1
|
Rosenthal KJ, Gordan JD, Scott JD. Protein kinase A and local signaling in cancer. Biochem J 2024; 481:1659-1677. [PMID: 39540434 DOI: 10.1042/bcj20230352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Protein kinase A (PKA) is a basophilic kinase implicated in the modulation of many cell-signaling and physiological processes. PKA also contributes to cancer-relevant events such as growth factor action, cell cycle control, cell migration and tumor metabolism. Germline and somatic mutations in PKA, gene amplifications, and chromosome rearrangements that encode kinase fusions, are linked to a growing number of malignant neoplasms. Mislocalization of PKA by exclusion from A-Kinase Anchoring Protein (AKAP) signaling islands further underlies cancer progression. This article highlights the influence of AKAP signaling and local kinase action in selected hallmarks of cancer. We also feature the utility of kinase inhibitor drugs as frontline and future anti-cancer therapies.
Collapse
Affiliation(s)
- Kacey J Rosenthal
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| | - John D Gordan
- Department of Medicine (Hematology/Oncology), Quantitative Biosciences Institute, UCSF Helen Diller Family Cancer Center, 1700 4th St., San Francisco, CA 94143, U.S.A
| | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, 1959 NE Pacific St., Box 357750, Seattle, WA 98195, U.S.A
| |
Collapse
|
2
|
Li Q, Li J, Wang K, Liao L, Li Y, Liang H, Huang C, Gan J, Dong X, Hu Y, Cheng J, Ji H, Liu C, Zeng M, Yu S, Wang B, Qian J, Tang Z, Peng Y, Tang S, Li M, Zhou J, Yan J, Li C. Activation of Sphingomyelin Phosphodiesterase 3 in Liver Regeneration Impedes the Progression of Colorectal Cancer Liver Metastasis Via Exosome-Bound Intercellular Transfer of Ceramides. Cell Mol Gastroenterol Hepatol 2023; 16:385-410. [PMID: 37245564 PMCID: PMC10372907 DOI: 10.1016/j.jcmgh.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND & AIMS The machinery that prevents colorectal cancer liver metastasis (CRLM) in the context of liver regeneration (LR) remains elusive. Ceramide (CER) is a potent anti-cancer lipid involved in intercellular interaction. Here, we investigated the role of CER metabolism in mediating the interaction between hepatocytes and metastatic colorectal cancer (CRC) cells to regulate CRLM in the context of LR. METHODS Mice were intrasplenically injected with CRC cells. LR was induced by 2/3 partial hepatectomy (PH) to mimic the CRLM in the context of LR. The alteration of corresponding CER-metabolizing genes was examined. The biological roles of CER metabolism in vitro and in vivo were examined by performing a series of functional experiments. RESULTS Induction of LR augmented apoptosis but promoted matrix metalloproteinase 2 (MMP2) expression and epithelial-mesenchymal transition (EMT) to increase the invasiveness of metastatic CRC cells, resulting in aggressive CRLM. Up-regulation of sphingomyelin phosphodiesterase 3 (SMPD3) was determined in the regenerating hepatocytes after LR induction and persisted in the CRLM-adjacent hepatocytes after CRLM formation. Hepatic Smpd3 knockdown was found to further promote CRLM in the context of LR by abolishing mitochondrial apoptosis and augmenting the invasiveness in metastatic CRC cells by up-regulating MMP2 and EMT through promoting the nuclear translocation of β-catenin. Mechanistically, we found that hepatic SMPD3 controlled the generation of exosomal CER in the regenerating hepatocytes and the CRLM-adjacent hepatocytes. The SMPD3-produced exosomal CER critically conducted the intercellular transfer of CER from the hepatocytes to metastatic CRC cells and impeded CRLM by inducing mitochondrial apoptosis and restricting the invasiveness in metastatic CRC cells. The administration of nanoliposomal CER was found to suppress CRLM in the context of LR substantially. CONCLUSIONS SMPD3-produced exosomal CER constitutes a critical anti-CRLM mechanism in LR to impede CRLM, offering the promise of using CER as a therapeutic agent to prevent the recurrence of CRLM after PH.
Collapse
Affiliation(s)
- Qingping Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyuan Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Can Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Gan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yaowen Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongli Ji
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Minghui Zeng
- Institute of Scientific Research, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongshun Tang
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghong Peng
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Shanhua Tang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengxuan Li
- The First Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Jin Y, Song X, Sun X, Ding Y. Up-regulation of collagen type V alpha 2 ( COL5A2) promotes malignant phenotypes in gastric cancer cell via inducing epithelial-mesenchymal transition (EMT). Open Med (Wars) 2023; 18:20220593. [PMID: 36712590 PMCID: PMC9843231 DOI: 10.1515/med-2022-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 01/19/2023] Open
Abstract
Recent studies have reported that collagen type V alpha 2 (COL5A2) is a hub gene and associated with the prognosis of gastric cancer (GC) patients, playing an important role in GC. In this study, we aim to fathom out the biological roles of COL5A2 and its relevant mechanism in GC. Oncomine, gene expression profiling interactive analysis, and UALCAN were used to explore the effects of COL5A2 on GC. Cell counting kit-8 assay, colony formation assay, and transwell assay were conducted to investigate the biological behaviors of GC cell lines AGS and SGC-7901. Quantitative reverse transcription polymerase chain reaction and western blot were performed to determine gene and protein expressions. COL5A2 expression was up-regulated and negatively correlated with survival percentage of GC patients. COL5A2 expression was notably elevated in high stage and high grade of GC. Down-regulation of COL5A2 inhibited proliferation, migration, and invasion of AGS and SGC-7901 cells. COL5A2 induced epithelial-mesenchymal transition (EMT) by promoting the expressions of mesenchymal markers (SNAI1, SNAI2, TWIST, VIM, and MMP2), thereby facilitating the malignant phenotypes of GC. COL5A2 plays an oncogenic role in GC and has potential to predict the progression and prognosis of GC patients.
Collapse
Affiliation(s)
- Yanfeng Jin
- Department of Gastroenterology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xinyan Song
- Pharmacy of Laishan Branch, Yantai Yuhuangding Hospital, Yantai, China
| | - Xuankai Sun
- Department of Radiation, Yantai Yuhuangding Hospital, Yantai, China
| | - Yan Ding
- Department of Surgical Intensive Care Unit, Yantaishan Hospital, No. 10087 Keji Avenue, Laishan District, Yantai, Shandong 264003, China
| |
Collapse
|
4
|
Sheikh-Hosseini M, Salimi M, Mozdarani H. A-Kinase anchor protein 4 (AKAP4) may be considered as a potential early diagnostic breast cancer marker detectable in blood. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Current Progress of EMT: A New Direction of Targeted Therapy for Colorectal Cancer with Invasion and Metastasis. Biomolecules 2022; 12:biom12121723. [PMID: 36551152 PMCID: PMC9775097 DOI: 10.3390/biom12121723] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor with a high frequency of recurrence and metastasis, which are the major causes of death in patients. The prerequisite for the invasion and metastasis is the strong mobility of CRC cells to transport far away from the original site to the distant organs and tissues, where they settle down and proliferate. It was reported that the epithelial-mesenchymal transition (EMT) is involved in the occurrence and development of various tumors in the entire process of tumor invasion and metastasis. Therefore, as a vital factor for the biological characteristics of tumor cells, EMT markers may serve as prognostic predictors and potential therapeutic targets in CRC. This article mainly reviews the current status of CRC with metastasis, the studies of EMT, the possible relationship of EMT with CRC, as well as the potential targeted therapy.
Collapse
|
6
|
Wu Y, Xie M, Sun JH, Li CC, Dong GH, Zhang QS, Cui PL. Cellular senescence: a promising therapeutic target in colorectal cancer. Future Oncol 2022; 18:3463-3470. [PMID: 36069254 DOI: 10.2217/fon-2021-0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer is one of the most malignant cancers worldwide, and efforts have been made to elucidate the mechanism of colorectal carcinogenesis. Cellular senescence is a physiological process in cell life, but it is also found in cancer initiation and progression. Lines of evidence show that senescence may influence the development and progression of colorectal carcinogenesis. Here, the authors review the characteristics of senescence and the recent findings of a relationship between senescence and colorectal cancer.
