1
|
Zhang P, Zhong D, Yu Y, Wang L, Li Y, Liang Y, Shi Y, Duan M, Li B, Niu H, Xu Y. Integration of STING activation and COX-2 inhibition via steric-hindrance effect tuned nanoreactors for cancer chemoimmunotherapy. Biomaterials 2024; 311:122695. [PMID: 38954960 DOI: 10.1016/j.biomaterials.2024.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Integrating immunotherapy with nanomaterials-based chemotherapy presents a promising avenue for amplifying antitumor outcomes. Nevertheless, the suppressive tumor immune microenvironment (TIME) and the upregulation of cyclooxygenase-2 (COX-2) induced by chemotherapy can hinder the efficacy of the chemoimmunotherapy. This study presents a TIME-reshaping strategy by developing a steric-hindrance effect tuned zinc-based metal-organic framework (MOF), designated as CZFNPs. This nanoreactor is engineered by in situ loading of the COX-2 inhibitor, C-phycocyanin (CPC), into the framework building blocks, while simultaneously weakening the stability of the MOF. Consequently, CZFNPs achieve rapid pH-responsive release of zinc ions (Zn2+) and CPC upon specific transport to tumor cells overexpressing folate receptors. Accordingly, Zn2+ can induce reactive oxygen species (ROS)-mediated cytotoxicity therapy while synchronize with mitochondrial DNA (mtDNA) release, which stimulates mtDNA/cGAS-STING pathway-mediated innate immunity. The CPC suppresses the chemotherapy-induced overexpression of COX-2, thus cooperatively reprogramming the suppressive TIME and boosting the antitumor immune response. In xenograft tumor models, the CZFNPs system effectively modulates STING and COX-2 expression, converting "cold" tumors into "hot" tumors, thereby resulting in ≈ 4-fold tumor regression relative to ZIF-8 treatment alone. This approach offers a potent strategy for enhancing the efficacy of combined nanomaterial-based chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Yongbo Yu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yifan Li
- Department of Breast Center of the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Ye Liang
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Meilin Duan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, Shandong Province, China.
| | - Haitao Niu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Yuanhong Xu
- Department of Urology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Valdez-Salazar F, Jiménez-Del Rio LA, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Valdés-Alvarado E. Advances in Melanoma: From Genetic Insights to Therapeutic Innovations. Biomedicines 2024; 12:1851. [PMID: 39200315 PMCID: PMC11351162 DOI: 10.3390/biomedicines12081851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Advances in melanoma research have unveiled critical insights into its genetic and molecular landscape, leading to significant therapeutic innovations. This review explores the intricate interplay between genetic alterations, such as mutations in BRAF, NRAS, and KIT, and melanoma pathogenesis. The MAPK and PI3K/Akt/mTOR signaling pathways are highlighted for their roles in tumor growth and resistance mechanisms. Additionally, this review delves into the impact of epigenetic modifications, including DNA methylation and histone changes, on melanoma progression. The tumor microenvironment, characterized by immune cells, stromal cells, and soluble factors, plays a pivotal role in modulating tumor behavior and treatment responses. Emerging technologies like single-cell sequencing, CRISPR-Cas9, and AI-driven diagnostics are transforming melanoma research, offering precise and personalized approaches to treatment. Immunotherapy, particularly immune checkpoint inhibitors and personalized mRNA vaccines, has revolutionized melanoma therapy by enhancing the body's immune response. Despite these advances, resistance mechanisms remain a challenge, underscoring the need for combined therapies and ongoing research to achieve durable therapeutic responses. This comprehensive overview aims to highlight the current state of melanoma research and the transformative impacts of these advancements on clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Valdés-Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.V.-S.)
| |
Collapse
|
3
|
Rojas-Solé C, Torres-Herrera B, Gelerstein-Claro S, Medina-Pérez D, Gómez-Venegas H, Alzolay-Sepúlveda J, Chichiarelli S, Saso L, Rodrigo R. Cellular Basis of Adjuvant Role of n-3 Polyunsaturated Fatty Acids in Cancer Therapy: Molecular Insights and Therapeutic Potential against Human Melanoma. APPLIED SCIENCES 2024; 14:4548. [DOI: 10.3390/app14114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Human melanoma is a highly aggressive malignant tumor originating from epidermal melanocytes, characterized by intrinsic resistance to apoptosis and the reprogramming of proliferation and survival pathways during progression, leading to high morbidity and mortality rates. This malignancy displays a marked propensity for metastasis and often exhibits poor responsiveness to conventional therapies. Fatty acids, such as n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic and eicosapentaenoic acids, exert various physiological effects on melanoma, with increasing evidence highlighting the anti-tumorigenic, anti-inflammatory, and immunomodulatory properties. Additionally, n-3 PUFAs have demonstrated their ability to inhibit cancer metastatic dissemination. In the context of cancer treatment, n-3 PUFAs have been investigated in conjunction with chemotherapy as a potential strategy to mitigate severe chemotherapy-induced side effects, enhance treatment efficacy and improve safety profiles, while also enhancing the responsiveness of cancer cells to chemotherapy. Furthermore, dietary intake of n-3 PUFAs has been associated with numerous health benefits, including a decreased risk and improved prognosis in conditions such as heart disease, autoimmune disorders, depression and mood disorders, among others. However, the specific mechanisms underlying their anti-melanoma effects and outcomes remain controversial, particularly when comparing findings from in vivo or in vitro experimental studies to those from human trials. Thus, the objective of this review is to present data supporting the potential role of n-3 PUFA supplementation as a novel complementary approach in the treatment of malignant cancers such as melanoma.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Benjamín Torres-Herrera
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Santiago Gelerstein-Claro
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Diego Medina-Pérez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Haziel Gómez-Venegas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Javier Alzolay-Sepúlveda
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
4
|
Szász I, Koroknai V, Várvölgyi T, Pál L, Szűcs S, Pikó P, Emri G, Janka E, Szabó IL, Ádány R, Balázs M. Identification of Plasma Lipid Alterations Associated with Melanoma Metastasis. Int J Mol Sci 2024; 25:4251. [PMID: 38673837 PMCID: PMC11050015 DOI: 10.3390/ijms25084251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to apply a state-of-the-art quantitative lipidomic profiling platform to uncover lipid alterations predictive of melanoma progression. Our study included 151 melanoma patients; of these, 83 were without metastasis and 68 with metastases. Plasma samples were analyzed using a targeted Lipidyzer™ platform, covering 13 lipid classes and over 1100 lipid species. Following quality control filters, 802 lipid species were included in the subsequent analyses. Total plasma lipid contents were significantly reduced in patients with metastasis. Specifically, levels of two out of the thirteen lipid classes (free fatty acids (FFAs) and lactosylceramides (LCERs)) were significantly decreased in patients with metastasis. Three lipids (CE(12:0), FFA(24:1), and TAG47:2-FA16:1) were identified as more effective predictors of melanoma metastasis than the well-known markers LDH and S100B. Furthermore, the predictive value substantially improved upon combining the lipid markers. We observed an increase in the cumulative levels of five lysophosphatidylcholines (LPC(16:0); LPC(18:0); LPC(18:1); LPC(18:2); LPC(20:4)), each individually associated with an elevated risk of lymph node metastasis but not cutaneous or distant metastasis. Additionally, seventeen lipid molecules were linked to patient survival, four of which (CE(12:0), CE(14:0), CE(15:0), SM(14:0)) overlapped with the lipid panel predicting metastasis. This study represents the first comprehensive investigation of the plasma lipidome of melanoma patients to date. Our findings suggest that plasma lipid profiles may serve as important biomarkers for predicting clinical outcomes of melanoma patients, including the presence of metastasis, and may also serve as indicators of patient survival.
