1
|
Taiyab A, Ashraf A, Sulaimani MN, Rathi A, Shamsi A, Hassan MI. Role of MTH1 in oxidative stress and therapeutic targeting of cancer. Redox Biol 2024; 77:103394. [PMID: 39418911 PMCID: PMC11532495 DOI: 10.1016/j.redox.2024.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer cells maintain high levels of reactive oxygen species (ROS) to drive their growth, but ROS can trigger cell death through oxidative stress and DNA damage. To survive enhanced ROS levels, cancer cells activate their antioxidant defenses. One such defense is MTH1, an enzyme that prevents the incorporation of oxidized nucleotides into DNA, thus preventing DNA damage and allowing cancer to proliferate. MTH1 levels are often elevated in many cancers, and thus, inhibiting MTH1 is an attractive strategy for suppressing tumor growth and metastasis. Targeted MTH1 inhibition can induce DNA damage in cancer cells, exploiting their vulnerability to oxidative stress and selectively targeting them for destruction. Targeting MTH1 is promising for cancer treatment because normal cells have lower ROS levels and are less dependent on these pathways, making the approach both effective and specific to cancer. This review aims to investigate the potential of MTH1 as a therapeutic target, especially in cancer treatment, offering detailed insights into its structure, function, and role in disease progression. We also discussed various MTH1 inhibitors that have been developed to selectively induce oxidative damage in cancer cells, though their effectiveness varies. In addition, this review provide deeper mechanistic insights into the role of MTH1 in cancer prevention and oxidative stress management in various diseases.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Musa S, Amara N, Selawi A, Wang J, Marchini C, Agbarya A, Mahajna J. Overcoming Chemoresistance in Cancer: The Promise of Crizotinib. Cancers (Basel) 2024; 16:2479. [PMID: 39001541 PMCID: PMC11240740 DOI: 10.3390/cancers16132479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Chemoresistance is a major obstacle in cancer treatment, often leading to disease progression and poor outcomes. It arises through various mechanisms such as genetic mutations, drug efflux pumps, enhanced DNA repair, and changes in the tumor microenvironment. These processes allow cancer cells to survive despite chemotherapy, underscoring the need for new strategies to overcome resistance and improve treatment efficacy. Crizotinib, a first-generation multi-target kinase inhibitor, is approved by the FDA for the treatment of ALK-positive or ROS1-positive non-small cell lung cancer (NSCLC), refractory inflammatory (ALK)-positive myofibroblastic tumors (IMTs) and relapsed/refractory ALK-positive anaplastic large cell lymphoma (ALCL). Crizotinib exists in two enantiomeric forms: (R)-crizotinib and its mirror image, (S)-crizotinib. It is assumed that the R-isomer is responsible for the carrying out various processes reviewed here The S-isomer, on the other hand, shows a strong inhibition of MTH1, an enzyme important for DNA repair mechanisms. Studies have shown that crizotinib is an effective multi-kinase inhibitor targeting various kinases such as c-Met, native/T315I Bcr/Abl, and JAK2. Its mechanism of action involves the competitive inhibition of ATP binding and allosteric inhibition, particularly at Bcr/Abl. Crizotinib showed synergistic effects when combined with the poly ADP ribose polymerase inhibitor (PARP), especially in ovarian cancer harboring BRCA gene mutations. In addition, crizotinib targets a critical vulnerability in many p53-mutated cancers. Unlike its wild-type counterpart, the p53 mutant promotes cancer cell survival. Crizotinib can cause the degradation of the p53 mutant, sensitizing these cancer cells to DNA-damaging substances and triggering apoptosis. Interestingly, other reports demonstrated that crizotinib exhibits anti-bacterial activity, targeting Gram-positive bacteria. Also, it is active against drug-resistant strains. In summary, crizotinib exerts anti-tumor effects through several mechanisms, including the inhibition of kinases and the restoration of drug sensitivity. The potential of crizotinib in combination therapies is emphasized, particularly in cancers with a high prevalence of the p53 mutant, such as triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC).
Collapse
Affiliation(s)
- Sanaa Musa
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Noor Amara
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Adan Selawi
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Abed Agbarya
- Oncology Department, Bnai Zion MC, Haifa 31048, Israel
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| |
Collapse
|
3
|
Verdura S, Encinar JA, Gratchev A, Llop-Hernández À, López J, Serrano-Hervás E, Teixidor E, López-Bonet E, Martin-Castillo B, Micol V, Bosch-Barrera J, Cuyàs E, Menendez JA. Silibinin is a suppressor of the metastasis-promoting transcription factor ID3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155493. [PMID: 38484626 DOI: 10.1016/j.phymed.2024.155493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.
Collapse
Affiliation(s)
- Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Júlia López
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eduard Teixidor
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona 17007, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Unit of Clinical Research, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Joaquim Bosch-Barrera
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain; Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain.
| |
Collapse
|
4
|
Taiyab A, Choudhury A, Haidar S, Yousuf M, Rathi A, Koul P, Chakrabarty A, Islam A, Shamsi A, Hassan MI. Exploring MTH1 inhibitory potential of Thymoquinone and Baicalin for therapeutic targeting of breast cancer. Biomed Pharmacother 2024; 173:116332. [PMID: 38430630 DOI: 10.1016/j.biopha.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Cancers frequently have increased ROS levels due to disrupted redox balance, leading to oxidative DNA and protein damage, mutations, and apoptosis. The MTH1 protein plays a crucial role by sanitizing the oxidized dNTP pools. Hence, cancer cells rely on MTH1 to prevent the integration of oxidized dNTPs into DNA, preventing DNA damage and allowing cancer cell proliferation. We have discovered Thymoquinone (TQ) and Baicalin (BC) as inhibitors of MTH1 using combined docking and MD simulation approaches complemented by experimental validations via assessing binding affinity and enzyme inhibition. Docking and MD simulations studies revealed an efficient binding of TQ and BC to the active site pocket of the MTH1, and the resultant complexes are appreciably stable. Fluorescence measurements estimated a strong binding affinity of TQ and BC with Ka 3.4 ×106 and 1.0 ×105, respectively. Treating breast cancer cells with TQ and BC significantly inhibited the growth and proliferation (IC50 values 28.3 µM and 34.8 µM) and induced apoptosis. TQ and BC increased the ROS production in MCF7 cells, imposing substantial oxidative stress on cancer cells and leading to cell death. Finally, TQ and BC are proven strong MTH1 inhibitors, offering promising prospects for anti-cancer therapy.
