1
|
Li J, Hou H, Li J, Zhang K. Angiopoietins/Tie2 signaling axis and its role in angiogenesis of psoriasis. Acta Histochem 2025; 127:152228. [PMID: 39752990 DOI: 10.1016/j.acthis.2024.152228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 03/01/2025]
Abstract
Hyperplasia of microvessels in the superficial dermis is the main pathological feature of psoriasis, and is linked to the pathogenesis of psoriasis. Thus, anti-angiogenic therapy may be effective for psoriasis. Angiopoietins (Angs) are crucial angiogenic factors. Ang1 supports a static mature vascular phenotype, while Ang2 is associated with the formation of abnormal vascular structure, vascular leakage and inflammation. The Ang/Tie2 axis and its signal transduction play an important role in regulation of vascular stability, angiogenesis and inflammation. Targeting the Ang/Tie2 signal axis can normalize microvessels in psoriatic lesions. This paper reviews Ang/Tie2 signal axis and its role in angiogenesis of psoriasis, aiming to provide new ideas and strategies for anti-angiogenic therapy of psoriasis.
Collapse
Affiliation(s)
- Jiao Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province 030009, China
| | - Hui Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province 030009, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province 030009, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, No. 5 Dong San Dao Xiang, Jiefang Road, Taiyuan, Shanxi Province 030009, China.
| |
Collapse
|
2
|
Ludwig B, Krautkremer N, Tomassi S, Di Maro S, Di Leva FS, Benge A, Nieberler M, Kessler H, Marinelli L, Kossatz S, Reuning U. Switching Roles─Exploring Concentration-Dependent Agonistic versus Antagonistic Behavior of Integrin Ligands. J Med Chem 2025; 68:4334-4351. [PMID: 39908297 PMCID: PMC11874007 DOI: 10.1021/acs.jmedchem.4c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Identification of integrins as cancer targets has stimulated the development of specific inhibitory ligands. However, following cilengitide's unexpected clinical failure by promoting angiogenesis at low concentrations, pure ligand antagonism was soon scrutinized. We evaluated αvβ3, αvβ6, or α5β1 ligands for concentration-dependent functional switches in respective integrin subtype-overexpressing cancer cells. Cilengitide (L2) or L1 provoked minor transient changes in (p)-FAK and (p)-p44/42(erk-1/2) predominantly at low concentrations and antagonized cell migration at high concentrations, while agonistically accelerating it at low concentrations. L5 (α5β1) showed bell-shaped FAK activation at both concentrations, blocking cell migration at high concentrations only in α5β1+ OV-MZ-6 cells, not acting agonistically. L3 (αvβ6) did not alter signaling upon long exposure but transiently and early activated FAK in αvβ6+ HN cells at both concentrations, with neither antagonistic nor agonistic consequences on cell motility. These data underscore the need for in-depth evaluation of ligand actions to ensure their most promising medical use.
Collapse
Affiliation(s)
- Beatrice
Stefanie Ludwig
- Department
of Nuclear Medicine, School of Medicine & Health, Klinikum rechts
der Isar, TUM University Hospital, Technical
University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Central Institute
for Translational Cancer Research (TranslaTUM), School of Medicine
& Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Nils Krautkremer
- Department
of Oral and Maxillofacial Surgery, School of Medicine & Health,
Klinikum rechts der Isar, TUM University
Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Stefano Tomassi
- UNINA
−
Department of Pharmacy, University of Naples
Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Salvatore Di Maro
- SUN −
Department of Environmental, Biological and Pharmaceutical Sciences
and Technologies, Università degli
Studi della Campania “Luigi Vanvitelli”, Viale Abramo Lincoln, 5, Caserta 81100, Italy
| | - Francesco Saverio Di Leva
- UNINA
−
Department of Pharmacy, University of Naples
Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Anke Benge
- Department
of Obstetrics & Gynecology, School of Medicine & Health, Clinical
Research Unit, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Markus Nieberler
- Department
of Oral and Maxillofacial Surgery, School of Medicine & Health,
Klinikum rechts der Isar, TUM University
Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Horst Kessler
- Department
of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Institute for Advanced Study, Technical University
Munich, Lichtenbergstrasse
