1
|
Quadri M, Palazzo E. The Role of the Neurotrophin Network in Skin Squamous Cell Cancer and the Novel Use of the Zebrafish System. JID INNOVATIONS 2024; 4:100295. [PMID: 39100386 PMCID: PMC11296245 DOI: 10.1016/j.xjidi.2024.100295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 08/06/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent form of skin cancer. An increasing number of cSCCs are associated with dysregulation of key molecules that control skin homeostasis. These observations have increased interest in the role of neurotrophins and their receptors in the pathogenesis of cSCC. They have been demonstrated to have a considerable impact on the aggressiveness potential of skin cancer by both in vitro and in vivo models. In this context, mouse models are classically used to dissect proliferation versus differentiation balance, but they have some limitations in terms of time, space, and costs. Recently, zebrafish models have been implemented as a new tool to obtain information regarding the invasive capacity and metastasis of neoplastic cells. By xenotransplantation technique, cSCC cells from a patient's biopsy or cell line can be successfully characterized, with or without the presence of genetic manipulation or treatments. In addition, the evaluation of the immune microenvironment contributes to potentially identifying connections and homologies with humans. In this review, we retrace the role of the neurotrophin network in healthy and pathological skin, particularly in cSCC. We review how zebrafish models can be important tools for studying cSCC development, growth, and potential treatments.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Anticevic I, Otten C, Popovic M. Tyrosyl-DNA phosphodiesterase 2 (Tdp2) repairs DNA-protein crosslinks and protects against double strand breaks in vivo. Front Cell Dev Biol 2024; 12:1394531. [PMID: 39228401 PMCID: PMC11369425 DOI: 10.3389/fcell.2024.1394531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/06/2024] [Indexed: 09/05/2024] Open
Abstract
DNA-protein crosslinks pose a significant challenge to genome stability and cell viability. Efficient repair of DPCs is crucial for preserving genomic integrity and preventing the accumulation of DNA damage. Despite recent advances in our understanding of DPC repair, many aspects of this process, especially at the organismal level, remain elusive. In this study, we used zebrafish as a model organism to investigate the role of TDP2 (Tyrosyl-DNA phosphodiesterase 2) in DPC repair. We characterized the two tdp2 orthologs in zebrafish using phylogenetic, syntenic and expression analysis and investigated the phenotypic consequences of tdp2 silencing in zebrafish embryos. We then quantified the effects of tdp2a and tdp2b silencing on cellular DPC levels and DSB accumulation in zebrafish embryos. Our findings revealed that tdp2b is the main ortholog during embryonic development, while both orthologs are ubiquitously present in adult tissues. Notably, the tdp2b ortholog is phylogenetically closer to human TDP2. Silencing of tdp2b, but not tdp2a, resulted in the loss of Tdp2 activity in zebrafish embryos, accompanied by the accumulation of DPCs and DSBs. Our findings contribute to a more comprehensive understanding of DPC repair at the organismal level and underscore the significance of TDP2 in maintaining genome stability.
Collapse
Affiliation(s)
| | | | - Marta Popovic
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruder Boskovic, Zagreb, Croatia
| |
Collapse
|
3
|
Coverdale JPC, Bedford RA, Carter OWL, Cao S, Wills M, Sadler PJ. In-cell Catalysis by Tethered Organo-Osmium Complexes Generates Selectivity for Breast Cancer Cells. Chembiochem 2024; 25:e202400374. [PMID: 38785030 DOI: 10.1002/cbic.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Anticancer agents that exhibit catalytic mechanisms of action offer a unique multi-targeting strategy to overcome drug resistance. Nonetheless, many in-cell catalysts in development are hindered by deactivation by endogenous nucleophiles. We have synthesised a highly potent, stable Os-based 16-electron half-sandwich ('piano stool') catalyst by introducing a permanent covalent tether between the arene and chelated diamine ligand. This catalyst exhibits antiproliferative activity comparable to the clinical drug cisplatin towards triple-negative breast cancer cells and can overcome tamoxifen resistance. Speciation experiments revealed Os to be almost exclusively albumin-bound in the extracellular medium, while cellular accumulation studies identified an energy-dependent, protein-mediated Os accumulation pathway, consistent with albumin-mediated uptake. Importantly, the tethered Os complex was active for in-cell transfer hydrogenation catalysis, initiated by co-administration of a non-toxic dose of sodium formate as a source of hydride, indicating that the Os catalyst is delivered to the cytosol of cancer cells intact. The mechanism of action involves the generation of reactive oxygen species (ROS), thus exploiting the inherent redox vulnerability of cancer cells, accompanied by selectivity for cancerous cells over non-tumorigenic cells.
Collapse
Affiliation(s)
- J P C Coverdale
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - R A Bedford
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - O W L Carter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - S Cao
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - M Wills
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - P J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
4
|
Hoyberghs J, Coppens A, Bars C, Van Ginneken C, Foubert K, Van Cruchten S. Assessing developmental toxicity and non-CYP mediated biotransformation of two anti-epileptics and their human metabolites in zebrafish embryos and larvae. Curr Res Toxicol 2024; 7:100186. [PMID: 39188273 PMCID: PMC11347070 DOI: 10.1016/j.crtox.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Zebrafish embryo-based assays are a promising alternative for animal testing to screen new compounds for developmental toxicity. However, recent studies in zebrafish embryos showed an immature intrinsic cytochrome P450 (CYP)-mediated biotransformation capacity, as most CYPs were only active at the end of the organogenesis period. Data on other phase I enzymes involved in the biotransformation of xenobiotics in zebrafish embryos is limited. This information is pivotal for proteratogens needing bioactivation to exert their teratogenic potential. Therefore, this study aimed to investigate whether carbamazepine (CBZ) and levetiracetam (LTC), two anti-epileptic drugs that require bioactivation to exert their teratogenic potential, are biotransformed into non-CYP mediated metabolites in the zebrafish embryo and whether one or more of these metabolites cause developmental toxicity in this species. In the first step, zebrafish embryos were exposed to LTC and CBZ and their non-CYP mediated human metabolites, etiracetam carboxylic acid (ECA) and 9-acridine carboxaldehyde (9ACA), acridine (AI), and acridone (AO), respectively, from 5.25 to 120 hpf and morphologically evaluated. Next, the uptake of all compounds and the formation of the metabolites were assessed using LC-MS methods. As LTC and ECA were, respectively, poorly or not taken up by zebrafish larvae during the exposure experiments, we could not determine if LTC and ECA are teratogenic. However, biotransformation of LTC into ECA was observed at 24 hpf and 120 hpf, which indicates that the special type of B-esterase is already active at 24 hpf. CBZ and its three metabolites were teratogenic, as a significant increase in malformed embryos was observed for all of them. All three metabolites were more potent teratogens than CBZ, with AI being the most potent, followed by 9ACA and AO. The myeloperoxidase (MPO) homologue is already active at 24 hpf, as CBZ was biotransformed into 9ACA and AO in 24 hpf zebrafish embryos, and into 9ACA in 120 hpf larvae. Moreover, 9ACA was also found to be biotransformed into AI and AO, and AI into AO. As such, one or more of these metabolites probably contribute to the teratogenic effects observed in zebrafish larvae after exposure to CBZ.
Collapse
Affiliation(s)
- Jente Hoyberghs
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Axelle Coppens
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chloé Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Chris Van Ginneken
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis-Pharmaceutical Technology (NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Yin J, Forn-Cuní G, Surendran AM, Lopes-Bastos B, Pouliopoulou N, Jager MJ, Le Dévédec SE, Chen Q, Snaar-Jagalska BE. Lactate secreted by glycolytic conjunctival melanoma cells attracts and polarizes macrophages to drive angiogenesis in zebrafish xenografts. Angiogenesis 2024:10.1007/s10456-024-09930-y. [PMID: 38842752 DOI: 10.1007/s10456-024-09930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Conjunctival melanoma (CoM) is a rare but potentially lethal cancer of the eye, with limited therapeutic option for metastases. A better understanding how primary CoM disseminate to form metastases is urgently needed in order to develop novel therapies. Previous studies indicated that primary CoM tumors express Vascular Endothelial Growth Factor (VEGF) and may recruit pro-tumorigenic M2-like macrophages. However, due to a lack of proper models, the expected role of angiogenesis in the metastatic dissemination of CoM is still unknown. We show that cells derived from two CoM cell lines induce a strong angiogenic response when xenografted in zebrafish larvae. CoM cells are highly glycolytic and secrete lactate, which recruits and polarizes human and zebrafish macrophages towards a M2-like phenotype. These macrophages elevate the levels of proangiogenic factors such as VEGF, TGF-β, and IL-10 in the tumor microenvironment to induce an angiogenic response towards the engrafted CoM cells in vivo. Chemical ablation of zebrafish macrophages or inhibition of glycolysis in CoM cells terminates this response, suggesting that attraction of lactate-dependent macrophages into engrafted CoM cells drives angiogenesis and serves as a possible dissemination mechanism for glycolytic CoM cells.
Collapse
Affiliation(s)
- Jie Yin
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | | | - Bruno Lopes-Bastos
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Niki Pouliopoulou
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333 BE, The Netherlands
| | - Quanchi Chen
- Institute of Biology, Leiden University, Leiden, 2333 BE, The Netherlands.