Collapse
Affiliation(s)
- István Szász
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
| | - Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Tünde Várvölgyi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - László Pál
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Sándor Szűcs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Péter Pikó
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Imre Lőrinc Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.V.); (G.E.); (E.J.); (I.L.S.)
| | - Róza Ádány
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| | - Margit Balázs
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (I.S.); (R.Á.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4028 Debrecen, Hungary; (V.K.); (L.P.); (S.S.); (P.P.)
| |
Collapse
|
5
|
Pimenta J, Prada J, Pires I, Cotovio M. Cyclooxygenase-2 (COX-2) Expression in Equine Melanocytic Tumors. Vet Sci 2024; 11:77. [PMID: 38393095 PMCID: PMC10891553 DOI: 10.3390/vetsci11020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Equine melanocytic tumors are common and have an unusual benign behavior with low invasiveness and metastatic rates. However, tumoral mass growth is usually a concern that can have life-threatening consequences. COX-2 is related to oncogenesis, promoting neoplastic cell proliferation, invasion, and metastasis. The aim of this study was to evaluate the immunohistochemical expression of COX-2 in equine melanocytic tumors. Through extension and intensity of labeling, 39 melanocytomas and 38 melanomas were evaluated. Of the malignant tumors, 13.2% were negative and 63.2% presented a low COX-2 expression. Only 6 malignant tumors presented >50% of labeled cells, 18 malignant and 8 benign had an expression between 21 and 50%, 8 malignant and 3 benign tumors had an expression between 6 and 20%, 1 malignant tumor had an expression between 1 and 5%, and 5 malignant and 28 benign tumors had no expression. Malignant tumors showed higher COX-2 expression than did benign tumors, with statistically significant differences. The low levels of COX-2 may be one of the molecular reasons for the presence of expansive mass growth instead of the invasive pattern of other species, which is related to high COX-2 levels.
Collapse
Affiliation(s)
- José Pimenta
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Justina Prada
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Isabel Pires
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Veterinary Sciences Department, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Mário Cotovio
- CECAV—Veterinary and Animal Research Center, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (M.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
6
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
7
|
The Association of Improved Overall Survival with NSAIDs in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Inhibitors. Clin Lung Cancer 2023; 24:287-294. [PMID: 36804711 DOI: 10.1016/j.cllc.2022.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) are commonly used in the management of patients with advanced non-small cell lung cancer (NSCLC), but response is suboptimal. Preclinical data suggest ICI efficacy may be enhanced with concomitant nonsteroidal anti-inflammatory (NSAID) medications. PATIENTS AND METHODS In this retrospective study, the Veterans Health Administration Corporate Data Warehouse was queried for patients diagnosed with NSCLC and treated with ICI from 2010 to 2018. Concomitant NSAID use was defined as NSAID dispensation by a VA pharmacy within 90 days of the any ICI infusion. To mitigate immortal time bias, patients who started NSAIDs 60 or more days after ICI initiation were excluded from analysis. Survival was measured from start of ICI. RESULTS We identified 3634 patients with NSCLC receiving ICI; 2336 (64.3%) were exposed to concomitant NSAIDs. On multivariable analysis, NSAIDs were associated with better overall survival (HR = 0.90; 95% CI, 0.83-0.98; P = .010). When stratifying by NSAID type, diclofenac was the only NSAID with significant association with overall survival (HR = 0.75; 95% CI, 0.68-0.83; P < .001). Propensity score matching of the original cohort yielded 1251 patients per cohort balanced in characteristics. NSAIDs remained associated with improved overall survival (HR = 0.85; 95% CI, 0.78-0.92; P < .001). CONCLUSION This study of Veterans with NSCLC treated with ICI demonstrated that concomitant NSAIDs are associated with longer OS. This may indicate that NSAIDs can enhance ICI-induced antitumor immunity and should prospectively validated.
Collapse
|
8
|
CRISPR/Cas9 Mediated Knockout of Cyclooxygenase-2 Gene Inhibits Invasiveness in A2058 Melanoma Cells. Cells 2022; 11:cells11040749. [PMID: 35203404 PMCID: PMC8870212 DOI: 10.3390/cells11040749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
The inducible isoenzyme cyclooxygenase-2 (COX-2) is an important hub in cellular signaling, which contributes to tumor progression by modulating and enhancing a pro-inflammatory tumor microenvironment, tumor growth, apoptosis resistance, angiogenesis and metastasis. In order to understand the role of COX-2 expression in melanoma, we investigated the functional knockout effect of COX-2 in A2058 human melanoma cells. COX-2 knockout was validated by Western blot and flow cytometry analysis. When comparing COX-2 knockout cells to controls, we observed significantly reduced invasion, colony and spheroid formation potential in cell monolayers and three-dimensional models in vitro, and significantly reduced tumor development in xenograft mouse models in vivo. Moreover, COX-2 knockout alters the metabolic activity of cells under normoxia and experimental hypoxia as demonstrated by using the radiotracers [18F]FDG and [18F]FMISO. Finally, a pilot protein array analysis in COX-2 knockout cells verified significantly altered downstream signaling pathways that can be linked to cellular and molecular mechanisms of cancer metastasis closely related to the enzyme. Given the complexity of the signaling pathways and the multifaceted role of COX-2, targeted suppression of COX-2 in melanoma cells, in combination with modulation of related signaling pathways, appears to be a promising therapeutic approach.
Collapse
|
9
|
Sui T, Qiu B, Qu J, Wang Y, Ran K, Han W, Peng X. Gambogic amide inhibits angiogenesis by suppressing VEGF/VEGFR2 in endothelial cells in a TrkA-independent manner. PHARMACEUTICAL BIOLOGY 2021; 59:1566-1575. [PMID: 34767490 PMCID: PMC8592593 DOI: 10.1080/13880209.2021.1998140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Gambogic amide (GA-amide) is a non-peptide molecule that has high affinity for tropomyosin receptor kinase A (TrkA) and possesses robust neurotrophic activity, but its effect on angiogenesis is unclear. OBJECTIVE The study investigates the antiangiogenic effect of GA-amide on endothelial cells (ECs). MATERIALS AND METHODS The viability of endothelial cells (ECs) treated with 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5 μM GA-amide for 48 h was detected by MTS assay. Wound healing and angiogenesis assays were performed on cells treated with 0.2 μM GA-amide. Chicken eggs at day 7 post-fertilization were divided into the dimethyl sulfoxide (DMSO), bevacizumab (40 μg), and GA-amide (18.8 and 62.8 ng) groups to assess the antiangiogenic effect for 3 days. mRNA and protein expression in cells treated with 0.1, 0.2, 0.4, 0.8, and 1.2 μM GA-amide for 6 h was detected by qRT-PCR and Western blots, respectively. RESULTS GA-amide inhibited HUVEC (IC50 = 0.1269 μM) and NhEC (IC50 = 0.1740 μM) proliferation, induced cell apoptosis, and inhibited the migration and angiogenesis at a relatively safe dose (0.2 μM) in vitro. GA-amide reduced the number of capillaries from 56 ± 14.67 (DMSO) to 20.3 ± 5.12 (62.8 ng) in chick chorioallantoic membrane (CAM) assay. However, inactivation of TrkA couldn't reverse the antiangiogenic effect of GA-amide. Moreover, GA-amide suppressed the expression of VEGF and VEGFR2, and decreased activation of the AKT/mTOR and PLCγ/Erk1/2 pathways. CONCLUSIONS Considering the antiangiogenic effect of GA-amide, it might be developed as a useful agent for use in clinical combination therapies.