Collapse
Affiliation(s)
- Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaista Haidar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Mohd Yousuf
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aanchal Rathi
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Priyanka Koul
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 364, United Arab Emirates.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
6
|
Cheng L, Duan J, Tse G, Liu T, Li G. Sacubitril/Valsartan Ameliorates Crizotinib-Induced Cardiotoxicity in Mice. Rev Cardiovasc Med 2023; 24:192. [PMID: 39077026 PMCID: PMC11266459 DOI: 10.31083/j.rcm2407192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 02/03/2023] [Indexed: 10/11/2023] Open
Abstract
Background Lung cancer is one of the major cause of death globally. Crizotinib is a first-line drug used in treating non-small-cell lung cancer (NSCLC). However, the pathophysiological mechanisms underlying its cardiotoxicity are unknown. This study investigated the mechanisms of crizotinib-induced cardiotoxicity and explored whether this toxicity can be prevented by the angiotensin receptor/neprilysin inhibitor sacubitril/valsartan. Methods Male C57BL/6 mice were randomly divided into three groups: control, crizotinib (40 mg ⋅ kg - 1 ⋅ d - 1 for four weeks), and crizotinib + sacubitril/valsartan (40 mg ⋅ kg - 1 ⋅ d - 1 /60 mg ⋅ kg - 1 ⋅ d - 1 for four weeks). Expression of genes in myocardial tissue were detected by transcriptomic sequencing, with verification of the differentially expressed genes (DEGs) using Real time-polymerase chain reaction (RT-PCR). Blood pressure (BP) and cardiac function of animals were measured using non-invasive monitoring and echocardiography approaches. Ventricular refractory period (RP), as well as the induction rate and score of ventricular arrhythmias (VAs) were detected by in vivo electrophysiology. Epicardial conductance was measured by mapping. Expression of Myh7 in myocardium was detected by western blot and RT-PCR. Results DEGs detected using transcriptomic sequencing included 10 up-regulated and 20 down-regulated genes. The first 5 DEGs identified were Myh7, Ngp, Lcn2, Ciart and Ptgds. Kyoto Encyclopedia of Genes and Genomes (KEGG) result indicated that Myh7 is involved in myocarditis, cardiomyopathy, and cardiac muscle contraction. Crizotinib treatment increased blood pressure, prolonged QTc interval, shortened ventricular RP, increased the incidence and score of right VAs, and increased Myh7 expression. Most of these responses were limited by sacubitril/valsartan. Conclusions Crizotinib induced a range of cardiotoxic side effects in a mouse model and increased Myh7 expression represents a biomarker for this response. These cardiovascular toxic responses can be largely prevented by sacubitril/valsartan.
Collapse
Affiliation(s)
- Lijun Cheng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Junying Duan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 300211 Tianjin, China
- Department of Health Sciences, School of Nursing and Health Studies, Hong Kong Metropolitan University, 518057 Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, 300211 Tianjin, China
| |
Collapse
|
7
|
Sardana M, Breuil L, Goutal S, Goislard M, Kondrashov M, Marchal E, Besson FL, Dugave C, Wrigley G, Jonson AC, Kuhnast B, Schou M, Tournier N, Elmore CS, Caillé F. Isotopic Radiolabeling of Crizotinib with Fluorine-18 for In Vivo Pet Imaging. Pharmaceuticals (Basel) 2022; 15:1568. [PMID: 36559018 PMCID: PMC9782192 DOI: 10.3390/ph15121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Crizotinib is a tyrosine kinase inhibitor approved for the treatment of non-small-cell lung cancer, but it is inefficient on brain metastases. Crizotinib is a substrate of the P-glycoprotein, and non-invasive nuclear imaging can be used to assess the brain penetration of crizotinib. Positron emission tomography (PET) imaging using fluorine-18-labeled crizotinib would be a powerful tool for investigating new strategies to enhance the brain distribution of crizotinib. We have synthesized a spirocyclic hypervalent iodine precursor for the isotopic labeling of crizotinib in a 2.4% yield. Because crizotinib is an enantiomerically pure drug, a chiral separation was performed to afford the (R)-precursor. A two-step radiolabeling process was optimized and automated using the racemic precursor to afford [18F](R,S)-crizotinib in 15 ± 2 radiochemical yield and 103 ± 18 GBq/µmol molar activity. The same radiolabeling process was applied to the (R)-precursor to afford [18F](R)-crizotinib with comparable results. As a proof-of-concept, PET was realized in a single non-human primate to demonstrate the feasibility of [18F](R)-crizotinib in in vivo imaging. Whole-body PET highlighted the elimination routes of crizotinib with negligible penetration in the brain (SUVmean = 0.1). This proof-of-concept paves the way for further studies using [18F](R)-crizotinib to enhance its brain penetration depending on the P-glycoprotein function.
Collapse
Affiliation(s)
- Malvika Sardana
- Early Chemical Development, Pharmaceutical Sciences, Bio Pharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France
| | - Louise Breuil
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France
| | - Maud Goislard
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France
| | - Mikhail Kondrashov
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Etienne Marchal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France
| | - Florent L. Besson
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France
| | - Christophe Dugave
- Université Paris-Saclay, Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, 91191 Gif-sur-Yvette, France
| | - Gail Wrigley
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Anna C. Jonson
- Early Chemical Development, Pharmaceutical Sciences, Bio Pharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France
| | - Magnus Schou
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
- AZ PET Science Centre at Karolinska Institutet, Oncology R&D, AstraZeneca, 15185 Stockholm, Sweden
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France
| | - Charles S. Elmore
- Early Chemical Development, Pharmaceutical Sciences, Bio Pharmaceuticals R&D, AstraZeneca, 43150 Gothenburg, Sweden
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), 91401 Orsay, France
| |
Collapse
|
8
|
Kumar P, Mathayan M, Smieszek SP, Przychodzen BP, Koprivica V, Birznieks G, Polymeropoulos MH, Prabhakar BS. Identification of potential COVID-19 treatment compounds which inhibit SARS Cov2 prototypic, Delta and Omicron variant infection. Virology 2022; 572:64-71. [PMID: 35598394 PMCID: PMC9108900 DOI: 10.1016/j.virol.2022.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 01/17/2023]
Abstract
Recurrent waves of COVID19 remain a major global health concern. Repurposing either FDA-approved or clinically advanced drug candidates can save time and effort required for validating the safety profile and FDA approval. However, the selection of appropriate screening approaches is key to identifying novel candidate drugs with a higher probability of clinical success. Here, we report a rapid, stratified two-step screening approach using pseudovirus entry inhibition assay followed by an infectious prototypic SARS CoV2 cytotoxic effect inhibition assay in multiple cell lines. Using this approach, we screened a library of FDA-approved and clinical-stage drugs and identified four compounds, apilimod, berbamine, cepharanthine and (S)-crizotinib which potently inhibited SARS CoV2-induced cell death. Importantly, these drugs exerted similar inhibitory effect on the delta and omicron variants although they replicated less efficiently than the prototypic strain. Apilimod is currently under clinical trial (NCT04446377) for COVID19 supporting the validity and robustness of our screening approach.