- Division of Spine Surgery, Department of Orthopedic Surgery, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| | | |
Collapse
|
6
|
Alberti G, Amico MD, Caruso Bavisotto C, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Scalia F, Szychlinska MA. Speeding up Glioblastoma Cancer Research: Highlighting the Zebrafish Xenograft Model. Int J Mol Sci 2024; 25:5394. [PMID: 38791432 PMCID: PMC11121320 DOI: 10.3390/ijms25105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a very aggressive and lethal primary brain cancer in adults. The multifaceted nature of GBM pathogenesis, rising from complex interactions between cells and the tumor microenvironment (TME), has posed great treatment challenges. Despite significant scientific efforts, the prognosis for GBM remains very poor, even after intensive treatment with surgery, radiation, and chemotherapy. Efficient GBM management still requires the invention of innovative treatment strategies. There is a strong necessity to complete cancer in vitro studies and in vivo studies to properly evaluate the mechanisms of tumor progression within the complex TME. In recent years, the animal models used to study GBM tumors have evolved, achieving highly invasive GBM models able to provide key information on the molecular mechanisms of GBM onset. At present, the most commonly used animal models in GBM research are represented by mammalian models, such as mouse and canine ones. However, the latter present several limitations, such as high cost and time-consuming management, making them inappropriate for large-scale anticancer drug evaluation. In recent years, the zebrafish (Danio rerio) model has emerged as a valuable tool for studying GBM. It has shown great promise in preclinical studies due to numerous advantages, such as its small size, its ability to generate a large cohort of genetically identical offspring, and its rapid development, permitting more time- and cost-effective management and high-throughput drug screening when compared to mammalian models. Moreover, due to its transparent nature in early developmental stages and genetic and anatomical similarities with humans, it allows for translatable brain cancer research and related genetic screening and drug discovery. For this reason, the aim of the present review is to highlight the potential of relevant transgenic and xenograft zebrafish models and to compare them to the traditionally used animal models in GBM research.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Maria Denise Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Marta Anna Szychlinska
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
7
|
Anzai T, Myatt GJ, Hall F, Finney B, Nakagawa K, Iwata H, Anzai R, Dickinson A, Freer M, Nakae D, Onodera H, Matsuyama T. Drug review process advancement and required manufacturer and contract research oraganization responses. J Toxicol Pathol 2024; 37:45-53. [PMID: 38584971 PMCID: PMC10995435 DOI: 10.1293/tox.2023-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 04/09/2024] Open
Abstract
The United States Senate passed the "FDA Modernization Act 2.0." on September 29, 2022. Although the effectiveness of this Bill, which aims to eliminate the mandatory use of laboratory animals in new drug development, is limited, it represents a significant trend that will change the shape of drug applications in the United States and other countries. However, pharmaceutical companies have not taken major steps towards the complete elimination of animal testing from the standpoint of product safety, where they prioritize patient safety. Nonetheless, society is becoming increasingly opposed to animal testing, and efforts will be made to use fewer animals and conduct fewer animal tests as a natural and reasonable response. These changes eventually alter the shape of new drug applications. Based on the assumption that fewer animal tests will be conducted or fewer animals will be used in testing, this study explored bioinformatics and new technologies as alternatives to compensate for reduced information and provide a picture of how future new drug applications may look. The authors also discuss the directions that pharmaceutical companies and nonclinical contract research organizations should adopt to promote the replacement, reduction, and refinement of animals used in research, teaching, testing, and exhibitions.
Collapse
Affiliation(s)
- Takayuki Anzai
- Showa University School of Medicine, 1-5-8 Hatanodai,
Shinagawa, Tokyo 142-0064, Japan
| | - Glenn J. Myatt
- Instem, Diamond Way, Stone Business Park, Stone,
Staffordshire, ST150SD, United Kingdom
| | - Frances Hall
- Instem, Diamond Way, Stone Business Park, Stone,
Staffordshire, ST150SD, United Kingdom
| | - Brenda Finney
- Instem, Diamond Way, Stone Business Park, Stone,
Staffordshire, ST150SD, United Kingdom
| | - Kenshi Nakagawa
- Showa University School of Medicine, 1-5-8 Hatanodai,
Shinagawa, Tokyo 142-0064, Japan
| | - Hijiri Iwata
- LunaPath Laboratory of Toxicologic Pathology, 3-5-1
Aoihigashi, Naka-ku Hamamatsu-shi, Shizuoka 433-8114, Japan
| | - Reo Anzai
- Tokyo University of the Arts, 5000 Omonma, Toride-shi,
Ibaraki 302-0001, Japan
| | - Anne Dickinson
- Newcastle University, Newcastle upon Tyne, NE1 7RU, United
Kingdom
- Alcyomics, The Biosphere, Draymans Way, Newcastle upon Tyne
NE4 5BX, United Kingdom
| | - Matthew Freer
- Alcyomics, The Biosphere, Draymans Way, Newcastle upon Tyne
NE4 5BX, United Kingdom
| | - Dai Nakae
- Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara-shi,
Chiba 290-0193, Japan
| | - Hiroshi Onodera
- National Institute of Health Sciences, 3-25-26 Tono-machi,
Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takaaki Matsuyama
- Showa University School of Medicine, 1-5-8 Hatanodai,
Shinagawa, Tokyo 142-0064, Japan
| |
Collapse
|
8
|
Amin A, Morello M, Petrara MR, Rizzo B, Argenton F, De Rossi A, Giunco S. Short-Term TERT Inhibition Impairs Cellular Proliferation via a Telomere Length-Independent Mechanism and Can Be Exploited as a Potential Anticancer Approach. Cancers (Basel) 2023; 15:2673. [PMID: 37345011 DOI: 10.3390/cancers15102673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Telomerase reverse transcriptase (TERT), the catalytic component of telomerase, may also contribute to carcinogenesis via telomere-length independent mechanisms. Our previous in vitro and in vivo studies demonstrated that short-term telomerase inhibition by BIBR1532 impairs cell proliferation without affecting telomere length. Here, we show that the impaired cell cycle progression following short-term TERT inhibition by BIBR1532 in in vitro models of B-cell lymphoproliferative disorders, i.e., Epstein-Barr virus (EBV)-immortalized lymphoblastoid cell lines (LCLs), and B-cell malignancies, i.e., Burkitt's lymphoma (BL) cell lines, is characterized by a significant reduction in NF-κB p65 nuclear levels leading to the downregulation of its target gene MYC. MYC downregulation was associated with increased expression and nuclear localization of P21, thus promoting its cell cycle inhibitory function. Consistently, treatment with BIBR1532 in wild-type zebrafish embryos significantly decreased Myc and increased p21 expression. The combination of BIBR1532 with antineoplastic drugs (cyclophosphamide or fludarabine) significantly reduced xenografted cells' proliferation rate compared to monotherapy in the zebrafish xenograft model. Overall, these findings indicate that short-term inhibition of TERT impairs cell growth through the downregulation of MYC via NF-κB signalling and supports the use of TERT inhibitors in combination with antineoplastic drugs as an efficient anticancer strategy.
Collapse
Affiliation(s)
- Aamir Amin
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
| | - Marzia Morello
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Maria Raffaella Petrara
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
| | - Beatrice Rizzo
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | | | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padova, 35128 Padova, Italy
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| |
Collapse
|
9
|
Pezzotta A, Brioschi L, Carbone S, Mazzoleni B, Bontempi V, Monastra F, Mauri L, Marozzi A, Mione M, Pistocchi A, Viani P. Combined Inhibition of Hedgehog and HDAC6: In Vitro and In Vivo Studies Reveal a New Role for Lysosomal Stress in Reducing Glioblastoma Cell Viability. Int J Mol Sci 2023; 24:ijms24065771. [PMID: 36982845 PMCID: PMC10051748 DOI: 10.3390/ijms24065771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant brain tumor in adults. The invasiveness and the rapid progression that characterize GBM negatively impact patients’ survival. Temozolomide (TMZ) is currently considered the first-choice chemotherapeutic agent. Unfortunately, over 50% of patients with GBM do not respond to TMZ treatment, and the mutation-prone nature of GBM enables the development of resistance mechanisms. Therefore, efforts have been devoted to the dissection of aberrant pathways involved in GBM insurgence and resistance in order to identify new therapeutic targets. Among them, sphingolipid signaling, Hedgehog (Hh) pathway, and the histone deacetylase 6 (HDAC6) activity are frequently dysregulated and may represent key targets to counteract GBM progression. Given the positive correlation between Hh/HDAC6/sphingolipid metabolism in GBM, we decided to perform a dual pharmacological inhibition of Hh and HDAC6 through cyclopamine and tubastatin A, respectively, in a human GMB cell line and zebrafish embryos. The combined administration of these compounds elicited a more significant reduction of GMB cell viability than did single treatments in vitro and in cells orthotopically transplanted in the zebrafish hindbrain ventricle. We demonstrated, for the first time, that the inhibition of these pathways induces lysosomal stress which results in an impaired fusion of lysosomes with autophagosomes and a block of sphingolipid degradation in GBM cell lines. This condition, which we also recapitulated in zebrafish embryos, suggests an impairment of lysosome-dependent processes involving autophagy and sphingolipid homeostasis and might be instrumental in the reduction of GBM progression.
Collapse
Affiliation(s)
- Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Loredana Brioschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Sabrina Carbone
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Beatrice Mazzoleni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - Vittorio Bontempi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Monastra
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Anna Marozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Marina Mione
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Correspondence: (A.P.); (P.V.)
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Correspondence: (A.P.); (P.V.)
| |
Collapse
|
10
|
Deshmukh D, Hsu YF, Chiu CC, Jadhao M, Hsu SCN, Hu SY, Yang SH, Liu W. Antiangiogenic potential of Lepista nuda extract suppressing MAPK/p38 signaling-mediated developmental angiogenesis in zebrafish and HUVECs. Biomed Pharmacother 2023; 159:114219. [PMID: 36621144 DOI: 10.1016/j.biopha.2023.114219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The medicinal properties of natural/edible plant products and their use are popular in traditional practice owing to their nutritional contents with little to no side effects. Lepista nuda (L. nuda), an edible mushroom (Clitocybe nuda, commonly known as blewit), has attracted researchers to evaluate its contents and the mechanism of its activities. In the current study, we focused on evaluating the antiangiogenic effects of L. nuda water extract on zebrafish development and in vitro human umbilical vein endothelial cell (HUVEC) tube formation. Bioactive components such as ergothioneine, eritadenine, and adenosine were identified and quantified by HPLC analysis. The L. nuda extract showed antiangiogenic properties and inhibited intersegmental vessel (ISV), caudal vein plexus (CVP), hyaloid vessel (HV), and subintestinal vessel (SIV) development in Tg (fli1: EGFP) zebrafish embryos. The expression of angiogenesis-related genes (vegfaa, kdrl, vegfba, flt1, kdr) was affected following L. nuda extract treatment. L. nuda extract attenuated in vitro HUVEC tube formation, migration, and invasion. Furthermore, inhibition of MAPK/p38 signaling and depletion of proangiogenic genes, including growth factors (fgf, ang2, and vegfa); primary and accessory receptors (tie2, vegfr2, and eng); MMPs (mmp1 and mmp2); and cytokines (il-1α, il-1β, il-6, and tnf-α) was observed in HUVECs following L. nuda treatment. An in vivo zebrafish xenograft assay showed that L. nuda extract inhibited HuCCT1 cell-induced SIV sprouting in HuCCT1-injected embryos. Collectively, the results suggest that L. nuda could be a potential inhibitor of angiogenesis limiting cancer progression.