2a, Garching 85748, Germany
| | - Luciana Marinelli
- UNINA
−
Department of Pharmacy, University of Naples
Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Susanne Kossatz
- Department
of Nuclear Medicine, School of Medicine & Health, Klinikum rechts
der Isar, TUM University Hospital, Technical
University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Central Institute
for Translational Cancer Research (TranslaTUM), School of Medicine
& Health, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
- Department
of Chemistry, School of Natural Sciences, Technical University Munich, Ismaninger Strasse 22, Munich 81675, Germany
| | - Ute Reuning
- Department
of Obstetrics & Gynecology, School of Medicine & Health, Clinical
Research Unit, Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich, Ismaninger Strasse 22, Munich 81675, Germany
| |
Collapse
|
3
|
da Silva JR, Castro-Amorim J, Mukherjee AK, Ramos MJ, Fernandes PA. The application of snake venom in anticancer drug discovery: an overview of the latest developments. Expert Opin Drug Discov 2025:1-19. [PMID: 40012249 DOI: 10.1080/17460441.2025.2465364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Snake venom is a rich source of toxins with great potential for therapeutic applications. In addition to its efficacy in treating hypertension, acute coronary syndrome, and other heart conditions, research has shown that this potent enzymatic cocktail is capable of selectively targeting and destroying cancer cells in many cases while sparing healthy cells. AREAS COVERED The authors begin by acknowledging the emerging trends in snake-derived targeted therapies in battling cancer. An extensive literature review examining the effects of various snake venom toxins on cancer cell lines, highlighting the specific cancer hallmarks each toxin targets is presented. Furthermore, the authors emphasize the emerging potential of artificial intelligence in accelerating snake venom-based drug discovery for cancer treatment, showcasing several innovative software applications in this field. EXPERT OPINION Research on snake venom toxins indicates promising potential for cancer treatment as many of the discussed toxins can specifically target cancer cells. Nevertheless, variations in the composition of venoms, ethical issues, and delivery barriers limit their development into effective therapies. Thus, advances in biotechnology, molecular engineering, in silico methods are crucial for the refinement of venom-derived compounds, improving their specificity, and overcoming these challenges, ultimately enhancing their therapeutic potential in cancer therapy.
Collapse
Affiliation(s)
- Joana R da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ashis K Mukherjee
- Vigyan Path Garchuk, Paschim Boragaon institution, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Ka M, Matsumoto Y, Ando T, Hinata M, Xi Q, Sugiura Y, Iida T, Nakagawa N, Tokunaga M, Watanabe K, Kawakami M, Ushiku T, Sato M, Oda K, Kage H. Integrin-α5 expression and its role in non-small cell lung cancer progression. Cancer Sci 2025; 116:406-419. [PMID: 39581761 PMCID: PMC11786322 DOI: 10.1111/cas.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Integrins are transmembrane receptors that facilitate cell adhesion to the extracellular matrix and neighboring cells. Aberrant expression of integrins has been associated with tumor progression and metastasis in various cancer types. Integrin alpha-5 (ITGA5) is an integrin subtype that serves as a receptor for fibronectin, fibrinogen, and fibrillin-1. The purpose of this study was to elucidate how ITGA5 expression plays a role in human non-small cell lung cancer (NSCLC). Our clinical data, along with data retrieved from The Cancer Genome Database (TCGA), revealed that high ITGA5 expression in NSCLC patients was associated with a lower recurrence-free survival and overall survival. In our in vitro functional assays, ITGA5 overexpression in human NSCLC cell lines resulted in increased cell size, adhesion, and migration properties, while knockdown of ITGA5 restored the phenotypes. Correspondingly, knockdown and inhibition of ITGA5 in endogenously high-expressing NSCLC cell lines resulted in decreased cell size, adhesion, migration, and proliferation. The antiproliferative effect was also confirmed by a reduction in Ki-67 without discernible changes in apoptosis. Collectively, these findings reveal the significant role of ITGA5 in various functional behaviors in NSCLC, providing a potential therapeutic target for NSCLC patients with high ITGA5 expression.
