strong biomarker in diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Neha Jaiswal
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
22
|
Zhou Z, Zhang H, Liu Y, Zhang Z, Du G, Li H, Yu X, Huang Y. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3‐mediated down‐regulation of E‐cadherin. J Cell Physiol 2017; 233:1359-1369. [DOI: 10.1002/jcp.26012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Zhen Zhou
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Hong‐Sheng Zhang
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Yang Liu
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Zhong‐Guo Zhang
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Guang‐Yuan Du
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Hu Li
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Xiao‐Ying Yu
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| | - Ying‐Hui Huang
- College of Life Science and BioengineeringBeijing University of TechnologyChaoyangBeijingChina
| |
Collapse
|
23
|
Zhang W, Duan N, Song T, Li Z, Zhang C, Chen X. The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma. J Cancer 2017; 8:1619-1628. [PMID: 28775781 PMCID: PMC5535717 DOI: 10.7150/jca.18778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common bone cancer primarily occurring in children and young adults. Over the past few years, the deregulation of a superfamily transcription factors, known as forkhead box (FOX) proteins, has been demonstrated to contribute to the pathogenesis of osteosarcoma. Molecular mechanism studies have demonstrated that FOX family proteins participate in a variety of signaling pathways and that their expression can be regulated by multiple factors. The dysfunction of FOX genes can alter osteosarcoma cell differentiation, metastasis and progression. In this review, we summarized the evidence that FOX genes play direct or indirect roles in the development and progression of osteosarcoma, and evaluated the emerging role of FOX proteins as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Ning Duan
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Tao Song
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Zhong Li
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xun Chen
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| |
Collapse
|
24
|
Abstract
Esophageal cancer (EC) is one of the most common causes of cancer-related mortality in the world. Although much effort has been made to improve the 5-year survival rate of patients with EC, it still remains low due to diagnosis at an advanced stage, aggressive local invasion, early metastasis, and resistance to chemotherapy. Although grainyhead-like 2 (GRHL2) has attracted interest since it has been recently identified as a novel suppressor of the epithelial–mesenchymal transition, clinical values of GRHL2 and its relationship with the metastasis-related factors, such as hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF), remain unclear. In order to investigate the expression of GRHL2, HIF-1α, and VEGF, and their correlation with angiogenesis in EC, 63 patients with EC were examined. The expression of GRHL2, HIF-1α, and VEGF in tumor tissues was higher than that in adjacent tissues and was associated with tumor differentiation. GRHL2 expression was significantly correlated with lymph node metastasis and invasion depth, whereas VEGF expression was associated with tumor (TNM) stage. A significant correlation was found between the expression of GRHL2 and HIF-1α. The patients expressing low GRHL2 and high HIF-1α showed significant reduction in both overall survival rate and disease-free survival rate. The results demonstrated that abnormal expression of GRHL2 is common in EC, and low expression of GRHL2 accompanied by a high expression of HIF-1α indicates poor prognosis.
Collapse
Affiliation(s)
| | | | - Xiaoqiu Wang
- Department of Pathology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People's Republic of China
| | - Bing Hu
- Department of Medical Oncology
| |
Collapse
|
25
|
Li J, Guo L, Ai Z. An integrated analysis of cancer genes in clear cell renal cell carcinoma. Future Oncol 2017; 13:715-725. [PMID: 28266251 DOI: 10.2217/fon-2016-0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM This study was performed to detect driver genes and implement integrated analyses on these drivers in clear cell renal cell carcinoma (ccRCC). METHODS Driver genes and pathways were predicted by OncodriveFM and Dendrix using 39,636 somatic mutations from The Cancer Genome Atlas, followed by DNA methylation, copy number variation, differential expression and survival analyses. RESULTS Overall, 342 driver genes and 106 pathways were determined by OncodriveFM, two driver genes by Dendrix. 28 driver genes were found hypomethylated, overexpressed and associated to a poor prognosis. By contrast, 17 driver genes showed decreased expression, hypermethylation and indicated a better outcome in ccRCC. CONCLUSION The set of new cancer genes and pathways opens the avenue for developing potential therapeutic targets and prognostic biomarkers in ccRCC.