Collapse
Affiliation(s)
- Dhanashri Deshmukh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Ya Fen Hsu
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115, Taiwan.
| | - Mahendra Jadhao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan.
| | - Shu-Hui Yang
- Department of Management and Utilization, Fengshan Tropical Horticultural Experimental Branch, Taiwan Agricultural Research Institute, Kaohsiung 807, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
11
|
de Farias Araujo G, Medeiros RJ, Maciel-Magalhães M, Correia FV, Saggioro EM. Zebrafish (Danio rerio) as a model to assess the effects of cocaine as a drug of abuse and its environmental implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28459-28479. [PMID: 36689115 DOI: 10.1007/s11356-023-25402-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Cocaine (COC) use concerns are on the increase for both authorities and civil society. Despite this, it is important to investigate COC effects or those of its main metabolite, belzoylecgonine (BE), in consolidated aquatic model organisms, such as the zebrafish (Danio rerio). This (mini) review consists in an assessment regarding toxicological studies carried out employing zebrafish (embryos, larvae or adults) exposed to COC and/or BE indexed at the SCOPUS and Web of Science databases. Ten different endpoints were analyzed in both embryos and larvae, whereas only four were analyzed in adults. Of the 23 studies, only five investigated COC and/or BE effects following an environmental approach when exposing zebrafish, while most (18 studies) analyzed COC effects under a drug of abuse approach. Cocaine exposure was noted as altering the expression of several genes, such as those linked to COC transport proteins, dopamine receptors, SP substance production, the tachykinin system, and the tyrosine hydroxylase enzyme. BE exposure resulted in more oxidative and proteomic effects than COC in embryos. Cocaine abstinence resulted in hyperactivity associated with stereotypy in adult fish, in addition to reduced responses to visual stimuli to red light and neuronal development pattern alterations. Cocaine was noted as accumulating in zebrafish eyes, possibly due to melanin binding, and causing dose-response cardiac effects in both embryos and adults. Despite the different effects addressed by our survey, we emphasize the lack of COC and BE exposure assessments in zebrafish employing an environmental point of view.
Collapse
Affiliation(s)
- Gabriel de Farias Araujo
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Renata Jurema Medeiros
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brasil
| | - Magno Maciel-Magalhães
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Av. Brasil, 4365, Manguinhos, 21040-900, Rio de Janeiro, Brasil
| | - Fábio Veríssimo Correia
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
- Departamento de Ciências Naturais, Universidade Federal Do Estado Do Rio de Janeiro, Av. Pasteur, 458, Urca, 22290-250, Rio de Janeiro, Brasil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
12
|
Lores S, Gámez-Chiachio M, Cascallar M, Ramos-Nebot C, Hurtado P, Alijas S, López López R, Piñeiro R, Moreno-Bueno G, de la Fuente M. Effectiveness of a novel gene nanotherapy based on putrescine for cancer treatment. Biomater Sci 2023. [PMID: 36790445 DOI: 10.1039/d2bm01456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Gene therapy has long been proposed for cancer treatment. However, the use of therapeutic nucleic acids presents several limitations such as enzymatic degradation, rapid clearance, and poor cellular uptake and efficiency. In this work we propose the use of putrescine, a precursor for higher polyamine biosynthesis for the preparation of cationic nanosystems for cancer gene therapy. We have formulated and characterized putrescine-sphingomyelin nanosystems (PSN) and studied their endocytic pathway and intracellular trafficking in cancer cells. After loading a plasmid DNA (pDNA) encoding the apoptotic Fas Ligand (FasL), we proved their therapeutic activity by measuring the cell death rate after treatment of MDA-MB-231 cells. We have also used xenografted zebrafish embryos as a first in vivo approach to demonstrate the efficacy of the proposed PSN-pDNA formulation in a more complex model. Finally, intratumoral and intraperitoneal administration to mice-bearing MDA-MB-231 xenografts resulted in a significant decrease in tumour cell growth, highlighting the potential of the developed gene therapy nanoformulation for the treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain
| | - Manuel Gámez-Chiachio
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - María Cascallar
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Carmen Ramos-Nebot
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Pablo Hurtado
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Rafael López López
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Roberto Piñeiro
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Gema Moreno-Bueno
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,MD Anderson International Foundation, Gómez Hemans s/n, 28033 Madrid, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,DIVERSA Technologies SL, Edificio Emprendia, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Dudziak K, Nowak M, Sozoniuk M. One Host-Multiple Applications: Zebrafish ( Danio rerio) as Promising Model for Studying Human Cancers and Pathogenic Diseases. Int J Mol Sci 2022; 23:10255. [PMID: 36142160 PMCID: PMC9499349 DOI: 10.3390/ijms231810255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, zebrafish (ZF) has been increasingly applied as a model in human disease studies, with a particular focus on cancer. A number of advantages make it an attractive alternative for mice widely used so far. Due to the many advantages of zebrafish, modifications can be based on different mechanisms and the induction of human disease can take different forms depending on the research goal. Genetic manipulation, tumor transplantation, or injection of the pathogen are only a few examples of using ZF as a model. Most of the studies are conducted in order to understand the disease mechanism, monitor disease progression, test new or alternative therapies, and select the best treatment. The transplantation of cancer cells derived from patients enables the development of personalized medicine. To better mimic a patient's body environment, immune-deficient models (SCID) have been developed. A lower immune response is mostly generated by genetic manipulation but also by irradiation or dexamethasone treatment. For many studies, using SCID provides a better chance to avoid cancer cell rejection. In this review, we describe the main directions of using ZF in research, explain why and how zebrafish can be used as a model, what kind of limitations will be met and how to overcome them. We collected recent achievements in this field, indicating promising perspectives for the future.
Collapse
Affiliation(s)
- Karolina Dudziak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Michał Nowak
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Magdalena Sozoniuk
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
14
|
Development and Applications of a Zebrafish (Danio rerio) CYP1A-Targeted Monoclonal Antibody (CRC4) with Reactivity across Vertebrate Taxa: Evidence for a Conserved CYP1A Epitope. TOXICS 2022; 10:toxics10070404. [PMID: 35878309 PMCID: PMC9320060 DOI: 10.3390/toxics10070404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
CYP1A is a heme-thiolate enzyme associated with the cytochrome P4501A1 monooxygenase system and is inducible by a wide variety of xenobiotics and endogenous ligands that bind and activate the aryl hydrocarbon receptor (AHR). The AHR-CYP1A axis is important for detoxification of certain xenobiotics and for homeostatic balance of endogenous sex hormones, amine hormones, vitamins, fatty acids, and phospholipids. Herein, we generated and described applications of a zebrafish CYP1A-targeted monoclonal antibody (mAb CRC4) that fortuitously recognizes induced CYP1A across vertebrate taxa, including fish, chicken, mouse, rat, and human. We then demonstrated that mAb CRC4 targets a highly conserved epitope signature of vertebrate CYP1A. The unique complimentary determining region (CDR) sequences of heavy and light chains were determined, and these Ig sequences will allow for the expression of recombinant mAb CRC4, thus superseding the need for long-term hybridoma maintenance. This antibody works well for immunohistochemistry (IHC), as well as whole-mounted IHC in zebrafish embryos. Monoclonal antibody CRC4 may be particularly useful for studying the AHR-CYP1A axis in multiple vertebrate species and within the context of Oceans and Human Health research. By using archived samples, when possible, we actively promoted efforts to reduce, replace, and refine studies involving live animals.
Collapse
|
15
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
16
|
Lin HD, Tseng YK, Yuh CH, Chen SC. Low concentrations of 4-ABP promote liver carcinogenesis in human liver cells and a zebrafish model. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126954. [PMID: 34474361 DOI: 10.1016/j.jhazmat.2021.126954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
4-Aminobiphenyl (4-ABP) is a human bladder cancer carcinogen found in the manufacture of azo dyes and the composition of cigarette smoke in the environment. To determine whether low concentrations of 4-ABP induced or promote liver carcinogenesis and investigate the underlying mechanism, we have established the liver cell carcinogenesis model in human liver cell lines and zebrafish to evaluate liver cancer development associated with long-term exposure to low concentrations of 4-ABP. Results show that repeated 4-ABP exposure promoted cellular proliferation and migration via the involvement of ROS in Ras/MEK/ERK pathway in vitro. Also, 4-ABP (1, 10, and 100 nM) induces hepatocellular carcinoma (HCC) formation in HBx, Src (p53-/-) transgenic zebrafish at four months of age and in wild-type zebrafish at seven months of age. In addition, we observed a correlation between the Ras-ERK pathway and 4-ABP-induced HCC in vitro and in vivo. Our finding suggests low concentrations of 4-ABP repeated exposure is a potential risk factor for liver cancer. To our knowledge, this is the first report on the promotion of liver carcinogenesis in human liver cells and zebrafish following 4-ABP exposure.
Collapse
Affiliation(s)
- Heng-Dao Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan; Department of Biological Science & Technology, National Chiao Tung University, Hsinchu, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Piccolo O, Lincoln JD, Melong N, Orr BC, Fernandez NR, Borsavage J, Berman JN, Robar J, Ha MN. Radiation dose enhancement using gold nanoparticles with a diamond linear accelerator target: a multiple cell type analysis. Sci Rep 2022; 12:1559. [PMID: 35091583 PMCID: PMC8799734 DOI: 10.1038/s41598-022-05339-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/04/2022] [Indexed: 01/14/2023] Open
Abstract
Radiotherapy (RT) is an effective cancer treatment modality, but standard RT often causes collateral damage to nearby healthy tissues. To increase therapeutic ratio, radiosensitization via gold nanoparticles (GNPs) has been shown to be effective. One challenge is that megavoltage beams generated by clinical linear accelerators are poor initiators of the photoelectric effect. Previous computer models predicted that a diamond target beam (DTB) will yield 400% more low-energy photons, increasing the probability of interacting with GNPs to enhance the radiation dose by 7.7-fold in the GNP vicinity. After testing DTB radiation coupled with GNPs in multiple cell types, we demonstrate decreased head-and-neck cancer (HNC) cell viability in vitro and enhanced cell-killing in zebrafish xenografts compared to standard RT. HNC cell lines also displayed increased double-stranded DNA breaks with DTB irradiation in the presence of GNPs. This study presents preclinical responses to GNP-enhanced radiotherapy with the novel DTB, providing the first functional data to support the theoretical evidence for radiosensitization via GNPs in this context, and highlighting the potential of this approach to optimize the efficacy of RT in anatomically difficult-to-treat tumors.
