1
|
Banchi M, Cox MC, Bocci G. Metronomic chemotherapy in hematology: Lessons from preclinical and clinical studies to build a solid rationale for future schedules. Cancer Lett 2024; 591:216900. [PMID: 38636896 DOI: 10.1016/j.canlet.2024.216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Metronomic chemotherapy (mCHEMO), based on frequent, regular administration of low, but pharmacologically active drug doses, optimizes antitumor efficacy by targeting multiple targets and reducing toxicity of antineoplastic drugs. This minireview will summarize preclinical and clinical studies on cytotoxic drugs given at weekly, daily, or at continuous metronomic schedules alone or in combination with novel targeted agents for hematological malignancies, including lymphoma, multiple myeloma, and leukemia. Most of the preclinical in vitro and in vivo studies have reported a significant benefit of both mCHEMO monotherapy and combinatorial regimens compared with chemotherapy at the maximum tolerated dose. However, the combination of mCHEMO with targeted drugs is still little explored in the hematologic clinical setting. Data obtained from preclinical studies on low dose metronomic chemotherapy in hematological malignancies clearly suggested the possibility to clinically investigate more tolerable and effective strategies for the treatment of patients with advanced hematological malignancies, or at least for those frail and elderly patients, who are not eligible or resistant to standard treatments.
Collapse
Affiliation(s)
- Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | | | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Zhang Q, Zhu Z, Guan J, Zheng C. Identification and Assessment of Necroptosis-Related Genes in Clinical Prognosis and Immune Cells in Diffuse Large B-Cell Lymphoma. Front Oncol 2022; 12:904614. [PMID: 35814424 PMCID: PMC9257018 DOI: 10.3389/fonc.2022.904614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background With the unveiling of new mechanisms and the advent of new drugs, the prognosis of diffuse large B-cell lymphoma (DLBCL) becomes promising, but some patients still progress to the relapse or refractory stage. Necroptosis, as a relatively novel programmed cell death, is involved in the development of multiple tumors. There are no relevant studies on the prognostic significance of necroptosis in DLBCL to date. Methods We identified the differential necroptosis-related genes (NRGs) by comparing the DLBCL and normal control in GSE12195 and GSE56315 datasets. TCGA DLBC and GSE10846 containing clinical information and microarray expression profiling were merged as the entire cohort. We performed consensus clusters based on NRGs and two clusters were obtained. Kaplan–Meier (K-M) survival analysis, GSVA, GO, KEGG, and ssGSEA were used to analyze the survival, function, and immune microenvironment between two clusters. With LASSO and proportional hazard model construction, we identified differentially expressed genes (DEGs) between NRG clusters, calculated the risk score, established a prognostic model, and validated its value by calibration and ROC curves. The entire cohort was divided into the training and test cohort, and GSE87371 was included as an external validation cohort. K-M, copy number variation, tumor mutation burden, and drug sensitivity were also analyzed. Results We found significant differences in prognosis between the two NRG clusters. Cluster A with a poor prognosis had a decreased expression of NRGs and a relatively suppressed immune microenvironment. GSVA analysis indicated that cluster A was related to the downregulation of the TGF-β signaling pathway and the activation of the Notch signaling pathway. The risk score had an accurate predictive ability. The nomogram could help predict the survival probability of DLBCL patients in the entire cohort and the external validation cohort. The area under the curve (AUC) of the nomogram, risk score, and International Prognostic Index was 0.723, 0.712, and 0.537, respectively. γ/δ T cells and Macrophage 1 cells decreased while Macrophage 2 cells and Natural Killer resting cells increased in the high-risk group. In addition, the high-risk group was more sensitive to the PI3K inhibitor and the PDK inhibitor. Conclusion We explored the potential role of necroptosis in DLBCL from multiple perspectives and provided a prognostic nomogram for the survival prediction of DLBCL. Necroptosis was downregulated and was correlated with an immunosuppressed tumor microenvironment and poor prognosis in DLBCL. Our study may deepen the understanding and facilitate the development of new therapy targets for DLBCL.