Collapse
Affiliation(s)
- Tongtong Sui
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bojun Qiu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiaorong Qu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuxin Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kunnian Ran
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
10
|
Chen ZH, Yan SM, Chen XX, Zhang Q, Liu SX, Liu Y, Luo YL, Zhang C, Xu M, Zhao YF, Huang LY, Liu BL, Xia TL, Xu DZ, Liang Y, Chen YM, Wang W, Yuan SQ, Zhang HZ, Yun JP, Zhai WW, Zeng MS, Bai F, Zhong Q. The genomic architecture of EBV and infected gastric tissue from precursor lesions to carcinoma. Genome Med 2021; 13:146. [PMID: 34493320 PMCID: PMC8422682 DOI: 10.1186/s13073-021-00963-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV)-associated gastric carcinomas (EBVaGCs) present unique molecular signatures, but the tumorigenesis of EBVaGCs and the role EBV plays during this process remain poorly understood. METHODS We applied whole-exome sequencing, EBV genome sequencing, and whole-genome bisulfite sequencing to multiple samples (n = 123) derived from the same patients (n = 25), which covered saliva samples and different histological stages from morphologically normal epithelial tissues to dysplasia and EBVaGCs. We compared the genomic landscape between EBVaGCs and their precursor lesions and traced the clonal evolution for each patient. We also analyzed genome sequences of EBV from samples of different histological types. Finally, the key molecular events promoting the tumor evolution were demonstrated by MTT, IC50, and colony formation assay in vitro experiments and in vivo xenograft experiments. RESULTS Our analysis revealed increasing mutational burden and EBV load from normal tissues and low-grade dysplasia (LD) to high-grade dysplasia (HD) and EBVaGCs, and oncogenic amplifications occurred late in EBVaGCs. Interestingly, within each patient, EBVaGCs and HDs were monoclonal and harbored single-strain-originated EBV, but saliva or normal tissues/LDs had different EBV strains from that in EBVaGCs. Compared with precursor lesions, tumor cells showed incremental methylation in promotor regions, whereas EBV presented consistent hypermethylation. Dominant alterations targeting the PI3K-Akt and Wnt pathways were found in EBV-infected cells. The combinational inhibition of these two pathways in EBV-positive tumor cells confirmed their synergistic function. CONCLUSIONS We portrayed the (epi) genomic evolution process of EBVaGCs, revealed the extensive genomic diversity of EBV between tumors and normal tissue sites, and demonstrated the synergistic activation of the PI3K and Wnt pathways in EBVaGCs, offering a new potential treatment strategy for this disease.
Collapse
Affiliation(s)
- Zhang-Hua Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China
| | - Shu-Mei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Xi-Xi Chen
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China
| | - Qi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Oncology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shang-Xin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yang Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China
| | - Yi-Ling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Zhang
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, USA
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yi-Fan Zhao
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China
| | - Li-Yun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Bin-Liu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Tian-Liang Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Da-Zhi Xu
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yao Liang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Ming Chen
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Wang
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shu-Qiang Yuan
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui-Zhong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Wei-Wei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Integrated Research Building Room 330, School of Life Sciences, Peking University, Yiheyuan Road No.5, Haidian District, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
11
|
Saretz S, Basset G, Useini L, Laube M, Pietzsch J, Drača D, Maksimović-Ivanić D, Trambauer J, Steiner H, Hey-Hawkins E. Modulation of γ-Secretase Activity by a Carborane-Based Flurbiprofen Analogue. Molecules 2021; 26:2843. [PMID: 34064783 PMCID: PMC8151329 DOI: 10.3390/molecules26102843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022] Open
Abstract
All over the world, societies are facing rapidly aging populations combined with a growing number of patients suffering from Alzheimer's disease (AD). One focus in pharmaceutical research to address this issue is on the reduction of the longer amyloid-β (Aβ) fragments in the brain by modulation of γ-secretase, a membrane-bound protease. R-Flurbiprofen (tarenflurbil) was studied in this regard but failed to show significant improvement in AD patients in a phase 3 clinical trial. This was mainly attributed to its low ability to cross the blood-brain barrier (BBB). Here, we present the synthesis and in vitro evaluation of a racemic meta-carborane analogue of flurbiprofen. By introducing the carborane moiety, the hydrophobicity could be shifted into a more favourable range for the penetration of the blood-brain barrier, evident by a logD7.4 value of 2.0. Furthermore, our analogue retained γ-secretase modulator activity in comparison to racemic flurbiprofen in a cell-based assay. These findings demonstrate the potential of carboranes as phenyl mimetics also in AD research.
Collapse
Affiliation(s)
- Stefan Saretz
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; (S.S.); (L.U.)
- Chemische Biologie, Helmholtz-Zentrum für Infektionsforschung, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Gabriele Basset
- Biomedical Center Munich (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, D-81377 München, Germany; (G.B.); (J.T.); (H.S.)
| | - Liridona Useini
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; (S.S.); (L.U.)
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, D-01328 Dresden, Germany; (M.L.); (J.P.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, D-01328 Dresden, Germany; (M.L.); (J.P.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Dijana Drača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (D.M.-I.)
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia; (D.D.); (D.M.-I.)
| | - Johannes Trambauer
- Biomedical Center Munich (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, D-81377 München, Germany; (G.B.); (J.T.); (H.S.)
| | - Harald Steiner
- Biomedical Center Munich (BMC), Metabolic Biochemistry, Ludwig-Maximilians-University, Feodor-Lynen-Straße 17, D-81377 München, Germany; (G.B.); (J.T.); (H.S.)
- German Center for Neurogenerative Diseases (DZNE) Munich, Feodor-Lynen-Straße 17, D-81377 München, Germany
| | - Evamarie Hey-Hawkins
- Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany; (S.S.); (L.U.)
| |
Collapse
|
12
|
Sesquiterpene Lactone Deoxyelephantopin Isolated from Elephantopus scaber and Its Derivative DETD-35 Suppress BRAF V600E Mutant Melanoma Lung Metastasis in Mice. Int J Mol Sci 2021; 22:ijms22063226. [PMID: 33810045 PMCID: PMC8004649 DOI: 10.3390/ijms22063226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Melanoma is a highly metastatic disease with an increasing rate of incidence worldwide. It is treatment refractory and has poor clinical prognosis; therefore, the development of new therapeutic agents for metastatic melanoma are urgently required. In this study, we created a lung-seeking A375LM5IF4g/Luc BRAFV600E mutant melanoma cell clone and investigated the bioefficacy of a plant sesquiterpene lactone deoxyelephantopin (DET) and its novel semi-synthetic derivative, DETD-35, in suppressing metastatic A375LM5IF4g/Luc melanoma growth in vitro and in a xenograft mouse model. DET and DETD-35 treatment inhibited A375LM5IF4g/Luc cell proliferation, and induced G2/M cell-cycle arrest and apoptosis. Furthermore, A375LM5IF4g/Luc exhibited clonogenic, metastatic and invasive abilities, and several A375LM5IF4g/Luc metastasis markers, N-cadherin, MMP2, vimentin and integrin α4 were significantly suppressed by treatment with either compound. Interestingly, DET- and DETD-35-induced Reactive Oxygen Species (ROS) generation and glutathione (GSH) depletion were found to be upstream events important for the in vitro activities, because exogenous GSH supplementation blunted DET and DETD-35 effects on A375LM5IF4g/Luc cells. DET and DETD-35 also induced mitochondrial DNA mutation, superoxide production, mitochondrial bioenergetics dysfunction, and mitochondrial protein deregulation. Most importantly, DET and DETD-35 inhibited lung metastasis of A375LM5IF4g/Luc in NOD/SCID mice through inhibiting pulmonary vascular permeability and melanoma cell (Mel-A+) proliferation, angiogenesis (VEGF+, CD31+) and EMT (N-cadherin) in the tumor microenvironment in the lungs. These findings indicate that DET and DETD-35 may be useful in the intervention of lung metastatic BRAFV600E mutant melanoma.