Collapse
Affiliation(s)
- Olivia Piccolo
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, NS, Canada
| | - John D Lincoln
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Nicole Melong
- Children's Hospital of Eastern Ontario Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - Benno C Orr
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, NS, Canada
| | - Nicholas R Fernandez
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, NS, Canada
| | - Jennifer Borsavage
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Jason N Berman
- Department of Pediatrics, IWK Health Centre/Dalhousie University, Halifax, NS, Canada
- Children's Hospital of Eastern Ontario Research Institute/Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
| | - James Robar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Radiation Oncology, Dalhousie University, Halifax, NS, Canada
| | - Michael N Ha
- Department of Radiation Oncology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
18
|
Sornat R, Kalka J, Faron J, Napora-Rutkowska M, Krakowian D, Drzewiecka A. Developing a screening test for toxicity studies of prenatal development with the use of Hydra attenuata and embryos of zebrafish. Toxicol Rep 2021; 8:1742-1753. [PMID: 34660207 PMCID: PMC8503906 DOI: 10.1016/j.toxrep.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
A simple alternative method may replace the laboratory animals in teratogenic studies. A scoring system evaluates the changes of Hydra attenuata and zebrafish embryos. A potentially teratogenic substance can be easily classified.
11 active substances used in pesticides were selected. Substances were divided into three groups depending the effect on embryos or fetuses of laboratory animals: 1 – damaging effect on embryos or fetuses (embryotoxic, fetotoxic or teratogenic), 2 – damaging effect on embryos or fetuses, but only at dose toxic for mother (maternal toxicity), 3 – no damaging effect. Changes for hydra in acute toxicity tests and recovery tests were assessed on an change scale from 0 to 10. The index of the effect on development (TI) for hydras was calculated for every compound. Changes in zebrafish embryos were assessed using a descriptive method. Pearson correlation coefficient showed the correlation between the concentration and the toxic effect in the zebrafish embryos for the substances of the first group. The study showed that substances having a strong damaging effect on fetuses cause changes that are apparent and easy to evaluate both in hydras and zebrafish embryos. A scoring system was introduced to evaluate the changes of hydras and zebrafish embryos. The point system of evaluation of changes allows quick classification of a substance as potentially embryotoxic, fetotoxic or teratogenic. It allows developing a cheap and fast method alternative to prenatal developmental toxicity studies, a screening method that enables substances of great teratogenic potential to be excluded from studies on laboratory animals.
Collapse
Affiliation(s)
- Robert Sornat
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland.,Silesian University of Technology, The Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
| | - Joanna Kalka
- Silesian University of Technology, The Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
| | - Justyna Faron
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| | - Marta Napora-Rutkowska
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland.,Veterinary Clinic LUX-VET, Słoneczna 118, 43-384, Jaworze, Poland
| | - Daniel Krakowian
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| | - Agnieszka Drzewiecka
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry, Branch Pszczyna, Doświadczalna 27, 43-200, Pszczyna, Poland
| |
Collapse
|
19
|
Hujanen R, Almahmoudi R, Salo T, Salem A. Comparative Analysis of Vascular Mimicry in Head and Neck Squamous Cell Carcinoma: In Vitro and In Vivo Approaches. Cancers (Basel) 2021; 13:4747. [PMID: 34638234 PMCID: PMC8507545 DOI: 10.3390/cancers13194747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Tissue vasculature provides the main conduit for metastasis in solid tumours including head and neck squamous cell carcinoma (HNSCC). Vascular mimicry (VM) is an endothelial cell (EC)-independent neovascularization pattern, whereby tumour cells generate a perfusable vessel-like meshwork. Yet, despite its promising clinical utility, there are limited approaches to better identify VM in HNSCC and what factors may influence such a phenomenon in vitro. Therefore, we employed different staining procedures to assess their utility in identifying VM in tumour sections, wherein mosaic vessels may also be adopted to further assess the VM-competent cell phenotype. Using 13 primary and metastatic HNSCC cell lines in addition to murine- and human-derived matrices, we elucidated the impact of the extracellular matrix, tumour cell type, and density on the formation and morphology of cell-derived tubulogenesis in HNSCC. We then delineated the optimal cell numbers needed to obtain a VM meshwork in vitro, which revealed cell-specific variations and yet consistent expression of the EC marker CD31. Finally, we proposed the zebrafish larvae as a simple and cost-effective model to evaluate VM development in vivo. Taken together, our findings offer a valuable resource for designing future studies that may facilitate the therapeutic exploitation of VM in HNSCC and other tumours.
Collapse
Affiliation(s)
- Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
| | - Rabeia Almahmoudi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland
- Department of Pathology, Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014 Helsinki, Finland; (R.H.); (R.A.); (T.S.)
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014 Helsinki, Finland
- Helsinki University Hospital (HUS), 00029 Helsinki, Finland
| |
Collapse
|
20
|
Martínez-Pena I, Hurtado P, Carmona-Ule N, Abuín C, Dávila-Ibáñez AB, Sánchez L, Abal M, Chaachou A, Hernández-Losa J, Cajal SRY, López-López R, Piñeiro R. Dissecting Breast Cancer Circulating Tumor Cells Competence via Modelling Metastasis in Zebrafish. Int J Mol Sci 2021; 22:ijms22179279. [PMID: 34502201 PMCID: PMC8431683 DOI: 10.3390/ijms22179279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer metastasis is a deathly process, and a better understanding of the different steps is needed. The shedding of circulating tumor cells (CTCs) and CTC-cluster from the primary tumor, its survival in circulation, and homing are key events of the metastasis cascade. In vitro models of CTCs and in vivo models of metastasis represent an excellent opportunity to delve into the behavior of metastatic cells, to gain understanding on how secondary tumors appear. METHODS Using the zebrafish embryo, in combination with the mouse and in vitro assays, as an in vivo model of the spatiotemporal development of metastases, we study the metastatic competency of breast cancer CTCs and CTC-clusters and the molecular mechanisms. RESULTS CTC-clusters disseminated at a lower frequency than single CTCs in the zebrafish and showed a reduced capacity to invade. A temporal follow-up of the behavior of disseminated CTCs showed a higher survival and proliferation capacity of CTC-clusters, supported by their increased resistance to fluid shear stress. These data were corroborated in mouse studies. In addition, a differential gene signature was observed, with CTC-clusters upregulating cell cycle and stemness related genes. CONCLUSIONS The zebrafish embryo is a valuable model system to understand the biology of breast cancer CTCs and CTC-clusters.
Collapse
Affiliation(s)
- Inés Martínez-Pena
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
| | - Pablo Hurtado
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
| | - Nuria Carmona-Ule
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
| | - Carmen Abuín
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
| | - Ana Belén Dávila-Ibáñez
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
| | - Laura Sánchez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Miguel Abal
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Translational Medical Oncology Group, Oncomet, CIBERONC, Health Research Institute of Santiago (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Anas Chaachou
- Translational Molecular Pathology, Department of Pathology, Vall d’Hebron Institute of Research (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Javier Hernández-Losa
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Translational Molecular Pathology, Department of Pathology, Vall d’Hebron Institute of Research (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Santiago Ramón y Cajal
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Translational Molecular Pathology, Department of Pathology, Vall d’Hebron Institute of Research (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Translational Medical Oncology Group, Oncomet, CIBERONC, Health Research Institute of Santiago (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain
- Department of Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain; (I.M.-P.); (P.H.); (N.C.-U.); (C.A.); (A.B.D.-I.); (R.L.-L.)
- CIBERONC, Centro de Investigación Biomédica en Red Cáncer, 28029 Madrid, Spain; (M.A.); (J.H.-L.); (S.R.y.C.)
- Correspondence: ; Tel.: +34-981-955-602
| |
Collapse
|
21
|
Asghar MY, Lassila T, Paatero I, Nguyen VD, Kronqvist P, Zhang J, Slita A, Löf C, Zhou Y, Rosenholm J, Törnquist K. Stromal interaction molecule 1 (STIM1) knock down attenuates invasion and proliferation and enhances the expression of thyroid-specific proteins in human follicular thyroid cancer cells. Cell Mol Life Sci 2021; 78:5827-5846. [PMID: 34155535 PMCID: PMC8316191 DOI: 10.1007/s00018-021-03880-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Stromal interaction molecule 1 (STIM1) and the ORAI1 calcium channel mediate store-operated calcium entry (SOCE) and regulate a multitude of cellular functions. The identity and function of these proteins in thyroid cancer remain elusive. We show that STIM1 and ORAI1 expression is elevated in thyroid cancer cell lines, compared to primary thyroid cells. Knock-down of STIM1 or ORAI1 attenuated SOCE, reduced invasion, and the expression of promigratory sphingosine 1-phosphate and vascular endothelial growth factor-2 receptors in thyroid cancer ML-1 cells. Cell proliferation was attenuated in these knock-down cells due to increased G1 phase of the cell cycle and enhanced expression of cyclin-dependent kinase inhibitory proteins p21 and p27. STIM1 protein was upregulated in thyroid cancer tissue, compared to normal tissue. Downregulation of STIM1 restored expression of thyroid stimulating hormone receptor, thyroid specific proteins and increased iodine uptake. STIM1 knockdown ML-1 cells were more susceptible to chemotherapeutic drugs, and significantly reduced tumor growth in Zebrafish. Furthermore, STIM1-siRNA-loaded mesoporous polydopamine nanoparticles attenuated invasion and proliferation of ML-1 cells. Taken together, our data suggest that STIM1 is a potential diagnostic and therapeutic target for treatment of thyroid cancer.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| | - Taru Lassila
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | | | - Jixi Zhang
- College of Bioengineering, Chongqing University, No. 174 Shizheng Road, Chongqing, 400044, China
| | - Anna Slita
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan 6A, 20520, Turku, Finland
| | - Christoffer Löf
- Research Centre for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Jessica Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Artillerigatan 6A, 20520, Turku, Finland
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
22
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
23
|
Al-Thani HF, Shurbaji S, Yalcin HC. Zebrafish as a Model for Anticancer Nanomedicine Studies. Pharmaceuticals (Basel) 2021; 14:625. [PMID: 34203407 PMCID: PMC8308643 DOI: 10.3390/ph14070625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nanomedicine is a new approach to fight against cancer by the development of anticancer nanoparticles (NPs) that are of high sensitivity, specificity, and targeting ability to detect cancer cells, such as the ability of Silica NPs in targeting epithelial cancer cells. However, these anticancer NPs require preclinical testing, and zebrafish is a useful animal model for preclinical studies of anticancer NPs. This model affords a large sample size, optical imaging, and easy genetic manipulation that aid in nanomedicine studies. This review summarizes the numerous advantages of the zebrafish animal model for such investigation, various techniques for inducing cancer in zebrafish, and discusses the methods to assess cancer development in the model and to test for the toxicity of the anticancer drugs and NPs. In addition, it summarizes the recent studies that used zebrafish as a model to test the efficacy of several different anticancer NPs in treating cancer.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
24
|
Wang Y, Tian J, Shi F, Li X, Hu Z, Chu J. Protective effect of surfactin on copper sulfate-induced inflammation, oxidative stress, and hepatic injury in zebrafish. Microbiol Immunol 2021; 65:410-421. [PMID: 34101233 DOI: 10.1111/1348-0421.12924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/31/2023]
Abstract
Surfactin, an antibacterial peptide, produced by various Bacillus subtilis strains, have broad-spectrum antibacterial and immune-enhancing functions. In this study, we investigated the anti-inflammatory, antioxidant, and hepatoprotective effect of surfactin on zebrafish (Danio rerio) larvae following their exposure to copper sulfate (CuSO4 ). The mature AB wild-type and a transgenic line of zebrafish larvae that expressed enhanced GFP (EGFP) named Tg (Lyz:EGFP) were exposed to 0, 20, 40, and 60 μg/mL surfactin after incubation with 3.2 μg/mL CuSO4 for 2 h from 72 h postfertilization (hpf). Different endpoints, such as migration of GFP-labeled neutrophils, analysis of inflammatory cytokines and transaminases, markers of oxidation, expression of certain genes, and histological changes of liver, were studied to evaluate the function of surfactin. The protein expression levels of NF-κBp65, TNF-α, cyclooxygenase-2 (COX-2), and iNOS were determined in murine macrophage RAW 264.7 cells by western blotting. Our results show that surfactin reduced migration of neutrophils and relieved hepatic injury. In addition, surfactin reduced the index levels of inflammatory factors, oxidative stress response, and improved hepatic function. Surfactin also significantly inhibited the expression of IL-1β, IL-8, TNF-α, nitric oxide, NF-κBp65, COX-2, and iNOS, and increased the expression of IL-10. Thus, our results demonstrate that surfactin has anti-inflammatory, antioxidant, and hepatoprotective activities. Surfactin has potential as a novel inflammation and immune adjustment.