Collapse
Affiliation(s)
- Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | - Manikannan Mathayan
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA
| | | | | | - Vuk Koprivica
- Vanda Pharmaceuticals Inc., Washington, DC, 20037, USA
| | | | | | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, USA,Corresponding author. Department of Microbiology and Immunology University of Illinois College of Medicine Room E-705, (M/C 790) 835 S. Wolcott Ave, Chicago, IL, 60612, USA
| |
Collapse
|
9
|
Irfan A, Faiz S, Rasul A, Zafar R, Zahoor AF, Kotwica-Mojzych K, Mojzych M. Exploring the Synergistic Anticancer Potential of Benzofuran-Oxadiazoles and Triazoles: Improved Ultrasound- and Microwave-Assisted Synthesis, Molecular Docking, Hemolytic, Thrombolytic and Anticancer Evaluation of Furan-Based Molecules. Molecules 2022; 27:1023. [PMID: 35164286 PMCID: PMC8838991 DOI: 10.3390/molecules27031023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023] Open
Abstract
Ultrasound- and microwave-assisted green synthetic strategies were applied to furnish benzofuran-oxadiazole 5a-g and benzofuran-triazole 7a-h derivatives in good to excellent yields (60-96%), in comparison with conventional methods (36-80% yield). These synthesized derivatives were screened for hemolysis, thrombolysis and anticancer therapeutic potential against an A549 lung cancer cell line using an MTT assay. Derivatives 7b (0.1%) and 5e (0.5%) showed the least toxicity against RBCs. Hybrid 7f showed excellent thrombolysis activity (61.4%) when compared against reference ABTS. The highest anticancer activity was displayed by the 5d structural hybridwith cell viability 27.49 ± 1.90 and IC50 6.3 ± 0.7 μM values, which were considerably lower than the reference drug crizotinib (IC50 8.54 ± 0.84 μM). Conformational analysis revealed the spatial arrangement of compound 5d, which demonstrated its significant potency in comparison with crizotinib; therefore, scaffold 5d would be a promising anticancer agent on the basis of cytotoxicity studies, as well as in silico modeling studies.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (S.F.)
| | - Sadia Faiz
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (S.F.)
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Riphah International University, Islamabad 44000, Pakistan;
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (S.F.)
| | - Katarzyna Kotwica-Mojzych
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-Go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
10
|
Chu X, Bu Y, Yang X. Recent Research Progress of Chiral Small Molecular Antitumor-Targeted Drugs Approved by the FDA From 2011 to 2019. Front Oncol 2021; 11:785855. [PMID: 34976824 PMCID: PMC8718447 DOI: 10.3389/fonc.2021.785855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Chiral drugs usually contain chiral centers, which are present as single enantiomers or racemates. Compared with achiral drugs, they have significant advantages in safety and efficacy with high stereoselectivity. Of these drugs, chirality not only exerts influence on the solubility and pharmacokinetic characteristics but also has specific mechanistic characteristics on their targets. We noted that small molecules with unique chiral properties have emerged as novel components of antitumor drugs approved by the FDA in decade. Since approved, these drugs have been continuously explored for new indications, new mechanisms, and novel combinations. In this mini review, recent research progress of twenty-two FDA-approved chiral small molecular-targeted antitumor drugs from 2011 to 2019 is summarized with highlighting the potential and advantages of their applications. We believe that these updated achievements may provide theoretical foundation and stimulate research interests for optimizing drug efficacy, expanding clinical application, overcoming drug resistance, and advancing safety in future clinical administrations of these chiral targeted drugs.
Collapse
Affiliation(s)
| | | | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
11
|
Kim TH, Park JH, Park J, Son DM, Baek JY, Jang HJ, Jung WK, Byun Y, Kim SK, Park SK. Stereospecific inhibition of AMPK by (R)-crizotinib induced changes to the morphology and properties of cancer and cancer stem cell-like cells. Eur J Pharmacol 2021; 911:174525. [PMID: 34582848 DOI: 10.1016/j.ejphar.2021.174525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Crizotinib is used in the clinic for treating patients with ALK- or ROS1-positive non-small-cell lung carcinoma. The objective of the present study was to determine if crizotinib enantiomers could induce changes to the properties of cancer and cancer stem cell (CSC)-like cells at a high concentration (∼ 3 μM). While (R)-crizotinib induced changes in morphologies or sizes of cells, (S)-crizotinib did not. Pretreatment with (R)-crizotinib suppressed the proliferation of cancer or CSC-like cells in vitro and tumor growth in vivo. In vivo administration of (R)-crizotinib inhibited the growth of tumors formed from CSC-like cells by 72%. %. Along with the morphological changes induced by (R)-crizotinib, the expression levels of CD44 (NCI-H23 and HCT-15), ALDH1 (NCI-H460), nanog (PC-3), and Oct-4A (CSC-like cells), which appear to be specific marker proteins, were greatly changed, suggesting that changes in cellular properties accompanied the morphological changes in the cells. The expression levels of Snail, Slug, and E-cadherin were also greatly altered by (R)-crizotinib. Among several signal transduction molecules examined, AMPK phosphorylation appeared to be selectively inhibited by (R)-crizotinib. BML-275 (an AMPK inhibitor) and AMPKα2 siRNA efficiently induced morphological changes to all types of cells examined, suggesting that (R)-crizotinib might cause losses of characteristics of cancer or CSCs via inhibition of AMPK. These results indicate that (R)-crizotinib might be an effective anticancer agent that can cause alteration in cancer cell properties.