Collapse
Affiliation(s)
- Qikai Zhang
- Department of Hematological Oncology, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
- First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Zongsi Zhu
- Department of Hematological Oncology, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
- First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jiaqiang Guan
- Department of Hematological Oncology, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
- First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Cuiping Zheng
- Department of Hematological Oncology, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
- First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Cuiping Zheng,
| |
Collapse
|
3
|
Metronomic chemotherapy regimens and targeted therapies in non-Hodgkin lymphoma: The best of two worlds. Cancer Lett 2022; 524:144-150. [PMID: 34673128 DOI: 10.1016/j.canlet.2021.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022]
Abstract
Novel drugs are rapidly moving forward the treatment-paradigm of non-Hodgkin-lymphomas (NHLs). Notwithstanding, especially in aggressive subtypes, chemotherapy remains the pillar of treatment. Indeed, the combination of highly effective Maximum-Tolerated-Dose Chemotherapy (MTD-CHEMO) + "novel drugs", has so far, fallen short from expectations, often because it caused excessive toxicity. Metronomic chemotherapy (mCHEMO), which is the frequent, long-term administration of low dose cytotoxic drugs, may allow more effective and tolerable combinations. mCHEMO pharmacodynamics, has been described as pleiotropic. In fact, it may have different cellular and molecular targets, when drugs or their schedules are modified. Although mCHEMO has been little explored in NHLs, pre-clinical studies - in lymphoma models - which addressed the activity of mCHEMO in combination with novel drugs, have shown very promising results. These included inhibitors of histone deacetylase, mTOR and PI3K/mTOR, as well as the immune checkpoint inhibitor anti-PD-L1. Moreover, a few impressive reports have recently shown all-oral mCHEMO schedules, with or without rituximab, can effectively shrink both B and T-cell aggressive NHLs. Indeed, these regimens allowed elderly-frail patients to achieve sustained remission, while toxicity proved manageable. In our opinion, all-oral mCHEMO, is an active, easy-to start, well-tolerated, and inexpensive therapeutic approach, which deserves further investigation. Most importantly, mCHEMO, holds promise to empower the activity of novel targeted therapies, without causing excessive toxicity.
Collapse
|
4
|
Qing K, Jin Z, Xu Z, Wang W, Li X, Zhang Y, Wang L, Zhu H, Xiang R, Wu S, Li R, Jiang G, Xue K, Li J. Dysregulated MDR1 by PRDM1/Blimp1 Is Involved in the Doxorubicin Resistance of Non-Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma. Chemotherapy 2021; 67:12-23. [PMID: 34844236 DOI: 10.1159/000520070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The chemoresistance mechanism of diffuse large B-cell lymphoma (DLBCL) is still poorly understood, and patient prognosis remains unsatisfactory. This study aimed to investigate drug resistance mechanisms in non-germinal center B-cell-like (non-GCB) DLBCL. METHODS Doxorubicin (DOX)-resistant OCI-Ly3 cells were generated through long-term incubation of cells in a medium with gradually increasing DOX concentrations. The expression levels of genes related to drug metabolism were determined using a functional gene grouping polymerase chain reaction (PCR) array. Drug-resistant proteins were identified using bioinformatics, and molecular association networks were subsequently generated. The association and mechanism of key genes were determined using a dual-luciferase reporter assay System and chromatin immunoprecipitation (ChIP). The expression of drug-resistant genes and target genes was then measured using Western blotting and immunohistochemistry. The correlation between gene expressions was analyzed using Spearman's rank correlation coefficient. RESULTS Using the PCR array, MDR1 was identified as the key gene that regulates DOX resistance in OCI-Ly3/DOX-A100, a non-GCB DLBCL cell line. The dual-luciferase reporter assay system demonstrated that MDR1 transcription could be inhibited by PRDM1. ChIP results showed that PRDM1 had the ability to bind to the promoter region (-1,132 to -996) of MDR1. In OCI-Ly3/DOX cells, NF-κB activity and PRDM1 expression decreased with an increase in drug-resistant index, whereas MDR1 expression increased with enhanced drug resistance. Immunohistochemical analysis revealed that relative MDR1 expression was higher than that of PRDM1 in human DLBCL tissue samples. A negative correlation was observed between MDR1 and PRDM1. CONCLUSION In non-GCB DLBCL cells, NF-κB downregulates PRDM1 and thereby promotes MDR1 transcription by terminating PRDM1-induced transcriptional inhibition of MDR1. Such a mechanism may explain the reason for disease recurrence in non-GCB DLBCL after R-CHOP or combined CHOP with bortezomib treatment. Our findings may provide a potential therapeutic strategy for reducing drug resistance in patients with DLBCL.
