1
|
Zhao J, Li Y, Huang Y, Su P, Nie F, Yang P, Yang C. Tumor-Derived GDF15 Induces Tumor Associated Fibroblast Transformation From BMSCs and Fibroblasts in Oral Squamous Cell Carcinoma. J Cell Physiol 2024:e31498. [PMID: 39639678 DOI: 10.1002/jcp.31498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Cancer associated fibroblasts (CAFs) are the predominant stromal cell-type in the solid tumor microenvironment, originating from various cell types and playing a crucial role in promoting tumor progression and metastasis The generation of CAFs is influenced by complex factors secreted by tumor cells, with particular emphasis on transforming growth factor-β (TGF-β). However, it remains largely unknown whether growth/differentiation factor-15 (GDF15), as a member of the TGF-β superfamily, exerts similar effects to TGF-β in oral squamous cell carcinoma (OSCC). In this study, we investigated the impact of GDF15 derived from tumor cells on CAF transformation and elucidated the underlying mechanisms. Exogenous GDF15 and OSCC cells induced the transformation of bone marrow mesenchymal stem cells (BMSCs) and human gingival fibroblasts (HGFs) into CAFs, as evidenced by α-smooth muscle actin (α-SMA) as a phenotypic marker and TGF-β, interleukin 6 (IL-6), and vascular endothelial-derived growth factor (VEGF) as functional markers. Conversely, knockdown of GDF15 in OSCC cells reversed CAF transformation. Mechanistically, extracellular signal-regulated kinases 1/2(ERK1/2) pathway was associated with GDF15-mediated promotion of CAF transformation. Furthermore, OSCC-induced CAFs enhanced migration and invasion abilities of OSCC cells; but this pro-cancer effect was abolished upon knockdown of GDF15 in OSCC cells. Subcutaneous coinjection of OSCC cells with BMSCs or HGFs into mice revealed the promoted tumor growth along with increased expression levels of α-SMA and Ki67 compared with alone OSCC cells injection; these effects were attenuated when GDF15 was knocked down in OSCC cells. Collectively, our findings suggest that tumor-derived GDF15 contributes to the progression of OSCC by promoting CAF transformation through activation of the ERK1/2 pathway.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Yahui Li
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shanghai, China
| | - Yingying Huang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Peng Su
- Department of Pathology, Jinan, China
| | - Fujiao Nie
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Pishan Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
2
|
Zhang H, Guo W, Wang J, Lu N, Zheng X, Sun Q, Xia Y, Zhang R, Chen X, Ma Q, Yang D, Pang A, Wei J, He Y, Feng S, Han M, Zhai W, Jiang E. Impact of bone marrow fibrosis on outcomes of allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia. Bone Marrow Transplant 2024; 59:1654-1666. [PMID: 39192082 PMCID: PMC11611735 DOI: 10.1038/s41409-024-02402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Bone marrow fibrosis (BMF) of unknown etiology was common in hematological malignancies, but its prognostic value for acute myeloid leukemia (AML) is unclear. We interrogated data from 532 newly diagnosed subjects with AML receiving allogeneic hematological stem cell transplantation to evaluate the prognostic impact of BMF on transplant outcomes. Using the European consensus on the grading of BMF at diagnosis, 255 (48%) subjects were BMF-0, 209 (39%), BMF-1 and 68 (13%), BMF-2-3. Subjects with BMF-2-3 had poor overall survival (P < 0.001), disease-free survival (P < 0.001) and a higher incidence of relapse (CIR, P < 0.001). Multi-variable analyses in subjects achieving pre-transplant complete remission showed BMF-2-3 was an independent risk factor for CIR (Hazard Ratio [HR] = 2.17, (95% CI, 1.11, 4,24); P = 0.02). Furthermore, BMF-2-3 group showed delayed neutrophil and platelet engraftment and delayed B cell recovery post-transplantation. These findings demonstrate the significance of BMF in transplant outcomes and attract more attention to AML with BMF.
Collapse
Affiliation(s)
- Haixiao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenwen Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiali Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ni Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinhui Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yonghui Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xin Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
3
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
4
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Int J Mol Sci 2024; 25:6356. [PMID: 38928061 PMCID: PMC11203697 DOI: 10.3390/ijms25126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.
Collapse
MESH Headings
- Humans
- Cell Differentiation
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mitochondria/metabolism
- Monocytes/metabolism
- Monocytes/pathology
- Drug Resistance, Neoplasm/genetics
- Molecular Targeted Therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
5
|
Panting RG, Kotecha RS, Cheung LC. The critical role of the bone marrow stromal microenvironment for the development of drug screening platforms in leukemia. Exp Hematol 2024; 133:104212. [PMID: 38552942 DOI: 10.1016/j.exphem.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
Extensive research over the past 50 years has resulted in significant improvements in survival for patients diagnosed with leukemia. Despite this, a subgroup of patients harboring high-risk genetic alterations still suffer from poor outcomes. There is a desperate need for new treatments to improve survival, yet consistent failure exists in the translation of in vitro drug development to clinical application. Preclinical screening conventionally utilizes tumor cell monocultures to assess drug activity; however, emerging research has acknowledged the vital role of the tumor microenvironment in treatment resistance and disease relapse. Current co-culture drug screening methods frequently employ fibroblasts as the designated stromal cell component. Alternative stromal cell types that are known to contribute to chemoresistance are often absent in preclinical evaluations of drug efficacy. This review highlights mechanisms of chemoresistance by a range of different stromal constituents present in the bone marrow microenvironment. Utilizing an array of stromal cell types at the early stages of drug screening may enhance the translation of in vitro drug development to clinical use. Ultimately, we highlight the need to consider the bone marrow microenvironment in drug screening platforms for leukemia to develop superior therapies for the treatment of high-risk patients with poor prognostic outcomes.