Collapse
Affiliation(s)
- Tae Hyun Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jong Hyeok Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jooyeon Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dong Min Son
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ji-Young Baek
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hee Jun Jang
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Won Ki Jung
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea; Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Shao M, Shi R, Gao ZX, Gao SS, Li JF, Li H, Cui SZ, Hu WM, Chen TY, Wu GR, Zhang J, Xu J, Sy MS, Li C. Crizotinib and Doxorubicin Cooperatively Reduces Drug Resistance by Mitigating MDR1 to Increase Hepatocellular Carcinoma Cells Death. Front Oncol 2021; 11:650052. [PMID: 34094940 PMCID: PMC8170002 DOI: 10.3389/fonc.2021.650052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
As the sixth most lethal cancers worldwide, hepatocellular carcinoma (HCC) has been treated with doxorubicin (Dox) for decades. However, chemotherapy resistance, especially for Dox is an even more prominent problem due to its high cardiotoxicity. To find a regimen to reduce Dox resistance, and identify the mechanisms behind it, we tried to identify combination of drugs that can overcome drug resistance by screening tyrosine kinase inhibitor(s) with Dox with various HCC cell lines in vitro and in vivo. We report here that combination of Crizo and Dox has a synergistic effect on inducing HCC cell death. Accordingly, Crizo plus Dox increases Dox accumulation in nucleus 3-16 times compared to Dox only; HCC cell death enhanced at least 50% in vitro and tumor weights reduced ranging from 35 to 65%. Combining these two drugs reduces multiple drug resistance 1 (MDR1) protein as a result of activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), which phosphorylates eIF2α, leading to protein translational repression. Additionally, PERK stimulation activates C-Jun terminal kinase (JNK), resulting in accumulation of unfused autophagosome to enhance autophagic cell death via Poly-ADP-ribosyltransferase (PARP-1) cleavage. When the activity of PERK or JNK is blocked, unfused autophagosome is diminished, cleaved PARP-1 is reduced, and cell death is abated. Therefore, Crizo plus Dox sensitize HCC drug resistance by engaging PERK-p- eIF2α-MDR1, and kill HCC cells by engaging PERK-JNK- autophagic cell death pathways. These newly discovered mechanisms of Crizo plus Dox not only provide a potential treatment for HCC but also point to an approach to overcome MDR1 related drug resistance in other cancers.
Collapse
Affiliation(s)
- Ming Shao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Run Shi
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Xing Gao
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shan-Shan Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jing-Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wei-Min Hu
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Tian-Yun Chen
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gui-Ru Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Zhang
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Zhang L, Huang P, Huang C, Jiang L, Lu Z, Wang P. Varied clinical significance of ATP-binding cassette C sub-family members for lung adenocarcinoma. Medicine (Baltimore) 2021; 100:e25246. [PMID: 33879658 PMCID: PMC8078454 DOI: 10.1097/md.0000000000025246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a lethal malignancy worldwide and a major public health concern. We explored the potential clinical significance for LUAD of ATP-binding cassette (ABC), sub-family C, consisting of ABCC1-6, 8-12, and cystic fibrosis transmembrane conductance regulator (CFTR).Five hundred LUAD patients from The Cancer Genome Atlas database were used for analysis, including differential expression and diagnostic and prognostic significance. Oncomine and MERAV databases were used to validate differential expression and diagnostic significance. A risk score model was constructed using prognosis-related ABCC members. Prognosis-related genes were further explored to correlate their expression with tumor stage progression. Interaction networks, including biological processes and metabolic pathways, were constructed using Cytoscape software and STRING website.ABCC1-3 consistently showed high expression in tumor tissues (all P ≤ 0.05). Most datasets indicated that ABCC5, 10, and 11 were highly expressed in tumor tissues whereas ABCC6, 9, and CFTR were highly expressed in nontumor tissues (all P ≤ 0.05). Diagnostic significance of ABCC3 and ABCC5 was consistently assessed and validated in three datasets (all area under the curve > 0.700) whereas ABCC6, 8, 10, 11, and CFTR were assessed in The Cancer Genome Atlas dataset and validated in one dataset (all area under the curve > 0.700). Prognostic analysis indicated that ABCC2, 6, and 8 mRNA expression was associated with survival of LUAD (all adjusted P ≤ .037). The risk score model constructed using ABCC2, 6, and 8 suggested prognostic significance for survival predictions. ABCC2 expression was associated with tumor stage, whereas ABCC6 and 8 were not. Interaction networks indicated that they were involved in establishment of localization, ion transport, plasma membrane, apical plasma membrane, adenylyl nucleotide binding, ABC transporters, ABC transporter disorders, ABC-family-protein-mediated transport, and bile secretion.Differentially expressed ABCC2 and ABCC5 might be diagnostic whereas ABCC2, 6, and 8 may be prognostic biomarkers for LUAD, possibly through ABC-family-mediated transporter disorders.
Collapse
|
14
|
Vitry G, Paulin R, Grobs Y, Lampron MC, Shimauchi T, Lemay SE, Tremblay E, Habbout K, Awada C, Bourgeois A, Nadeau V, Paradis R, Breuils-Bonnet S, Roux-Dalvai F, Orcholski M, Potus F, Provencher S, Boucherat O, Bonnet S. Oxidized DNA Precursors Cleanup by NUDT1 Contributes to Vascular Remodeling in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2021; 203:614-627. [PMID: 33021405 DOI: 10.1164/rccm.202003-0627oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness.Objectives: To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.Methods: Protein expression profiling was conducted by two-dimensional liquid chromatography coupled to tandem mass spectrometry in isolated PASMCs from controls and patients with PAH. Multiple molecular, biochemical, and pharmacologic approaches were used to decipher the role of NUDT1 (nudrix hyrolase 1) in PAH.Measurements and Main Results: Increased expression of the detoxifying DNA enzyme NUDT1 was detected in cells and tissues from patients with PAH and animal models. In vitro, molecular or pharmacological inhibition of NUDT1 in PAH-PASMCs induced accumulation of oxidized nucleotides in the DNA, irresolvable DNA damage (comet assay), disruption of cellular bioenergetics (Seahorse), and cell death (terminal deoxynucleotidyl transferase dUTP nick end labeling assay). In two animal models with established PAH (i.e., monocrotaline and Sugen/hypoxia-treated rats), pharmacological inhibition of NUDT1 using (S)-Crizotinib significantly decreased pulmonary vascular remodeling and improved hemodynamics and cardiac function.Conclusions: Our results indicate that, by overexpressing NUDT1, PAH-PASMCs hijack persistent oxidative stress in preventing incorporation of oxidized nucleotides into DNA, thus allowing the cell to escape apoptosis and proliferate. Given that NUDT1 inhibitors are under clinical investigation for cancer, they may represent a new therapeutic option for PAH.