Collapse
Affiliation(s)
- Kai Qing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zizhen Xu
- Department of Laboratory Medicine, Ruijin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lining Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rufang Xiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Cencini E, Fabbri A, Mecacci B, Bocchia M. Role of lenalidomide in the treatment of peripheral T-cell non-Hodgkin lymphomas. World J Clin Oncol 2021; 12:882-896. [PMID: 34733611 PMCID: PMC8546656 DOI: 10.5306/wjco.v12.i10.882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/07/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
T-cell lymphomas (TCLs) represent a group of lymphoid neoplasms characterized by an aggressive clinical course, even after an anthracycline-containing regimen. Novel agents for patients with relapsed/refractory TCL are urgently needed. Lenalidomide is an oral drug with immunomodulatory, antiangiogenic and direct antineoplastic effects. These peculiar mechanisms of action make TCL an attractive target for lenalidomide. We have identified five clinical trials in which lenalidomide monotherapy was investigated to treat TCL, including cutaneous TCL (CTCL) and adult T-cell lymphoma/leukemia (ATLL). In the ATLL-002 study, the overall response rate (ORR) was 42% and median progression-free survival (PFS) and overall survival were 3.8 mo and 20.3 mo, respectively. In a phase II trial for CTCL, ORR was 28% and median PFS and overall survival were 8 mo and 43 mo, respectively. For nodal peripheral TCL, ORR was between 10% and 43% in three clinical trials, with a median PFS of about 4 mo, even if some patients had a durable response. Overall toxicity is manageable and grade 3-4 events are mainly hematological and reversible. Combination strategies did not improve PFS. In conclusion, lenalidomide could represent a suitable treatment option for relapsed/refractory TCL, especially for neoplasms with a T-follicular helper origin, such as angioimmunoblastic TCL.
Collapse
Affiliation(s)
- Emanuele Cencini
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese and University of Siena, Siena 53100, Italy
| | - Alberto Fabbri
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese and University of Siena, Siena 53100, Italy
| | - Bianca Mecacci
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese and University of Siena, Siena 53100, Italy
| | - Monica Bocchia
- Unit of Hematology, Azienda Ospedaliera Universitaria Senese and University of Siena, Siena 53100, Italy
| |
Collapse
|
6
|
PI3K/Akt Pathway: The Indestructible Role of a Vintage Target as a Support to the Most Recent Immunotherapeutic Approaches. Cancers (Basel) 2021; 13:cancers13164040. [PMID: 34439194 PMCID: PMC8392360 DOI: 10.3390/cancers13164040] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary PI3K/Akt pathway has an impressive story as tumor marker. PI3K-dependent solid tumors have been studied for several years in order to inhibit the pathway at different levels along the signaling. Despite the highly satisfactory results obtained in vitro and in xenograft mouse tumor models, the use of PI3K/Akt inhibitors in clinical trials resulted in being not as efficient as expected. With the emerging role of the tumor microenvironment in the response to therapy and the awareness, increasing in recent years, of the necessity to army the immune system against the tumor, new opportunities have emerged for PI3K/Akt inhibitors. Here, we show that PI3K/Akt, in addition to its function as tumor marker, exerts a pivotal role as an immunomodulator. Recent studies demonstrate that PI3K/Akt pathway is crucial for the regulation of the immune system and that its inhibition in combination with immunomodulatory agents may provide a new therapeutic approach for cancer. Abstract Pathologic activation of PI3Ks and the subsequent deregulation of its downstream signaling pathway is among the most frequent events associated with cellular transformation, cancer, and metastasis. PI3Ks are also emerging as critical factors in regulating anti-tumor immunity by either promoting an immunosuppressive tumor microenvironment or by controlling the activity and the tumor infiltration of cells involved in the immune response. For these reasons, significant pharmaceutical efforts are dedicated to inhibiting the PI3K pathway, with the main goal to target the tumor and, at the same time, to enhance the anti-tumor immunity. Recent immunotherapeutic approaches involving the use of adoptive cell transfer of autologous genetically modified T cells or immune check-point inhibitors showed high efficacy. However, mechanisms of resistance to these kinds of therapy are emerging, due in part to the inhibition of effector T cell functions exerted by the immunosuppressive tumor microenvironment. Here, we first describe how inhibition of PI3K/Akt pathway contribute to enhance anti-tumor immunity and further discuss how inhibitors of the pathway are used in combination with different immunomodulatory and immunotherapeutic agents to improve anti-tumor efficacy.