Collapse
|
13
|
Zhou P, Qin J, Li Y, Li G, Wang Y, Zhang N, Chen P, Li C. Correction to: Combination therapy of PKCζ and COX-2 inhibitors synergistically suppress melanoma metastasis. J Exp Clin Cancer Res 2021; 40:84. [PMID: 33648517 PMCID: PMC7923813 DOI: 10.1186/s13046-021-01885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ping Zhou
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Jiaqi Qin
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yuan Li
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Guoxia Li
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Yinsong Wang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Ning Zhang
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China
| | - Peng Chen
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
| | - Chunyu Li
- Department of Thoracic Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, International Medical School, School of Pharmacy, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
14
|
Fausto de Souza D, Tsering T, Burnier MN, Bravo-Filho V, Dias ABT, Abdouh M, Goyeneche A, Burnier JV. Acetylsalicylic Acid Exerts Potent Antitumor and Antiangiogenic Effects in Cutaneous and Uveal Melanoma Cell Lines. Ocul Oncol Pathol 2020; 6:442-455. [PMID: 33447595 DOI: 10.1159/000510582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Acetylsalicylic acid (ASA) has been investigated for a potential anticancer role in several cancers, such as colorectal, ovarian, and endometrial cancer. Moreover, ASA has been shown to abrogate various processes that contribute to tumor growth and progression. Objective The aim of this study was to evaluate the effects of ASA on cutaneous melanoma (CM) and uveal melanoma (UM). Methods Human CM and UM cells were treated with 5 mM ASA and assessed for changes in cellular functions. Antiangiogenic effects of ASA were determined using an ELISA-based assay for 10 proangiogenic cytokines, and then validated by Western blot. Finally, proteomic analysis of ASA-treated cells was performed to elucidate the changes that may be responsible for ASA-mediated effects in melanoma cells. Results Treatment with ASA significantly inhibited the proliferation, invasion, and migration capabilities, and caused a significant decrease in angiogenin and PIGF secretion in both CM and UM. Mass spectrometry revealed 179 protein changes associated with ASA in the CM and UM cell lines. Conclusions These results suggest that ASA may be effective as an adjuvant therapy in metastatic CM and UM. Future studies are needed to determine the regulating targets that are responsible for the antitumor effects of ASA.
Collapse
Affiliation(s)
| | - Thupten Tsering
- Henry C. Witelson Ocular Pathology Laboratory, McGill University, Montreal, Québec, Canada
| | - Miguel N Burnier
- Henry C. Witelson Ocular Pathology Laboratory, McGill University, Montreal, Québec, Canada
| | - Vasco Bravo-Filho
- Henry C. Witelson Ocular Pathology Laboratory, McGill University, Montreal, Québec, Canada
| | | | - Mohamed Abdouh
- Henry C. Witelson Ocular Pathology Laboratory, McGill University, Montreal, Québec, Canada
| | - Alicia Goyeneche
- Henry C. Witelson Ocular Pathology Laboratory, McGill University, Montreal, Québec, Canada
| | | |
Collapse
|
15
|
Albukhaty S, Al-Musawi S, Abdul Mahdi S, Sulaiman GM, Alwahibi MS, Dewir YH, Soliman DA, Rizwana H. Investigation of Dextran-Coated Superparamagnetic Nanoparticles for Targeted Vinblastine Controlled Release, Delivery, Apoptosis Induction, and Gene Expression in Pancreatic Cancer Cells. Molecules 2020; 25:molecules25204721. [PMID: 33076247 PMCID: PMC7587551 DOI: 10.3390/molecules25204721] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
In the current study, the surface of superparamagnetic iron oxide (SPION) was coated with dextran (DEX), and conjugated with folic acid (FA), to enhance the targeted delivery and uptake of vinblastine (VBL) in PANC-1 pancreatic cancer cells. Numerous analyses were performed to validate the prepared FA-DEX-VBL-SPION, such as field emission scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering (DLS), Zeta Potential, Fourier transform infrared spectroscopy, and vibrating sample magnetometry (VSM). The delivery system capacity was evaluated by loading and release experiments. Moreover, in vitro biological studies, including a cytotoxicity study, cellular uptake assessment, apoptosis analysis, and real-time PCR, were carried out. The results revealed that the obtained nanocarrier was spherical with a suitable dispersion and without visible aggregation. Its average size, polydispersity, and zeta were 74 ± 13 nm, 0.080, and −45 mV, respectively. This dual functional nanocarrier also exhibited low cytotoxicity and a high apoptosis induction potential for successful VBL co-delivery. Real-time quantitative PCR analysis demonstrated the activation of caspase-3, NF-1, PDL-1, and H-ras inhibition, in PANC-1 cells treated with the FA-VBL-DEX-SPION nanostructure. Close inspection of the obtained data proved that the FA-VBL-DEX-SPION nanostructure possesses a noteworthy chemo-preventive effect on pancreatic cancer cells through the inhibition of cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Salim Albukhaty
- Department of Basic Sciences, College of Nursing, University of Misan, Maysan 62001, Iraq;
| | - Sharafaldin Al-Musawi
- Faculty of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq;
- Correspondence:
| | - Salih Abdul Mahdi
- Faculty of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq;
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq;
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.A.); (D.A.S.); (H.R.)
| | - Yaser Hassan Dewir
- College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Dina A. Soliman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.A.); (D.A.S.); (H.R.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.A.); (D.A.S.); (H.R.)
| |
Collapse
|
16
|
Ercoli J, Finetti F, Woodby B, Belmonte G, Miracco C, Valacchi G, Trabalzini L. KRIT1 as a possible new player in melanoma aggressiveness. Arch Biochem Biophys 2020; 691:108483. [PMID: 32735866 DOI: 10.1016/j.abb.2020.108483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Krev interaction trapped protein 1 (KRIT1) is a scaffold protein known to form functional complexes with distinct proteins, including Malcavernin, PDCD10, Rap1 and others. It appears involved in several cellular signaling pathways and exerts a protective role against inflammation and oxidative stress. KRIT1 has been studied as a regulator of endothelial cell functions and represents a determinant in the pathogenesis of Cerebral Cavernous Malformation (CCM), a cerebrovascular disease characterized by the formation of clusters of abnormally dilated and leaky blood capillaries, which predispose to seizures, neurological deficits and intracerebral hemorrhage. Although KRIT1 is ubiquitously expressed, few studies have described its involvement in pathologies other than CCM including cancer. Cutaneous melanoma represents the most fatal skin cancer due to its high metastatic propensity. Despite the numerous efforts made to define the signaling pathways activated during melanoma progression, the molecular mechanisms at the basis of melanoma growth, phenotype plasticity and resistance to therapies are still under investigation.
Collapse
Affiliation(s)
- Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Brittany Woodby
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA
| | - Giuseppe Belmonte
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Clelia Miracco
- Unit of Pathological Anatomy, Department of Medicine, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Valacchi
- Plants for Human Health Institute, NC Research Campus, NC State University, NC, USA; Dept. of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| |
Collapse
|
17
|
Wang DY, McQuade JL, Rai RR, Park JJ, Zhao S, Ye F, Beckermann KE, Rubinstein SM, Johnpulle R, Long GV, Carlino MS, Menzies AM, Davies MA, Johnson DB. The Impact of Nonsteroidal Anti-Inflammatory Drugs, Beta Blockers, and Metformin on the Efficacy of Anti-PD-1 Therapy in Advanced Melanoma. Oncologist 2020; 25:e602-e605. [PMID: 32162820 PMCID: PMC7066699 DOI: 10.1634/theoncologist.2019-0518] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
Anti-programmed cell death protein-1 (anti-PD-1) therapy has greatly improved outcomes of patients with melanoma; however, many fail to respond. Although preclinical studies suggest a potentially synergistic relationship with anti-PD-1 therapy and certain concurrent medications, their clinical role remains unclear. Here, we retrospectively evaluated the use of nonsteroidal anti-inflammatory drugs (NSAIDs) and other drugs in 330 patients with melanoma treated with anti-PD-1 therapy from four academic centers. In the cohort, 37% of patients used NSAIDs including aspirin (acetylsalicylic acid; ASA; 47%), cyclooxygenase (COX)-2 inhibitors (2%), and non-ASA/nonselective COX inhibitor NSAIDs (59%). The objective response rates (ORRs) were similar in patients with NSAID (43.4%) and no NSAID (41.3%) use with no significant difference in overall suvival (OS). There was a trend toward improved progression-free survival (PFS) in patients who took NSAIDs (median PFS: 8.5 vs. 5.2 months; p = .054). Most patients (71.3%) took NSAIDs once daily or as needed. Multivariate analysis did not reveal an association with NSAID use with ORR, PFS, or OS. Concurrent use of metformin or beta blockers did not affect ORR, PFS, or OS. Our study found no conclusive association of concurrent NSAID or other medication use with improved outcomes in patients with melanoma treated with anti-PD-1 therapy. Larger and more systematic analysis is required to confirm these findings.