Collapse
Affiliation(s)
- Ying Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong, China
| | - Jiahui Tian
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong, China
| | - Feifei Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong, China
| | - Xuan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong, China
| | - Zhuran Hu
- Shandong Bee-lan Biotechnology Co. Ltd., Tai'an, Shandong, China
| | - Jie Chu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong, China
| |
Collapse
|
25
|
Durinikova E, Buzo K, Arena S. Preclinical models as patients' avatars for precision medicine in colorectal cancer: past and future challenges. J Exp Clin Cancer Res 2021; 40:185. [PMID: 34090508 PMCID: PMC8178911 DOI: 10.1186/s13046-021-01981-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a complex and heterogeneous disease, characterized by dismal prognosis and low survival rate in the advanced (metastatic) stage. During the last decade, the establishment of novel preclinical models, leading to the generation of translational discovery and validation platforms, has opened up a new scenario for the clinical practice of CRC patients. To bridge the results developed at the bench with the medical decision process, the ideal model should be easily scalable, reliable to predict treatment responses, and flexibly adapted for various applications in the research. As such, the improved benefit of novel therapies being tested initially on valuable and reproducible preclinical models would lie in personalized treatment recommendations based on the biology and genomics of the patient's tumor with the overall aim to avoid overtreatment and unnecessary toxicity. In this review, we summarize different in vitro and in vivo models, which proved efficacy in detection of novel CRC culprits and shed light into the biology and therapy of this complex disease. Even though cell lines and patient-derived xenografts remain the mainstay of colorectal cancer research, the field has been confidently shifting to the use of organoids as the most relevant preclinical model. Prioritization of organoids is supported by increasing body of evidence that these represent excellent tools worth further therapeutic explorations. In addition, novel preclinical models such as zebrafish avatars are emerging as useful tools for pharmacological interrogation. Finally, all available models represent complementary tools that can be utilized for precision medicine applications.
Collapse
Affiliation(s)
- Erika Durinikova
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy
| | - Kristi Buzo
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, 10060, Candiolo, TO, Italy.
| |
Collapse
|
26
|
Shahzad U, Taccone MS, Kumar SA, Okura H, Krumholtz S, Ishida J, Mine C, Gouveia K, Edgar J, Smith C, Hayes M, Huang X, Derry WB, Taylor MD, Rutka JT. Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro Oncol 2021; 23:718-731. [PMID: 33378446 DOI: 10.1093/neuonc/noaa306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For decades, cell biologists and cancer researchers have taken advantage of non-murine species to increase our understanding of the molecular processes that drive normal cell and tissue development, and when perturbed, cause cancer. The advent of whole-genome sequencing has revealed the high genetic homology of these organisms to humans. Seminal studies in non-murine organisms such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio identified many of the signaling pathways involved in cancer. Studies in these organisms offer distinct advantages over mammalian cell or murine systems. Compared to murine models, these three species have shorter lifespans, are less resource intense, and are amenable to high-throughput drug and RNA interference screening to test a myriad of promising drugs against novel targets. In this review, we introduce species-specific breeding strategies, highlight the advantages of modeling brain tumors in each non-mammalian species, and underscore the successes attributed to scientific investigation using these models. We conclude with an optimistic proposal that discoveries in the fields of cancer research, and in particular neuro-oncology, may be expedited using these powerful screening tools and strategies.
Collapse
Affiliation(s)
- Uswa Shahzad
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Michael S Taccone
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sachin A Kumar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Hidehiro Okura
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Stacey Krumholtz
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Joji Ishida
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Coco Mine
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Kyle Gouveia
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Julia Edgar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Christian Smith
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Madeline Hayes
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xi Huang
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - W Brent Derry
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - James T Rutka
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
27
|
Saraiva SM, Gutiérrez-Lovera C, Martínez-Val J, Lores S, Bouzo BL, Díez-Villares S, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, de la Fuente M. Edelfosine nanoemulsions inhibit tumor growth of triple negative breast cancer in zebrafish xenograft model. Sci Rep 2021; 11:9873. [PMID: 33972572 PMCID: PMC8110995 DOI: 10.1038/s41598-021-87968-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Triple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells' proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Sofia M Saraiva
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), Madrid, Spain
| | - Carlha Gutiérrez-Lovera
- Department of Zoology, Genetics and Physical Anthropology, Campus of Lugo, University of Santiago de Compostela, Lugo, Spain
| | - Jeannette Martínez-Val
- Department of Zoology, Genetics and Physical Anthropology, Campus of Lugo, University of Santiago de Compostela, Lugo, Spain
| | - Sainza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - Belén L Bouzo
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - Sandra Díez-Villares
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), Madrid, Spain
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus of Lugo, University of Santiago de Compostela, Lugo, Spain
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), Madrid, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus of Lugo, University of Santiago de Compostela, Lugo, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain.
- Cancer Network Research (CIBERONC), Madrid, Spain.
| |
Collapse
|
28
|
Reimunde P, Pensado-López A, Carreira Crende M, Lombao Iglesias V, Sánchez L, Torrecilla-Parra M, Ramírez CM, Anfray C, Torres Andón F. Cellular and Molecular Mechanisms Underlying Glioblastoma and Zebrafish Models for the Discovery of New Treatments. Cancers (Basel) 2021; 13:1087. [PMID: 33802571 PMCID: PMC7961726 DOI: 10.3390/cancers13051087] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most common of all brain malignant tumors; it displays a median survival of 14.6 months with current complete standard treatment. High heterogeneity, aggressive and invasive behavior, the impossibility of completing tumor resection, limitations for drug administration and therapeutic resistance to current treatments are the main problems presented by this pathology. In recent years, our knowledge of GBM physiopathology has advanced significantly, generating relevant information on the cellular heterogeneity of GBM tumors, including cancer and immune cells such as macrophages/microglia, genetic, epigenetic and metabolic alterations, comprising changes in miRNA expression. In this scenario, the zebrafish has arisen as a promising animal model to progress further due to its unique characteristics, such as transparency, ease of genetic manipulation, ethical and economic advantages and also conservation of the major brain regions and blood-brain-barrier (BBB) which are similar to a human structure. A few papers described in this review, using genetic and xenotransplantation zebrafish models have been used to study GBM as well as to test the anti-tumoral efficacy of new drugs, their ability to interact with target cells, modulate the tumor microenvironment, cross the BBB and/or their toxicity. Prospective studies following these lines of research may lead to a better diagnosis, prognosis and treatment of patients with GBM.
Collapse
Affiliation(s)
- Pedro Reimunde
- Department of Medicine, Campus de Oza, Universidade da Coruña, 15006 A Coruña, Spain
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Martín Carreira Crende
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Vanesa Lombao Iglesias
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (M.C.C.); (V.L.I.); (L.S.)
| | - Marta Torrecilla-Parra
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain; (M.T.-P.); (C.M.R.)
| | - Cristina M. Ramírez
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain; (M.T.-P.); (C.M.R.)
| | - Clément Anfray
- IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy;
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- IRCCS Istituto Clinico Humanitas, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy;
| |
Collapse
|
29
|
Elmore LW, Greer SF, Daniels EC, Saxe CC, Melner MH, Krawiec GM, Cance WG, Phelps WC. Blueprint for cancer research: Critical gaps and opportunities. CA Cancer J Clin 2021; 71:107-139. [PMID: 33326126 DOI: 10.3322/caac.21652] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
We are experiencing a revolution in cancer. Advances in screening, targeted and immune therapies, big data, computational methodologies, and significant new knowledge of cancer biology are transforming the ways in which we prevent, detect, diagnose, treat, and survive cancer. These advances are enabling durable progress in the goal to achieve personalized cancer care. Despite these gains, more work is needed to develop better tools and strategies to limit cancer as a major health concern. One persistent gap is the inconsistent coordination among researchers and caregivers to implement evidence-based programs that rely on a fuller understanding of the molecular, cellular, and systems biology mechanisms underpinning different types of cancer. Here, the authors integrate conversations with over 90 leading cancer experts to highlight current challenges, encourage a robust and diverse national research portfolio, and capture timely opportunities to advance evidence-based approaches for all patients with cancer and for all communities.