Collapse
Affiliation(s)
- Yue Wu
- International Medical Services (IMS), Beijing Tiantan Hospital of Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Min Xie
- International Medical Services (IMS), Beijing Tiantan Hospital of Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Jia-Huan Sun
- International Medical Services (IMS), Beijing Tiantan Hospital of Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Cong-Cong Li
- International Medical Services (IMS), Beijing Tiantan Hospital of Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ge-Hong Dong
- Department of Pathology, Beijing Tiantan Hospital of Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Qin-Sheng Zhang
- Department of Gastroenterology, Henan Province Hospital of Traditional Chinese Medicine, Henan University of Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou, Henan, 450002, China
| | - Pei-Lin Cui
- International Medical Services (IMS), Beijing Tiantan Hospital of Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| |
Collapse
|
7
|
Zhang B, Hu Q, Zhang J, Jin Z, Ruan Y, Xia L, Wang C. Silencing of A-kinase anchor protein 4 inhibits the metastasis and growth of non-small cell lung cancer. Bioengineered 2022; 13:6895-6907. [PMID: 35253625 PMCID: PMC8974088 DOI: 10.1080/21655979.2021.1977105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant tumors. The treatment of advanced NSCLC can be challenging due to drug resistance. The discovery of novel cancer-testis antigens to develop new strategies for advanced metastatic NSCLC is required. AKAP4 is an oncogene discovered in some malignant tumors, and its molecular function of AKAP4 in NSCLC is unknown. This study aimed to explore the potential function of AKAP4 in the development and progression of NSCLC. AKAP-4 was found to be significantly upregulated in both clinical NSCLC tissues and NSCLC cell lines. Cell viability and migration were suppressed, apoptosis was induced, and tube formation was inhibited by the knockdown of AKAP-4, accompanied by the downregulation of VEGF, N-cadherin, EphA2, and MMP-2, and upregulation of c-AMP, PKA, and E-cadherin. In vivo xenograft experiments revealed that tumor growth was inhibited by the knockdown of AKAP4, accompanied by the activation of c-AMP/PKA signaling and inhibition of epithelial-mesenchymal transition progression. Our results show that AKAP4 might be an important target for treating NSCLC because of its function in promoting the migration and proliferation of NSCLC cells.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai Zhejiang Province China
| | - Quanteng Hu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai Zhejiang Province China
| | - Jian Zhang
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai Zhejiang Province China
| | - Zixian Jin
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai Zhejiang Province China
| | - Yuhang Ruan
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai Zhejiang Province China
| | - Lilong Xia
- Department of Thoracic Surgery, Zhejiang Hospital , No.1229 Gudun Road, Xihu District, Hangzhou Zhejiang province, 310000,China
| | - Chunguo Wang
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai Zhejiang Province China
| |
Collapse
|
8
|
Luo H, Chen L, Cui Z, Du J, Yang H, Qiu W, Zhai L, Liang H, Tang H. Poly(ADP-ribose)polymerase-1 affects hydroquinone-induced aberrant cell cycle and apoptosis through activation of p16/pRb signaling pathway in TK6 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113259. [PMID: 35121258 DOI: 10.1016/j.ecoenv.2022.113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Hydroquinone (HQ), a key metabolite of benzene, affects cell cycle and apoptosis. Poly (ADP-ribose) polymerase-1 (PARP-1) plays an important role in DNA damage repair. To explore whether PARP-1 is involved in HQ-induced cell cycle and apoptosis, we assessed the effect of PARP-1 suppression and overexpression on induction of cell cycle and apoptosis analyzed by flow cytometry analysis. We observed that HQ induced aberrant cell cycle progression and apoptosis. We further confirmed that PARP-1 suppression accelerated the cell cycle progression and inhibited cell apoptosis via inhibiting p16/pRb signal pathway after acute HQ exposure, while overexpression of PARP-1 displayed the opposite results. Therefore, we concluded that HQ-induced cell cycle and apoptosis were regulated by PARP-1 through activation of p16/pRb signaling pathway.
Collapse
Affiliation(s)
- Hao Luo
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lin Chen
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zheming Cui
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinlin Du
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lu Zhai
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
9
|
Luo QY, Di T, Qiu MZ, Xia ZF, Du Y, Lin RD, Yang LQ, Sun YT, Yang DJ, Sun J, Zhang L. High AKAP8L expression predicts poor prognosis in esophageal squamous cell carcinoma. Cancer Cell Int 2022; 22:90. [PMID: 35189899 PMCID: PMC8862232 DOI: 10.1186/s12935-022-02492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a severe disease with high mortality, and is associated with poor prognosis and frequent lymphatic metastasis. Therefore, prognostic indicators for ESCC are urgently needed. A-kinase anchor-protein 8-like (AKAP8L) is a member of the A kinase anchor-protein (AKAPs) family and is overexpressed in many cancers. However, the role of AKAP8L in ESCC remains unclear. The aim of this study is to investigate the expression patterns and prognostic value of AKAP8L in ESCC. METHODS The mRNA expression of AKAP8L was analyzed from the dataset of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Immunohistochemistry was applied to detect the AKAP8L expression in tissue microarray. Pearson's chi-square test was carried out for the correlation analysis of clinicopathological features and AKAP8L expression. The prognostic significance of clinicopathological features and AKAP8L expression was determined by univariate and multivariate Cox hazard models. Kaplan-Meier survival curve was used for survival analysis. RESULTS We found that the mRNA level of AKAP8L was higher in tumor tissues than in adjacent tissues in TCGA and GEO dataset. High AKAP8L expression was associated with poor overall survival (OS) in ESCC patients (p = 0.0039). Besides, AKAP8L expression was highly expressed in patients with lymph node metastasis detected by ESCC tissue microarray (p = 0.0014). The comparison of the different clinicopathological features of ESCC between high and low AKAP8L expression groups revealed that high AKAP8L expression was related to lymph node stage (p = 0.041). Kaplan-Meier survival analysis revealed that high AKAP8L expression indicates an unfavorable progression-free survival (PFS) and OS in ESCC patients (p < 0.0001). Univariate and multivariate analyses confirmed that AKAP8L was an independent prognostic factor for PFS and OS in ESCC (p = 0.003 and p < 0.0001). CONCLUSIONS In conclusion, this study demonstrated that high expression of AKAP8L is associated with poor prognosis of ESCC and can be considered an independent risk factor for ESCC.
Collapse
Affiliation(s)
- Qiu-Yun Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.,The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Tian Di
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Miao-Zhen Qiu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zeng-Fei Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Yong Du
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.,Department of General Affairs Office, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Run-Duan Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.,Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li-Qiong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.,Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
| | - Yu-Ting Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Da-Jun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China. .,Department of Experimental Research, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.
| | - Jian Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China. .,Department of Clinical Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China. .,Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Parashar D, Geethadevi A, Mittal S, McAlarnen LA, George J, Kadamberi IP, Gupta P, Uyar DS, Hopp EE, Drendel H, Bishop EA, Bradley WH, Bone KM, Rader JS, Pradeep S, Chaluvally-Raghavan P. Patient-Derived Ovarian Cancer Spheroids Rely on PI3K-AKT Signaling Addiction for Cancer Stemness and Chemoresistance. Cancers (Basel) 2022; 14:cancers14040958. [PMID: 35205706 PMCID: PMC8870411 DOI: 10.3390/cancers14040958] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Epithelial ovarian cancer (EOC) is the most fatal gynecological cancer with poor survival rates and high mortality. EOC patients respond to standard platinum-based chemotherapy in the beginning, but relapse often due to chemoresistance. Ovarian cancer cells disseminate from the ovarian tumors and spread within the abdomen, where ascites fluid supports the growth and transition. Malignant ascites is present in a third of patients at diagnosis and is considered as a major source of chemoresistance, recurrence, poor survival, and mortality. Malignant ascites is a complex fluid that contains a pro-tumorigenic environment with disseminated cancer cells in 3D spheroids form. In this study, we established an ovarian cancer cell line and identified that 3D spheroids develop from the 2D monolayer, and the platinum-resistant phenotype develops due to the aberrant PI3K-AKT signaling in tumor cells. Furthermore, when we used a combinatorial approach of cisplatin with LY-294002 (a PI3K-AKT dual kinase inhibitor) to treat the cisplatin version of both MCW-OV-SL-3 and A-2780 cell lines, it prevented the 3D spheroid formation ability and also sensitized the cells for cisplatin. In brief, our results provided evidence to advance therapeutic approaches to treat cisplatin resistance in ovarian cancer patients. Abstract Ovarian cancer is the most lethal gynecological malignancy among women worldwide and is characterized by aggressiveness, cancer stemness, and frequent relapse due to resistance to platinum-based therapy. Ovarian cancer cells metastasize through ascites fluid as 3D spheroids which are more resistant to apoptosis and chemotherapeutic agents. However, the precise mechanism as an oncogenic addiction that makes 3D spheroids resistant to apoptosis and chemotherapeutic agents is not understood. To study the signaling addiction mechanism that occurs during cancer progression in patients, we developed an endometrioid subtype ovarian cancer cell line named ‘MCW-OV-SL-3’ from the ovary of a 70-year-old patient with stage 1A endometrioid adenocarcinoma of the ovary. We found that the cell line MCW-OV-SL-3 exhibits interstitial duplication of 1q (q21–q42), where this duplication resulted in high expression of the PIK3C2B gene and aberrant activation of PI3K-AKT-ERK signaling. Using short tandem repeat (STR) analysis, we demonstrated that the cell line exhibits a unique genetic identity compared to existing ovarian cancer cell lines. Notably, the MCW-OV-SL-3 cell line was able to form 3D spheroids spontaneously, which is an inherent property of tumor cells when plated on cell culture dishes. Importantly, the tumor spheroids derived from the MCW-OV-SL-3 cell line expressed high levels of c-Kit, PROM1, ZEB1, SNAI, VIM, and Twist1 compared to 2D monolayer cells. We also observed that the hyperactivation of ERK and PI3K/AKT signaling in these cancer cells resulted in resistance to cisplatin. In summary, the MCW-OV-SL3 endometrioid cell line is an excellent model to study the mechanism of cancer stemness and chemoresistance in endometrioid ovarian cancer.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Sonam Mittal
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Lindsey A. McAlarnen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Jasmine George
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Ishaque P. Kadamberi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Prachi Gupta
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Denise S. Uyar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Elizabeth E. Hopp
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Holli Drendel
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (H.D.); (K.M.B.)