Collapse
Affiliation(s)
| | | | - Rajat R. Rai
- Melanoma Institute AustraliaSydneyAustralia
- The University of SydneySydneyAustralia
| | - John J. Park
- Royal North Shore and Mater HospitalsSydneyAustralia
| | | | - Fei Ye
- Vanderbilt UniversityNashvilleTenneseeUSA
| | | | | | | | - Georgina V. Long
- Melanoma Institute AustraliaSydneyAustralia
- The University of SydneySydneyAustralia
- Royal North Shore and Mater HospitalsSydneyAustralia
| | - Matteo S. Carlino
- Melanoma Institute AustraliaSydneyAustralia
- The University of SydneySydneyAustralia
- Crown Princess Mary Cancer Centre, Westmead HospitalSydneyAustralia
| | - Alexander M. Menzies
- Melanoma Institute AustraliaSydneyAustralia
- The University of SydneySydneyAustralia
- Royal North Shore and Mater HospitalsSydneyAustralia
| | | | | |
Collapse
|
18
|
He Y, Xiao M, Fu H, Chen L, Qi L, Liu D, Guo P, Chen L, Luo Y, Xiao H, Zhang N, Guo H. cPLA2α reversibly regulates different subsets of cancer stem cells transformation in cervical cancer. Stem Cells 2020; 38:487-503. [PMID: 32100928 DOI: 10.1002/stem.3157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
Cervical cancer stem cells (CCSCs) are considered major causes of chemoresistance/radioresistance and metastasis. Although several cell surface antigens have been identified in CCSCs, these markers vary among tumors because of CSC heterogeneity. However, whether these markers specifically distinguish CCSCs with different functions is unclear. Here, we demonstrated that CCSCs exist in two biologically distinct phenotypes characterized by different levels of cytosolic phospholipase A2α (cPLA2α) expression. Overexpression of cPLA2α results in a CD44+ CD24- phenotype associated with mesenchymal traits, including increased invasive and migration abilities, whereas CCSCs with cPLA2α downregulation express CD133 and show quiescent epithelial characteristics. In addition, cPLA2α regulates the reversible transition between mesenchymal and epithelial CCSC states through PKCζ, an atypical protein kinase C, which governs cancer cell state changes and the maintenance of various embryonic stem cell characteristics, further inhibiting β-catenin-E-cadherin interaction in membrane and promoting β-catenin translocation into the nucleus to affect the transcriptional regulation of stemness signals. We propose that reversible transitions between mesenchymal and epithelial CCSC states regulated by cPLA2α are necessary for cervical cancer metastasis and recurrence. Thus, cPLA2α might be an attractive therapeutic target for eradicating different states of CCSCs to eliminate tumors more effectively.
Collapse
Affiliation(s)
- Yuchao He
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Manyu Xiao
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Hui Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lu Chen
- Department of Hepatobiliary Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Lisha Qi
- The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Dongming Liu
- The Key Laboratory of Tianjin Cancer Prevention and Treatment, National Clinical Research Center for Cancer, Tianjin, People's Republic of China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Piao Guo
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Liwei Chen
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yi Luo
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Huiting Xiao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Ning Zhang
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,The Center for Translational Cancer Research, Peking University First Hospital, Beijing, People's Republic of China
| | - Hua Guo
- Department of Tumor Cell Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| |
Collapse
|
19
|
Tudor DV, Bâldea I, Lupu M, Kacso T, Kutasi E, Hopârtean A, Stretea R, Gabriela Filip A. COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol Med 2020; 17:20-31. [PMID: 32296574 PMCID: PMC7142851 DOI: 10.20892/j.issn.2095-3941.2019.0339] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
With a constantly increasing incidence, cutaneous melanoma has raised the need for a better understanding of its complex microenvironment that may further guide therapeutic options. Melanoma is a model tumor in immuno-oncology. Inflammation represents an important hallmark of cancer capable of inducing and sustaining tumor development. The inflammatory process also orchestrates the adaptative immunosuppression of tumor cells that helps them to evade immune destruction. Besides its role in proliferation, angiogenesis, and apoptosis, cyclooxygenase-2 (COX-2) is a well-known promoter of immune suppression in melanoma. COX-2 inhibitors are closely involved in this condition. This review attempts to answer two controversial questions: is COX-2 a valuable prognostic factor? Among all COX-2 inhibitors, is celecoxib a suitable adjuvant in melanoma therapy?
Collapse
Affiliation(s)
- Diana Valentina Tudor
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Ioana Bâldea
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Mihai Lupu
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Teodor Kacso
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Eniko Kutasi
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Andreea Hopârtean
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Roland Stretea
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| | - Adriana Gabriela Filip
- Department of Physiology, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca 400000, Romania
| |
Collapse
|
20
|
Wu JC, Tsai HE, Hsiao YH, Wu JS, Wu CS, Tai MH. Topical MTII Therapy Suppresses Melanoma Through PTEN Upregulation and Cyclooxygenase II Inhibition. Int J Mol Sci 2020; 21:ijms21020681. [PMID: 31968661 PMCID: PMC7013727 DOI: 10.3390/ijms21020681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/21/2023] Open
Abstract
Melanotan II (MTII), a synthetic analogue of the alpha-melanocyte stimulating hormone (α-MSH), has been applied for skin tanning in humans. However, the carcinogenic consequence of topical MTII has been equivocal. This study aims to delineate the anti-neoplastic efficacy and mechanism of MTII using the B16-F10 melanoma model in vitro and in vivo. It was found that, despite a lack of influence on proliferation, MTII potently inhibited the migration, invasion, and colony-forming capability of melanoma cells. Moreover, topical MTII application significantly attenuated the tumor progression in mice bearing established melanoma. Histological analysis revealed that MTII therapy induced apoptosis while inhibiting the proliferation and neovaluarization in melanoma tissues. By immunoblot and immunohistochemical analysis, it was found that MTII dose-dependently increased the phosphatase and tensin homolog (PTEN) protein level while reducing PTEN phosphorylation, which resulted in the inhibition of AKT/nuclear factor kappa B (NFκB) signaling. Consistently, MTII treatment inhibited cyclooxygenase II (COX-2) expression and prostaglandin E2 (PGE2) production in melanoma cells. Finally, studies of antibody neutralization suggest that the melanocortin 1 receptor (MC1R) plays a critical role in MTII-induced PTEN upregulation and melanoma suppression. Together, these results indicate that MTII elicits PTEN upregulation via MC1R, thereby suppressing melanoma progression through downregulating COX-2/PGE2 signaling. Hence, topical MTII therapy may facilitate a novel therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Jian-Ching Wu
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Han-En Tsai
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (H.-E.T.); (Y.-H.H.); (J.-S.W.)
| | - Yi-Hsiang Hsiao
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (H.-E.T.); (Y.-H.H.); (J.-S.W.)
| | - Ji-Syuan Wu
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (H.-E.T.); (Y.-H.H.); (J.-S.W.)
| | - Chieh-Shan Wu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- Department of Dermatology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 81362, Taiwan
- Correspondence: (C.-S.W.); (M.-H.T.); Tel.: +886-7-3468080 (C.-S.W.); +886-7-5252000 (ext. 5816) (M.-H.T.); Fax: +886-7-3468210 (C.-S.W.); +886-7-5250197 (M.-H.T.)
| | - Ming-Hong Tai
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 80424, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (H.-E.T.); (Y.-H.H.); (J.-S.W.)