Collapse
Affiliation(s)
- Lynne W Elmore
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Susanna F Greer
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Elvan C Daniels
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Charles C Saxe
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Michael H Melner
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Ginger M Krawiec
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William G Cance
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William C Phelps
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
30
|
Zhang Y, Cai Y, Zhang SR, Li CY, Jiang LL, Wei P, He MF. Mechanism of hepatotoxicity of first-line tyrosine kinase inhibitors: Gefitinib and afatinib. Toxicol Lett 2021; 343:1-10. [PMID: 33571620 DOI: 10.1016/j.toxlet.2021.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
AIMS Both gefitinib and afatinib are epidermal growth factor tyrosine kinase inhibitors (EGFR-TKI) in the treatment of non-small cell lung cancer (NSCLC). It has been reported that gefitinib and afatinib could cause hepatotoxicity during the clinic treatment, therefore it is critical to investigate their hepatotoxicity systematically. In this study, zebrafish (Danio rerio) were used as model animals to compare the hepatotoxicity and their toxic mechanism. MAIN METHODS The zebrafish transgenic line [Tg (fabp10a: dsRed; ela3l:EGFP) was used in this study. After larvae developed at 3 days post fertilization (dpf), they were put into different concentrations of gefitinib and afatinib. At 6 dpf, the viability, liver area, fluorescence intensity, histopathology, apoptosis, transaminase reflecting liver function, the absorption of yolk sac, and the expression of relative genes were observed and analyzed respectively. KEY FINDINGS Both gefitinib and afatinib could induce the larvae hepatotoxicity dose-dependently. Based on the liver morphology, histopathology, apoptosis and function assessments, gefitinib showed higher toxicity, causing more serious liver damage. Both gefitinib and afatinib caused abnormal expressions of genes related to endoplasmic reticulum stress (ERS) pathway and apoptosis. For example, jnk, perk, bip, chop, ire1, bid, caspase3 and caspase9 were up-regulated, while xbp1s, grp78, bcl-2/bax, and caspase8 were down-regulated. The hepatotoxicity difference of gefitinib and afatinib might be due to the different expression level of related genes.
Collapse
Affiliation(s)
- Yao Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yang Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shi-Ru Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chong-Yong Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ling-Ling Jiang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 211816, China
| | - Pin Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
31
|
Jonckheere S, Adams J, De Groote D, Campbell K, Berx G, Goossens S. Epithelial-Mesenchymal Transition (EMT) as a Therapeutic Target. Cells Tissues Organs 2021; 211:157-182. [PMID: 33401271 DOI: 10.1159/000512218] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/11/2020] [Indexed: 11/19/2022] Open
Abstract
Metastasis is the spread of cancer cells from the primary tumour to distant sites and organs throughout the body. It is the primary cause of cancer morbidity and mortality, and is estimated to account for 90% of cancer-related deaths. During the initial steps of the metastatic cascade, epithelial cancer cells undergo an epithelial-mesenchymal transition (EMT), and as a result become migratory and invasive mesenchymal-like cells while acquiring cancer stem cell properties and therapy resistance. As EMT is involved in such a broad range of processes associated with malignant transformation, it has become an increasingly interesting target for the development of novel therapeutic strategies. Anti-EMT therapeutic strategies could potentially not only prevent the invasion and dissemination of cancer cells, and as such prevent the formation of metastatic lesions, but also attenuate cancer stemness and increase the effectiveness of more classical chemotherapeutics. In this review, we give an overview about the pros and cons of therapies targeting EMT and discuss some already existing candidate drug targets and high-throughput screening tools to identify novel anti-EMT compounds.
Collapse
Affiliation(s)
- Sven Jonckheere
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jamie Adams
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Dominic De Groote
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Kyra Campbell
- Department of Biomedical Science, The University of Sheffield, Sheffield, United Kingdom
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium, .,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium,
| |
Collapse
|
32
|
Amawi H, Aljabali AAA, Boddu SHS, Amawi S, Obeid MA, Ashby CR, Tiwari AK. The use of zebrafish model in prostate cancer therapeutic development and discovery. Cancer Chemother Pharmacol 2021; 87:311-325. [PMID: 33392639 DOI: 10.1007/s00280-020-04211-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022]
Abstract
Zebrafish is now among the leading in vivo model for cancer research, including prostate cancer. They are an alternative economic model being used to study cancer development, proliferation, and metastasis. They can also be effectively utilized for the development of cancer drugs at all levels, including target validation, and high-throughput screening for possible lead molecules. In this review, we provide a comprehensive overview of the role of zebrafish as an in vivo model in prostate cancer research. Globally, prostate cancer is a leading cause of death in men. Although many molecular mechanisms have been identified as playing a role in the pathogenesis of prostate cancer, there is still a significant need to understand the initial events of the disease. Furthermore, current treatments are limited by the emergence of severe toxicities and multidrug resistance. There is an essential need for economical and relevant research tools to improve our understanding and overcome these problems. This review provides a comprehensive summary of studies that utilized zebrafish for different aims in prostate cancer research. We discuss the use of zebrafish in prostate cancer cell proliferation and metastasis, defining signaling pathways, drug discovery and therapeutic development against prostate cancer, and toxicity studies. Finally, this review highlights limitations in this field and future directions to efficiently use zebrafish as a robust model for prostate cancer therapeutics development.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, P.O.BOX 566, Irbid, 21163, Jordan.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, Ajman, UAE
| | - Sadam Amawi
- Department of Urology and General Surgery, Faculty of Medicine, King Abdullah University Hospital, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, USA.
| |
Collapse
|
33
|
Abstract
Since the first resection of melanoma by Hunter in 1787, efforts to treat patients with this deadly malignancy have been ongoing. Initial work to understand melanoma biology for therapeutics development began with the employment of isolated cancer cells grown in cell cultures. However, these models lack in vivo interactions with the tumor microenvironment. Melanoma cell line transplantation into suitable animals such as mice has been informative and useful for testing therapeutics as a preclinical model. Injection of freshly isolated patient melanomas into immunodeficient animals has shown the capacity to retain the genetic heterogeneity of the tumors, which is lost during the long-term culture of melanoma cells. Upon advancement of technology, genetically engineered animals have been generated to study the spontaneous development of melanomas in light of newly discovered genetic aberrations associated with melanoma formation. Culturing melanoma cells in a matrix generate tumor spheroids, providing an in vitro environment that promotes the heterogeneity commonplace with human melanoma and displaces the need for animal care facilities. Advanced 3D cultures have been created simulating the structure and cellularity of human skin to permit in vitro testing of therapeutics on melanomas expressing the same phenotype as demonstrated in vivo. This review will discuss these models and their relevance to the study of melanomagenesis, growth, metastasis, and therapy.
Collapse
Affiliation(s)
- Randal K Gregg
- Department of Basic Medical Sciences, DeBusk College of Osteopathic Medicine at Lincoln Memorial University-Knoxville, Knoxville, TN, USA.
| |
Collapse
|
34
|
Recording Channelrhodopsin-Evoked Field Potentials and Startle Responses from Larval Zebrafish. Methods Mol Biol 2021; 2191:201-220. [PMID: 32865747 DOI: 10.1007/978-1-0716-0830-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish are an excellent model organism to study many aspects of vertebrate sensory encoding and behavior. Their escape responses begin with a C-shaped body bend followed by several swimming bouts away from the potentially threatening stimulus. This highly stereotyped motor behavior provides a model for studying startle reflexes and the neural circuitry underlying multisensory encoding and locomotion. Channelrhodopsin (ChR2) can be expressed in the lateral line and ear hair cells of zebrafish and can be excited in vivo to elicit these rapid forms of escape. Here we review our methods for studying transgenic ChR2-expressing zebrafish larvae, including screening for positive expression of ChR2 and recording field potentials and high-speed videos of optically evoked escape responses. We also highlight important features of the acquired data and provide a brief review of other zebrafish research that utilizes or has the potential to benefit from ChR2 and optogenetics.
Collapse
|
35
|
Breeta RDIE, Grace VMB, Wilson DD. Methyl Palmitate-A suitable adjuvant for Sorafenib therapy to reduce in vivo toxicity and to enhance anti-cancer effects on hepatocellular carcinoma cells. Basic Clin Pharmacol Toxicol 2020; 128:366-378. [PMID: 33128309 DOI: 10.1111/bcpt.13525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022]
Abstract
This study focused on evaluating the potency of Methyl Palmitate in reducing in vivo toxicity with enhancement of anti-cancer effects of Sorafenib. In vitro anti-cancer effects on human Hep-G2 cell line were analysed by MTT, Trypan blue, clonogenic, wound scratch migration and TUNEL assays. An in vivo study for anti-angiogenesis effect, toxicity and teratogenicity was analysed in Zebrafish embryos. The combination of Sorafenib (4.5 µmol/L) with Methyl Palmitate (3 mmol/L) significantly enhanced anti-cancer effects on Hep-G2 cell line by increasing cytotoxicity (P ≤ .05 in MTT assay; P ≤ .01 in Trypan blue assay), apoptosis (P ≤ .05) and decreasing the metastatic migration (P ≤ .01) than Sorafenib alone treatment. A prominent inhibition of angiogenesis in vivo was observed for combination treatment. At 5 dpf, only <20% toxicity was observed for 3 mmol/L Methyl palmitate while it was 65.75% for Sorafenib treatment which implies that it is a safer dose for in vivo treatments. A highly significant (P ≤ .001) reduction (43.20%) in toxicity was observed in combination treatment. Thus, the Sorafenib-Methyl Palmitate combination showed a promising treatment effect with significantly reduced in vivo toxicity when compared with Sorafenib alone treatment, and hence the Methyl Palmitate may serve as a good adjuvant for Sorafenib therapy.
Collapse
Affiliation(s)
| | | | - Devarajan David Wilson
- School of Science, Arts, Media and Management, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
36
|
Cabezas-Sáinz P, Pensado-López A, Sáinz B, Sánchez L. Modeling Cancer Using Zebrafish Xenografts: Drawbacks for Mimicking the Human Microenvironment. Cells 2020; 9:E1978. [PMID: 32867288 PMCID: PMC7564051 DOI: 10.3390/cells9091978] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
The first steps towards establishing xenografts in zebrafish embryos were performed by Lee et al., 2005 and Haldi et al., 2006, paving the way for studying human cancers using this animal species. Since then, the xenograft technique has been improved in different ways, ranging from optimizing the best temperature for xenografted embryo incubation, testing different sites for injection of human tumor cells, and even developing tools to study how the host interacts with the injected cells. Nonetheless, a standard protocol for performing xenografts has not been adopted across laboratories, and further research on the temperature, microenvironment of the tumor or the cell-host interactions inside of the embryo during xenografting is still needed. As a consequence, current non-uniform conditions could be affecting experimental results in terms of cell proliferation, invasion, or metastasis; or even overestimating the effects of some chemotherapeutic drugs on xenografted cells. In this review, we highlight and raise awareness regarding the different aspects of xenografting that need to be improved in order to mimic, in a more efficient way, the human tumor microenvironment, resulting in more robust and accurate in vivo results.