| | - Erin A. Bishop
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - William H. Bradley
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Kathleen M. Bone
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (H.D.); (K.M.B.)
| | - Janet S. Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (D.P.); (A.G.); (S.M.); (L.A.M.); (J.G.); (I.P.K.); (P.G.); (D.S.U.); (E.E.H.); (E.A.B.); (W.H.B.); (J.S.R.); (S.P.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
11
|
Gu L, Liu X, Yang J, Bai J. A new hemizygous missense mutation, c.454T>C (p.S152P), in AKAP4 gene is associated with asthenozoospermia. Mol Reprod Dev 2021; 88:587-597. [PMID: 34409659 DOI: 10.1002/mrd.23529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/07/2022]
Abstract
Asthenozoospermia (ASZ) is a condition characterized by reduced forward motility of spermatozoa affecting approximately 19% of infertile men. A kinase anchor protein 4 (AKAP4) is an X-linked testis-specific gene and plays a major role in sperm motility and flagella formation. However, few studies have reported its association with ASZ. Here, we sequenced for exonic mutations of human AKAP4 gene by high-fidelity PCR/Sanger sequencing in peripheral blood samples from 150 ASZ patients and 150 fertile men. We reported the identification of three novel hemizygous mutations unique to four ASZ patients, including one patient carrying missense mutation c.454T>C (p.S152P), two patient carrying synonymous mutation c.1173T>C (p.H391H), and one patient carrying synonymous mutation c.2007 A>G (p.R669R). The p.S152P mutation was located in a precursor pro-polypeptide domain of AKAP4 protein, which was predicted to be damaging by SIFT and PolyPhen-2 and could cause the protein accumulation in the cytoplasm of COS-7 cells. The mature protein of AKAP4 was absent in spermatozoa of ASZ patient harboring AKAP4 p.S152P mutation. Further in vitro cellular assays showed that reactive oxygen species (ROS), malondialdehyde (MDA), myeloperoxidase (MPO) levels, and apoptotic cells were increased in GC2-spd cells by AKAP4 p.S152P mutant protein, whereas superoxide dismutase (SOD) level was decreased. AKAP4 p.H391H and p.R669R mutant proteins were coimmunoprecipitated with ribonuclease T2 (RNASET2) protein in GC2-spd cells, whereas no interaction between the AKAP4 p.S152P mutant protein and RNASET2 protein was observed. In addition, AKAP4 p.S152P mutant protein could decrease the activity of PKA/PI3K signaling. Overall, our study identifies a novel AKAP4 p.S152P mutation is associated with ASZ probably through affecting oxidative stress and cell apoptosis by regulating the interaction with RNASET2 and the activity of the PKA/PI3K signaling pathway.
Collapse
Affiliation(s)
- Longjie Gu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
scFv6.C4 DNA vaccine with fragment C of tetanus toxin increases protective immunity against CEA-expressing tumor. Gene Ther 2021; 28:287-289. [PMID: 32483214 DOI: 10.1038/s41434-020-0161-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 01/29/2023]
|
13
|
Parashar D, Geethadevi A, McAllister D, Ebben J, Peterson FC, Jensen DR, Bishop E, Pradeep S, Volkman BF, Dwinell MB, Chaluvally-Raghavan P, James MA. Targeted biologic inhibition of both tumor cell-intrinsic and intercellular CLPTM1L/CRR9-mediated chemotherapeutic drug resistance. NPJ Precis Oncol 2021; 5:16. [PMID: 33654182 PMCID: PMC7925570 DOI: 10.1038/s41698-021-00152-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
Recurrence of therapy-resistant tumors is a principal problem in solid tumor oncology, particularly in ovarian cancer. Despite common complete responses to first line, platinum-based therapies, most women with ovarian cancer recur, and eventually, nearly all with recurrent disease develop platinum resistance. Likewise, both intrinsic and acquired resistance contribute to the dismal prognosis of pancreatic cancer. Our previous work and that of others has established CLPTM1L (cleft lip and palate transmembrane protein 1-like)/CRR9 (cisplatin resistance related protein 9) as a cytoprotective oncofetal protein that is present on the tumor cell surface. We show that CLPTM1L is broadly overexpressed and accumulated on the plasma membrane of ovarian tumor cells, while weakly or not expressed in normal tissues. High expression of CLPTM1L is associated with poor outcome in ovarian serous adenocarcinoma. Robust re-sensitization of resistant ovarian cancer cells to platinum-based therapy was achieved using human monoclonal biologics inhibiting CLPTM1L in both orthotopic isografts and patient-derived cisplatin resistant xenograft models. Furthermore, we demonstrate that in addition to cell-autonomous cytoprotection by CLPTM1L, extracellular CLPTM1L confers resistance to chemotherapeutic killing in an ectodomain-dependent fashion, and that this intercellular resistance mechanism is inhibited by anti-CLPTM1L biologics. Specifically, exosomal CLPTM1L from cisplatin-resistant ovarian carcinoma cell lines conferred resistance to cisplatin in drug-sensitive parental cell lines. CLPTM1L is present in extracellular vesicle fractions of tumor culture supernatants and in patients' serum with increasing abundance upon chemotherapy treatment. These findings have encouraging implications for the use of anti-CLPTM1L targeted biologics in the treatment of therapy-resistant tumors.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Donna McAllister
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Johnathan Ebben
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Davin R Jensen
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Erin Bishop
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian F Volkman
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | |
Collapse
|
14
|
miRNA551b-3p Activates an Oncostatin Signaling Module for the Progression of Triple-Negative Breast Cancer. Cell Rep 2020; 29:4389-4406.e10. [PMID: 31875548 DOI: 10.1016/j.celrep.2019.11.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 06/16/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Genomic amplification of 3q26.2 locus leads to the increased expression of microRNA 551b-3p (miR551b-3p) in triple-negative breast cancer (TNBC). Our results demonstrate that miR551b-3p translocates to the nucleus with the aid of importin-8 (IPO8) and activates STAT3 transcription. As a consequence, miR551b upregulates the expression of oncostatin M receptor (OSMR) and interleukin-31 receptor-α (IL-31RA) as well as their ligands OSM and IL-31 through STAT3 transcription. We defined this set of genes induced by miR551b-3p as the "oncostatin signaling module," which provides oncogenic addictions in cancer cells. Notably, OSM is highly expressed in TNBC, and the elevated expression of OSM associates with poor outcome in estrogen-receptor-negative breast cancer patients. Conversely, targeting miR551b with anti-miR551b-3p reduced the expression of the OSM signaling module and reduced tumor growth, as well as migration and invasion of breast cancer cells.
Collapse
|
15
|
Wu H, Hu X, Li Y, Chen Q, Sun T, Qiao Y, Qin W, Wu Z, Fu B, Zhao H, Zhang R, Wei M. LNC473 Regulating APAF1 IRES-Dependent Translation via Competitive Sponging miR574 and miR15b: Implications in Colorectal Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:764-779. [PMID: 32784109 PMCID: PMC7419277 DOI: 10.1016/j.omtn.2020.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
Abstract
A growing number of studies have focused on the involvement of non-coding RNAs (ncRNAs) in the internal ribosome entry site (IRES)-mediated translation in tumorigenesis; however, the underlying mechanisms in colorectal cancer (CRC) remain elusive. In this study, we show that LINC00473 (LNC473) exerted its functions as a tumor suppressor in promoting apoptotic protease-activating factor 1 (APAF1) IRES activity through competitively sponging miR574-5p and miR15b-5p in CRC initiation and pathogenesis. Specifically, LNC473 and its downstream target APAF1 were significantly downregulated accompanied by upregulated miR574-5p and miR15b-5p in CRC cells and tissues, which had a significant prognostic impact on clinical outcomes in our CRC cohort (n = 157). Furthermore, ectopic LNC473 significantly sponged endogenous miR574-5p or miR15b-5p and thereby inhibited cell proliferation and colony formation capacity, and it accelerated cell apoptosis through activating the APAF1-CASP9-CASP3 pathway. Notably, LNC473 overexpression resulted in dramatic promotion of APAF1 IRES activity and translation, whereas rescue experiments confirmed the recovery by the existence of LNC473 and miR574/15b-5p. Mechanistically, LNC473 overexpression promoted IRES binding domain exposure and removed the constraints controlling from miR574-5p and miR15b-5p, and subsequently enhanced IRES-mediated APAF1 expression in vitro and in vivo. Therefore, our results uncover a novel LNC473-miR574/miR15b-APAF1 signaling axis, which provides new targets and crosstalk regulation mechanism for CRC prevention and treatment.