Collapse
Affiliation(s)
- Géraldine Vitry
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Marie-Claude Lampron
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Karima Habbout
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Charifa Awada
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Renée Paradis
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | | | - Mark Orcholski
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - François Potus
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Quebec Heart and Lung Institute Research Centre, Québec City, Quebec, Canada; and.,Department of Medicine and
| |
Collapse
|
15
|
Ulker OC, Panieri E, Suzen S, Jaganjac M, Zarkovic N, Saso L. Short overview on the relevance of microRNA-reactive oxygen species (ROS) interactions and lipid peroxidation for modulation of oxidative stress-mediated signalling pathways in cancer treatment. J Pharm Pharmacol 2021; 74:503-515. [PMID: 33769543 DOI: 10.1093/jpp/rgab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Modulation of oxidative stress-mediated signalling pathways is constantly getting more attention as a valuable therapeutic strategy in cancer treatment. Although complexity of redox signalling pathways might represent a major hurdle, the development of advanced -omics technologies allow thorough studies on cancer-specific biology, which is essential to elucidate the impact of these signalling pathways in cancer cells. The scope of our review is to provide updated information about recent developments in cancer treatment. KEY FINDINGS In recent years identifying oxidative stress-mediated signalling pathways is a major goal of cancer research assuming it may provide novel therapeutic approaches through the development of agents that may have better tissue penetration and therefore affect specific redox signalling pathways. In this review, we discuss some recent studies focussed on the modulation of oxidative stress-related signalling pathways as a novel anti-cancer treatment, with a particular emphasis on the induction of lipid peroxidation. CONCLUSIONS Characterization and modulation of oxidative stress-mediated signalling pathways and lipid peroxidation products will continue to foster novel interest and further investigations, which may pave the way for more effective, selective, and personalized integrative biomedicine treatment strategies.
Collapse
Affiliation(s)
- Ozge Cemiloglu Ulker
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Zhou X, Zhang X, Wu Z, Xu X, Guo M, Zhai X, Zuo D, Wu Y. The novel ALK inhibitor ZX-29 induces apoptosis through inhibiting ALK and inducing ROS-mediated endoplasmic reticulum stress in Karpas299 cells. J Biochem Mol Toxicol 2020; 35:e22666. [PMID: 33140567 DOI: 10.1002/jbt.22666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 11/08/2022]
Abstract
It is a well-known fact that 60%-85% of anaplastic large cell lymphoma (ALCL) is mainly driven by the anaplastic lymphoma kinase (ALK) fusion protein. Although ALK-positive ALCL patients respond significantly to ALK inhibitors, the development of resistance is inevitable, which requires the development of new therapeutic strategies for ALK-positive ALCL. Here, we investigated the anticancer activities of N-(2((5-chloro-2-((2-methoxy-6-(4-methylpiperazin-1-yl)pyridin-3yl)amino)pyrimidin-4-yl)amino)phenyl)methanesulfonamide (ZX-29), a newly synthesized ALK inhibitor, against nucleophosmin-ALK-positive cell line Karpas299. We demonstrated that ZX-29 decreased Karpas299 cells growth and had better cytotoxicity than ceritinib, which was mediated through downregulating the expression of ALK and related proteins, inducing cell cycle arrest, and promoting cell apoptosis. Moreover, ZX-29-induced cell apoptosis by inducing endoplasmic reticulum stress (ERS). In addition, ZX-29 increased the generation of reactive oxygen species (ROS), and cells pretreatment with N-acetyl- l-cysteine could attenuate ZX-29-induced cell apoptosis and ERS. Taken together, ZX-29 inhibited Karpas299 cell proliferation and induced apoptosis through inhibiting ALK and its downstream protein expression and inducing ROS-mediated ERS. Therefore, our results provide evidence for a novel antitumor candidate for the further investigation.
Collapse
Affiliation(s)
- Xuejiao Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoning Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuzhu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaobo Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
17
|
Li DN, Yang CC, Li J, Ou Yang QG, Zeng LT, Fan GQ, Liu TH, Tian XY, Wang JJ, Zhang H, Dai DP, Cui J, Cai JP. The high expression of MTH1 and NUDT5 promotes tumor metastasis and indicates a poor prognosis in patients with non-small-cell lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118895. [PMID: 33096144 DOI: 10.1016/j.bbamcr.2020.118895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/03/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022]
Abstract
MutT Homolog 1 (MTH1) is a mammalian 8-oxodGTPase for sanitizing oxidative damage to the nucleotide pool. Nudix type 5 (NUDT5) also sanitizes 8-oxodGDP in the nucleotide pool. The role of MTH1 and NUDT5 in non-small-cell lung cancer (NSCLC) progression and metastasis remains unclear. In the present study, we reported that MTH1 and NUDT5 were upregulated in NSCLC cell lines and tissues, and higher levels of MTH1 or NUDT5 were associated with tumor metastasis and a poor prognosis in patients with NSCLC. Their suppression also restrained tumor growth and lung metastasis in vivo and significantly inhibited NSCLC cell migration, invasion, cell proliferation and cell cycle progression while promoting apoptosis in vitro. The opposite effects were observed in vitro following MTH1 or NUDT5 rescue. In addition, the upregulation of MTH1 or NUDT5 enhanced the MAPK pathway and PI3K/AKT activity. Furthermore, MTH1 and NUDT5 induce epithelial-mesenchymal transition both in vitro and in vivo. These results highlight the essential role of MTH1 and NUDT5 in NSCLC tumor tumorigenesis and metastasis as well as their functions as valuable markers of the NSCLC prognosis and potential therapeutic targets.
Collapse
Affiliation(s)
- Dan-Ni Li
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China
| | - Cheng-Cheng Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Qiu-Geng Ou Yang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Teng-Hui Liu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xin-Yuan Tian
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China
| | - Jing-Jing Wang
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China
| | - He Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China
| | - Jian-Ping Cai
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO.1 DaHua Road, Dong Dan, Beijing 100730, PR China.