Collapse
Affiliation(s)
- Pablo Cabezas-Sáinz
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (A.P.-L.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (A.P.-L.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Bruno Sáinz
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Cancer Stem Cell and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (P.C.-S.); (A.P.-L.)
| |
Collapse
|
37
|
Giunco S, Zangrossi M, Dal Pozzolo F, Celeghin A, Ballin G, Petrara MR, Amin A, Argenton F, Godinho Ferreira M, De Rossi A. Anti-Proliferative and Pro-Apoptotic Effects of Short-Term Inhibition of Telomerase In Vivo and in Human Malignant B Cells Xenografted in Zebrafish. Cancers (Basel) 2020; 12:cancers12082052. [PMID: 32722398 PMCID: PMC7463531 DOI: 10.3390/cancers12082052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its canonical role in stabilizing telomeres, telomerase reverse transcriptase (TERT) may promote tumor growth/progression through extra-telomeric functions. Our previous in vitro studies demonstrated that short-term TERT inhibition by BIBR1532 (BIBR), an inhibitor of TERT catalytic activity, negatively impacts cell proliferation and viability via telomeres’ length-independent mechanism. Here we evaluate the anti-proliferative and pro-apoptotic effects of short-term telomerase inhibition in vivo in wild-type (wt) and tert mutant (terthu3430/hu3430; tert−/−) zebrafish embryos, and in malignant human B cells xenografted in casper zebrafish embryos. Short-term Tert inhibition by BIBR in wt embryos reduced cell proliferation, induced an accumulation of cells in S-phase and ultimately led to apoptosis associated with the activation of DNA damage response; all these effects were unrelated to telomere shortening/dysfunction. BIBR treatment showed no effects in tert−/− embryos. Xenografted untreated malignant B cells proliferated in zebrafish embryos, while BIBR pretreated cells constantly decreased and were significantly less than those in the controls from 24 to up to 72 h after xenotransplantation. Additionally, xenografted tumor cells, treated with BIBR prior- or post-transplantation, displayed a significant higher apoptotic rate compared to untreated control cells. In conclusion, our data demonstrate that short-term telomerase inhibition impairs proliferation and viability in vivo and in human malignant B cells xenografted in zebrafish, thus supporting therapeutic applications of TERT inhibitors in human malignancies.
Collapse
Affiliation(s)
- Silvia Giunco
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
- Correspondence: ; Tel.: +39-049-821-5831
| | - Manuela Zangrossi
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | - Francesca Dal Pozzolo
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy;
| | - Andrea Celeghin
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | - Giovanni Ballin
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | - Maria Raffaella Petrara
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | - Aamir Amin
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
| | | | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 UNS, Université Côte d’Azur, 06107 Nice CEDEX 2, France;
| | - Anita De Rossi
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.Z.); (A.C.); (G.B.); (M.R.P.); (A.A.); (A.D.R.)
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy;
| |
Collapse
|
38
|
Noble JN, Mishra A. Development and Significance of Mouse Models in Lymphoma Research. Curr Hematol Malig Rep 2020; 14:119-126. [PMID: 30848424 DOI: 10.1007/s11899-019-00504-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Animal models have played an indispensable role in interpreting cancer gene functions, pathogenesis of disease, and in the development of innovative therapeutic approaches targeting aberrant biological pathways in human cancers. RECENT FINDINGS These models have guided the therapeutic targeting of cancer-causing mutations and paved the way for assessing anti-cancer drug responses and the preclinical development of immunotherapies. The mammalian models of cancer utilize genetically edited or transplanted mice that develop fairly accurate disease histopathology. The mouse model also allows us to study the effect of tumor microenvironment in the development of lymphoma. The emergence of patient-derived xenografts provides a better opportunity for recapitulating primary lymphoma characteristics and researching personalized drug therapy. In conclusion, the refinement and advancement of available mouse models in lymphoma significantly minimize the therapeutic translational failures in patients.
Collapse
Affiliation(s)
- Jordan N Noble
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Anjali Mishra
- College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA. .,Division of Dermatology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA. .,Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadephia, PA, 19107, USA.
| |
Collapse
|
39
|
Sommer F, Torraca V, Meijer AH. Chemokine Receptors and Phagocyte Biology in Zebrafish. Front Immunol 2020; 11:325. [PMID: 32161595 PMCID: PMC7053378 DOI: 10.3389/fimmu.2020.00325] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Phagocytes are highly motile immune cells that ingest and clear microbial invaders, harmful substances, and dying cells. Their function is critically dependent on the expression of chemokine receptors, a class of G-protein-coupled receptors (GPCRs). Chemokine receptors coordinate the recruitment of phagocytes and other immune cells to sites of infection and damage, modulate inflammatory and wound healing responses, and direct cell differentiation, proliferation, and polarization. Besides, a structurally diverse group of atypical chemokine receptors (ACKRs) are unable to signal in G-protein-dependent fashion themselves but can shape chemokine gradients by fine-tuning the activity of conventional chemokine receptors. The optically transparent zebrafish embryos and larvae provide a powerful in vivo system to visualize phagocytes during development and study them as key elements of the immune response in real-time. In this review, we discuss how the zebrafish model has furthered our understanding of the role of two main classes of chemokine receptors, the CC and CXC subtypes, in phagocyte biology. We address the roles of the receptors in the migratory properties of phagocytes in zebrafish models for cancer, infectious disease, and inflammation. We illustrate how studies in zebrafish enable visualizing the contribution of chemokine receptors and ACKRs in shaping self-generated chemokine gradients of migrating cells. Taking the functional antagonism between two paralogs of the CXCR3 family as an example, we discuss how the duplication of chemokine receptor genes in zebrafish poses challenges, but also provides opportunities to study sub-functionalization or loss-of-function events. We emphasize how the zebrafish model has been instrumental to prove that the major determinant for the functional outcome of a chemokine receptor-ligand interaction is the cell-type expressing the receptor. Finally, we highlight relevant homologies and analogies between mammalian and zebrafish phagocyte function and discuss the potential of zebrafish models to further advance our understanding of chemokine receptors in innate immunity and disease.
Collapse
Affiliation(s)
- Frida Sommer
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Vincenzo Torraca
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | | |
Collapse
|
40
|
Yu Q, Huo J, Zhang Y, Liu K, Cai Y, Xiang T, Jiang Z, Zhang L. Tamoxifen-induced hepatotoxicity via lipid accumulation and inflammation in zebrafish. CHEMOSPHERE 2020; 239:124705. [PMID: 31479913 DOI: 10.1016/j.chemosphere.2019.124705] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Tamoxifen is a clinical drug for estrogen receptor (ER)-positive breast cancer. Recently, it has been detected in aquatic environment. The residual drugs will produce certain biological activity and create a risk to aquatic organism when they enter the water environment. Therefore, it has great significance to study the ecotoxicity of tamoxifen. In the study, we used zebrafish as a model of aquatic to investigate the ecotoxic mechanism of tamoxifen to aquatic. We found that tamoxifen induced liver lipid accumulation in zebrafish, which showed a significant hepatotoxicity with smaller liver area and bigger yolk area. Though biochemical and pathologic measurement, tamoxifen treated group showed higher transaminase and lipid content. The elevated liver lipid synthesis might due to the increase of lipid metabolism related gene Srebf1, Srebf2 and Fasn. Moreover, inflammatory cytokine Tnf-α, Il-1β And Il-6 were increased. This result confirmed the toxicity of tamoxifen to aquatic, suggested liver injury was the main characteristic of its ecotoxicity. This study indicated it is important to avoid tamoxifen discharging into the aquatic ecology and provided a theoretical basis of prevention tamoxifen-induced ecotoxicity to aquatic.
Collapse
Affiliation(s)
- Qinwei Yu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Jingting Huo
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Yu Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Ting Xiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
41
|
Ayres Pereira M, Chio IIC. Metastasis in Pancreatic Ductal Adenocarcinoma: Current Standing and Methodologies. Genes (Basel) 2019; 11:E6. [PMID: 31861620 PMCID: PMC7016631 DOI: 10.3390/genes11010006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an extremely aggressive disease with a high metastatic potential. Most patients are diagnosed with metastatic disease, at which the five-year survival rate is only 3%. A better understanding of the mechanisms that drive metastasis is imperative for the development of better therapeutic interventions. Here, we take the reader through our current knowledge of the parameters that support metastatic progression in pancreatic ductal adenocarcinoma, and the experimental models that are at our disposal to study this process. We also describe the advantages and limitations of these models to study the different aspects of metastatic dissemination.
Collapse
Affiliation(s)
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
42
|
Rothenbücher TS, Ledin J, Gibbs D, Engqvist H, Persson C, Hulsart-Billström G. Zebrafish embryo as a replacement model for initial biocompatibility studies of biomaterials and drug delivery systems. Acta Biomater 2019; 100:235-243. [PMID: 31585201 DOI: 10.1016/j.actbio.2019.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/02/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
The development of new biomaterials and drug delivery systems necessitates animal experimentation to demonstrate biocompatibility and therapeutic efficacy. Reduction and replacement of the requirement to conduct experiment using full-grown animals has been achieved through utilising zebrafish embryos, a promising bridge model between in vitro and in vivo research. In this review, we consider how zebrafish embryos have been utilised to test both the biocompatibility of materials developed to interact with the human body and drug release studies. Furthermore, we outline the advantages and limitations of this model and review legal and ethical issues. We anticipate increasing application of the zebrafish model for biomaterial evaluation in the near future. STATEMENT OF SIGNIFICANCE: This review aims to evaluate the potential application and suitability of the zebrafish model in the development of biomaterials and drug delivery systems. It creates scientific impact and interest because replacement models are desirable to the society and the scientific community. The continuous development of biomaterials calls for the need to provide solutions for biological testing. This review covers the topic of how the FET model can be applied to evaluate biocompatibility. Further, it explores the zebrafish from the wild-type to the mutant form, followed by a discussion about the ethical considerations and concerns when using the FET model.