Collapse
Affiliation(s)
- Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P.R. China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P.R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P.R. China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P.R. China
| | - Yalun Li
- Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang 110001, P.R. China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P.R. China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P.R. China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P.R. China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P.R. China
| | - Yun Qiao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, P.R. China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P.R. China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P.R. China
| | - Zhikun Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P.R. China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P.R. China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P.R. China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P.R. China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P.R. China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P.R. China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, P.R. China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P.R. China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P.R. China.
| |
Collapse
|
16
|
Jagadish N, Devi S, Gupta N, Suri V, Suri A. Knockdown of A-kinase anchor protein 4 inhibits proliferation of triple-negative breast cancer cells in vitro and in vivo. Tumour Biol 2020; 42:1010428320914477. [PMID: 32342732 DOI: 10.1177/1010428320914477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Triple-negative breast cancers are the most aggressive subtypes with poor prognosis due to lack of targeted cancer therapy. Recently, we reported an association of A-kinase anchor protein 4 expression with various clinico-pathological parameters of breast cancer patients. In this context, we examined the effect of knockdown of A-kinase anchor protein 4 on cell cycle, apoptosis, cellular proliferation, colony formation, migration, and invasion in triple-negative breast cancer cells. We also examined the synergistic cytotoxic effect of paclitaxel on A-kinase anchor protein 4 downregulated triple-negative breast cancer cells. Knockdown of A-kinase anchor protein 4 resulted in significant reduction in cellular growth and migratory abilities. Interestingly, we also observed enhanced cell death in A-kinase anchor protein 4 downregulated cells treated with paclitaxel. Knockdown of A-kinase anchor protein 4 in cell cycle resulted in G0/G1 phase arrest. Knockdown of A-kinase anchor protein 4 also led to increased reactive oxygen species generation as a result of upregulation of NOXA and CHOP. In addition, levels of cyclins, cyclin-dependent kinases, anti-apoptotic molecules, and mesenchymal markers were reduced in A-kinase anchor protein 4 downregulated cells. Moreover, downregulation of A-kinase anchor protein 4 also caused tumor growth reduction in in vivo studies. These data together suggest that A-kinase anchor protein 4 downregulation inhibits various malignant properties and enhances the cytotoxic effect of paclitaxel, and this combinatorial approach could be useful for triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Nirmala Jagadish
- Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| | - Sonika Devi
- Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| | - Namita Gupta
- Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| | - Vitusha Suri
- Mahatma Gandhi Medical College & Hospital, Jaipur, India
- SMS Medical College and Hospital, Jaipur, India
| | - Anil Suri
- Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
17
|
Xia W, Jie W. ZEB1-AS1/miR-133a-3p/LPAR3/EGFR axis promotes the progression of thyroid cancer by regulating PI3K/AKT/mTOR pathway. Cancer Cell Int 2020; 20:94. [PMID: 32231464 PMCID: PMC7103072 DOI: 10.1186/s12935-020-1098-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid cancer (TC) is a member of common malignant tumors in endocrine system. To develop effective treatment, further comprehension of understanding molecular mechanism in TC is necessary. In this research, we attempted to search the underlying molecular mechanism in TC. Methods ZEB1-AS1 expression was analyzed via qRT-PCR analysis. CCK-8, colony formation, flow cytometry and TUNEL assays were used to evaluate TC cell growth. The interaction between miR-133a-3p and LPAR3, EGFR and ZEB1-AS1 was testified through using RNA pull down and luciferase reporter assays. Results LPAR3 and EGFR were expressed at high levels in TC tissues and cell lines. Besides, both LPAR3 and EGFR could promote TC cell growth. Later, miR-133a-3p was searched as an upstream gene of LPAR3 and EGFR, and LPAR3 could partially rescue the suppressive effect of miR-133a-3p overexpression on TC progression, whereas the co-transfection of LPAR3 and EGFR completely restored the inhibition. Next, ZEB1-AS1 was confirmed as a sponge of miR-133a-3p. ZEB1-AS1 has a negative correlation with miR-133a-3p and a positive association with LPAR3 and EGFR through ceRNA analysis. Importantly, ZEB1-AS1 boosted the proliferation and suppressed the apoptosis in TC cells. Through restoration assays, we discovered that ZEB1-AS1 regulated LPAR3 and EGFR expression to mediate TC cell proliferation and apoptosis by sponging miR-133a-3p. Further investigation also indicated the oncogenic role of ZEB1-AS1 by mediating PI3K/AKT/mTOR pathway. Conclusions ZEB1-AS1 could be an underlying biomarker in TC.
Collapse
Affiliation(s)
- Wu Xia
- 1The Department of Endocrinology, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'An Branch), 259 Xikang Road, Jing'an District, Shanghai, 200040 China
| | - Wen Jie
- 2Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040 China
| |
Collapse
|
18
|
Agarwal S, Behring M, Kim HG, Bajpai P, Chakravarthi BVSK, Gupta N, Elkholy A, Al Diffalha S, Varambally S, Manne U. Targeting P4HA1 with a Small Molecule Inhibitor in a Colorectal Cancer PDX Model. Transl Oncol 2020; 13:100754. [PMID: 32199274 PMCID: PMC7082635 DOI: 10.1016/j.tranon.2020.100754] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/16/2022] Open
Abstract
Deposition, remodeling, and signaling of the extracellular matrix facilitate tumor growth and metastasis. Here, we demonstrated that an enzyme, collagen prolyl 4-hydroxylase, alpha polypeptide I (P4HA1), which is involved in collagen synthesis and deposition, had elevated expression in colorectal cancers (CRCs) as compared to normal colonic tissues. The expression of P4HA1 in CRCs was independent of patient's age, race/ethnicity, gender, pathologic stage and grade, tumor location, and microsatellite instability (MSI) and p53 status. By modulating P4HA1 with shRNA, there was a reduction in malignant phenotypes of CRCs, including cell proliferation, colony formation, invasion, migration, and tumor growth, in mice regardless of their p53 and MSI status. Immunoblot analysis of excised xenograft tumors developed from cells with silenced PH4HA1 showed low levels of proliferating cell nuclear antigen. Further, in CRC mouse models, silencing of P4HA1 in HT29 cells resulted in less metastasis to liver and bone. P4HA1 expression was regulated by miR-124, and inhibition of cell growth was noted for CRC cells treated with miR-124. Furthermore, low levels of the transcriptional repressor EZH2 reduced P4HA1 expression in CRC cells. Inhibition of P4HA1 with the small molecule inhibitor diethyl-pythiDC decreased AGO2 and MMP1, which are P4HA1 target molecules, and reduced the malignant phenotypes of CRC cells. Treatment of CRC patient-derived xenografts that exhibit high expression of P4HA1 with diethyl-pythiDC resulted in tumor regression. Thus, the present study shows that P4HA1 contributes to CRC progression and metastasis and that targeting of P4HA1 with diethyl-pythiDC could be an effective therapeutic strategy for aggressive CRCs.
Collapse
Affiliation(s)
- Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael Behring
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Prachi Bajpai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Nirzari Gupta
- Department of Chemistry, University of Alabama at Birmingham
| | - Amr Elkholy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sameer Al Diffalha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Comprehensive Cancer Center, University of Alabama at Birmingham
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Comprehensive Cancer Center, University of Alabama at Birmingham.
| |
Collapse
|
19
|
Ge Y, Chen W, Zhang X, Wang H, Cui J, Liu Y, Ju S, Tian X, Ju S. Nuclear-localized costimulatory molecule 4-1BBL promotes colon cancer cell proliferation and migration by regulating nuclear Gsk3β, and is linked to the poor outcomes associated with colon cancer. Cell Cycle 2020; 19:577-591. [PMID: 31992123 DOI: 10.1080/15384101.2020.1719308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Anti-tumor immune response and the prognosis of tumor are the results of competition between stimulatory and inhibitory checkpoints. Except for upregulating inhibitory checkpoints, lowering some immune accelerating molecules to convert an immunostimulatory microenvironment into an immunodormant one through "decelerating the accelerator" might be another effective immune escape pattern. 4-1BBL is a classical transmembrane costimulatory molecule involving in antitumor immune responses. In contrast, we demonstrated that 4-1BBL is predominantly localized in the nuclei of cancer cells in colon cancer specimens and is positively correlated with tumor size, lymph node metastasis, and a lower survival ratio. Furthermore, the nuclear localization of 4-1BBL was also ascertained in vitro. 4-1BBL knockout (KO) arrests the proliferation and impaired the migration and invasion ability of colon cancer cells in vitro and retarded tumor growth in vivo. 4-1BBL KO increased the accumulation of Gsk3β in the nuclei of colon cancer cells and consequently decreased the expression of Wnt pathway target genes and thus alter tumor biological behavior. We hypothesized that unlike membrane-expressed 4-1BBL, which stimulates the 4-1BB signaling of antitumor cytotoxic T cells, the nuclear-localized 4-1BBL could facilitate the malignant behavior of colon cancer cells by circumventing antitumor signaling and driving some key oncotropic signal pathway in the nucleus. Nuclear-localized 4-1BBL might be an indicator of colon cancer malignancy and serve as a promising target of immunotherapy.