Collapse
Affiliation(s)
- Rhiannon G Panting
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Rishi S Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Laurence C Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
6
|
Zhou Q, Li Z, Xi Y. EV-mediated intercellular communication in acute myeloid leukemia: Transport of genetic materials in the bone marrow microenvironment. Exp Hematol 2024; 133:104175. [PMID: 38311165 DOI: 10.1016/j.exphem.2024.104175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Acute myeloid leukemia (AML) is a common hematological cancer. Cancer cells exchange information with the surrounding microenvironment, which can be transmitted by extracellular vesicles (EVs). In recent years, the genetic materials transported by EVs have attracted attention due to their important roles in different pathological processes. EV-derived ncRNAs (EV-ncRNAs) regulate physiological functions and maintain homeostasis, mainly including microRNAs, long noncoding RNAs, and circular RNAs. However, the mechanism of involvement and potential clinical application of EV-ncRNAs in AML have not been reported. Given the unique importance of the bone marrow microenvironment (BMME) for AML, a greater understanding of the communication between leukemic cells and the BMME is needed to improve the prognosis of patients and reduce the incidence of recurrence. Additionally, studies on leukemic EV-ncRNA transport guide the design of new diagnostic and therapeutic tools for AML. This review systematically describes intercellular communication in the BMME of AML and emphasizes the role of EVs. More importantly, we focus on the information transmission of EV-ncRNAs in the BMME to explore their clinical application as potential biomarkers and therapeutic targets.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/genetics
- Cell Communication
- Tumor Microenvironment
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Animals
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
7
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
8
|
Giallongo S, Duminuco A, Dulcamare I, Zuppelli T, La Spina E, Scandura G, Santisi A, Romano A, Di Raimondo F, Tibullo D, Palumbo GA, Giallongo C. Engagement of Mesenchymal Stromal Cells in the Remodeling of the Bone Marrow Microenvironment in Hematological Cancers. Biomolecules 2023; 13:1701. [PMID: 38136573 PMCID: PMC10741414 DOI: 10.3390/biom13121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a subset of heterogeneous, non-hematopoietic fibroblast-like cells which play important roles in tissue repair, inflammation, and immune modulation. MSCs residing in the bone marrow microenvironment (BMME) functionally interact with hematopoietic stem progenitor cells regulating hematopoiesis. However, MSCs have also emerged in recent years as key regulators of the tumor microenvironment. Indeed, they are now considered active players in the pathophysiology of hematologic malignancies rather than passive bystanders in the hematopoietic microenvironment. Once a malignant event occurs, the BMME acquires cellular, molecular, and epigenetic abnormalities affecting tumor growth and progression. In this context, MSC behavior is affected by signals coming from cancer cells. Furthermore, it has been shown that stromal cells themselves play a major role in several hematological malignancies' pathogenesis. This bidirectional crosstalk creates a functional tumor niche unit wherein tumor cells acquire a selective advantage over their normal counterparts and are protected from drug treatment. It is therefore of critical importance to unveil the underlying mechanisms which activate a protumor phenotype of MSCs for defining the unmasked vulnerabilities of hematological cancer cells which could be pharmacologically exploited to disrupt tumor/MSC coupling. The present review focuses on the current knowledge about MSC dysfunction mechanisms in the BMME of hematological cancers, sustaining tumor growth, immune escape, and cancer progression.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| | - Andrea Duminuco
- Division of Hematology, AOU Policlinico, 95123 Catania, Italy; (A.D.); (A.S.)
| | - Ilaria Dulcamare
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy;
| | - Tatiana Zuppelli
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Enrico La Spina
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Annalisa Santisi
- Division of Hematology, AOU Policlinico, 95123 Catania, Italy; (A.D.); (A.S.)
| | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; (G.S.); (A.R.); (F.D.R.)
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (T.Z.); (E.L.S.)
| | - Giuseppe A. Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (S.G.); (G.A.P.); (C.G.)
| |
Collapse
|
9
|
Zhao Z, Li T, Sun L, Yuan Y, Zhu Y. Potential mechanisms of cancer-associated fibroblasts in therapeutic resistance. Biomed Pharmacother 2023; 166:115425. [PMID: 37660643 DOI: 10.1016/j.biopha.2023.115425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Despite continuous improvements in research and new cancer therapeutics, the goal of eradicating cancer remains elusive because of drug resistance. For a long time, drug resistance research has been focused on tumor cells themselves; however, recent studies have found that the tumor microenvironment also plays an important role in inducing drug resistance. Cancer-associated fibroblasts (CAFs) are a main component of the tumor microenvironment. They cross-talk with cancer cells to support their survival in the presence of anticancer drugs. This review summarizes the current knowledge of the role of CAFs in tumor drug resistance. An in-depth understanding of the mechanisms underlying the cross-talk between CAFs and cancer cells and insight into the importance of CAFs in drug resistance can guide the development of new anticancer strategies.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), Shenyang, China.
| |
Collapse
|
10
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Ding Z, Shi R, Hu W, Tian L, Sun R, Wu Y, Zhang X. Cancer-associated fibroblasts in hematologic malignancies: elucidating roles and spotlighting therapeutic targets. Front Oncol 2023; 13:1193978. [PMID: 37746306 PMCID: PMC10511871 DOI: 10.3389/fonc.2023.1193978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Hematologic malignancies comprise a diverse range of blood, bone marrow, and organ-related disorders that present significant challenges due to drug resistance, relapse, and treatment failure. Cancer-associated fibroblasts (CAFs) represent a critical component of the tumor microenvironment (TME) and have recently emerged as potential therapeutic targets. In this comprehensive review, we summarize the latest findings on the roles of CAFs in various hematologic malignancies, including acute leukemia, multiple myeloma, chronic lymphocytic leukemia, myeloproliferative neoplasms, and lymphoma. We also explore their involvement in tumor progression, drug resistance, and the various signaling pathways implicated in their activation and function. While the underlying mechanisms and the existence of multiple CAF subtypes pose challenges, targeting CAFs and their associated pathways offers a promising avenue for the development of innovative treatments to improve patient outcomes in hematologic malignancies.
Collapse
Affiliation(s)
- Ziyang Ding
- The Second Clinical School of Nanjing Medical University, Nanjing, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weikang Hu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Tian
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Sun
- Department of Radiation Oncology, Jinling Hospital, Nanjing, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Zhang
- Department of Hematology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Haga CL, Boregowda SV, Booker CN, Krishnappa V, Strivelli J, Cappelli E, Phinney DG. Mesenchymal stem/stromal cells from a transplanted, asymptomatic patient with Fanconi anemia exhibit an aging-like phenotype and dysregulated expression of genes implicated in hematopoiesis and myelodysplasia. Cytotherapy 2023; 25:362-368. [PMID: 36481320 PMCID: PMC10006355 DOI: 10.1016/j.jcyt.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/27/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by defects in the repair of DNA inter-strand crosslinks and manifests as aplastic anemia, myelodysplastic syndrome and acute myeloid leukemia. FA also causes defects in mesenchymal stromal cell (MSC) function, but how different FA gene mutations alter function remains understudied. METHODS We compared the growth, differentiation and transcript profile of a single MSC isolate from an asymptomatic patient with FA with a FANCG nonsense mutation who underwent hematopoietic stem cell transplantation 10 years prior to that from a representative healthy donor (HD). RESULTS We show that FANCG-/- MSCs exhibit rapid onset of growth cessation, skewed bi-lineage differentiation in favor of adipogenesis and increased cellular oxidate stress consistent with an aging-like phenotype. Transcript profiling identified pathways related to cell growth, senescence, cellular stress responses and DNA replication/repair as over-represented in FANCG-/- MSC, and real-time polymerase chain reaction confirmed these MSCs expressed reduced levels of transcripts implicated in cell growth (TWIST1, FGFR2v7-8) and osteogenesis (TWIST1, RUNX2) and increased levels of transcripts regulating adipogenesis (GPR116) and insulin signaling. They also expressed reduced levels of mRNAs implicated in HSC self-maintenance and homing (KITLG, HGF, GDNF, PGF, CFB, IL-1B and CSF1) and elevated levels of those implicated in myelodysplasia (IL-6, GDF15). CONCLUSIONS Together, these findings demonstrate how inactivation of FANCG impacts MSC behavior, which parallels observed defects in osteogenesis, HSC depletion and leukemic blast formation seen in patients with FA.