Collapse
Affiliation(s)
- Jin Li
- Department of Geriatrics, The Shanghai tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Liping Guo
- Department of Nephrology, The Shanghai ninth People's Hospital, Shanghai, China
| | - Zisheng Ai
- Department of Medical Statistics, School of Medicine, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
| |
Collapse
|
26
|
Lu J, Zhang ZL, Huang D, Tang N, Li Y, Peng Z, Lu C, Dong Z, Tang F. Cdk3-promoted epithelial-mesenchymal transition through activating AP-1 is involved in colorectal cancer metastasis. Oncotarget 2016; 7:7012-28. [PMID: 26755651 PMCID: PMC4872765 DOI: 10.18632/oncotarget.6875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022] Open
Abstract
Cyclin dependent kinase-3 (Cdk3) is a positive regulator of the G1 mammalian cell cycle phase. Cdk3 is involved in cancer progression, but very little is known about its mechanism in cancer development and progression. Herein, we found that Cdk3 increased colorectal cancer metastasis through promoting epithelial-mesenchymal transition (EMT) shift. Cdk3 was found to highly express in metastatic cancer and induce cell motility and invasion. Cdk3 was shown to phosphorylate c-Jun at Ser 63 and Ser 73 in vitro and ex vivo. Cdk3-phosphorylated c-Jun at Ser 63 and Ser 73 resulted in an increased AP-1 activity. Ectopic expression of Cdk3 promoted colorectal cancer from epithelial to mesenchymal transition conjugating AP-1 activation, while AP-1 inhibition dramatically decreased Cdk3-increased EMT shift. These results showed that the Cdk3/c-Jun signaling axis mediating epithelial-mesenchymal transition plays an important role in colorectal cancer metastasis.
Collapse
Affiliation(s)
- Jinping Lu
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China
| | - Zhen Lin Zhang
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China
| | - Damao Huang
- Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Na Tang
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, P.R. China
| | - Yuejin Li
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China
| | - Zhengke Peng
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China
| | - Chengrong Lu
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, P.R. China
| | - Zigang Dong
- Institution of Pathogenic Biology, Medical College, University of South China, Hengyang, P.R. China
| | - Faqing Tang
- Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, P.R. China.,Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, P.R. China
| |
Collapse
|
27
|
Gao H, Goriacheva OA, Tarakina NV, Sukhorukov GB. Intracellularly Biodegradable Polyelectrolyte/Silica Composite Microcapsules as Carriers for Small Molecules. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9651-9661. [PMID: 27008032 DOI: 10.1021/acsami.6b01921] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microcapsules that can be efficiently loaded with small molecules and effectively released at the target area through the degradation of the capsule shells hold great potential for treating diseases. Traditional biodegradable polyelectrolyte (PE) capsules can be degraded by cells and eliminated from the body but fail to encapsulate drugs with small molecular weight. Here, we report a poly-l-arginine hydrochloride (PARG)/dextran sulfate sodium salt (DEXS)/silica (SiO2) composite capsule that can be destructed in cells and of which the in situ formed inorganic SiO2 enables loading of small model molecules, Rhodamine B (Rh-B). The composite capsules were fabricated based on the layer-by-layer (LbL) technique and the hydrolysis of tetraethoxysilane (TEOS). Capsules composed of nondegradable PEs and SiO2, polyllamine hydrochloride (PAH)/poly(sodium 4-styrenesulfonate) (PSS)/silica (the control sample), were prepared and briefly compared with the degradable composite capsules. An intracellular degradation study of both types of composite capsules revealed that PARG/DEXS/silica capsules were degraded into fragments and lead to the release of model molecules in a relatively short time (2 h), while the structure of PAH/PSS/silica capsules remained intact even after 3 days incubation with B50 cells. Such results indicated that the polymer components played a significant role in the degradability of the SiO2. Specifically, PAH/PSS scaffolds blocked the degradation of SiO2. For PARG/DEXS/silica capsules, we proposed the effects of both hydrolytic degradation of amorphous silica and enzymatic degradation of PARG/DEXS polymers as a cell degradation mechanism. All the results demonstrated a new type of functional composite microcapsule with low permeability, good biocompatibility, and biodegradability for potential medical applications.