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (C.-S.W.); (M.-H.T.); Tel.: +886-7-3468080 (C.-S.W.); +886-7-5252000 (ext. 5816) (M.-H.T.); Fax: +886-7-3468210 (C.-S.W.); +886-7-5250197 (M.-H.T.)
| |
Collapse
|
21
|
Sheng J, Sun H, Yu FB, Li B, Zhang Y, Zhu YT. The Role of Cyclooxygenase-2 in Colorectal Cancer. Int J Med Sci 2020; 17:1095-1101. [PMID: 32410839 PMCID: PMC7211146 DOI: 10.7150/ijms.44439] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer is the third common cancer in this world, accounting for more than 1 million cases each year. However, detailed etiology and mechanism of colorectal cancer have not been fully understood. For example, cyclooxygenase-2 (COX-2) and its product prostaglandin E2 (PGE2) have been closely linked to its occurrence, progression and prognosis. However, the mechanisms on how COX-2 and PGE2-mediate the pathogenesis of colorectal cancer are obscure. In this review, we have summarized recent advances in studies of pathogenesis and control in colorectal cancer to assist further advances in the research for the cure of the cancer. In addition, the knowledge gained may also guide the audiences for reduction of the risk and control of this deadly disease.
Collapse
Affiliation(s)
- Juan Sheng
- Department of Gastroenterology, the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Hong Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Fu-Bing Yu
- Department of Gastroenterology, the Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Bo Li
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Yuan Zhang
- Tissue Tech Inc, Miami, Florida 33032, USA
| | | |
Collapse
|
22
|
COX-2 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:87-104. [PMID: 33119867 DOI: 10.1007/978-3-030-50224-9_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumorigenesis is a multistep, complicated process, and many studies have been completed over the last few decades to elucidate this process. Increasingly, many studies have shifted focus toward the critical role of the tumor microenvironment (TME), which consists of cellular players, cell-cell communications, and extracellular matrix (ECM). In the TME, cyclooxygenase-2 (COX-2) has been found to be a key molecule mediating the microenvironment changes. COX-2 is an inducible form of the enzyme that converts arachidonic acid into the signal transduction molecules (thromboxanes and prostaglandins). COX-2 is frequently expressed in many types of cancers and has been closely linked to its occurrence, progression, and prognosis. For example, COX-2 has been shown to (1) regulate tumor cell growth, (2) promote tissue invasion and metastasis, (3) inhibit apoptosis, (4) suppress antitumor immunity, and (5) promote sustainable angiogenesis. In this chapter, we summarize recent advances of studies that have evaluated COX-2 signaling in TME.
Collapse
|
23
|
Li CY, Wang Q, Wang XM, Li GX, Shen S, Wei XL. Gambogic acid exhibits anti-metastatic activity on malignant melanoma mainly through inhibition of PI3K/Akt and ERK signaling pathways. Eur J Pharmacol 2019; 864:172719. [PMID: 31586634 DOI: 10.1016/j.ejphar.2019.172719] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022]
Abstract
Gambogic acid (GA) is a potential anti-cancer compound that is extracted from the resin of Garciania hanburyi. The present study was designed to evaluate the anti-metastatic effect of GA on melanoma cell lines in vitro and to explore the underlying mechanism. The anti-proliferative activity of GA on melanoma cells was assessed by CCK-8 assay. The Wound-healing, transwell, adhesion, and tube formation assays were performed to examine the inhibition of GA on the cell's migration, invasion, adhesion, and angiogenesis capacities, respectively. Enzymatic activity of MMP-2 and MMP-9 were detected by gelatin zymography assay. Protein expressions regulated by GA treatment were tested by Western blot assay. The present results showed that GA significantly inhibited the proliferation of highly metastatic melanoma A375, B16-F10 cells and human umbilical vein endothelial cells (HUVECs) in time- and doses-dependent manners. Furthermore, GA significantly inhibited the migratory, invasive and adhesive properties of A375 and B16-F10 cells, and tube-forming potential of HUVECs at sub-IC50 concentrations, where no significant cytotoxicity was observed. Mechanistically, GA treatment suppressed the EMT and angiogenesis processes and reduced the enzymatic activity of MMP-2 and MMP-9. Moreover, abnormal PI3K/Akt and ERK signaling pathways in A375 and B16-F10 cells and HUVECs were notably suppressed by GA treatment. Collectively, our results suggest that GA exerts anti-metastasis activity in melanoma cells by suppressing the EMT and angiogenesis through the PI3K/Akt and ERK signaling pathways, and might be used as a phytomedicine against metastatic melanoma.
Collapse
Affiliation(s)
- Chun-Yu Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China.
| | - Qi Wang
- Department of Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, No. 507 Zhengmin, Yangpu District, Shanghai, 200433, China
| | - Xiao-Min Wang
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Guo-Xia Li
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Shen Shen
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| | - Xiao-Lu Wei
- Department of Integrated Chinese Traditional and Western Medicine, International Medical School, Tianjin Medical University, No. 22 Qixiangtai, Heping District, Tianjin, 300070, China
| |
Collapse
|
24
|
Zhang T, Liu H, Li Y, Li C, Wan G, Chen B, Li C, Wang Y. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic breast cancer through combining chemotherapy and COX-2 inhibition. Acta Biomater 2019; 99:412-425. [PMID: 31494294 DOI: 10.1016/j.actbio.2019.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 12/25/2022]
Abstract
Metastasis and chemotherapy resistance are the leading causes of breast cancer mortality. Celecoxib (CXB), a selective cyclooxygenase-2 (COX-2) inhibitor, has antiangiogenetic activity and inhibitory effect on tumor metastasis, and can also enhance the sensitivity of chemotherapeutic drug doxorubicin (DOX) in breast cancer. To combine anticancer effects of DOX and CXB more efficiently, we designed a pH-sensitive nanotherapeutic system based on propylene glycol alginate sodium sulfate (PSS), a marine sulfated polysaccharide that possesses anti-platelet aggregation activity and has been used as a heparinoid drug in China. A facile one-pot nanoprecipitation method was used to prepare this nanotherapeutic system named as PSS@DC nanoparticles, in which DOX and CXB were complexed to form hydrophobic nanocores and PPS coated these nanocores through conjugation with DOX via a highly acid-labile benzoic-imine linker. PSS@DC nanoparticles showed distinct pH-sensitivity and significantly accelerated the release of DOX at the acidic pH mimicking the tumor microenvironment and endocytic-related organelles. Compared to single- and mixed-drug treatments, PSS@DC nanoparticles notably inhibited the growth of mouse breast cancer 4T1 cells with an IC50 of about 0.82 μg/mL DOX, and meanwhile reduced cell migration, invasion and adhesion abilities more efficiently. In 4T1 tumor-bearing mice, PSS@DC nanoparticles exhibited good tumor-targeting ability and markedly inhibited tumor growth with an inhibition rate of approximately 73.3%, and furthermore suppressed tumor metastasis through anti-angiogenesis. In summary, this nanotherapeutic system shows a great potential for the treatment of metastatic breast cancer by combining chemotherapy and COX-2 inhibitor. STATEMENT OF SIGNIFICANCE: A pH-sensitive nanotherapeutic system (PSS@DC nanoparticles) containing both chemotherapeutic drug doxorubicin (DOX) and COX-2 specific inhibitor celecoxib was designed based on a marine sulfated polysaccharide that possesses anti-platelet aggregation activity and has been used as a heparinoid drug in China. PSS@DC nanoparticles had distinct pH-sensitivity and could accelerate the release of DOX at the acidic pH values of tumor microenvironment and endocytic-related organelles. Both in vitro and in vivo, PSS@DC nanoparticles showed synergistic effects on the suppression of breast tumor growth and metastasis by combining chemotherapy and COX-2 inhibition.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Hui Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Yating Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin 300070, China.