Collapse
Affiliation(s)
- Christopher L Haga
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | | | - Cori N Booker
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Veena Krishnappa
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Jacqueline Strivelli
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Enrico Cappelli
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Donald G Phinney
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA.
| |
Collapse
|
13
|
Gu L, Liao P, Liu H. Cancer-associated fibroblasts in acute leukemia. Front Oncol 2022; 12:1022979. [PMID: 36601484 PMCID: PMC9806275 DOI: 10.3389/fonc.2022.1022979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Although the prognosis for acute leukemia has greatly improved, treatment of relapsed/refractory acute leukemia (R/R AL) remains challenging. Recently, increasing evidence indicates that the bone marrow microenvironment (BMM) plays a crucial role in leukemogenesis and therapeutic resistance; therefore, BMM-targeted strategies should be a potent protocol for treating R/R AL. The targeting of cancer-associated fibroblasts (CAFs) in solid tumors has received much attention and has achieved some progress, as CAFs might act as an organizer in the tumor microenvironment. Additionally, over the last 10 years, attention has been drawn to the role of CAFs in the BMM. In spite of certain successes in preclinical and clinical studies, the heterogeneity and plasticity of CAFs mean targeting them is a big challenge. Herein, we review the heterogeneity and roles of CAFs in the BMM and highlight the challenges and opportunities associated with acute leukemia therapies that involve the targeting of CAFs.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore, Singapore,Academic & Clinical Development, Duke-NUS Medical School, Singapore, Singapore,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| | - Hanmin Liu
- Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China,The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China,NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China,Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Ling Gu, ; Ping Liao, ; Hanmin Liu,
| |
Collapse
|
14
|
Zhou L, Shan Z, Fan J. Extracellular Vesicles Derived from Human Bone Marrow Stem Cells Inhibit Acute Lymphoblastic Leukemia Cell Growth by Inhibiting MAPK Pathway via the miR-29b-3p/GDF15 Axis. Acta Haematol 2022; 146:505-517. [PMID: 36327876 DOI: 10.1159/000527456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/18/2022] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is a common hematologic neoplastic disease. This study discussed the effect of extracellular vesicles (EVs) released from bone marrow mesenchymal stem cells (BMSCs) on ALL cells and the mechanism. METHODS BMSCs-EVs were isolated by differential centrifugation and identified. The effect of BMSCs-EVs on ALL cell proliferation and apoptosis was evaluated. The expression of miR-29b-3p in ALL cells and EVs was detected. The uptake of EVs by ALL cells was observed. The effect of miR-29b-3p on ALL cell proliferation and apoptosis was assessed after silencing miR-29b-3p. The targeting relation of miR-29b-3p and GDF15 was analyzed by bioinformatics website and dual-luciferase assay. The role of GDF15 in proliferation and apoptosis of ALL cells was further confirmed, and Western blot assay was performed to measure MAPK pathway-related protein levels. RESULTS BMSC-derived EVs inhibited proliferation and promoted apoptosis of ALL cells, as shown by the up-regulation of caspase-3 and Bax expressions and down-regulation of Bcl-2 expression. EVs carried miR-29b-3p into ALL cells, upregulated miR-29b-3p expression in ALL cells, and inhibited GDF15 expression. Silencing of miR-29b-3p or overexpression of GDF15 partially reversed the effect of EVs. EVs inhibited the MAPK pathway through the miR-29b-3p/GDF15 axis. CONCLUSION BMSCs-EVs carried miR-29b-3p into ALL cells, upregulated miR-29b-3p, and inhibited GDF15 to suppress the MAPK pathway and further inhibit proliferation and promote apoptosis of ALL cells.
Collapse
Affiliation(s)
- Li Zhou
- Department of Hematopathology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Zhe Shan
- Department of Hematopathology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Jiangsha Fan
- Department of Hematopathology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| |
Collapse
|
15
|
Pan C, Fang Q, Liu P, Ma D, Cao S, Zhang L, Chen Q, Hu T, Wang J. Mesenchymal Stem Cells With Cancer-Associated Fibroblast-Like Phenotype Stimulate SDF-1/CXCR4 Axis to Enhance the Growth and Invasion of B-Cell Acute Lymphoblastic Leukemia Cells Through Cell-to-Cell Communication. Front Cell Dev Biol 2021; 9:708513. [PMID: 34733839 PMCID: PMC8558501 DOI: 10.3389/fcell.2021.708513] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Bone marrow mesenchymal stem cells (BM-MSCs) are the stromal cells in the leukemia microenvironment, and can obtain cancer-associated fibroblast (CAF)-like phenotype under certain conditions to further promote leukemia progression. However, the mechanism of MSCs with CAF-like phenotype interacting with leukemia cells in B-cell acute lymphoblastic leukemia (B-ALL) and promoting the progression of B-ALL remains unclear. Methods: Mesenchymal stem cells with CAF-like phenotype were obtained by treating MSCs with recombinant human transforming growth factor-β (rhTGF-β), hereafter referred to as TGF-β conditioned MSCs. In vivo mouse model experiments, in vitro transwell chamber experiments, three-dimensional (3D) cell culture models, lentiviral transfection and other experimental methods were used to investigate the possible mechanism of the interaction between TGF-β conditioned MSCs and leukemia cells in promoting the growth, migration and invasion of B-ALL cells. Results: Compared with untreated MSCs, TGF-β conditioned MSCs significantly promoted the growth and proliferation of leukemia cells in mice, and increased the expression of CXCR4 in tumor tissues. In vitro cell experiments, TGF-β conditioned MSCs obviously promoted the migration and invasion of Nalm-6/RS4;11 cells, which were effectively blocked by the CXCR4 inhibitor AMD3100, thereby inhibiting the secretion of MMP-9 in TGF-β conditioned MSCs and inhibiting the activation of the PI3K/AKT signaling pathway in leukemia cells. Further, findings were made that the interaction between TGF-β conditioned MSCs and leukemia cells were mediated by the interaction between the integrin receptor α5β1 on the surface of leukemia cells and the increased expression of fibronectin on TGF-β conditioned MSCs. AMD3100 could weaken such effect by reducing the expression of integrin α5β1 on leukemia cells. Further regulation of integrin β1 could effectively interfere with the interaction between TGF-β conditioned MSCs and leukemia cells. Conclusion: Mesenchymal stem cells with CAF-like phenotype could be a key factor in promoting the growth and invasion of B-ALL cells, and the SDF-1/CXCR4 axis might be a significant factor in mediating the communication of MSCs with CAF-like phenotype and leukemia cells. To prevent the progression of B-ALL cells, blocking the SDF-1/CXCR4 axis with AMD3100 or targeting integrin β1 might be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Chengyun Pan
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ping Liu
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, Guiyang, China
| | - Dan Ma
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, Guiyang, China.,Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang, China
| | - Shuyun Cao
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, Guiyang, China
| | - Luxin Zhang
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, Guiyang, China
| | - Qingzhen Chen
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, Guiyang, China
| | - Tianzhen Hu
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jishi Wang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Hematological Institute of Guizhou Province, Guiyang, China.,Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guiyang, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Biological Therapies in the Treatment of Cancer-Update and New Directions. Int J Mol Sci 2021; 22:ijms222111694. [PMID: 34769123 PMCID: PMC8583892 DOI: 10.3390/ijms222111694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Biological therapies have changed the face of oncology by targeting cancerous cells while reducing the effect on normal tissue. This publication focuses mainly on new therapies that have contributed to the advances in treatment of certain malignancies. Immunotherapy, which has repeatedly proven to be a breakthrough therapy in melanoma, as well as B-ALL therapy with CAR T cells, are of great merit in this progress. These therapies are currently being developed by modifying bispecific antibodies and CAR T cells to improve their efficiency and bioavailability. Work on improving the therapy with oncolytic viruses is also progressing, and efforts are being made to improve the immunogenicity and stability of cancer vaccines. Combining various biological therapies, immunotherapy with oncolytic viruses or cancer vaccines is gaining importance in cancer therapy. New therapeutic targets are intensively sought among neoantigens, which are not immunocompromised, or antigens associated with tumor stroma cells. An example is fibroblast activation protein α (FAPα), the overexpression of which is observed in the case of tumor progression. Universal therapeutic targets are also sought, such as the neurotrophic receptor tyrosine kinase (NTRK) gene fusion, a key genetic driver present in many types of cancer. This review also raises the problem of the tumor microenvironment. Stromal cells can protect tumor cells from chemotherapy and contribute to relapse and progression. This publication also addresses the problem of cancer stem cells resistance to treatment and presents attempts to avoid this phenomenon. This review focuses on the most important strategies used to improve the selectivity of biological therapies.