| |
Collapse
|
18
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
19
|
Eldehna WM, Hassan GS, Al-Rashood ST, Al-Warhi T, Altyar AE, Alkahtani HM, Almehizia AA, Abdel-Aziz HA. Synthesis and in vitro anticancer activity of certain novel 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas as apoptosis-inducing agents. J Enzyme Inhib Med Chem 2019; 34:322-332. [PMID: 30722708 PMCID: PMC6366416 DOI: 10.1080/14756366.2018.1547286] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
In connection with our research program on the development of novel anticancer candidates, herein we report the design and synthesis of novel series of 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas 5a-l. The target pyridins were evaluated for their in vitro anticancer activity against two cancer cell lines: non-small cell lung cancer A549 cell line and colon cancer HCT-116 cell line. Compound 5l emerged as the most active congener towards both A549 and HCT-116 cell lines with IC50 values equal to 3.22 ± 0.2 and 2.71 ± 0.16 µM, respectively, which are comparable to those of Doxorubicin; 2.93 ± 0.28 and 3.10 ± 0.22, respectively. Furthermore, compound 5l stood out as the most potent pyridine derivative (mean % GI = 40), at US-NCI Developmental Therapeutic Program anticancer assay, with broad-spectrum antitumor activity against the most tested cancer cell lines from all subpanels. Compound 5l was able to provoke apoptosis in HCT-116 cells as evidenced by the decreased expression of the anti-apoptotic Bcl-2 protein, and the enhanced expression of the pro-apoptotic proteins levels; Bax, cytochrome C, p53, caspase-3 and caspase-9. Moreover, 5l disrupted the HCT-116 cell cycle via alteration of the Sub-G1 phase and arresting the G2-M stage. Also, 5l showed a significant increase in the percent of annexinV-FITC positive apoptotic cells from 1.99 to 15.76%.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ghada S. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo, Egypt
| |
Collapse
|
20
|
Zhang J, Ning L, Huang J, Zhang C, Pu K. Activatable molecular agents for cancer theranostics. Chem Sci 2019; 11:618-630. [PMID: 34123034 PMCID: PMC8145638 DOI: 10.1039/c9sc05460j] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Theranostics that integrates diagnosis and treatment modalities has attracted great attention due to its abilities of personalized therapy and real-time monitoring of therapeutic outcome. Such a theranostic paradigm requires agents to simultaneously possess the capabilities of targeting, imaging, and treatment. Activatable molecular agents (AMAs) are promising for cancer theranostics, as they show a higher signal-to-noise ratio (SNR), real-time detection of cancer-associated biomarkers, lower normal tissue toxicity, and a higher therapeutic effect. This perspective summarizes the recent advancements of AMAs, which include imaging-guided chemotherapy, imaging-guided photodynamic therapy, and imaging-guided photothermal therapy. The molecular design principles, theranostic mechanisms, and biomedical applications of AMAs are described, followed by a discussion of potential challenges of AMAs in cancer theranostics.
Collapse
Affiliation(s)
- Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Lab of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University Xi'an 710127 Shaanxi P. R. China
| | - Lulu Ning
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology Xi'an 710021 P. R. China
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Chi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| |
Collapse
|
21
|
Murányi J, Varga A, Gyulavári P, Pénzes K, Németh CE, Csala M, Pethő L, Csámpai A, Halmos G, Peták I, Vályi-Nagy I. Novel Crizotinib-GnRH Conjugates Revealed the Significance of Lysosomal Trapping in GnRH-Based Drug Delivery Systems. Int J Mol Sci 2019; 20:ijms20225590. [PMID: 31717403 PMCID: PMC6888004 DOI: 10.3390/ijms20225590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Several promising anti-cancer drug–GnRH (gonadotropin-releasing hormone) conjugates have been developed in the last two decades, although none of them have been approved for clinical use yet. Crizotinib is an effective multi-target kinase inhibitor, approved against anaplastic lymphoma kinase (ALK)- or ROS proto-oncogene 1 (ROS-1)-positive non-small cell lung carcinoma (NSCLC); however, its application is accompanied by serious side effects. In order to deliver crizotinib selectively into the tumor cells, we synthesized novel crizotinib analogues and conjugated them to a [d-Lys6]–GnRH-I targeting peptide. Our most prominent crizotinib–GnRH conjugates, the amide-bond-containing [d-Lys6(crizotinib*)]–GnRH-I and the ester-bond-containing [d-Lys6(MJ55*)]–GnRH-I, were able to bind to GnRH-receptor (GnRHR) and exert a potent c-Met kinase inhibitory effect. The efficacy of compounds was tested on the MET-amplified and GnRHR-expressing EBC-1 NSCLC cells. In vitro pharmacological profiling led to the conclusion that that crizotinib–GnRH conjugates are transported directly into lysosomes, where the membrane permeability of crizotinib is diminished. As a consequence of GnRHR-mediated endocytosis, GnRH-conjugated crizotinib bypasses its molecular targets—the ATP-binding site of RTKs— and is sequestered in the lysosomes. These results explained the lower efficacy of crizotinib–GnRH conjugates in EBC-1 cells, and led to the conclusion that drug escape from the lysosomes is a major challenge in the development of clinically relevant anti-cancer drug–GnRH conjugates.
Collapse
Affiliation(s)
- József Murányi
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094 Budapest, Hungary; (A.V.); (P.G.); (K.P.)
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H1094 Budapest, Hungary; (C.E.N.); (M.C.)
- Correspondence:
| | - Attila Varga
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094 Budapest, Hungary; (A.V.); (P.G.); (K.P.)
| | - Pál Gyulavári
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094 Budapest, Hungary; (A.V.); (P.G.); (K.P.)
| | - Kinga Pénzes
- MTA-SE Pathobiochemistry Research Group, Tűzoltó St. 37-47, H1094 Budapest, Hungary; (A.V.); (P.G.); (K.P.)
| | - Csilla E. Németh
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H1094 Budapest, Hungary; (C.E.N.); (M.C.)
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H1094 Budapest, Hungary; (C.E.N.); (M.C.)
| | - Lilla Pethő
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, H1117 Budapest, Hungary
| | - Antal Csámpai
- Institute of Chemistry, Eötvös Loránd University, H1117 Budapest, Hungary;
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, H4032 Debrecen, Hungary;
| | - István Peták
- Oncompass Medicine Hungary Ltd., H1024 Budapest, Hungary;
| | - István Vályi-Nagy
- Central Hospital of Southern Pest National Institute of Hematology and Infectious Diseases, H1097 Budapest, Hungary;
| |
Collapse
|
22
|
McPherson LA, Troccoli CI, Ji D, Bowles AE, Gardiner ML, Mohsen MG, Nagathihalli NS, Nguyen DM, Robbins DJ, Merchant NB, Kool ET, Rai P, Ford JM. Increased MTH1-specific 8-oxodGTPase activity is a hallmark of cancer in colon, lung and pancreatic tissue. DNA Repair (Amst) 2019; 83:102644. [PMID: 31311767 DOI: 10.1016/j.dnarep.2019.102644] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Cellular homeostasis is dependent on a balance between DNA damage and DNA repair mechanisms. Cells are constantly assaulted by both exogenous and endogenous stimuli leading to high levels of reactive oxygen species (ROS) that cause oxidation of the nucleotide dGTP to 8-oxodGTP. If this base is incorporated into DNA and goes unrepaired, it can result in G > T transversions, leading to genomic DNA damage. MutT Homolog 1 (MTH1) is a nucleoside diphosphate X (Nudix) pyrophosphatase that can remove 8-oxodGTP from the nucleotide pool before it is incorporated into DNA by hydrolyzing it into 8-oxodGMP. MTH1 expression has been shown to be elevated in many cancer cells and is thought to be a survival mechanism by which a cancer cell can stave off the effects of high ROS that can result in cell senescence or death. It has recently become a target of interest in cancer because it is thought that inhibiting MTH1 can increase genotoxic damage and cytotoxicity. Determining the role of MTH1 in normal and cancer cells is confounded by an inability to reliably and directly measure its native enzymatic activity. We have used the chimeric ATP-releasing guanine-oxidized (ARGO) probe that combines 8-oxodGTP and ATP to measure MTH1 enzymatic activity in colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) along with patient-matched normal tissue. MTH1 8-oxodGTPase activity is significantly increased in tumors across all three tissue types, indicating that MTH1 is a marker of cancer. MTH1 activity measured by ARGO assay was compared to mRNA and protein expression measured by RT-qPCR and Western blot in the CRC tissue pairs, revealing a positive correlation between ARGO assay and Western blot, but little correlation with RT-qPCR in these samples. The adoption of the ARGO assay will help in establishing the level of MTH1 activity in model systems and in assessing the effects of MTH1 modulation in the treatment of cancer.