| | - Guoyun Wan
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Bowei Chen
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, Key Laboratory of Glycoscience and Glycotechnology of Shandong Province, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yinsong Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
25
|
Resveratrol-mediated inhibition of cyclooxygenase-2 in melanocytes suppresses melanogenesis through extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt signalling. Eur J Pharmacol 2019; 860:172586. [PMID: 31377156 DOI: 10.1016/j.ejphar.2019.172586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), has been reported to exert a variety of important pharmacological effects including anti-inflammatory, anticancer, and direct inhibition of tyrosinase. This study aimed to examine the expression of melanogenic molecules following down-regulation of cyclooxygenase (COX)-2 expression by resveratrol and the related signal transduction pathways in mouse B16F10 melanoma cells and zebrafish larvae. We report that resveratrol suppressed COX-2 in melanocytes and decreased the expressions of tyrosinase and microphthalmia-associated transcription factor (MITF). Furthermore, inhibition of COX-2 with NS398 enhanced resveratrol-reduced tyrosinase and MITF expression. Resveratrol also induced phosphorylation of extracellular signal-regulated 1/2 (ERK1/2) and phosphoinositide-3 (PI-3)-kinase/Akt. Inhibition of ERK1/2 or PI-3K/Akt by PD98059 and LY294002 restored the decreased tyrosinase activity and MITF expression via resveratrol-mediated down-regulation of COX-2. Additionally, resveratrol inhibited body pigmentation in zebrafish. These results indicated that resveratrol inhibited melanogenesis by down-regulating COX-2 via ERK1/2 and PI-3K/Akt pathways in B16F10 cells.
Collapse
|
26
|
Kyriakou S, Mitsiogianni M, Mantso T, Cheung W, Todryk S, Veuger S, Pappa A, Tetard D, Panayiotidis MI. Anticancer activity of a novel methylated analogue of L-mimosine against an in vitro model of human malignant melanoma. Invest New Drugs 2019; 38:621-633. [PMID: 31240512 PMCID: PMC7211211 DOI: 10.1007/s10637-019-00809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022]
Abstract
The anticancer activity of a series of novel synthesized, hydroxypyridone-based metal chelators (analogues of L-mimosine) was evaluated in an in vitro model of melanoma consisting of malignant melanoma (A375), non-melanoma epidermoid carcinoma (A431) and immortalized non-malignant keratinocyte (HaCaT) cells. More specifically, we have demonstrated that the L-enantiomer of a methylated analogue of L-mimosine (compound 22) can exert a potent anticancer effect in A375 cells when compared to either A431 or HaCaT cells. Moreover, we have demonstrated that this analogue has the ability to i) promote increased generation of reactive oxygen species (ROS), ii) activate both intrinsic and extrinsic apoptosis and iii) induce perturbations in cell cycle growth arrest. Our data highlights the potential of compound 22 to act as a promising therapeutic agent against an in vitro model of human malignant melanoma.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Theodora Mantso
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - William Cheung
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Stephen Todryk
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Stephany Veuger
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - David Tetard
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | | |
Collapse
|
27
|
Ahmed KS, Shan X, Mao J, Qiu L, Chen J. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1448-1458. [DOI: 10.1016/j.msec.2019.02.095] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/29/2019] [Accepted: 02/24/2019] [Indexed: 01/06/2023]
|
28
|
Buzharevski A, Paskas S, Laube M, Lönnecke P, Neumann W, Murganic B, Mijatovic S, Maksimovic-Ivanic D, Pietzsch J, Hey-Hawkins E. Carboranyl Analogues of Ketoprofen with Cytostatic Activity against Human Melanoma and Colon Cancer Cell Lines. ACS OMEGA 2019; 4:8824-8833. [PMID: 31459970 PMCID: PMC6648485 DOI: 10.1021/acsomega.9b00412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/17/2019] [Indexed: 05/04/2023]
Abstract
Ketoprofen is a widely used nonsteroidal anti-inflammatory drug (NSAID) that also exhibits cytotoxic activity against various cancers. This makes ketoprofen an attractive structural lead for the development of new NSAIDs and cytotoxic agents. Recently, the incorporation of carboranes as phenyl mimetics in structures of established drugs has emerged as an attractive strategy in drug design. Herein, we report the synthesis and evaluation of four novel carborane-containing derivatives of ketoprofen, two of which are prodrug esters with an nitric oxide-releasing moiety. One of these prodrug esters exhibited high cytostatic activity against melanoma and colon cancer cell lines. The most pronounced activity was found in cell lines that are sensitive to oxidative stress, which was apparently induced by the ketoprofen analogue.
Collapse
Affiliation(s)
- Antonio Buzharevski
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Svetlana Paskas
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Markus Laube
- Institut
für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
| | - Peter Lönnecke
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Wilma Neumann
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
| | - Blagoje Murganic
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Sanja Mijatovic
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Danijela Maksimovic-Ivanic
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”, Belgrade University, Belgrade 11060, Serbia
| | - Jens Pietzsch
- Institut
für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, Mommsenstrasse 4, D-01062 Dresden, Germany
| | - Evamarie Hey-Hawkins
- Institut
für Anorganische Chemie, Universität
Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
- E-mail: . Fax: (+49)341-9739319
| |
Collapse
|
29
|
Abstract
Inhibition of BRAF improves therapeutic efficacy of BRAF-mutant melanoma. However, drug resistance to BRAF inhibitor is inevitable, and the drug resistance mechanisms still remain to be elucidated. Here, BRAF mutant cells A375 and SK-MEL-28 were chosen and treated with BRAF inhibitor vemurafenib, and the results showed that the ERK signaling pathway was blocked in these cells. Then, vemurafenib-resistant cells were constructed, and we found that drug resistance-related gene P-gp was overexpressed in the two cell lines. In addition, the histone acetylation was significantly increased on the P-gp promoter region, which suggested that the epigenetic modification participated in the P-gp overexpression. Furthermore, JQ1, a bromodomain inhibitor, was added to the vemurafenib-resistant cells and sensitizes the vemurafenib-induced melanoma cell apoptosis. In C57BL/6 mice intravenously injected with vemurafenib-resistant melanoma cells, cotreatment of vemurafenib and JQ1 also severely suppressed melanoma lung metastasis. Taken together, our findings may have important implications for the combined use of vemurafenib and JQ1 in the therapy for melanoma treatment.
Collapse
|
30
|
Mazzoni M, Mauro G, Erreni M, Romeo P, Minna E, Vizioli MG, Belgiovine C, Rizzetti MG, Pagliardini S, Avigni R, Anania MC, Allavena P, Borrello MG, Greco A. Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:208. [PMID: 31113465 PMCID: PMC6528237 DOI: 10.1186/s13046-019-1198-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Thyroid carcinoma includes several variants characterized by different biological and clinical features: from indolent microcarcinoma to undifferentiated and aggressive anaplastic carcinoma. Inflammation plays a critical role in thyroid tumors. Conditions predisposing to cancer, as well as oncogene activity, contribute to the construction of an inflammatory microenvironment that facilitates thyroid tumor progression. Moreover, oncogene-induced senescence, a mechanism tightly connected with inflammation, and able to restrain or promote cancer progression, is involved in thyroid cancer. The interactions between thyroid tumor cells and the microenvironment are not completely clarified. METHODS We characterize in vitro the interplay between macrophages and senescent thyrocytes and tumor-derived cell lines, modeling early and late thyroid tumor stages, respectively. Purified peripheral blood-derived human monocytes were exposed to thyroid cell-derived conditioned medium (CM) and assessed for phenotype by flow cytometry. The factors secreted by thyroid cells and macrophages were identified by gene expression analysis and ELISA. The protumoral effect of macrophages was assessed by wound healing assay on K1 thyroid tumor cells. The expression of PTGS2 and M2 markers in thyroid tumors was investigated in publicly available datasets. RESULTS Human monocytes exposed to CM from senescent thyrocytes and thyroid tumor cell lines undergo M2-like polarization, showing high CD206 and low MHC II markers, and upregulation of CCL17 secretion. The obtained M2-like macrophages displayed tumor-promoting activity. Among genes overexpressed in polarizing cells, we identified the prostaglandin-endoperoxide synthase enzyme (PTGS2/COX-2), which is involved in the production of prostaglandin E2 (PGE2). By using COX-2 inhibitors we demonstrated that the M2-like polarization ability of thyroid cells is related to the production of PGE2. Co-expression of PTGS2 and M2 markers is observed a significant fraction of human thyroid tumors. CONCLUSIONS Our results demonstrate that both senescent thyrocytes and thyroid tumor cell lines trigger M2-like macrophage polarization that is related to PGE2 secretion. This suggests that the interaction with the microenvironment occurs at both early and late thyroid tumor stages, and favors tumor progression. The co-expression of PTGS2 gene and M2 markers in human thyroid carcinoma highlights the possibility to counteract tumor growth through COX-2 inhibition.