Collapse
|
17
|
Cancer-associated fibroblasts: overview, progress, challenges, and directions. Cancer Gene Ther 2021; 28:984-999. [PMID: 33712707 DOI: 10.1038/s41417-021-00318-4] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023]
Abstract
Tumors are one of the main causes of death in humans. The development of safe and effective methods for early diagnosis and treatment of tumors is a difficult problem that needs to be solved urgently. It is well established that the occurrence of tumors involves complex biological mechanisms, and the tumor microenvironment (TME) plays an important role in regulating the biological behavior of tumors. Cancer-associated fibroblasts (CAFs) are a group of activated fibroblasts with significant heterogeneity and plasticity in the tumor microenvironment. They secrete a variety of active factors to regulate tumor occurrence, development, metastasis, and therapeutic resistance. Although most studies suggest that CAFs have significant tumor-promoting functions, some evidence indicates that they may have certain tumor-suppressive functions in the early stage of tumors. Current research on CAFs continues to face many challenges, and the heterogeneity of their origin, phenotype, and function is a major difficulty and hot spot. To provide new perspectives for the research on CAFs and tumor diagnosis and treatment, this review summarizes the definition, origin, biomarkers, generation mechanism, functions, heterogeneity, plasticity, subpopulations, pre-metastasis niches (PMN), immune microenvironment, and targeted therapy of CAFs, describes the research progress and challenges, and proposes possible future research directions based on existing reports.
Collapse
|
18
|
Lodi RS, Yu B, Xia L, Liu F. Roles and Regulation of Growth differentiation factor-15 in the Immune and tumor microenvironment. Hum Immunol 2021; 82:937-944. [PMID: 34412918 DOI: 10.1016/j.humimm.2021.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022]
Abstract
Growth differentiation factor-15 (GDF-15), a member of the TGF-β superfamily, plays multiple roles in a wide variety of cellular processes. It is expressed at low levels under normal conditions but is highly expressed in tumor and tumor microenvironment (TME)-related cells, such as fibroblasts and immune cells. The TME consists of the noncancerous cells present in the tumor, including immune cells, fibroblasts, blood vessel signaling molecules and extracellular matrix, which play a key role in tumor development. GDF-15 affects both stromal cells and immune cells in the TME. It also acts on immune checkpoints, such as PD-1/PDL-1 that regulate stemness of cancer cells, indicating that GDF-15 plays a prominent role in cancer, exhibiting both protumorigenic and antitumorigenic effects, although the latter are reported much less often than the former. The present review addresses novel ideas regarding communication between GDF-15 and stromal cells, immune cells, and cancer cells in the TME. In addition, it discusses the possibility of GDF-15's clinical application as a diagnostic biomarker and therapeutic target in cancer.
Collapse
Affiliation(s)
| | - Bin Yu
- The Central Laboratory, Changzhou Woman and Children Health Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Miari KE, Guzman ML, Wheadon H, Williams MTS. Macrophages in Acute Myeloid Leukaemia: Significant Players in Therapy Resistance and Patient Outcomes. Front Cell Dev Biol 2021; 9:692800. [PMID: 34249942 PMCID: PMC8264427 DOI: 10.3389/fcell.2021.692800] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/04/2021] [Indexed: 12/19/2022] Open
Abstract
Acute Myeloid Leukaemia (AML) is a commonly occurring severe haematological malignancy, with most patients exhibiting sub-optimal clinical outcomes. Therapy resistance significantly contributes towards failure of traditional and targeted treatments, disease relapse and mortality in AML patients. The mechanisms driving therapy resistance in AML are not fully understood, and approaches to overcome therapy resistance are important for curative therapies. To date, most studies have focused on therapy resistant mechanisms inherent to leukaemic cells (e.g., TP53 mutations), overlooking to some extent, acquired mechanisms of resistance through extrinsic processes. In the bone marrow microenvironment (BMME), leukaemic cells interact with the surrounding bone resident cells, driving acquired therapy resistance in AML. Growing evidence suggests that macrophages, highly plastic immune cells present in the BMME, play a role in the pathophysiology of AML. Leukaemia-supporting macrophage subsets (CD163+CD206+) are elevated in preclinical in vivo models of AML and AML patients. However, the relationship between macrophages and therapy resistance in AML warrants further investigation. In this review, we correlate the potential links between macrophages, the development of therapy resistance, and patient outcomes in AML. We specifically focus on macrophage reprogramming by AML cells, macrophage-driven activation of anti-cell death pathways in AML cells, and the association between macrophage phenotypes and clinical outcomes in AML, including their potential prognostic value. Lastly, we discuss therapeutic targeting of macrophages, as a strategy to circumvent therapy resistance in AML, and discuss how emerging genomic and proteomic-based approaches can be utilised to address existing challenges in this research field.
Collapse
Affiliation(s)
- Katerina E. Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Monica L. Guzman
- Department of Hematology & Medical Oncology, Graduate School of Medical Sciences, Cornell University, New York, NY, United States
| | - Helen Wheadon
- Paul O’Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark T. S. Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
20
|
Michelozzi IM, Kirtsios E, Giustacchini A. Driving CAR T Stem Cell Targeting in Acute Myeloid Leukemia: The Roads to Success. Cancers (Basel) 2021; 13:2816. [PMID: 34198742 PMCID: PMC8201025 DOI: 10.3390/cancers13112816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Current treatment outcome for acute myeloid leukemia (AML) patients is unsatisfactory and characterized by high rates of relapse and poor overall survival. Increasing evidence points to a crucial role of leukemic stem cells (LSC) and the bone marrow (BM) leukemic niche, in which they reside, in AML evolution and chemoresistance. Thus, future strategies aiming at improving AML therapeutic protocols are likely to be directed against LSC and their niche. Chimeric antigen receptor (CAR) T-cells have been extremely successful in the treatment of relapsed/refractory acute lymphoblastic leukemia and B-cell non-Hodgkin lymphoma and comparable results in AML are highly desirable. At present, we are at the dawn of CAR T-cell application in AML, with several preclinical studies and few early phase clinical trials. However, the lack of leukemia-specific targets and the genetic and phenotypic heterogeneity of the disease combined with the leukemia-induced remodeling of the BM microenvironment are limiting CAR T-cell exploitation in AML. Here, we reviewed AML-LSC and AML-BM niche features in the context of their therapeutic targeting using CAR T-cells. We summarized recent progress in CAR T-cell application to the treatment of AML, and we discussed the remaining therapeutic challenges and promising novel strategies to overcome them.