Collapse
Affiliation(s)
- Lisa A McPherson
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305-5151, United States
| | - Clara I Troccoli
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Debin Ji
- Department of Chemistry, Stanford University, Stanford, CA 94305-4401, United States
| | - Annie E Bowles
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305-5151, United States
| | - Makelle L Gardiner
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305-5151, United States
| | - Michael G Mohsen
- Department of Chemistry, Stanford University, Stanford, CA 94305-4401, United States
| | - Nagaraj S Nagathihalli
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Dao M Nguyen
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - David J Robbins
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Nipun B Merchant
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305-4401, United States
| | - Priyamvada Rai
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, United States; Sylvester Comprehensive Cancer Center, Miami, FL 33136, United States.
| | - James M Ford
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305-5151, United States.
| |
Collapse
|
23
|
Anticancer effect of (S)-crizotinib on osteosarcoma cells by targeting MTH1 and activating reactive oxygen species. Anticancer Drugs 2019; 29:341-352. [PMID: 29420337 PMCID: PMC5882294 DOI: 10.1097/cad.0000000000000602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MTH1 has become a new rising star in the field of ‘cancer phenotypic lethality’ and can be targeted in many kinds of tumors. This study aimed to explore the anticancer effect of MTH1-targeted drug (S)-crizotinib on osteosarcoma (OS) cells. We detected MTH1 expression in OS tissues and cells using immunohistochemistry and western blot. The effects of MTH1 on OS cell viability were explored using the siRNA technique and CCK8. The anticancer effects of the MTH1-targeted drug (S)-crizotinib on OS cells were explored by in-vitro assays. The intracellular 8-oxo-dGTP level and oxygen reactive species (ROS) of OS cells were detected by Cy3-conjugated avidin staining and dichlorofluorescein diacetate staining, respectively. The expression of MTH1 was significantly higher in OS tissues and cell lines than that in the corresponding adjacent tissues and osteoblastic cell line. The proliferation of OS cells was significantly inhibited through knockdown of MTH1 by siRNA technology. (S)-Crizotinib could inhibit the proliferation of OS cells with an increase in the apoptosis levels and causing G0/G1 arrest by targeting MTH1 and activating ROS. In addition, (S)-crizotinib could inhibit the migration of OS cells. (S)-Crizotinib could suppress the proliferation and migration, cause G0/G1 arrest, and increase the apoptosis level of OS cells by targeting MTH1 and activating ROS. This study will provide a promising therapeutic target and the theoretical basis for the clinical application of (S)-crizotinib in OS.
Collapse
|
24
|
Lu X, Liu S, Han M, Yang X, Sun K, Wang H, Mu H, Du Y, Wang A, Ni L, Zhang C. Afatinib-loaded immunoliposomes functionalized with cetuximab: A novel strategy targeting the epidermal growth factor receptor for treatment of non-small-cell lung cancer. Int J Pharm 2019; 560:126-135. [DOI: 10.1016/j.ijpharm.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 01/08/2023]
|
25
|
Caiola E, Falcetta F, Giordano S, Marabese M, Garassino MC, Broggini M, Pastorelli R, Brunelli L. Co-occurring KRAS mutation/LKB1 loss in non-small cell lung cancer cells results in enhanced metabolic activity susceptible to caloric restriction: an in vitro integrated multilevel approach. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:302. [PMID: 30514331 PMCID: PMC6280460 DOI: 10.1186/s13046-018-0954-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
Background Non–small-cell lung cancer (NSCLC) is a heterogeneous disease, with multiple different oncogenic mutations. Approximately 25–30% of NSCLC patients present KRAS mutations, which confer poor prognosis and high risk of tumor recurrence. About half of NSCLCs with activating KRAS lesions also have deletions or inactivating mutations in the serine/threonine kinase 11 (LKB1) gene. Loss of LKB1 on a KRAS-mutant background may represent a significant source of heterogeneity contributing to poor response to therapy. Methods Here, we employed an integrated multilevel proteomics, metabolomics and functional in-vitro approach in NSCLC H1299 isogenic cells to define their metabolic state associated with the presence of different genetic background. Protein levels were obtained by label free and single reaction monitoring (SRM)-based proteomics. The metabolic state was studied coupling targeted and untargeted mass spectrometry (MS) strategy. In vitro metabolic dependencies were evaluated using 2-deoxy glucose (2-DG) treatment or glucose/glutamine nutrient limitation. Results Here we demonstrate that co-occurring KRAS mutation/LKB1 loss in NSCLC cells allowed efficient exploitation of glycolysis and oxidative phosphorylation, when compared to cells with each single oncologic genotype. The enhanced metabolic activity rendered the viability of cells with both genetic lesions susceptible towards nutrient limitation. Conclusions Co-occurrence of KRAS mutation and LKB1 loss in NSCLC cells induced an enhanced metabolic activity mirrored by a growth rate vulnerability under limited nutrient conditions relative to cells with the single oncogenetic lesions. Our results hint at the possibility that energy stress induced by calorie restriction regimens may sensitize NSCLCs with these co-occurring lesions to cytotoxic chemotherapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0954-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca Falcetta
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Silvia Giordano
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marina C Garassino
- Thoracic Oncology, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
26
|
Liu S, Tang H, Zhu J, Ding H, Zeng Y, Du W, Ding Z, Song P, Zhang Y, Liu Z, Huang JA. High expression of Copine 1 promotes cell growth and metastasis in human lung adenocarcinoma. Int J Oncol 2018; 53:2369-2378. [PMID: 30221693 PMCID: PMC6203151 DOI: 10.3892/ijo.2018.4558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022] Open
Abstract
Despite advances in diagnosis and treatment, the survival of non-small cell lung cancer (NSCLC) patients is poor. Further understanding of the disease mechanism and treatment strategies is required. Copines are a family of calcium-dependent phospholipid-binding proteins that are evolutionally conserved in various eukaryotic organisms and protists. Copine 1, encoded by CPNE1, is a soluble membrane-binding protein, which includes two tandem C2 domains at the N-terminus and an A domain at the C-terminus. A previous study reported that Copine 1 binds with various intracellular proteins via its A domain and C omain. However, the role of CPNE1 in lung cancer remains unclear. In the presented study, CPNE1 expression level was demonstrated to be positively associated with the stage (P=0.002) and significantly associated with lymph node status (P=0.011) and distant metastasis (P=0.042). Furthermore, the function of CPNE1 in regulation of cell growth, migration and invasion was investigated, and it was demonstrated that knockdown of CPNE1 inhibits the cell cycle in NSCLC cells. Collectively, these data suggest that CPNE1 is an oncogene in NSCLC and serves an important role in tumorigenesis of NSCLC progression.