Collapse
|
7
|
Abstract
Diffuse large B-cell lymphomas (DLBCL)s, the most common type of Non-Hodgkin’s Lymphoma, constitute a heterogeneous group of disorders including different disease sites, strikingly diverse molecular features and a profound variability in the clinical behavior. Molecular studies and clinical trials have partially revealed the underlying causes for this variability and have made possible the recognition of some molecular variants susceptible of specific therapeutic approaches. The main histogenetic groups include the germinal center, activated B cells, thymic B cells and terminally differentiated B cells, a basic scheme where the large majority of DLBCL cases can be ascribed. The nodal/extranodal origin, specific mutational changes and microenvironment peculiarities provide additional layers of complexity. Here, we summarize the status of the knowledge and make some specific proposals for addressing the future development of targeted therapy for DLBC cases.
Collapse
|
8
|
Phillips TJ, Michot JM, Ribrag V. Can Next-Generation PI3K Inhibitors Unlock the Full Potential of the Class in Patients With B-Cell Lymphoma? CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 21:8-20.e3. [PMID: 33132100 DOI: 10.1016/j.clml.2020.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Although outcomes after first-line therapy for patients with indolent or aggressive non-Hodgkin lymphoma (NHL) are continually improving, relapse is still common. Current treatment options for patients with relapsed or refractory disease have limited efficacy, and various targeted therapies are under investigation to help improve outcomes in this patient population. The phosphatidylinositol 3-kinase (PI3K) pathway was identified as being involved in hematologic malignancies, leading to significant research for potential therapeutic agents. This has led to 3 PI3K inhibitors (idelalisib, copanlisib, and duvelisib) being approved for the treatment of patients with relapsed or refractory follicular lymphoma who have received at least 2 prior systemic therapies, with reported response rates of 40% to 59%. With potential class-specific and PI3K isoform-related toxicities that may limit clinical utility, the safety of the approved PI3K inhibitors has been carefully evaluated to weigh the risk/benefit ratio of therapy. Currently, there are no approved PI3K inhibitors for patients with aggressive NHL. A number of newer PI3K inhibitors are in clinical development for the treatment of relapsed or refractory NHL, aiming to improve treatment benefit for patients. We discuss a number of attributes that are important to increase the therapeutic potential of newer PI3K inhibitors. More promising results may come from combination trials with these newer PI3K inhibitors, developed to limit toxicities (including long-term adverse events), and other antitumor agents.
Collapse
Affiliation(s)
| | | | - Vincent Ribrag
- Institut de Cancérologie Gustave Roussy, Villejuif, France.