Collapse
Affiliation(s)
- Ilaria M. Michelozzi
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| | | | - Alice Giustacchini
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK;
| |
Collapse
|
21
|
Sletta KY, Castells O, Gjertsen BT. Colony Stimulating Factor 1 Receptor in Acute Myeloid Leukemia. Front Oncol 2021; 11:654817. [PMID: 33842370 PMCID: PMC8027480 DOI: 10.3389/fonc.2021.654817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous blood cancer derived from hematopoietic stem cells. Tumor-stromal interactions in AML are of importance for disease development and therapy resistance, and bone marrow stroma seem like an attractive therapeutic target. Of particular interest is colony stimulating factor 1 receptor (CSF1R, M-CSFR, c-FMS, CD115) and its role in regulating plasticity of tumor-associated macrophages. We discuss first the potential of CSF1R-targeted therapy as an attractive concept with regards to the tumor microenvironment in the bone marrow niche. A second therapy approach, supported by preclinical research, also suggests that CSF1R-targeted therapy may increase the beneficial effect of conventional and novel therapeutics. Experimental evidence positioning inhibitors of CSF1R as treatment should, together with data from preclinical and early phase clinical trials, facilitate translation and clinical development of CSF1R-targeted therapy for AML.
Collapse
Affiliation(s)
- Kristine Yttersian Sletta
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Oriol Castells
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
Li Y, Gu L. Establishment and characterization of HXWMF-1: the first mouse fibroblastic tumor cell line derived from leukemia-associated fibroblasts. Cancer Cell Int 2021; 21:177. [PMID: 33740980 PMCID: PMC7977166 DOI: 10.1186/s12935-021-01870-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/06/2021] [Indexed: 11/20/2022] Open
Abstract
Background Chemo-resistance is still a major obstacle in leukemia treatment. Accumulating evidence indicates that cancer-associated fibroblasts (CAFs), the most abundant stromal cells in tumor microenvironment (TME), play a crucial role in cancer progression and response to chemotherapy. To Figure out the role of leukemia-associated fibroblasts (LAFs) in relapsed/refractory leukemia, we constructed the first leukemia-associated fibroblastic tumor cell line, HXWMF-1. Methods A cell culture technique was used to establish the leukemia-associated fibroblastic tumor cell line. Molecular and cellular biological techniques including flow cytometry, MTT assay, western blotting, and short tandem repeat (STR) analysis were used to characterize the cell line. Nude mice were used for xenograft studies. Results We established a LAFs derived tumor cell line HXWMF-1, originated from the subcutaneous xenografts of HXEX-ALL1, a cell line originated from a patient with acute lymphoblastic leukemia (ALL) at the second relapse. The HXWMF-1 cell line was authenticated as a tumor cell line and being derived from CAFs based on morphologic, immunophenotypic, cytogenetic and STR analyses and tumorigenicity test in nude mice. To clarify the reliability of the method, we got the LAFs derived tumor cells from three different tumor mass of HXEX-ALL1 xenografts. Conclusions To our knowledge, HXWMF-1 is the first fibroblastic tumor cell line derived from LAFs or CAFs. In addition, the cell line provided firm evidence for that leukemia cells may induce LAFs/CAFs malignant transformation, which may help to develop brand new theory and therapeutic strategies for patients with relapsed /refractory ALL.
Collapse
Affiliation(s)
- Yuanyuan Li
- Laboratory of Hematology/Oncology, Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China.,Joint Laboratory of West China Second University Hospital, Sichuan University and School of Life Science, Fudan University for Pulmonary Development and Disease, Chengdu, 610041, China
| | - Ling Gu
- Laboratory of Hematology/Oncology, Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, 610041, People's Republic of China. .,Joint Laboratory of West China Second University Hospital, Sichuan University and School of Life Science, Fudan University for Pulmonary Development and Disease, Chengdu, 610041, China.
| |
Collapse
|
23
|
Prognostic Impact of Serum Growth Differentiation Factor 15 Level in Acute Myeloid Leukemia Patients. Indian J Hematol Blood Transfus 2021; 37:37-44. [PMID: 33707833 DOI: 10.1007/s12288-020-01315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/25/2020] [Indexed: 10/24/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) plays an important role in cancer pathophysiology and prognosis. However, limited studies analyzed its level and prognostic value in acute myeloid leukemia (AML) patients. This study included 56 adult AML patients. Serum GDF15 level was measured at diagnosis in all patients by enzyme-linked immunosorbent assay. Remission and survival statuses were assessed at 90 days following treatment. GDF15 level was significantly higher in patients than in controls (P < 0.001). GDF15 level correlated positively with age (P < 0.001), hemoglobin level (P = 0.027), and platelet count (P = 0.024). High GDF15 above the median level was associated with inferior OS (P = 0.044) together with high platelet count (P = 0.006) and high bone marrow blast percent (P = 0.038). There was no statistically significant difference between patients with GDF15 above and below the median level regarding DFS (P = 0.881). On multivariate analysis for OS, GDF15 level was an independent risk factor (P = 0.047). In conclusion, serum GDF15 level is significantly elevated in AML patients and high GDF15 level is associated with inferior OS.
Collapse
|
24
|
Zheng H, Yu S, Zhu C, Guo T, Liu F, Xu Y. HIF1α promotes tumor chemoresistance via recruiting GDF15-producing TAMs in colorectal cancer. Exp Cell Res 2020; 398:112394. [PMID: 33242463 DOI: 10.1016/j.yexcr.2020.112394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Chemoresistance is a tremendous challenge to efficacy of systemic chemotherapy which is the preferred treatment for the advanced CRC patients. More tumor-associated macrophages (TAMs) are recruited into the CRC tumor under chemotherapy, which are highly implicated in the chemoresistance development, but the underlying molecular mechanism is unclear. Here, we present that activated HIF1α signaling in CRC cells under chemotherapy drives the expression of HMGB1to promotes macrophage infiltration and in turn chemoresistance development. Chemotherapeutic treatment with 5-FU leads to increased recruitment of macrophages into tumors, which display tumor-protective alternative activation. Mechanistically, tumor HIF1α signaling activated by chemo-induced ROS drives the transcription of HMGB1 to promote more macrophage infiltration into CRC tumor. Furthermore, high levels of GDF15 produced by TAMs impair the chemosensitity of tumor cells via enhancing fatty acids β-oxidation. Together, our current study reveals a new insight into the cross-talking between tumor cells and immune cells, and provides novel drug targets for clinic treatments for CRC.