Collapse
Affiliation(s)
- Shunlin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haicheng Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianjie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Heguo Ding
- Department of Respiratory Medicine, Huzhou 3rd Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wenwen Du
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zongli Ding
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Pengtao Song
- Department of Pathology, Huzhou 3rd Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yang Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
27
|
Arczewska KD, Stachurska A, Wojewódzka M, Karpińska K, Kruszewski M, Nilsen H, Czarnocka B. hMTH1 is required for maintaining migration and invasion potential of human thyroid cancer cells. DNA Repair (Amst) 2018; 69:53-62. [PMID: 30055508 DOI: 10.1016/j.dnarep.2018.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
Cancer cells, including thyroid cancer cells, suffer from oxidative stress damaging multiple cellular targets, such as DNA and the nucleotide pool. The human MutT homologue 1 (hMTH1) controls the oxidative DNA damage load by sanitizing the nucleotide pool from the oxidized DNA precursor, 8-oxodGTP. It has previously been shown that hMTH1 is essential for cancer cell proliferation and survival, therefore hMTH1 inhibition has been proposed as a novel anticancer therapeutic strategy. Here we show that thyroid cancer cells respond to siRNA mediated hMTH1 depletion with increased DNA damage load and moderately reduced proliferation rates, but without detectable apoptosis, cell-cycle arrest or senescence. Importantly, however, hMTH1 depletion significantly reduced migration and invasion potential of the thyroid cancer cells. Accordingly, our results allow us to propose that hMTH1 may be a therapeutic target in thyroid malignancy, especially for controlling metastasis.
Collapse
Affiliation(s)
- Katarzyna D Arczewska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Kamila Karpińska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland.
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, Sykehusveien 25, Lørenskog, Norway.
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
28
|
Mansour MA. Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol 2018; 101:80-93. [PMID: 29864543 DOI: 10.1016/j.biocel.2018.06.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/05/2023]
Abstract
Dynamic modulation and posttranslational modification of proteins are tightly controlled biological processes that occur in response to physiological cues. One such dynamic modulation is ubiquitination, which marks proteins for degradation via the proteasome, altering their localization, affecting their activity, and promoting or interfering with protein interactions. Hence, ubiquitination is crucial for a plethora of physiological processes, including cell survival, differentiation and innate and adaptive immunity. Similar to kinases, components of the ubiquitination system are often deregulated, leading to a variety of diseases, such as cancer and neurodegenerative disorders. In a context-dependent manner, ubiquitination can regulate both tumor-suppressing and tumor-promoting pathways in cancer. This review outlines how components of the ubiquitination systems (e.g. E3 ligases and deubiquitinases) act as oncogenes or tumor suppressors according to the nature of their substrates. Furthermore, I interrogate how the current knowledge of the differential roles of ubiquitination in cancer lead to technical advances to inhibit or reactivate the components of the ubiquitination system accordingly.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Institute of Cancer Sciences, University of Glasgow, United Kingdom; The CRUK Beatson Institute, Glasgow, Switchback Road, G61 1BD, United Kingdom; Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
29
|
Zarogoulidis P, Huang H, Tsiouda T, Sardeli C, Trakada G, Veletza L, Kallianos A, Kosmidis C, Rapti A, Papaemmanouil L, Hatzibougias D, Drougas D, Bai C, Hohenforst-Schmidt W. Immunotherapy "Shock" with vitiligo due to nivolumab administration as third line therapy in lung adenocarcinoma. Respir Med Case Rep 2017; 22:283-286. [PMID: 29124007 PMCID: PMC5671388 DOI: 10.1016/j.rmcr.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022] Open
Abstract
Non-small cell lung cancer is still diagnosed at late stage due to the lack of early symptoms and methods of diagnostic prevention. In the past ten years several targeted therapies have been introduced or explored. Tyrosine kinase inhibitors and immunotherapy are currently considered the most effective and safe therapies in comparison to the non-specific cytotoxic agents. Regarding tyrosine kinase inhibitors the adverse effects have been fully explored, however; on the other hand for immunotherapy there are still several issues to be clarified. We report a rare case of a patient with lung cancer adenocarcinoma who developed vitiligo throughout his body after nivolumab administration.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary-Oncology Department, "Theageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Theodora Tsiouda
- Pulmonary-Oncology Department, "Theageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Chrysa Sardeli
- Department of Pharmacology & Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Trakada
- Division of Pulmonology, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | - Lemonia Veletza
- Division of Pulmonology, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | - Anastasios Kallianos
- Division of Pulmonology, Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | | | - Aggeliki Rapti
- Second Pulmonary Clinic, "Sotiria" Chest Diseases Hospital, Athens, Greece
| | - Liana Papaemmanouil
- Pathology Department, "G. Papanikolaou" General Hospital, Thessaloniki, Greece
| | | | - Dimitrios Drougas
- Private Scientigraphy Department, "Bioiatriki", Thessaloniki, Greece
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wolfgang Hohenforst-Schmidt
- Sana Clinic Group Franken, Department of Cardiology/Pulmonology/Intensive Care/Nephrology, "Hof'' Clinics, University of Erlangen, Hof, Germany
| |
Collapse
|