| |
Collapse
|
9
|
Harvey RD, Carthon BC, Lewis C, Hossain MS, Zhang C, Chen Z, Harris WB, Alese OB, Shaib W, Bilen MA, Lawson DH, Wu C, Steuer CE, El-Rayes BF, Khuri FR, Lonial S, Waller EK, Ramalingam SS, Owonikoko TK. Phase 1 safety and pharmacodynamic study of lenalidomide combined with everolimus in patients with advanced solid malignancies with efficacy signal in adenoid cystic carcinoma. Br J Cancer 2020; 123:1228-1234. [PMID: 32704173 PMCID: PMC7553949 DOI: 10.1038/s41416-020-0988-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022] Open
Abstract
Background Purpose: The combination of a mammalian target of rapamycin inhibitor and lenalidomide showed enhanced preclinical cytotoxicity. We conducted a phase 1 study in advanced solid tumour patients to assess safety, efficacy and pharmacodynamic (PD) outcomes. Methods We employed a 3+3 dose escalation design to establish the safety and recommended phase 2 doses (RP2D) of daily everolimus and lenalidomide in patients with advanced solid tumours. The starting doses were 5 and 10 mg, respectively, with planned escalation to maximum single-agent doses of 10 and 25 mg in the absence of dose-limiting toxicity. PD endpoints of lymphocyte subsets and immune cytokines were assessed in peripheral blood using multiparameter flow cytometry and LUMINEX assay. Efficacy was evaluated by cross-sectional imaging after every two cycles of treatment. Results The study enrolled 44 patients, median age of 58 years and 28 males (63.6%). The RP2D was established as 10 and 25 mg daily continuously for everolimus and lenalidomide. Common (>5%) grade ≥3 adverse events included rash (19%), neutropenia (19%), hypokalaemia (11%) and fatigue (9%). Best efficacy outcomes in 36 evaluable patients were partial response in 5 (13.8%), stable disease in 24 (55.8%) and progressive disease in 7 (19.4%) patients. PD assessment revealed significant association of cytokine levels (interleukin-2 (IL2), IL21 and IL17), baseline activated and total CD8+ lymphocytes and change in B cell lymphocytes and activated NK cells with clinical benefit. Conclusions The study demonstrated the safety of everolimus and lenalidomide with promising efficacy signal in thyroid and adenoid cystic cancers. Clinical Trial Registration NCT01218555
Collapse
Affiliation(s)
- R Donald Harvey
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Bradley C Carthon
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Colleen Lewis
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Mohammad S Hossain
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Chao Zhang
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.,Department of Statistics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Zhengjia Chen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.,Department of Statistics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Wayne B Harris
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Olatunji B Alese
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Walid Shaib
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Mehmet A Bilen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - David H Lawson
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Christina Wu
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Conor E Steuer
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,American University of Beirut, Beirut, Lebanon
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA. .,Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
An B, Zhu S, Li T, Wu J, Zang G, Lv X, Qiao Y, Huang J, Shao Y, Cui J, Liu YJ, Chen J. A Dual TLR7/TLR9 Inhibitor HJ901 Inhibits ABC-DLBCL Expressing the MyD88 L265P Mutation. Front Cell Dev Biol 2020; 8:262. [PMID: 32391356 PMCID: PMC7188833 DOI: 10.3389/fcell.2020.00262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/27/2020] [Indexed: 01/03/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is associated with aggressive clinical cases and poor prognosis despite recent advances in disease treatment. In activated B-cell-like (ABC)-DLBCL, the most severe damaged signaling pathways converge to aberrantly activate the Toll-like receptor (TLR) 7/9/MyD88 pathways, leading to the avoidance of cell death and resistance to chemotherapy. A gain of function mutation in MyD88 (MyD88 L265P) enhanced the NF-κB and JAK-STAT signaling pathways and was associated with dysregulation of TLR signaling in the pathogenesis of ABC-DLBCL. Therefore, inhibition of the TLR signaling network may improve clinical outcomes. In this study, we designed a de novo synthesized oligodeoxynucleotide-based antagonist of TLR7 and TLR9, referred to as HJ901, which competitively binds to TLR7/9. We profiled HJ901 inhibition in various DLBCL cell lines and verified tumor suppression in a xenograft mouse model. We found that HJ901 treatment significantly reduced TLR7- and TLR9-mediated cell proliferation and cytokine production in a time- and dose-dependent manner in various DLBCL cell lines expressing the MyD88 L265P mutation. Moreover, HJ901 prevented tumor growth and downregulated the NF-κB and JAK2-STAT3 signaling pathways in a DLBCL xenograft mouse model with the MyD88 L265P mutation. These results reveal that the anti-tumor effects of the synthesized oligodeoxynucleotide-based antagonist, HJ901, which competitively binds to TLR7/9, may be associated with the downregulation of the NF-κB and JAK2-STAT3 signaling pathways and provide rationale for treating ABC-DLBCL patients with the MyD88 L265P mutation.