Collapse
Affiliation(s)
- Hongtu Zheng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Congcong Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Tianan Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Pan C, Liu P, Ma D, Zhang S, Ni M, Fang Q, Wang J. Bone marrow mesenchymal stem cells in microenvironment transform into cancer-associated fibroblasts to promote the progression of B-cell acute lymphoblastic leukemia. Biomed Pharmacother 2020; 130:110610. [PMID: 34321159 DOI: 10.1016/j.biopha.2020.110610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
Abstract
Bone marrow microenvironment is essential for leukemia cells to survive and escape the killing effect of chemotherapeutics. Cancer-associated fibroblasts (CAFs) are the dominant stromal cells in tumor microenvironment (TME), but their role in B-cell acute lymphoblastic leukemia (B-ALL) remains unclear. Here, RT-PCR and Western blotting in bone marrow mononuclear cells revealed higher proportions of CAFs markers α-SMA and FAP in the newly diagnosed and relapsed B-ALL patients. In vitro experiments, bone marrow mesenchymal stem cells (BM-MSCs) acquired a CAFs phenotype after co-culture with leukemia cells, which produced high level of tumor-promoting growth factors and reduced the daunorubicin (DNR)-induced damage to B-ALL cells. As for its mechanism, CAFs activation was mediated by TGF-β up-regulation in the co-culture system, and TGF-β triggered MSCs conversion into CAFs relying on the SDF-1/CXCR4 pathway. Further LY2109761 and AMD3100 effectively decreased the activation of CAFs through inhibiting TGF-β receptor and CXCR4. Comparative experiments with MSCs and transformed CAFs prompted that CAFs had more obvious effect than MSCs on stimulating leukemia progression through accelerating leukemia cell migration and invasion. These results clarified the important role of CAFs in B-ALL progression and the possible mechanisms of CAFs activation in leukemia microenvironment, which might provide a theoretical basis for B-ALL patients to find more effective targeted therapies targeting the bone marrow microenvironment.
Collapse
Affiliation(s)
- Chengyun Pan
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China; Hematological Institute of Guizhou Province, Guizhou, China
| | - Ping Liu
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China; Hematological Institute of Guizhou Province, Guizhou, China
| | - Dan Ma
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China; Hematological Institute of Guizhou Province, Guizhou, China; Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China
| | - Siyu Zhang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Ming Ni
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China; Hematological Institute of Guizhou Province, Guizhou, China; Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Jishi Wang
- Department of Haematology, Affiliated Hospital of Guizhou Medical University, Guizhou, China; Hematological Institute of Guizhou Province, Guizhou, China; Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China.
| |
Collapse
|
26
|
Yu S, Li Q, Yu Y, Cui Y, Li W, Liu T, Liu F. Activated HIF1α of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer. Cancer Immunol Immunother 2020; 69:1973-1987. [PMID: 32388677 DOI: 10.1007/s00262-020-02598-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
Chemotherapy is the preferred treatment for advanced stage gastric cancer (GC) patients, and developing chemoresistance is a tremendous challenge to efficacy of GC treatment. The treatments of anti-tumor chemo-agents recruit more tumor-associated macrophages (TAMs) which are highly implicated in the chemoresistance development, but the underlying molecular mechanism is unclear. Here, we demonstrate that hypoxia-inducible factor 1α (HIF1α) in GC cells is activated upon 5-fluorouracil (5-FU) treatment and results in much more accumulation of M2-type TAMs which protect tumor cells from chemo-agents. Mechanistically, in the GC cells under the 5-FU treatment, reactive oxygen species is accumulated and then induces the activation of HIF1α signaling to drive the expression of high-mobility group box 1, which leads to more macrophage's infiltration into GC tumor. In turn, the recruited TAMs exhibit tumor-protected M2-type phenotype and promote the chemoresistance of GC cells via producing growth differentiation factor 15 (GDF15) to exacerbate the fatty acid β-oxidation in tumor cells. Blocking GDF15 using antibody or inhibiting FAO of tumor cells by etomoxir efficiently gave rise to the tumor cell sensitivity to 5-FU. Therefore, our study demonstrates a novel insight in understanding the cross talking between tumor cells and immune microenvironment and provides new therapeutic targets for clinic treatments of gastric cancer.
Collapse
Affiliation(s)
- Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Qian Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuehong Cui
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Fenglin Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
27
|
Behrmann L, Wellbrock J, Fiedler W. The bone marrow stromal niche: a therapeutic target of hematological myeloid malignancies. Expert Opin Ther Targets 2020; 24:451-462. [PMID: 32188313 DOI: 10.1080/14728222.2020.1744850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Myeloid malignancies are caused by uncontrolled proliferation of neoplastic cells and lack of mature hematopoietic cells. Beside intrinsic genetic and epigenetic alterations within the neoplastic population, abnormal function of the bone marrow stroma promotes the neoplastic process. To overcome the supportive action of the microenvironment, recent research focuses on the development of targeted therapies, inhibiting the interaction of malignant cells and niche cells.Areas covered: This review covers regulatory networks and potential druggable pathways within the hematopoietic stem cell niche. Recent insights into the cell-to-cell interactions in the bone marrow microenvironment are presented. We performed literature searches using PubMed Database from 2000 to the present.Expert opinion: Future therapy of myeloid malignancies must focus on targeted, personalized treatment addressing specific alterations within the malignant and the supporting niche cells. This includes treatments to overcome resistance mechanisms against chemotherapeutic agents mediated by supporting microenvironment. Novel techniques employing sequencing approaches, Crisp/Cas9, or transgenic mouse models are required to elucidate specific interactions between components of the bone marrow niche to identify new therapeutic targets.
Collapse
Affiliation(s)
- Lena Behrmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Ladikou EE, Sivaloganathan H, Pepper A, Chevassut T. Acute Myeloid Leukaemia in Its Niche: the Bone Marrow Microenvironment in Acute Myeloid Leukaemia. Curr Oncol Rep 2020; 22:27. [PMID: 32048054 PMCID: PMC7012995 DOI: 10.1007/s11912-020-0885-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose of Review Acute myeloid leukaemia (AML) is a heterogeneous malignancy for which treatment options remain suboptimal. It is clear that a greater understanding of the biology of the AML niche will enable new therapeutic strategies to be developed in order to improve treatment outcomes for patients. Recent Findings Recent evidence has highlighted the importance of the bone marrow microenvironment in protecting leukaemia cells, and in particular leukaemic stem cells from chemotherapy-induced cell death. This includes mesenchymal stem cells supporting growth and preventing apoptosis, and altered action and secretion profiles of other niche components including adipocytes, endothelial cells and T cells. Summary Here, we provide a detailed overview of the current understanding of the AML bone marrow microenvironment. Clinical trials of agents that mobilise leukaemic stem cells from the bone marrow are currently ongoing and show early promise. Future challenges will involve combining these novel therapies targeted at the AML niche with conventional chemotherapy treatment.