Collapse
|
43
|
Lin CR, Chu TM, Luo A, Huang SJ, Chou HY, Lu MW, Wu JL. Omega-3 polyunsaturated fatty acids suppress metastatic features of human cholangiocarcinoma cells by suppressing twist. J Nutr Biochem 2019; 74:108245. [DOI: 10.1016/j.jnutbio.2019.108245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 01/04/2023]
|
44
|
Hason M, Bartůněk P. Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-Mammalian Vertebrate. Genes (Basel) 2019; 10:genes10110935. [PMID: 31731811 PMCID: PMC6896156 DOI: 10.3390/genes10110935] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022] Open
Abstract
Zebrafish (Danio rerio) is a valuable non-mammalian vertebrate model widely used to study development and disease, including more recently cancer. The evolutionary conservation of cancer-related programs between human and zebrafish is striking and allows extrapolation of research outcomes obtained in fish back to humans. Zebrafish has gained attention as a robust model for cancer research mainly because of its high fecundity, cost-effective maintenance, dynamic visualization of tumor growth in vivo, and the possibility of chemical screening in large numbers of animals at reasonable costs. Novel approaches in modeling tumor growth, such as using transgene electroporation in adult zebrafish, could improve our knowledge about the spatial and temporal control of cancer formation and progression in vivo. Looking at genetic as well as epigenetic alterations could be important to explain the pathogenesis of a disease as complex as cancer. In this review, we highlight classic genetic and transplantation models of cancer in zebrafish as well as provide new insights on advances in cancer modeling. Recent progress in zebrafish xenotransplantation studies and drug screening has shown that zebrafish is a reliable model to study human cancer and could be suitable for evaluating patient-derived xenograft cell invasiveness. Rapid, large-scale evaluation of in vivo drug responses and kinetics in zebrafish could undoubtedly lead to new applications in personalized medicine and combination therapy. For all of the above-mentioned reasons, zebrafish is approaching a future of being a pre-clinical cancer model, alongside the mouse. However, the mouse will continue to be valuable in the last steps of pre-clinical drug screening, mostly because of the highly conserved mammalian genome and biological processes.
Collapse
|
45
|
Sieber S, Grossen P, Bussmann J, Campbell F, Kros A, Witzigmann D, Huwyler J. Zebrafish as a preclinical in vivo screening model for nanomedicines. Adv Drug Deliv Rev 2019; 151-152:152-168. [PMID: 30615917 DOI: 10.1016/j.addr.2019.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The interactions of nanomedicines with biological environments is heavily influenced by their physicochemical properties. Formulation design and optimization are therefore key steps towards successful nanomedicine development. Unfortunately, detailed assessment of nanomedicine formulations, at a macromolecular level, in rodents is severely limited by the restricted imaging possibilities within these animals. Moreover, rodent in vivo studies are time consuming and expensive, limiting the number of formulations that can be practically assessed in any one study. Consequently, screening and optimisation of nanomedicine formulations is most commonly performed in surrogate biological model systems, such as human-derived cell cultures. However, despite the time and cost advantages of classical in vitro models, these artificial systems fail to reflect and mimic the complex biological situation a nanomedicine will encounter in vivo. This has acutely hampered the selection of potentially successful nanomedicines for subsequent rodent in vivo studies. Recently, zebrafish have emerged as a promising in vivo model, within nanomedicine development pipelines, by offering opportunities to quickly screen nanomedicines under in vivo conditions and in a cost-effective manner so as to bridge the current gap between in vitro and rodent studies. In this review, we outline several advantageous features of the zebrafish model, such as biological conservation, imaging modalities, availability of genetic tools and disease models, as well as their various applications in nanomedicine development. Critical experimental parameters are discussed and the most beneficial applications of the zebrafish model, in the context of nanomedicine development, are highlighted.
Collapse
Affiliation(s)
- Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jeroen Bussmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Frederick Campbell
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland; Department of Biochemistry and Molecular Biology, University of British Columbia, Health Sciences Mall, Vancouver, British Columbia, Canada..
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
46
|
Huo J, Yu Q, Zhang Y, Liu K, Hsiao C, Jiang Z, Zhang L. Triptolide‐induced hepatotoxicity via apoptosis and autophagy in zebrafish. J Appl Toxicol 2019; 39:1532-1540. [DOI: 10.1002/jat.3837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jingting Huo
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical University Nanjing China
| | - Qinwei Yu
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical University Nanjing China
| | - Yun Zhang
- Biology InstituteQilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Kechun Liu
- Biology InstituteQilu University of Technology (Shandong Academy of Sciences) Jinan China
| | - Chung‐Der Hsiao
- Department of Bioscience TechnologyChung Yuan Christian University Chung‐Li Taiwan
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical University Nanjing China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of EducationChina Pharmaceutical University Nanjing China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug ScreeningChina Pharmaceutical University Nanjing China
- Center for Drug Research and DevelopmentGuangdong Pharmaceutical University Guangzhou China
| |
Collapse
|
47
|
DNA repair and neurological disease: From molecular understanding to the development of diagnostics and model organisms. DNA Repair (Amst) 2019; 81:102669. [PMID: 31331820 DOI: 10.1016/j.dnarep.2019.102669] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In both replicating and non-replicating cells, the maintenance of genomic stability is of utmost importance. Dividing cells can repair DNA damage during cell division, tolerate the damage by employing potentially mutagenic DNA polymerases or die via apoptosis. However, the options for accurate DNA repair are more limited in non-replicating neuronal cells. If DNA damage is left unresolved, neuronal cells die causing neurodegenerative disorders. A number of pathogenic variants of DNA repair proteins have been linked to multiple neurological diseases. The current challenge is to harness our knowledge of fundamental properties of DNA repair to improve diagnosis, prognosis and treatment of such debilitating disorders. In this perspective, we will focus on recent efforts in identifying novel DNA repair biomarkers for the diagnosis of neurological disorders and their use in monitoring the patient response to therapy. These efforts are greatly facilitated by the development of model organisms such as zebrafish, which will also be summarised.
Collapse
|
48
|
Couto GK, Segatto NV, Oliveira TL, Seixas FK, Schachtschneider KM, Collares T. The Melding of Drug Screening Platforms for Melanoma. Front Oncol 2019; 9:512. [PMID: 31293965 PMCID: PMC6601395 DOI: 10.3389/fonc.2019.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
The global incidence of cancer is rising rapidly and continues to be one of the leading causes of death in the world. Melanoma deserves special attention since it represents one of the fastest growing types of cancer, with advanced metastatic forms presenting high mortality rates due to the development of drug resistance. The aim of this review is to evaluate how the screening of drugs and compounds for melanoma has been performed over the last seven decades. Thus, we performed literature searches to identify melanoma drug screening methods commonly used by research groups during this timeframe. In vitro and in vivo tests are essential for the development of new drugs; however, incorporation of in silico analyses increases the possibility of finding more suitable candidates for subsequent tests. In silico techniques, such as molecular docking, represent an important and necessary first step in the screening process. However, these techniques have not been widely used by research groups to date. Our research has shown that the vast majority of research groups still perform in vitro and in vivo tests, with emphasis on the use of in vitro enzymatic tests on melanoma cell lines such as SKMEL and in vivo tests using the B16 mouse model. We believe that the union of these three approaches (in silico, in vitro, and in vivo) is essential for improving the discovery and development of new molecules with potential antimelanoma action. This workflow would provide greater confidence and safety for preclinical trials, which will translate to more successful clinical trials and improve the translatability of new melanoma treatments into clinical practice while minimizing the unnecessary use of laboratory animals under the principles of the 3R's.
Collapse
Affiliation(s)
- Gabriela Klein Couto
- Research Group in Molecular and Cellular Oncology, Postgraduate Program in Biochemistry and Bioprospecting, Cancer Biotechnology Laboratory, Center for Technological Development, Federal University of Pelotas, Pelotas, Brazil
| | - Natália Vieira Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Thaís Larré Oliveira
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
49
|
Outtandy P, Russell C, Kleta R, Bockenhauer D. Zebrafish as a model for kidney function and disease. Pediatr Nephrol 2019; 34:751-762. [PMID: 29502161 PMCID: PMC6424945 DOI: 10.1007/s00467-018-3921-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/31/2022]
Abstract
Kidney disease is a global problem with around three million people diagnosed in the UK alone and the incidence is rising. Research is critical to develop better treatments. Animal models can help to better understand the pathophysiology behind the various kidney diseases and to screen for therapeutic compounds, but the use especially of mammalian models should be minimised in the interest of animal welfare. Zebrafish are increasingly used, as they are genetically tractable and have a basic renal anatomy comparable to mammalian kidneys with glomerular filtration and tubular filtration processing. Here, we discuss how zebrafish have advanced the study of nephrology and the mechanisms underlying kidney disease.
Collapse
Affiliation(s)
- Priya Outtandy
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Claire Russell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Robert Kleta
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK.
| | - Detlef Bockenhauer
- Centre for Nephrology, Royal Free Hospital/Medical School, University College London, 1. Floor, Room 1.7007, Rowland Hill Street, London, NW3 2PF, UK
| |
Collapse
|
50
|
Zhu XY, Guo DW, Lao QC, Xu YQ, Meng ZK, Xia B, Yang H, Li CQ, Li P. Sensitization and synergistic anti-cancer effects of Furanodiene identified in zebrafish models. Sci Rep 2019; 9:4541. [PMID: 30872660 PMCID: PMC6418268 DOI: 10.1038/s41598-019-40866-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/19/2019] [Indexed: 12/25/2022] Open
Abstract
Furanodiene is a natural terpenoid isolated from Rhizoma Curcumae, a well-known Chinese medicinal herb that presents anticancer effects in various types of cancer cell lines. In this study, we have successfully established zebrafish xenografts with 5 various human cancer cell lines; and validated these models with anti-cancer drugs used clinically for treating human cancer patients. We found that Furanodiene was therapeutically effective for human JF 305 pancreatic cancer cells and MCF-7 breast cancer cells xenotranplanted into zebrafish. Furanodiene showed a markedly synergistic anti-cancer effect when used in combination with 5-FU (5-Fluorouracil) for both human breast cancer MDA-MB-231 cells and human liver cancer BEL-7402 cells xenotransplanted into zebrafish. Unexpectedly, Furanodiene reversed multiple drug resistance in the zebrafish xenotransplanted with cis-Platinum-resistant human non-small cell lung cancer cells and Adriamycin-resistant human breast cancer cells. Furanodiene played its anti-cancer effects through anti-angiogenesis and inducing ROS production, DNA strand breaks and apoptosis. Furanodiene suppresseed efflux transporter Pgp (P-glycoprotein) function and reduced Pgp protein level, but no effect on Pgp related gene (MDR1) expression. These results suggest sensitizition and synergistic anti-cancer effects of Furanodiene that is worthy of a further investigation.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, P. R. China.,Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China
| | - Dian-Wu Guo
- Minsheng Biopharma Research Institute, F8, building F, No. 1378 Wenyixi Road, Yuhang Zone, Hangzhou City, Zhejiang Province, 310011, P. R. China
| | - Qiao-Cong Lao
- Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China
| | - Yi-Qiao Xu
- Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China
| | - Zhao-Ke Meng
- Minsheng Biopharma Research Institute, F8, building F, No. 1378 Wenyixi Road, Yuhang Zone, Hangzhou City, Zhejiang Province, 310011, P. R. China
| | - Bo Xia
- Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, P. R. China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc, F1A, building 5, No. 88 Jiangling Road, Binjiang Zone, Hangzhou City, Zhejiang Province, 310051, P. R. China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, P. R. China.
| |
Collapse
|