Collapse
Affiliation(s)
- Beiying An
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Tete Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Guoxia Zang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinping Lv
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yuan Qiao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yan Shao
- Changchun Huapu Biotechnology Co., Ltd., Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Sun F, Fang X, Wang X. Signal Pathways and Therapeutic Prospects of Diffuse Large B Cell Lymphoma. Anticancer Agents Med Chem 2020; 19:2047-2059. [PMID: 32009599 DOI: 10.2174/1871520619666190925143216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/18/2019] [Accepted: 07/18/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diffuse Large B Cell Lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma which is heterogeneous both clinically and morphologically. Over the past decades, significant advances have been made in the understanding of the molecular genesis, leading to the identification of multiple pathways and molecules that can be targeted for clinical benefit. OBJECTIVE The current review aims to present a brief overview of signal pathways of DLBCL, which mainly focus on B-cell antigen Receptor (BCR), Nuclear Factor-κB (NF-κB), Phosphatidylinositol-3-Kinase (PI3K) - protein kinase B (Akt) - mammalian Target of Rapamycin (mTOR), Janus Kinase (JAK) - Signal Transducer and Activator (STAT), Wnt/β-catenin, and P53 pathways. METHODS Activation of signal pathways may contribute to the generation, development, chemotherapy sensitivity of DLBCL, and expression of pathway molecules is associated with the prognosis of DLBCL. Some agents targeting these pathways have been proved effective and relevant clinical trials are in progress. These agents used single or combined with chemotherapy/each other might raise the possibility of improving clinical outcomes in DLBCL. CONCLUSION This review presents several signal pathways of DLBCL and targeted agents had a tendency to improve the curative effect, especially in high-risk or relapsed/refractory DLBCL.
Collapse
Affiliation(s)
- Feifei Sun
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong 250021, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong 250021, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong 250021, China.,Shandong University School of Medicine, Jinan, Shandong 250012, China
| |
Collapse
|
12
|
Tarantelli C, Lupia A, Stathis A, Bertoni F. Is There a Role for Dual PI3K/mTOR Inhibitors for Patients Affected with Lymphoma? Int J Mol Sci 2020; 21:E1060. [PMID: 32033478 PMCID: PMC7037719 DOI: 10.3390/ijms21031060] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The activation of the PI3K/AKT/mTOR pathway is a main driver of cell growth, proliferation, survival, and chemoresistance of cancer cells, and, for this reason, represents an attractive target for developing targeted anti-cancer drugs. There are plenty of preclinical data sustaining the anti-tumor activity of dual PI3K/mTOR inhibitors as single agents and in combination in lymphomas. Clinical responses, including complete remissions (especially in follicular lymphoma patients), are also observed in the very few clinical studies performed in patients that are affected by relapsed/refractory lymphomas or chronic lymphocytic leukemia. In this review, we summarize the literature on dual PI3K/mTOR inhibitors focusing on the lymphoma setting, presenting both the three compounds still in clinical development and those with a clinical program stopped or put on hold.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
| | - Antonio Lupia
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland;
| |
Collapse
|
13
|
Yin LL, Wen XM, Lai QH, Li J, Wang XW. Lenalidomide improvement of cisplatin antitumor efficacy on triple-negative breast cancer cells in vitro. Oncol Lett 2018; 15:6469-6474. [PMID: 29616116 DOI: 10.3892/ol.2018.8120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/09/2018] [Indexed: 12/28/2022] Open
Abstract
Lenalidomide is an immunomodulatory drug and possesses anti-angiogenic and immunomodulatory activities against multiple myeloma. The present study assessed the in vitro effect of lenalidomide combined with cisplatin on MDA-MB-231, a triple-negative breast cancer (TNBC) cell line and explored the underlying molecular mechanism of this combination. Cell viability, apoptosis and the protein expression of phosphorylated (p) and total extracellular signal-regulated kinase (ERK), B-cell lymphoma-2 (Bcl-2), caspase-3, cleaved poly-adenosine diphosphate-ribose polymerase (cPARP), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) were measured in MDA-MB-231 cells treated with different concentrations of lenalidomide, cisplatin and their combination using different biochemical assays. Lenalidomide demonstrated no significant effect on the cell viability of MDA-MB-231 cells, even at high concentrations, whereas lenalidomide in combination with cisplatin, significantly reduced cisplatin IC50 from 7.8 to 3.0 µM in MDA-MB-231 cells. In addition, lenalidomide and cisplatin in combination significantly induced cell apoptosis by 1.6- and 1.38-fold, respectively compared with lenalidomide and cisplatin alone (P<0.05). The expression levels of VEGF, bFGF and Bcl-2 proteins were significantly reduced (P<0.01), whereas caspase-3 and cleaved PARP expression were significantly increased in MDA-MB-231 cells treated with the combination compared to those treated with single agents (P<0.01). Lenalidomide treatment alone significantly reduced the p-ERK level compared with the control (P<0.05) and cisplatin treatment alone significantly increased it (P<0.01), however treatment with them in combination significantly reduced the p-ERK level in MDA-MB-231 cells compared with cisplatin treatment alone (P<0.05). In conclusion, the present study provides the basis for using lenalidomide in combination with cisplatin in TNBC therapy.