Collapse
Affiliation(s)
- Yan Ge
- Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Wei Chen
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xueguang Zhang
- Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiyan Wang
- Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Juanjuan Cui
- Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yue Liu
- Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Songwen Ju
- Central Laboratory, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Xinxin Tian
- Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China.,Departmemt of Medical Care for Cadres, Nanjing Municipal Government Hospital, Nanjing, Jiangsu Province, China
| | - Songguang Ju
- Department of Immunology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
20
|
Ma Y, Cang S, Li G, Su Y, Zhang H, Wang L, Yang J, Shi X, Qin G, Yuan H. Integrated analysis of transcriptome data revealed MMP3 and MMP13 as critical genes in anaplastic thyroid cancer progression. J Cell Physiol 2019; 234:22260-22271. [PMID: 31081124 DOI: 10.1002/jcp.28793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/30/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
To better understand the molecular mechanisms of anaplastic thyroid carcinoma (ATC), we aimed to identify the hub genes specifically involved in ATC by integrated bioinformatics analysis. In this study, using three Gene Expression Omnibus data sets with the same platform GPL570, we screened hub genes involved in ATC progression. In vitro experiments, such as western blot analysis, Transwell assays, and coimmunoprecipitation, was performed to verify our findings. By comparing three subtypes of thyroid cancer with normal tissue, we found ATC harbored more changed genes than well and poorly differentiated thyroid cancer. Using specifically differentially expressed genes between ATC and normal thyroid tissues to perform Gene ontology (GO) analysis, ATC showed enrichments of GO terms involved in lymphocyte migration and activation, collagen catabolic and metabolic process, thyroid hormone synthesis, and embolism. Using genes involved in extracellular matrix, coexpression network analysis and protein-protein interaction analysis were performed to identify matrix metalloproteinase 3 (MMP3) and MMP13 as two hub genes. Our experimental data indicated that both MMP3 and MMP13 were upregulated in ATC and knockdown of either of them could notably suppress ATC cell invasion and migration. Mechanistically, Gene Set Enrichment Analysis, coimmunoprecipitation, and rescue experiments revealed MMP3 and MMP13 not only interacted with each other, but also regulated each other through the janus kinase/signal transducer and activator of transcription 3 and mammalian target of rapamycin pathways. In conclusion, we identified a specific molecular mechanisms for the development of ATC by integrated analysis of transcriptome and in vitro experiments, which suggested that MMP3 and MMP13 might be developed as novel therapeutic targets for ATC.
Collapse
Affiliation(s)
- Yuehua Ma
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Guoqing Li
- Department of Breast Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Yong Su
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Huifeng Zhang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Xie Y, Yu J, Wang F, Li M, Qiu X, Liu Y, Qi J. ERCC6L promotes cell growth and invasion in human colorectal cancer. Oncol Lett 2019; 18:237-246. [PMID: 31289493 PMCID: PMC6540252 DOI: 10.3892/ol.2019.10297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Excision repair cross-complementation group 6 like (ERCC6L), a recently discovered DNA helicase, has been demonstrated to be highly expressed in a variety of human cancer types. However, the precise role of ERCC6L in colorectal cancer (CRC) remains unclear. The current study aimed to investigate the potential role of ERCC6L in the development and progression of CRC. Reverse transcription-quantitative polymerase chain reaction, western blot analysis and immunohistochemistry were used to detect the expression level of ERCC6L in 30 matched pairs of CRC and adjacent noncancerous tissues. The function of ERCC6L in cell proliferation, cycle, apoptosis, invasion and colony formation was examined in CRC cell lines. ERCC6L was revealed to be highly expressed in CRC tissues and cell lines compared with normal controls (P<0.05). The expression level of ERCC6L was significantly associated with tumor size (P<0.05), but not with other clinical features, including age, gender, differentiation and clinical stage. It was identified that reducing ERCC6L expression using small interfering RNA significantly inhibited the proliferation and colony-forming ability of CRC cell lines. Flow cytometric analysis demonstrated that ERCC6L knockdown in CRC cells inhibited cell cycle progression and increased the number of cells in the G0/G1 phase without affecting apoptosis. Furthermore, ERCC6L knockdown markedly decreased the number of invading CRC cells compared with control cells. These results suggest that ERCC6L promotes the growth and invasion of CRC cells, and ERCC6L may be a potential new target for cancer therapy.
Collapse
Affiliation(s)
- Yang Xie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Feng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Mengying Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiao Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yuting Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jian Qi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
22
|
Chi Soh JE, Abu N, Jamal R. The potential immune-eliciting cancer testis antigens in colorectal cancer. Immunotherapy 2018; 10:1093-1104. [DOI: 10.2217/imt-2018-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The identification of cancer testis antigens (CTAs) has been an important finding in the search of potential targets for cancer immunotherapy. CTA is one of the subfamilies of the large tumor-associated antigens groups. It is aberrantly expressed in various types of human tumors but is absent in normal tissues except for the testis and placenta. This CTAs-restricted pattern of expression in human malignancies together with its potential immunogenic properties, has stirred the interest of many researchers to use CTAs as one of the ideal targets in cancer immunotherapy. To date, multiple studies have shown that CTAs-based vaccines can elicit clinical and immunological responses in different tumors, including colorectal cancer (CRC). This review details our current understanding of CTAs and CRC in regard to the expression and immunological responses as well as some of the critical hurdles in CTAs-based immunotherapy.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Li Q, Tang H, Hu F, Qin C. Knockdown of A-kinase anchor protein 4 inhibits hypoxia-induced epithelial-to-mesenchymal transition via suppression of the Wnt/β-catenin pathway in human gastric cancer cells. J Cell Biochem 2018; 119:10013-10020. [PMID: 30145836 DOI: 10.1002/jcb.27331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Hypoxia induces epithelial-mesenchymal transition (EMT) in tumorigenesis. A-kinase anchor protein 4 (AKAP4) is a member of AKAPs family and plays a critical role in tumorigenesis. However, the biological role of AKAP4 in gastric cancer remains unknown. Thus, we investigated the effect of AKAP4 on EMT in human gastric cancer cells under hypoxic conditions. Our results showed that AKAP4 expression was significantly upregulated in human gastric cancer cell lines. In addition, silenced expression of hypoxia-inducible factor-1α markedly suppressed AKAP4 expression in gastric cancer cells under hypoxia. Furthermore, knockdown of AKAP4 significantly prevented hypoxia-induced migration, invasion, and EMT process in gastric cancer cells. Mechanistically, knockdown of AKAP4 prevented the activation of the Wnt/β-catenin pathway in gastric cancer cells under hypoxia condition. These findings indicate that knockdown of AKAP4 inhibits hypoxia-induced EMT in human gastric cancer cells, at least in part, via inactivation of the Wnt/β-catenin signaling pathway. It is, therefore, AKAP4 may be a potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Quanying Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hongna Tang
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Fangfang Hu
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
24
|
Aberrantly Expressed Genes and miRNAs in Slow Transit Constipation Based on RNA-Seq Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2617432. [PMID: 30186855 PMCID: PMC6112260 DOI: 10.1155/2018/2617432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/26/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
Background This study aims to identify the key genes and miRNAs in slow transit constipation (STC). Methods MRNA and miRNA expression profiling were obtained. Differentially expressed genes (DEGs) and miRNAs were identified followed by the regulatory network construction. Functional annotation analysis and protein-protein interaction (PPI) network were conducted. The electronic validation was performed. Results Hsa-miR-2116-3p, hsa-miR-3622a-5p, hsa-miR-424-5p, and hsa-miR-1273-3p covered most DEGs. HLA-DRB1, HLA-DRB5, C3, and ICAM were significantly involved in staphylococcus aureus infection. The PPI network generated several hub proteins including ZBTB16, FBN1, CCNF, and CDK1. Electronic validation of HLA-DRB1, PTGDR, MKI67, BIRC5, CCNF, and CDK1 was consistent with the RNA-sequencing analysis. Conclusion Our study might be helpful in understanding the pathology of STC at the molecular level.