Collapse
Affiliation(s)
- E E Ladikou
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, UK.,Royal Sussex County Hospital, Brighton, BN2 5BE, UK
| | - H Sivaloganathan
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, UK
| | - A Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, UK
| | - T Chevassut
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, UK. .,Royal Sussex County Hospital, Brighton, BN2 5BE, UK.
| |
Collapse
|
29
|
Arfsten H, Cho A, Freitag C, Raderer M, Goliasch G, Bartko PE, Wurm R, Strunk G, Gisslinger H, Marosi C, Kornek G, Zielinski C, Hülsmann M, Pavo N. GDF-15 in solid vs non-solid treatment-naïve malignancies. Eur J Clin Invest 2019; 49:e13168. [PMID: 31463975 PMCID: PMC6899906 DOI: 10.1111/eci.13168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 07/30/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
AIM GDF-15 is an established cardiovascular risk marker but is equally implicated in tumour biology. Elevated levels of GDF-15 have indeed been observed in distinct tumour entities. This study aimed to explore the relation of GDF-15 to other cardiac biomarkers and the general association of GDF-15 on prognosis in an unselected cohort of treatment-naïve cancer patients. METHODS We prospectively enrolled 555 consecutive patients at time of diagnosis of malignant disease prior receiving anticancer therapy. Plasma GDF-15 concentrations were determined alongside other cardiac and routine laboratory markers. All-cause mortality was defined as primary endpoint. RESULTS GDF-15 levels were 338 ng/L (IQR:205-534) for the total cohort, and values were comparable for different tumour entities except breast cancer. Metastatic disease was characterized by higher plasma GDF-15 [435 ng/L (IQR:279-614) vs 266 ng/L (IQR:175-427), P < .001]. GDF-15 correlated positively with inflammatory status reflected by CRP, SAA and IL-6 [r = .31, P < .001, r = .23, P < .001 and r = .14, P = .002] and cardiac biomarkers as NT-proBNP, hsTnT, MR-proADM and CT-proET-1 [r = .46; r = .46; r = .59 and r = .50; P < .001 for all]. GDF-15 was significantly associated with all-cause mortality after multivariate adjustment [adj.HR for ln(GDF-15) 1.78, 95%CI:1.47-2.16, P < .001]. There was a significant interaction between solid and haematological malignancies with loss of association of GDF-15 with outcome in myelodysplastic and myeloproliferative disease. CONCLUSIONS Elevated plasma GDF-15 is associated with progressing disease severity and poor prognosis in solid tumours of treatment-naïve cancer patients. GDF-15 increase is accompanied by worsening systemic inflammation and a subclinical functional impairment of different organs including the heart. GDF-15 represents a promising target for our pathophysiologic understanding in cardio-oncology linking conditions of both cardiac and neoplastic disease.
Collapse
Affiliation(s)
- Henrike Arfsten
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Anna Cho
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Claudia Freitag
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Markus Raderer
- Department of Internal Medicine IDivision of Oncology and HematologyMedical University of ViennaViennaAustria
| | - Georg Goliasch
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Philipp E. Bartko
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Raphael Wurm
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Guido Strunk
- Complexity ResearchViennaAustria
- FH Campus ViennaViennaAustria
- Technical University DortmundDortmundGermany
| | - Heinz Gisslinger
- Department of Internal Medicine IDivision of Oncology and HematologyMedical University of ViennaViennaAustria
| | - Christine Marosi
- Department of Internal Medicine IDivision of Oncology and HematologyMedical University of ViennaViennaAustria
| | - Gabriela Kornek
- Department of Internal Medicine IDivision of Oncology and HematologyMedical University of ViennaViennaAustria
| | - Christoph Zielinski
- Department of Internal Medicine IDivision of Oncology and HematologyMedical University of ViennaViennaAustria
| | - Martin Hülsmann
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| | - Noemi Pavo
- Department of Internal Medicine IIDivision of CardiologyMedical University of ViennaViennaAustria
| |
Collapse
|
30
|
Erba HP, Becker PS, Shami PJ, Grunwald MR, Flesher DL, Zhu M, Rasmussen E, Henary HA, Anderson AA, Wang ES. Phase 1b study of the MDM2 inhibitor AMG 232 with or without trametinib in relapsed/refractory acute myeloid leukemia. Blood Adv 2019; 3:1939-1949. [PMID: 31253596 PMCID: PMC6616264 DOI: 10.1182/bloodadvances.2019030916] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
This open-label, phase 1 study evaluated the safety, pharmacokinetics, and maximum tolerated dose of AMG 232, an investigational oral, selective mouse double minute 2 homolog inhibitor in relapsed/refractory acute myeloid leukemia (AML). AMG 232 was administered orally once daily for 7 days every 2 weeks (7 on/off) at 60, 120, 240, 360, 480, or 960 mg as monotherapy (arm 1) or at 60 mg with trametinib 2 mg (arm 2). Dose-limiting toxicities (DLTs), adverse events (AEs), pharmacokinetics, clinical and pharmacodynamic response, and expression of p53 target genes were assessed. All 36 patients received AMG 232. No DLTs occurred in arm 1, and 360 mg was the highest test dose; dose escalation was halted due to gastrointestinal AEs at higher doses. One of ten patients in arm 2 had a DLT (grade 3 fatigue); 60 mg was the highest dose tested with trametinib. Common treatment-related AEs (any grade) included nausea (58%), diarrhea (56%), vomiting (33%), and decreased appetite (25%). AMG 232 exhibited linear pharmacokinetics unaffected by coadministration with trametinib. Serum macrophage inhibitor cytokine-1 and bone marrow expression of BAX, PUMA, P21, and MDM2 increased during treatment. Of 30 evaluable patients, 1 achieved complete remission, 4 had morphologic leukemia-free state, and 1 had partial remission. Four of 13 (31%) TP53-wild-type patients and 0 of 3 (0%) TP53-mutant patients were responders. AMG 232 was associated with gastrointestinal AEs at higher doses but had acceptable pharmacokinetics, on-target effects, and promising clinical activity warranting further investigation in patients with relapsed/refractory AML. This trial was registered at www.clinicaltrials.gov as #NCT02016729.
Collapse
Affiliation(s)
- Harry P Erba
- Division of Hematologic Malignancies and Cellular Therapy, Department of Internal Medicine, Duke University, Durham, NC
| | - Pamela S Becker
- Division of Hematology, University of Washington School of Medicine, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Michael R Grunwald
- Department of Hematologic Oncology and Blood Disorders, Levine Cancer Institute, Atrium Health, Charlotte, NC
| | | | - Min Zhu
- Amgen Inc., Thousand Oaks, CA; and
| | | | | | | | - Eunice S Wang
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
31
|
Fang L, Li F, Gu C. GDF-15: A Multifunctional Modulator and Potential Therapeutic Target in Cancer. Curr Pharm Des 2019; 25:654-662. [PMID: 30947652 DOI: 10.2174/1381612825666190402101143] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Various pathological processes are associated with the aberrant expression and function of cytokines, especially those belonging to the transforming growth factor-β (TGF-β) family. Nevertheless, the functions of members of the TGF-β family in cancer progression and therapy are still uncertain. Growth differentiation factor- 15, which exists in intracellular and extracellular forms, is classified as a divergent member of the TGF-β superfamily. It has been indicated that GDF-15 is also connected to the evolution of cancer both positively and negatively depending upon the cellular state and environment. Under normal physiological conditions, GDF-15 inhibits early tumour promotion. However, its abnormal expression in advanced cancers causes proliferation, invasion, metastasis, cancer stem cell formation, immune escape and a reduced response to therapy. As a clinical indicator, GDF-15 can be used as a tool for the diagnosis and therapy of an extensive scope of cancers. Although some basic functions of GDF-15 are noncontroversial, their mechanisms remain unclear and complicated at the molecular level. Therefore, GDF-15 needs to be further explored and reviewed.