Collapse
Affiliation(s)
- Lin-Lin Yin
- Department of Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Hematology and Oncology, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Xin-Mian Wen
- Department of Clinical Laboratory, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Qing-Hua Lai
- Department of Oncology, The Central Hospital of Jinan, Jinan, Shandong 250013, P.R. China
| | - Jing Li
- Department of Hematology and Oncology, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Xiu-Wen Wang
- Department of Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
14
|
Guo L, Lin P, Xiong H, Tu S, Chen G. Molecular heterogeneity in diffuse large B-cell lymphoma and its implications in clinical diagnosis and treatment. Biochim Biophys Acta Rev Cancer 2018; 1869:85-96. [PMID: 29337112 DOI: 10.1016/j.bbcan.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over half of patients with diffuse large B-cell lymphoma (DLBCL) can be cured by standard R-CHOP treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). However, the remaining patients are refractory and ultimately succumb to progressive or relapsed disease. During the past decade, there has been significant progress in the understanding of molecular mechanisms in DLBCL, largely owing to collaborative efforts in large-scale gene expression profiling and deep sequencing, which have identified genetic alterations critical in lymphomagenesis through activation of key signaling transduction pathways in DLBCL. These discoveries have not only led to the development of targeted therapies, including several currently in clinical trials, but also laid a solid foundation for the future identification of more effective therapies for patients not curable by R-CHOP. This review summarizes the recent advances in our understanding of the molecular characterization and pathogenesis of DLBCL and new treatment directions.
Collapse
Affiliation(s)
- Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215000, China.
| | - Pei Lin
- Department of Hematopathology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 72, Houston, TX 77030, USA.
| | - Hui Xiong
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China.
| | - Shichun Tu
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China; Scintillon Institute for Biomedical and Bioenergy Research, 6888 Nancy Ridge Dr., San Diego, CA 92121, USA; Allele Biotechnology & Pharmaceuticals, Inc., 6404 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | - Gang Chen
- Department of Pathology of Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China.
| |
Collapse
|
15
|
Abstract
The tolerance to adriamycin of cancer as a common and stubborn obstacle occurred during curing breast cancer patients needs to be overcome. In the present study, we explored whether inhibiting the glucose transporter 1 (GLUT1) could restore the activity of adriamycin in breast cancer cell line MCF-7 resistant to adriamycin and the possible underlying mechanisms. Adriamycin-resistant cell line MCF-7/ADR was selected stepwise from the parental MCF-7 cells and the level of GLUT1 was measured. Then, the MCF-7/ADR cells were incubated with adriamycin, WZB117 (a specific GLUT1 inhibitor), or both. The viability, proliferation and apoptosis of cells and the level of glucose and lactate were measured, respectively. Finally, the cytosolic and mitochondrial proteins were isolated and the activity of the adenosine monophosphate-activated protein kinase (AMPK)/phosphorylated AMPK, mammalian target of rapamycin (mTOR)/phosphorylated mTOR, and apoptotic-related protein BCL-2-associated X protein (BAX), Bcl-2 was assayed by western blot. We found that WZB117 resensitized MCF-7/ADR to adriamycin and increased BAX translocated to mitochondria, which through activation of AMPK and inhibition of mTOR in a high probability. Inhibition of the GLUT1 could partially restore the antineoplastic effects of adriamycin in the adriamycin-resistant MCF-7 cell line possibly through activating the AMPK, downregulating the mTOR pathway, and increasing the BAX translocation to mitochondria.