Collapse
|
25
|
Jagadish N, Fatima R, Sharma A, Devi S, Suri V, Kumar V, Suri A. Sperm associated antigen 9 (SPAG9) a promising therapeutic target of ovarian carcinoma. Tumour Biol 2018; 40:1010428318773652. [PMID: 29745297 DOI: 10.1177/1010428318773652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SPAG9 is a novel tumor associated antigen, expressed in variety of malignancies. However, its role in ovarian cancer remains unexplored. SPAG9 expression was validated in ovarian cancer cells by real time PCR and Western blot. SPAG9 involvement in cell cycle, DNA damage, apoptosis, paclitaxel sensitivity and epithelial- mesenchymal transition (EMT) was investigated employing RNA interference approach. Combinatorial effect of SPAG9 ablation and paclitaxel treatment was evaluated in in vitro. Quantitative PCR and Western blot analysis revealed SPAG9 expression in A10, SKOV-3 and Caov3 compared to normal ovarian epithelial cells. SPAG9 ablation resulted in reduced cellular proliferation, colony forming ability and enhanced cytotoxicity of chemotherapeutic agent paclitaxel. Effect of ablation of SPAG9 on cell cycle revealed S phase arrest and showed decreased expression of CDK1, CDK2, CDK4, CDK6, cyclin B1, cyclin D1, cyclin E and increased expression of tumor suppressor p21. Ablation of SPAG9 also resulted in increased apoptosis with increased expression of various pro- apoptotic molecules including BAD, BID, PUMA, caspase 3, caspase 7, caspase 8 and cytochrome C. Decreased expression of mesenchymal markers and increased expression of epithelial markers was found in SPAG9 ablated cells. Combinatorial effect of SPAG9 ablation and paclitaxel treatment was evaluated in in vitro assays which showed that ablation of SPAG9 resulted in increased paclitaxel sensitivity and caused enhanced cell death. In vivo ovarian cancer xenograft studies showed that ablation of SPAG9 resulted in significant reduction in tumor growth. Present study revealed therapeutic potential of SPAG9 in ovarian cancer.
Collapse
Affiliation(s)
- Nirmala Jagadish
- 1 Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| | - Rukhsar Fatima
- 1 Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| | - Aditi Sharma
- 1 Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| | - Sonika Devi
- 1 Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| | - Vitusha Suri
- 2 Mahatma Gandhi Medical College & Hospital, Jaipur, India
| | - Vikash Kumar
- 1 Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| | - Anil Suri
- 1 Cancer Research Program, Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
26
|
Sulkowska U, Wincewicz A, Kanczuga-Koda L, Koda M, Sulkowski S. Comparison of E-cadherin with STAT3 and apoptosis regulators: Bak and Bcl-xL in endometrioid adenocarcinomas of different ER-alpha immunoprofile. Gynecol Endocrinol 2018; 34:171-174. [PMID: 28937296 DOI: 10.1080/09513590.2017.1379494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
E-cadherin is a factor of good prognosis in endometrioid adenocarcinomas, while STAT3 is an oncogenic driver of carcinogenesis. E-cadherin, Bak, Bcl-xL and STAT3 were immunohistochemically detected in 78 human endometrioid adenocarcinomas. E-cadherin correlated with STAT3 (p <. 001, r = 0.537) as well as Bak (p = .005, r = 0.314) and Bcl-xL (p = .002, r = 0.340) in the whole study group. In G2 tumors, E-cadherin associated with Bak (p = .021, r = 0.319), Bcl-xL (p = .026, r = 0.309) and STAT3 (p <.001, r = 0.513) but not in G3 adenocarcinomas. E-cadherin correlated with Bak and Bcl-xL in both G1- and estrogen receptor (ER)-negative tumors with significant relation of E-cadherin and STAT3 in G1- and ER-negative tumors. Antigrowth synergy of expression was preserved for antiapoptotic Bak and proliferation-suppressing E-cadherin in IA adenocarcinomas (p = .031, r = 0.342) with no significance between Bak and E-cadherin or STAT3 and emerging correlation between E-cadherin and Bcl-xL in IB + II tumors instead (p = .003, r = 0.472). E-cadherin correlated with Bak and Bcl-xL in ER-positive adenocarcinomas (p = .002, r = 0.382 and p <.001, r = 0.439, respectively) but not in ER-negative tumors. In conclusion, expression deregulation of studied proteins is reflected in selective loss of correlation between suppressors of tumor growth (E-cadherin and Bak) presumably due to progressing impairment of growth-inhibitory properties of clone of neoplastic cells within higher staging and poorer differentiation.
Collapse
Affiliation(s)
- Urszula Sulkowska
- a Department of General Pathomorphology , Medical University of Bialystok , Bialystok , Poland
| | - Andrzej Wincewicz
- b Department of Pathology (NZOZ Zakład Patologii Spółka z o.o.), Non-Public Health Care Unit , Kielce , Poland
| | - Luiza Kanczuga-Koda
- c Department of Pathology , Maria Sklodowska-Curie Memorial Bialystok Oncology Center , Bialystok , Poland
| | - Mariusz Koda
- a Department of General Pathomorphology , Medical University of Bialystok , Bialystok , Poland
| | - Stanislaw Sulkowski
- a Department of General Pathomorphology , Medical University of Bialystok , Bialystok , Poland
| |
Collapse
|
27
|
Reggi E, Diviani D. The role of A-kinase anchoring proteins in cancer development. Cell Signal 2017; 40:143-155. [DOI: 10.1016/j.cellsig.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023]
|
28
|
Gupta N, Jagadish N, Surolia A, Suri A. Heat shock protein 70-2 (HSP70-2) a novel cancer testis antigen that promotes growth of ovarian cancer. Am J Cancer Res 2017; 7:1252-1269. [PMID: 28670489 PMCID: PMC5489776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/18/2016] [Indexed: 06/07/2023] Open
Abstract
Heat shock protein 70-2 (HSP70-2) is known to be involved in tumor progression. However, its molecular role and mechanism in epithelial ovarian cancer (EOC) remains unknown. In the present investigation, we examined the role of HSP70-2 in cell cycle, apoptosis and epithelial mesenchymal transition pathways in EOC cells in in vitro and in-vivo xenograft mouse model. To investigate the role of HSP70-2 in ovarian cancer, plasmid driven short hairpin RNA approach was used to examine HSP70-2 gene and protein expression in ovarian cancer cell line A-10 (origin: serous papillary cystadenocarcinoma), Caov-3 (origin: adenocarcinoma) and SKOV3 (origin: adenocarcinoma; derived from metastatic site: ascites) by RT-PCR, quantitative-PCR, immunohistochemistry and Western blotting. Light microscopy, scanning electron microscopy, viability tests, and flow cytometry were used to study the cellular proliferation, onset of senescence, colony forming ability and morphological features of cancer cells. Cell migration and invasion ability was evaluated by wound healing and Boyden chamber assays. Further, we studied the effect of HSP70-2 protein ablation on human ovarian xenograft mice model. At molecular level, various molecules involved in apoptosis, cell cycle and epithelial-mesenchymal-transition were also examined both in in-vitro and in-vivo xenograft mouse model. The knockdown of HSP70-2 expression by gene silencing resulted in the onset of apoptosis, senescence, reduced cellular growth and colony forming ability of EOC cells. Interestingly, the migration, invasion and wound healing abilities of cells were also significantly inhibited. In addition, the ablation of HSP70-2 resulted in the upregulation of cytochrome-C, caspase 3, caspase 7, caspase 9, APAF1, BAX, BIM, BAK, BAD, BID, PUMA, NOXA, p16, p21, Rb, E-cadherin, cytokeratin 18, EMA in these cells as well as in the xenograft tumor specimens. However, there was downregulation of PARP1, BCL-2, Bcl-xL, MCL-1, Survivin, XIAP, cIAP2, CDK1, CDK2, CDK4, CDK6, cyclin D1, cyclin E, cyclin A2, cyclin B1, p-Rb, N-cadherin, SNAIL, SLUG, VIMENTIN, SMA, MMP2, MMP3, MMP9 and TWIST in these samples. Furthermore, the xenograft studies showed significant reduction in the tumor growth. Our results suggest that HSP70-2 can promote cellular growth and invasion of EOC cells and therefore may be a potential therapeutic target in EOC.