Collapse
Affiliation(s)
- Mara Mazzoni
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy
| | - Giuseppe Mauro
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy
| | - Marco Erreni
- Department of Immunology, IRCCS Humanitas Clinical and Research Center, Via Manzoni, 56, 20089, Rozzano, Milan, Italy.
| | - Paola Romeo
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy
| | - Emanuela Minna
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy
| | - Maria Grazia Vizioli
- Beatson Institute for Cancer Research, Bearsden, Glasgow, UK.,Institute of Cancer Sciences College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Cristina Belgiovine
- Department of Immunology, IRCCS Humanitas Clinical and Research Center, Via Manzoni, 56, 20089, Rozzano, Milan, Italy
| | - Maria Grazia Rizzetti
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy
| | - Sonia Pagliardini
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy
| | - Roberta Avigni
- Department of Immunology, IRCCS Humanitas Clinical and Research Center, Via Manzoni, 56, 20089, Rozzano, Milan, Italy
| | - Maria Chiara Anania
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy
| | - Paola Allavena
- Department of Immunology, IRCCS Humanitas Clinical and Research Center, Via Manzoni, 56, 20089, Rozzano, Milan, Italy
| | - Maria Grazia Borrello
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy
| | - Angela Greco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G.A. Amadeo, 42, 20133, Milan, Italy.
| |
Collapse
|
31
|
Role of PGE-2 and Other Inflammatory Mediators in Skin Aging and Their Inhibition by Topical Natural Anti-Inflammatories. COSMETICS 2019. [DOI: 10.3390/cosmetics6010006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human skin aging is due to two types of aging processes, “intrinsic” (chronological) aging and “extrinsic” (external factor mediated) aging. While inflammatory events, triggered mainly by sun exposure, but also by pollutants, smoking and stress, are the principle cause of rapid extrinsic aging, inflammation also plays a key role in intrinsic aging. Inflammatory events in the skin lead to a reduction in collagen gene activity but an increase in activity of the genes for matrix metalloproteinases. Inflammation also alters proliferation rates of cells in all skin layers, causes thinning of the epidermis, a flattening of the dermo-epidermal junction, an increase in irregular pigment production, and, finally, an increased incidence of skin cancer. While a large number of inflammatory mediators, including IL-1, TNF-alpha and PGE-2, are responsible for many of these damaging effects, this review will focus primarily on the role of PGE-2 in aging. Levels of this hormone-like mediator increase quickly when skin is exposed to ultraviolet radiation (UVR), causing changes in genes needed for normal skin structure and function. Further, PGE-2 levels in the skin gradually increase with age, regardless of whether or not the skin is protected from UVR, and this smoldering inflammation causes continuous damage to the dermal matrix. Finally, and perhaps most importantly, PGE-2 is strongly linked to skin cancer. This review will focus on: (1) the role of inflammation, and particularly the role of PGE-2, in accelerating skin aging, and (2) current research on natural compounds that inhibit PGE-2 production and how these can be developed into topical products to retard or even reverse the aging process, and to prevent skin cancer.
Collapse
|
32
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
33
|
Zhang D, Lin J, Chao Y, Zhang L, Jin L, Li N, He R, Ma B, Zhao W, Han C. Regulation of the adaptation to ER stress by KLF4 facilitates melanoma cell metastasis via upregulating NUCB2 expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:176. [PMID: 30055641 PMCID: PMC6064624 DOI: 10.1186/s13046-018-0842-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/13/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Adaptation to ER stress has been indicated to play an important role in resistance to therapy in human melanoma. However, the relationship between adaptation to ER stress and cell metastasis in human melanoma remains unclear. METHODS The relationship of adaptation to ER stress and cell metastasis was investigated using transwell and mouse metastasis assays. The potential molecular mechanism of KLF4 in regulating the adaptation to ER stress and cell metastasis was investigated using RNA sequencing analysis, q-RT-PCR and western blot assays. The transcriptional regulation of nucleobindin 2 (NUCB2) by KLF4 was identified using bioinformatic analysis, luciferase assay, and chromatin immunoprecipitation (ChIP). The clinical significance of KLF4 and NUCB2 was based on human tissue microarray (TMA) analysis. RESULTS Here, we demonstrated that KLF4 was induced by ER stress in melanoma cells, and increased KLF4 inhibited cell apoptosis and promoted cell metastasis. Further mechanistic studies revealed that KLF4 directly bound to the promoter of NUCB2, facilitating its transcription. Additionally, an increase in KLF4 promoted melanoma ER stress resistance, tumour growth and cell metastasis by regulating NCUB2 expression in vitro and in vivo. Elevated KLF4 was found in human melanoma tissues, which was associated with NUCB2 expression. CONCLUSION Our data revealed that the promotion of ER stress resistance via the KLF4-NUCB2 axis is essential for melanoma cell metastasis, and KLF4 may be a promising specific target for melanoma therapy.
Collapse
Affiliation(s)
- Dongmei Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.,Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jingrong Lin
- Department of Dermatology, the First Affiliated Hospital, Dalian Medical University, Liaoning, 116027, China
| | - Yulin Chao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Lu Zhang
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Lei Jin
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Na Li
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ruiping He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Binbin Ma
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Wenzhi Zhao
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
34
|
Marzagalli M, Moretti RM, Messi E, Marelli MM, Fontana F, Anastasia A, Bani MR, Beretta G, Limonta P. Targeting melanoma stem cells with the Vitamin E derivative δ-tocotrienol. Sci Rep 2018; 8:587. [PMID: 29330434 PMCID: PMC5766483 DOI: 10.1038/s41598-017-19057-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
The prognosis of metastatic melanoma is very poor, due to the development of drug resistance. Cancer stem cells (CSCs) may play a crucial role in this mechanism, contributing to disease relapse. We first characterized CSCs in melanoma cell lines. We observed that A375 (but not BLM) cells are able to form melanospheres and show CSCs traits: expression of the pluripotency markers SOX2 and KLF4, higher invasiveness and tumor formation capability in vivo with respect to parental adherent cells. We also showed that a subpopulation of autofluorescent cells expressing the ABCG2 stem cell marker is present in the A375 spheroid culture. Based on these data, we investigated whether δ-TT might target melanoma CSCs. We demonstrated that melanoma cells escaping the antitumor activity of δ-TT are completely devoid of the ability to form melanospheres. In contrast, cells that escaped vemurafenib treatment show a higher ability to form melanospheres than control cells. δ-TT also induced disaggregation of A375 melanospheres and reduced the spheroidogenic ability of sphere-derived cells, reducing the expression of the ABCG2 marker. These data demonstrate that δ-TT exerts its antitumor activity by targeting the CSC subpopulation of A375 melanoma cells and might represent a novel chemopreventive/therapeutic strategy against melanoma.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Elio Messi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Alessia Anastasia
- Laboratory of Biology and Treatment of Metastasis, IRCCS-Mario Negri Institute for Pharmacological Research, Milano, 20156, Italy
| | - Maria Rosa Bani
- Laboratory of Biology and Treatment of Metastasis, IRCCS-Mario Negri Institute for Pharmacological Research, Milano, 20156, Italy
| | - Giangiacomo Beretta
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, 20133, Italy.
| |
Collapse
|