Collapse
|
16
|
Cordone I, Masi S, Carosi M, Vidiri A, Marchesi F, Marino M, Telera S, Pasquale A, Mengarelli A, Conti L, Pescarmona E, Pace A, Carapella CM. Brain stereotactic biopsy flow cytometry for central nervous system lymphoma characterization: advantages and pitfalls. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:128. [PMID: 27567676 PMCID: PMC5002320 DOI: 10.1186/s13046-016-0404-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/09/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Brain stereotactic biopsy (SB) followed by conventional histopathology and immunohistochemistry (IHC) is the gold standard approach for primary central nervous system lymphoma (PCNSL) diagnosis. Flow cytometry (FCM) characterization of fine-needle aspiration cytology and core needle biopsies are increasingly utilized to diagnose lymphomas however, no biological data have been published on FCM characterization of fresh single cell suspension from PCNSL SB. The aim of this study was to establish the feasibility and utility of FCM for the diagnosis and characterization of brain lymphomas from a tissue samples obtained by a single SB disaggregation. METHODS Twenty-nine patients with a magnetic resonance suggestive for PCNSL entered the study. A median of 6 SB were performed for each patient. A cell suspension generated from manual tissue disaggregation of a single, unfixed, brain SB, was characterized by FCM. The FCM versus standard approach was prospectively compared. RESULTS FCM and IHC showed an high degree of agreement (89 %) in brain lymphoma identification. By FCM, 16 out of 18 PCNSL were identified within 2 h from biopsy. All were of B cell type, with a heterogeneous CD20 mean fluorescence intensity (MFI), CD10 positive in 3 cases (19 %) with surface Ig light chain restriction documented in 11 cases (69 %). No false positive lymphomas cases were observed. Up to 38 % of the brain leukocyte population consisted of CD8 reactive T cells, in contrast with the CD4 positive lymphocytes of the peripheral blood samples (P < 0.001). By histopathology, 18 B-PCNSL, only one CD10 positive (5 %), 1 primitive neuroectodermal tumor (PNET) and 10 gliomas were diagnosed. A median of 6 days was required for IHC diagnosis. CONCLUSION Complementary to histopathology FCM can contribute to a better characterization of PCNSL, although necrosis and previous steroid treatment can represent a pitfall of this approach. A single brain SB is a valid source for accurate FCM characterization of both lymphoma and reactive lymphocyte population, routinely applicable for antigen intensity quantification and consistently documenting an active mechanism of reactive CD8 T-lymphocytes migration in brain lymphomas. Moreover, FCM confirmed to be more sensitive than IHC for the identification of selected markers.
Collapse
Affiliation(s)
- Iole Cordone
- Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Serena Masi
- Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Francesco Marchesi
- Hematology and Stem Cell Transplant, Regina Elena National Cancer Institute, Rome, Italy
| | - Mirella Marino
- Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Telera
- Neurosurgery, Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Pasquale
- Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Mengarelli
- Hematology and Stem Cell Transplant, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Andrea Pace
- Neuroncology, Regina Elena National Cancer Institute, Rome, Italy
| | | |
Collapse
|
17
|
Qing K, Jin Z, Fu W, Wang W, Liu Z, Li X, Xu Z, Li J. Synergistic effect of oridonin and a PI3K/mTOR inhibitor on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma. J Hematol Oncol 2016; 9:72. [PMID: 27554093 PMCID: PMC4995739 DOI: 10.1186/s13045-016-0303-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 08/18/2016] [Indexed: 01/04/2023] Open
Abstract
We demonstrate the synergistic antitumor effect of oridonin and the PI3K/mTOR inhibitor NVP-BEZ235 on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma (non-GCB DLBCL) both in vitro and in vivo. The underlying mechanism may be multifunctional, involving apoptosis, AKT/mTOR and NF-kB inactivation, and ROS-mediated DNA damage response. Our findings pave the way for a new potential treatment option for non-GCB DLBCL with the combination of oridonin and NVP-BEZ235.
Collapse
Affiliation(s)
- Kai Qing
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wanbin Fu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenfang Wang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Liu
- Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Er Road, Shanghai, China
| | - Xiaoyang Li
- Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Er Road, Shanghai, China
| | - Zizhen Xu
- Department of Laboratory Medicine, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Er Road, Shanghai, China.
| | - Junmin Li
- Department of Hematology, Shanghai Institute of Hematology, Ruijin Hospital affiliated to School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Er Road, Shanghai, China.
| |
Collapse
|