Collapse
Affiliation(s)
- Namita Gupta
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of ImmunologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Nirmala Jagadish
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of ImmunologyAruna Asaf Ali Marg, New Delhi-110 067, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of ScienceBangalore 560012, India
| | - Anil Suri
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of ImmunologyAruna Asaf Ali Marg, New Delhi-110 067, India
| |
Collapse
|
29
|
Kumar V, Jagadish N, Suri A. Role of A-Kinase anchor protein (AKAP4) in growth and survival of ovarian cancer cells. Oncotarget 2017; 8:53124-53136. [PMID: 28881798 PMCID: PMC5581097 DOI: 10.18632/oncotarget.18163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer represents one of the most common malignancies among women with very high mortality rate worldwide. A-kinase anchor protein 4 (AKAP4), a unique cancer testis (CT) antigen has been shown to be associated with various malignant properties of cancer cells. However, its involvement in various molecular pathways in ovarian cancer remains unknown. In present investigation, employing gene silencing approach, we examined the role of AKAP4 in cell cycle, apoptosis and epithelial-mesenchymal transition (EMT). Further, we also investigated the effect of ablation of AKAP4 on tumor growth in SCID mice ovarian cancer xenograft mouse model. Our results showed that ablation of AKAP4 resulted in increased reactive oxygen species (ROS) generation, DNA damage, cell cycle arrest and apoptosis in ovarian cancer cells. AKAP4 knockdown lead to degradation of protien kinase A (PKA) which was rescued by proteosome inhibitor MG-132. ROS quencher N-acetyl cysteine (NAC) treatment rescued cell cycle arrest and resumed cell division. Subsequently, increased expression of pro-apoptotic molecules and decreased expression of pro-survival/anti-apoptotic factors was observed. As a result of AKAP4 depletion, DNA damage response proteins p-γH2AX, p-ATM and p21 were upregulated. Also, knockdown of CREB resulted in similar findings. Further, PKA inhibitor (H89) and oxidative stress resulted in similar phenotype of ovarian cancer cells as observed in AKAP4 ablated cells. Collectively, for the first time our data showed the involvement of AKAP4 in PKA degradation and perturbed signaling through PKA-CREB axis in AKAP4 ablated ovarian cancer cells.
Collapse
Affiliation(s)
- Vikash Kumar
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Nirmala Jagadish
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Anil Suri
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, 110067, New Delhi, India
| |
Collapse
|
30
|
Banerjee S, Singh SK, Chowdhury I, Lillard JW, Singh R. Combinatorial effect of curcumin with docetaxel modulates apoptotic and cell survival molecules in prostate cancer. Front Biosci (Elite Ed) 2017; 9:235-245. [PMID: 28199187 DOI: 10.2741/e798] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Docetaxel is the most commonly used chemotherapeutic agent to target androgen signaling in metastatic prostate cancer (PCa); however, prolonged treatment with docetaxel results in drug-resistant cancer cells. Combination therapies have the potential of increasing the effectiveness of drug treatment as well as decreasing the side effects. Curcumin is a nontoxic organic compound with multifaceted chemopreventive potential. In this study, we evaluated whether curcumin can reinforce the effect of docetaxel on PCa cells. The PCa cell lines DU145 and PC3 were treated with curcumin and docetaxel alone or in combination. After completion of the treatment cell proliferation and the expression of pro-survival and anti-apoptotic markers and the signaling molecules were analyzed. The combined treatment of curcumin and docetaxel inhibited the proliferation and induced apoptosis significantly higher than the curcumin and docetaxel-treated group alone. Interestingly, the combined treatment with curcumin and docetaxel modulates the expression of RTKs, PI3K, phospho-AKT, NF-kappa B, p53, and COX-2. These results suggest that curcumin can be a potential therapeutic contender in enhancing the efficacy of docetaxel in PCa treatment.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Microbiology, Biochemistry and Immunology,Morehouse School of Medicine, 720 Westview drive, SW, Atlanta- 30310 USA
| | - Santosh K Singh
- Department of Microbiology, Biochemistry and Immunology,Morehouse School of Medicine, 720 Westview drive, SW, Atlanta- 30310 USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology; Morehouse School of Medicine, 720 Westview drive, SW, Atlanta- 30310 USA
| | - James W Lillard
- Department of Microbiology, Biochemistry and Immunology,Morehouse School of Medicine, 720 Westview drive, SW, Atlanta- 30310 USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology,Morehouse School of Medicine, 720 Westview drive, SW, Atlanta- 30310 USA
| |
Collapse
|
31
|
Han J, Gao W, Su D, Liu Y. Silencing of A-Kinase Anchor Protein 4 (AKAP4) Inhibits Proliferation and Progression of Thyroid Cancer. Oncol Res 2016; 25:873-878. [PMID: 27983916 PMCID: PMC7841067 DOI: 10.3727/096504016x14783701102564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A-kinase anchor protein 4 (AKAP4), a member of the A-kinase anchor family of proteins, plays a role in tumor development and progression. However, its expression pattern and function in human thyroid cancer remain obscure. Here we examined AKAP4 expression in thyroid cancer cell lines as well as the effects of AKAP4 on the proliferation and metastasis of thyroid cancer cells. We also explored the molecular mechanism by which AKAP4 mediates the metastatic potential of thyroid cancer cells. Our results revealed that the transcript and protein levels of AKAP4 were significantly upregulated in thyroid cancer cell lines. In vitro experiments showed that knockdown of AKAP4 significantly inhibited the proliferation, migration, invasion, and epithelial–mesenchymal transition (EMT) process in thyroid cancer cells. Additionally, knockdown of AKAP4 greatly decreased the protein expression of Shh as well as Smo, Ptc, and Gli-1 in ACT-1 cells. Finally, the in vivo nude mice model confirmed that knockdown of AKAP4 attenuated tumor growth. In conclusion, our findings demonstrated that knockdown of AKAP4 inhibited proliferation and metastasis, likely through suppressing the Shh signaling pathway, in thyroid cancer cells. Thus, AKAP4 may act as a potential therapeutic target for human thyroid cancer.
Collapse
|
32
|
Yang RW, Zeng YY, Wei WT, Cui YM, Sun HY, Cai YL, Nian XX, Hu YT, Quan YP, Jiang SL, Wang M, Zhao YL, Qiu JF, Li MX, Zhang JH, He MR, Liang L, Ding YQ, Liao WT. TLE3 represses colorectal cancer proliferation by inhibiting MAPK and AKT signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:152. [PMID: 27669982 PMCID: PMC5037636 DOI: 10.1186/s13046-016-0426-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 01/19/2023]
Abstract
Background Transducin-like enhancer of Split3 (TLE3) serves as a transcriptional corepressor during cell differentiation and shows multiple roles in different kinds of cancers. Recently, TLE3 together with many other genes involved in Wnt/β-catenin pathway were detected hyper-methylated in colorectal cancer (CRC). However, the potential role and the underlying mechanism of TLE3 in CRC progression remain scarce. Methods Gene expression profiles were analyzed in The Cancer Genome Atlas (TCGA) microarray dataset of 41 normal colorectal intestine tissues and 465 CRC tissues. Western blot and Real-time Quantitative PCR (RT-qPCR) were respectively performed to detect protein and mRNA expression in 8 pairs of CRC tissue and matched adjacent normal mucosa. Immunohistochemistry (IHC) was conducted to evaluate TLE3 protein expression in 105 paraffin-embedded, archived human CRC tissues from patients, whose survival data were analyzed with Kaplan-Meier method. In vitro experiments including MTT assay, colony formation assay, and soft agar formation assay were used to investigate the effects of TLE3 on CRC cell growth and proliferation. Additionally, subcutaneous tumorigenesis assay was performed in nude mice to confirm the effects of TLE3 in vivo. Furthermore, gene set enrichment analysis (GSEA) was run to explore potential mechanism of TLE3 in CRC, and then we measured the distribution of CRC cell cycle phases and apoptosis by flow cytometry, as well as the impacts of TLE3 on MAPK and AKT signaling pathways by Western blot and RT-qPCR. Results TLE3 was significantly down-regulated in 465 CRC tissues compared with 41 normal tissues. Both protein and mRNA expressions of TLE3 were down-regulated in CRC compared with matched adjacent normal mucosa. Lower expression of TLE3 was significantly associated with poorer survival of patients with CRC. Besides, knock down of TLE3 promoted CRC cell growth and proliferation, while overexpression of TLE3 showed suppressive effects. Furthermore, overexpression of TLE3 caused G1-S phase transition arrest, inhibition of MAPK and AKT pathways, and up-regulation of p21Cip1/WAF1 and p27Kip1. Conclusion This study indicated that TLE3 repressed CRC proliferation partly through inhibition of MAPK and AKT signaling pathways, suggesting the possibility of TLE3 as a biomarker for CRC prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0426-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Run-Wei Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ying-Yue Zeng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Wen-Ting Wei
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yan-Mei Cui
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Hui-Ying Sun
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yue-Long Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin-Xin Nian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yun-Teng Hu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yu-Ping Quan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Sheng-Lu Jiang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Meng Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ya-Li Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jun-Feng Qiu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Ming-Xuan Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jia-Huan Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Mei-Rong He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yan-Qing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wen-Ting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China. .,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
33
|