Collapse
Affiliation(s)
- Lei Fang
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Fengzhou Li
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Chundong Gu
- Department of Thoracic surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
32
|
Westphal GA, Rosenkranz N, Brik A, Weber D, Föhring I, Monsé C, Kaiser N, Hellack B, Mattenklott M, Brüning T, Johnen G, Bünger J. Multi-walled carbon nanotubes induce stronger migration of inflammatory cells in vitro than asbestos or granular particles but a similar pattern of inflammatory mediators. Toxicol In Vitro 2019; 58:215-223. [PMID: 30928694 DOI: 10.1016/j.tiv.2019.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
Abstract
Biopersistent pro-inflammatory fibers are suspected human carcinogens. Cytotoxicity and transcription of pro- and anti-inflammatory mediators of different fibers were investigated in functional relationship to chemotaxis in vitro as a model for fiber-induced inflammation of the lung. We challenged NR8383 rat macrophages with multi-walled carbon nanotubes (MWCNT) and various asbestos fibers. The resulting cell supernatants were than studied using the Particle-induced Cell Migration Assay (PICMA) and cytotoxicity was determined using the LDH test. Expression of inflammatory mediators was analyzed with qPCR and verified by ELISA. Chrysotile A and the rigid, needle-shaped NM-401 caused the strongest cytotoxic effects and the largest number of migrated cells. In contrast, the MWCNT NM-400, NM-402, and NM403 were apparently non-cytotoxic but induced pronounced cell migration showing a very steep dose response. However, the strength of cell migration and cytotoxicity of the asbestos fibers were correlated. The expression profile of inflammatory mediators was comparable, although cytotoxicity of the MWCNT NM-401 and NM-403 differed strongly. Induction of the corresponding proteins was confirmed for CCL2, CCL3, CXCL1, CXCL3, IL1RA (IL1RN), CSF1, GDF15 and TNFa. Chrysotile A and NM-401 induced much stronger chemotaxis than the non-fibrous particles reported in our previous study. Cytotoxic and chemotactic effects correspond to the induction of inflammatory mediators.
Collapse
Affiliation(s)
- Götz A Westphal
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Nina Rosenkranz
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Alexander Brik
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Daniel Weber
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Isabell Föhring
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Christian Monsé
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Nina Kaiser
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Bryan Hellack
- Institute of Energy and Environmental Technology e.V. (IUTA), Bliersheimer Straße 58-60, 47229 Duisburg, Germany.
| | - Markus Mattenklott
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Alte Heerstraße 111, 53757 Sankt Augustin, Germany.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Georg Johnen
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Jürgen Bünger
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance - Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
33
|
Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:173-215. [PMID: 31456184 DOI: 10.1007/978-3-030-20301-6_9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is the result of a cell's acquisition of a variety of biological capabilities or 'hallmarks' as outlined by Hanahan and Weinberg. These include sustained proliferative signalling, the ability to evade growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and the ability to invade other tissue and metastasize. More recently, the ability to escape immune destruction has been recognized as another important hallmark of tumours. It is suggested that genome instability and inflammation accelerates the acquisition of a variety of the above hallmarks. Inflammation, is a product of the body's response to tissue damage or pathogen invasion. It is required for tissue repair and host defense, but prolonged inflammation can often be the cause for disease. In a cancer patient, it is often unclear whether inflammation plays a protective or deleterious role in disease progression. Chemotherapy drugs can suppress tumour growth but also induce pathways in tumour cells that have been shown experimentally to support tumour progression or, in other cases, encourage an anti-tumour immune response. Thus, with the goal of better understanding the context under which each of these possible outcomes occurs, recent progress exploring chemotherapy-induced inflammatory cytokine production and the effects of cytokines on drug efficacy in the tumour microenvironment will be reviewed. The implications of chemotherapy on host and tumour cytokine pathways and their effect on the treatment of cancer patients will also be discussed.
Collapse
|
34
|
Behrmann L, Wellbrock J, Fiedler W. Acute Myeloid Leukemia and the Bone Marrow Niche-Take a Closer Look. Front Oncol 2018; 8:444. [PMID: 30370251 PMCID: PMC6195156 DOI: 10.3389/fonc.2018.00444] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
The bone marrow is the home of hematopoiesis and is therefore a hotspot for the development of hematopoietic diseases. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells must find a balance between proliferation, differentiation and homeostasis of the stem cell compartment. Changes in this tightly regulated network can provoke malignant transformation, leading to hematopoietic diseases. Here we focus on acute myeloid leukemia (AML), since this is the most frequent acute leukemia in adulthood with very poor overall survival rates and where relapse after chemotherapy continues to be a major challenge, driving demand for new therapeutic strategies. Current research is focusing on the identification of specific interactions between leukemic blasts and their niche components, which may be exploited as novel treatment targets along with induction chemotherapy. Significant progress has been gained over the last few years in the field of high-resolution imaging. Confocal ex vivo and intravital microscopy have revealed a detailed map of bone marrow structures and components; as well as identifying numerous alterations in the stem cell niche that correspond to disease progression. However, the underlying mechanisms are still not completely understood and due to the complexity, their elucidation remains a challenging. This review discusses the constitution of the AML niche in the bone marrow, the improvement in visualization of the complex three-dimensional niche structures and points out new therapeutic strategies to increase the overall survival of AML patients.
Collapse
Affiliation(s)
- Lena Behrmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Boffo S, Damato A, Alfano L, Giordano A. CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 2018; 37:36. [PMID: 29471852 PMCID: PMC5824552 DOI: 10.1186/s13046-018-0704-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Current treatment for acute myeloid leukemia (AML) is less than optimal, but increased understanding of disease pathobiology and genomics has led to clinical investigation of novel targeted therapies and rational combinations. Targeting the cyclin-dependent kinase 9 (CDK9) pathway, which is dysregulated in AML, is an attractive approach. Inhibition of CDK9 leads to downregulation of cell survival genes regulated by super enhancers such as MCL-1, MYC, and cyclin D1. As CDK9 inhibitors are nonselective, predictive biomarkers that may help identify patients most likely to respond to CDK9 inhibitors are now being utilized, with the goal of improving efficacy and safety.
Collapse
Affiliation(s)
- Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
| | - Angela Damato
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
- Medical Oncology Unit, Clinical Cancer Centre, IRCCS–Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Luigi Alfano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
- Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|