Collapse
Affiliation(s)
- Hui Gao
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | - Olga A Goriacheva
- Saratov State University , 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Nadezda V Tarakina
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
28
|
Zhang J, Zhu L, Fang J, Ge Z, Li X. LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1α activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:29. [PMID: 26856989 PMCID: PMC4746930 DOI: 10.1186/s13046-016-0306-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/02/2016] [Indexed: 12/12/2022]
Abstract
Background Leucine-rich-alpha-2-glycoprotein 1 (LRG1) has been reported to be involved in several tumors, whether it participates in colorectal cancer (CRC) progression remains unclear. Here, we investigated the biological function and underlying molecular mechanisms of LRG1 in CRC. Methods The mRNA and protein levels of LRG1 were assessed in CRC tissues through RT-PCR and immunohistochemistry, respectively. HCT116 and SW480 cells were treated with LRG1 siRNA, control siRNA, or recombinant LRG1. Transwell invasion assays and wound healing assays were performed to evaluate the invasion and migration of CRC cells. Epithelial-to-mesenchymal transition (EMT) markers of E-cadherin, VDR, N-cadherin, α-SMA, Vimentin and Twist1 were detected by RT-PCR and western blot. Enzyme-linked immunosorbent assay was used to measure the secretion level of VEGF-A. Conditioned medium from CRC cells was collected for endothelial cell migration, tube formation and aortic ring sprouting assays. Results LRG1 was overexpressed in CRC tissues and associated with cancer aggressiveness. LRG1 was further found to induce the EMT process, as well as CRC cell migration and invasion capacity. In addition, LRG1 promoted VEGF-A expression in CRC cells and contributed to tumor angiogenesis. Furthermore, HIF-1α could be induced by LRG1 in a concentration- and time-dependent manner, which was responsible for LRG1-induced VEGF-A expression and EMT. Conclusions The present study suggests that LRG1 plays a crucial role in the progression of CRC by regulating HIF-1α expression, thereby may be a promising therapeutic target of CRC.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Lingyin Zhu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Zhizheng Ge
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Xiaobo Li
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
29
|
Xun C, Chen MB, Qi L, Tie-Ning Z, Peng X, Ning L, Zhi-Xiao C, Li-Wei W. Targeting sphingosine kinase 2 (SphK2) by ABC294640 inhibits colorectal cancer cell growth in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:94. [PMID: 26337959 PMCID: PMC4559903 DOI: 10.1186/s13046-015-0205-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/12/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a major health problem in China and around the world. It is one of the leading causes of cancer-related deaths. Research groups are thus searching for novel and more efficient anti-CRC agents. RESULTS Here we demonstrated that ABC294640, a novel SphK2 inhibitor, induced growth inhibition and apoptosis in transformed and primary CRC cells. The SphK activity was remarkably inhibited by ABC294640, accompanied by sphingosine-1-phosphate (S1P) depletion and ceramide incensement in CRC cells. Exogenously-added S1P inhibited ABC294640-induced HT-29 cell lethality. While C6 ceramide and SphK1 inhibitor SKI-II facilitated ABC294640-induced cytotoxicity against HT-29 cells. ABC294640 inhibited AKT-S6K1, but activated JNK signaling in transformed and primary CRC cells. JNK inhibitors (SP600125 and JNKi-II) alleviated ABC294640-induced CRC cell apoptosis. Moreover, a low concentration of ABC294640 sensitized the activity of 5-FU and cisplatin in vitro. In vivo, ABC294640 oral administration dramatically inhibited HT-29 xenografts growth in nude mice. CONCLUSIONS Targeting of SphK2 by ABC294640 potently inhibits CRC cell growth both in vitro and in vivo, ABC294640 could be developed as a novel therapeutic for the treatment of CRC.
Collapse
Affiliation(s)
- Cai Xun
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, Hongkou District, 200080, China. .,Department of Oncology, Shanghai First People's Hospital, Nanjing Medical University, Shanghai, China.
| | - Min-Bin Chen
- Department of Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China.
| | - Li Qi
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, Hongkou District, 200080, China.
| | - Zhang Tie-Ning
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, Hongkou District, 200080, China.
| | - Xue Peng
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, Hongkou District, 200080, China.
| | - Li Ning
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, Hongkou District, 200080, China.
| | - Chen Zhi-Xiao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, Hongkou District, 200080, China.
| | - Wang Li-Wei
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, Hongkou District, 200080, China. .,Department of Oncology, Shanghai First People's Hospital, Nanjing Medical University, Shanghai, China.
| |
Collapse
|