Jagadish N, Agarwal S, Gupta N, Fatima R, Devi S, Kumar V, Suri V, Kumar R, Suri V, Sadasukhi TC, Gupta A, Ansari AS, Lohiya NK, Suri A. Heat shock protein 70-2 (HSP70-2) overexpression in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:150. [PMID: 27658496 PMCID: PMC5034467 DOI: 10.1186/s13046-016-0425-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/13/2016] [Indexed: 11/23/2022]
Abstract
Background Breast cancer is one of the leading cause of cancer-related deaths in women worldwide and increasing rapidly in developing countries. In the present study, we investigated the potential role and association of HSP70-2 with breast cancer. Methods HSP70-2 expression was examined in 154 tumor and 103 adjacent non-cancerous tissue (ANCT) specimens and breast cancer cell lines (MCF7, BT-474, SK-BR-3 and MDA-MB-231) by RT-PCR, quantitative-PCR, immunohistochemistry, Western blotting, flow cytometry and indirect immunofluorescence. Plasmid driven short hairpin RNA approach was employed to validate the role of HSP70-2 in cellular proliferation, senescence, migration, invasion and tumor growth. Further, we studied the effect of HSP70-2 protein ablation on signaling cascades involved in apoptosis, cell cycle and Epithelial-Mesenchymal-Transition both in culture as well as in-vivo human breast xenograft mouse model. Results HSP70-2 expression was detected in majority of breast cancer patients (83 %) irrespective of various histotypes, stages and grades. HSP70-2 expression was also observed in all breast cancer cells (BT-474, MCF7, MDA-MB-231 and SK-BR-3) used in this study. Depletion of HSP70-2 in MDA-MB-231 and MCF7 cells resulted in a significant reduction in cellular growth, motility, onset of apoptosis, senescence, cell cycle arrest as well as reduction of tumor growth in the xenograft model. At molecular level, down-regulation of HSP70-2 resulted in reduced expression of cyclins, cyclin dependent kinases, anti-apoptotic molecules and mesenchymal markers and enhanced expression of CDK inhibitors, caspases, pro-apoptotic molecules and epithelial markers. Conclusions HSP70-2 is over expressed in breast cancer patients and was involved in malignant properties of breast cancer. This suggests HSP70-2 may be potential candidate molecule for development of better breast cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0425-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nirmala Jagadish
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Sumit Agarwal
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Namita Gupta
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Rukhsar Fatima
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Sonika Devi
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Vikash Kumar
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajive Kumar
- All India Institute of Medical Sciences, Institute of Rotary Cancer Hospital, New Delhi, 110029, India
| | - Vitusha Suri
- Mahatma Gandhi Medical College and Hospital, Jaipur, 302022, India
| | | | - Anju Gupta
- Department of Pathology, NMC Imaging and Diagnostic Centre, Vidyasagar Institute of Mental Health and Neuro-Sciences, New Delhi, 110065, India
| | - Abdul S Ansari
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, 302 004, India
| | - Nirmal Kumar Lohiya
- Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, 302 004, India
| | - Anil Suri
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
34
|
Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. Tumour Biol 2016; 37:13101-13110. [PMID: 27449044 DOI: 10.1007/s13277-016-5240-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023] Open
Abstract
Recently, we demonstrated the association of sperm-associated antigen 9 (SPAG9) expression with breast cancer. Among breast cancer, 15 % of the cancers are diagnosed as triple-negative breast cancers (TNBC) based on hormone receptor status and represent an important clinical challenge because of lack of effective available targeted therapy. Therefore, in the present investigation, plasmid-based small hairpin (small hairpin RNA (shRNA)) approach was used to ablate SPAG9 in aggressive breast cancer cell line model (MDA-MB-231) in order to understand the role of SPAG9 at molecular level in apoptosis, cell cycle, and epithelial-to-mesenchymal transition (EMT) signaling. Our data in MDA-MB-231 cells showed that ablation of SPAG9 resulted in membrane blebbing, increased mitochondrial membrane potential, DNA fragmentation, phosphatidyl serine surface expression, and caspase activation. SPAG9 depletion also resulted in cell cycle arrest in G0-G1 phase and induced cellular senescence. In addition, in in vitro and in vivo xenograft studies, ablation of SPAG9 resulted in upregulation of p21 along with pro-apoptotic molecules such as BAK, BAX, BIM, BID, NOXA, AIF, Cyto-C, PARP1, APAF1, Caspase 3, and Caspase 9 and epithelial marker, E-cadherin. Also, SPAG9-depleted cells showed downregulation of cyclin B1, cyclin D1, cyclin E, CDK1, CDK4, CDK6, BCL2, Bcl-xL, XIAP, cIAP2, MCL1, GRP78, SLUG, SNAIL, TWIST, vimentin, N-cadherin, MMP2, MMP3, MMP9, SMA, and β-catenin. Collectively, our data suggests that SPAG9 promotes tumor growth by inhibiting apoptosis, altering cell cycle, and enhancing EMT signaling in in vitro cells and in vivo mouse model. Hence, SPAG9 may be a potential novel target for therapeutic use in TNBC treatment.
Collapse
|
35
|
Zhang H, Zhong H, Li L, Ji W, Zhang X. Overexpressed transcription factor FOXM1 contributes to the progression of colorectal cancer. Mol Med Rep 2016; 13:2696-700. [PMID: 26861549 DOI: 10.3892/mmr.2016.4875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
Forkhead box M1 (FOXM1) is a characteristic proliferation‑associated transcription factor, which is overexpressed in various types of human cancer. The aim of the present study was to determine the expression of FOXM1 in a large collection of colorectal cancer (CRC) samples. Between March 2012 and January 2014, 96 patients with histologically diagnosed CRC were recruited into the current study. Using immunohistochemistry, reverse transcription‑quantitative polymerase chain reaction and western blotting, mRNA and protein expression levels of FOXM1 in CRC tissue samples were determined. The function of FOXM1 in the CRC cells was evaluated by small interfering RNA‑mediated depletion of FOXM1, followed by analyses of cell proliferation and invasion. High levels of staining for FOXM1 were observed in significantly more CRC tissue samples: 85.42% (82/96) of CRC tissue samples compared with 18.75% (18/96) of adjacent normal mucosa tissue samples. Silencing FOXM1 inhibited the proliferation of LoVo cells, which express a relatively high level of FOXM1, and the invasion and migration of LoVo cells were also markedly suppressed. The data from the present study suggested that the pathogenesis of human CRC may be mediated by FOXM1, and that FOXM1 inhibition may provide a promising therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Hua Zhong
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Lei Li
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wansheng Ji
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiaoqian Zhang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
36
|
Liu L, Liu Y, Zhang T, Wu H, Lin M, Wang C, Zhan Y, Zhou Q, Qiao B, Sun X, Zhang Q, Guo X, Zhao G, Zhang W, Huang W. Synthetic Bax-Anti Bcl2 combination module actuated by super artificial hTERT promoter selectively inhibits malignant phenotypes of bladder cancer. J Exp Clin Cancer Res 2016; 35:3. [PMID: 26743236 PMCID: PMC4705585 DOI: 10.1186/s13046-015-0279-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/29/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The synthetic biology technology which enhances the specificity and efficacy of treatment is a novel try in biomedical therapy during recent years. A high frequency of somatic mutations was shown in the human telomerase reverse transcriptase (hTERT) promoter in bladder cancer, indicating that a mutational hTERT promoter might be a tumor-specific element for bladder cancer therapy. In our study, we aimed to construct a synthetic combination module driven by a super artificial hTERT promoter and to investigate its influence on the malignant phenotypes of bladder cancer. METHODS The dual luciferase assay system was used to verify the driven efficiency and tumor-specificity of the artificial hTERT promoter and to confirm the relationship between ETS-1 and the driven efficiency of the artificial hTERT promoter. CCK-8 assay and MTT assay were used to test the effects of the Bax-Anti Bcl2 combination module driven by the artificial hTERT promoter on cell proliferation. Simultaneously, the cell apoptosis was detected by the caspase 3ELISA assay and the flow cytometry analysis after transfection. The results of CCK-8 assay and MTT assay were analyzed by ANOVA. The independent samples t-test was used to analyze other data. RESULTS We demonstrated that the artificial hTERT promoter had a higher driven efficiency which might be regulated by transcription factor ETS-1 in bladder cancer cells, compared with wild-type hTERT promoter. Meanwhile, the artificial hTERT promoter showed a strong tumor-specific effect. The cell proliferation inhibition and apoptosis induction were observed in artificial hTERT promoter- Bax-Anti Bcl2 combination module -transfected bladder cancer 5637 and T24 cells, but not in the module -transfected normal human fibroblasts. CONCLUSION This module offers us a useful synthetic biology platform to inhibit the malignant phenotypes of bladder cancer in a more specific and effective way.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Shantou University Medical College, Shantou, China.
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Tianbiao Zhang
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hanwei Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Muqi Lin
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Chaoliang Wang
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yonghao Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Shantou University Medical College, Shantou, China.
| | - Qing Zhou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Baoping Qiao
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaojuan Sun
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Qiaoxia Zhang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Xiaoqiang Guo
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Guoping Zhao
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Weixing Zhang
- Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Centre, Beijing, 100034, China.
| |
Collapse
|