Collapse
Affiliation(s)
- Mirei Ka
- Division of Integrative GenomicsThe University of TokyoTokyoJapan
| | - Yoko Matsumoto
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| | - Takahiro Ando
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| | | | - Qian Xi
- Division of Integrative GenomicsThe University of TokyoTokyoJapan
| | - Yuriko Sugiura
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| | - Takahiro Iida
- Department of Thoracic SurgeryThe University of TokyoTokyoJapan
| | - Natsuki Nakagawa
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| | | | - Kousuke Watanabe
- Next‐Generation Precision Medicine Development Laboratory, Graduate School of MedicineThe University of TokyoTokyoJapan
| | | | - Tetsuo Ushiku
- Department of PathologyThe University of TokyoTokyoJapan
| | - Masaaki Sato
- Department of Thoracic SurgeryThe University of TokyoTokyoJapan
| | - Katsutoshi Oda
- Division of Integrative GenomicsThe University of TokyoTokyoJapan
| | - Hidenori Kage
- Department of Respiratory MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
5
|
Shibata S, Yamada K, Kon S. Carnosic acid inhibits integrin expression and prevents pulmonary metastasis of melanoma. Biosci Biotechnol Biochem 2025; 89:284-293. [PMID: 39577858 DOI: 10.1093/bbb/zbae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Carnosic acid is a naturally occurring, plant-derived polyphenolic abietane diterpene with antitumor properties. However, its underlying mechanisms are still unclear. Therefore, we investigated the effects of carnosic acid on lung metastasis in a murine melanoma model. C57BL/6 mice were intravenously injected with B16-BL6 cells, followed by carnosic acid treatment. Lung weights were recorded, and tumor cell colonies were counted at the end of the experiment. Integrin expression was evaluated using flow cytometry and cell adhesion assays. Lung weights were significantly lower in the carnosic acid group than in the control group, indicating the suppression of metastasis. Carnosic acid suppressed α4 integrin expression in B16-BL6 cells and inhibited α4 and α9 integrin-dependent cell adhesion. Thus, our data suggest that carnosic acid prevents lung metastasis, possibly by suppressing integrin expression. Our findings support the clinical application of carnosic acid as a potential natural antitumor agent, offering a complementary approach to conventional therapies.
Collapse
Affiliation(s)
- Sachi Shibata
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama, Japan
| | - Kohei Yamada
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, Japan
| |
Collapse
|
6
|
Wu W, Huo F, Yin C. Classification of self-assembled fluorescent probes and their application in cancer diagnosis. Chem Commun (Camb) 2025; 61:1014-1031. [PMID: 39659280 DOI: 10.1039/d4cc05494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The high sensitivity, high selectivity, real-time monitoring capability, non-destructiveness, and versatility of small molecule fluorescent probes make them indispensable and powerful tools in bioscience research. Self-assembling fluorescent probes are a novel type of material that spontaneously assemble fluorescent dyes with specific molecules into nanoscale structures. Compared with ordinary small molecule fluorescent probes, self-assembled fluorescent probes have higher stability, selectivity, sensitivity, and temporal stability in detection. In recent years, the incidence and mortality of cancer have increased year by year, which has brought great challenges to the safety of human life, and traditional diagnostic methods such as nuclear magnetic resonance, ultrasound diagnosis, and X-ray tomography are time-consuming and have low resolution. The boundary between normal tissue and cancer tissue cannot be accurately distinguished during surgical resection, resulting in the possibility of recurrence after surgery. Fluorescent probes can quickly and efficiently diagnose and label cancerous tumor cells, which is of great significance for cancer discovery and treatment. In this paper, we review the classification of self-assembled fluorescent probes (molecular self-assembled fluorescent probes, nanomaterial self-assembled fluorescent probes and biological macromolecule self-assembled fluorescent probes) that are used in identifying and imaging cancerous tumor tissues. Furthermore, we discuss the current problems faced by self-assembled fluorescent probes through the specific identification and monitoring of enzymes with abnormal contents, active substances and low pH in the tumor microenvironment, hoping to give readers more inspiration.
Collapse
Affiliation(s)
- Wenjiao Wu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China.
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P. R. China.
| |
Collapse
|
7
|
Nguyen A, Heim JB, Cordara G, Chan MC, Johannesen H, Charlesworth C, Li M, Azumaya CM, Madden B, Krengel U, Meves A, Campbell MG. Structural and functional characterization of integrin α5-targeting antibodies for anti-angiogenic therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631572. [PMID: 39829743 PMCID: PMC11741253 DOI: 10.1101/2025.01.08.631572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Integrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects. To mediate activation and signaling, integrins undergo drastic conformational changes. However, how therapeutics influence or are affected by integrin conformation remains incompletely characterized. Using cell biology, biophysics, and electron microscopy, we shed light on these relationships by characterizing two potentially therapeutic anti-α5β1 antibodies, BIIG2 and MINT1526A. We show that both antibodies bind α5β1 with nanomolar affinity and reduce angiogenesis in vitro. We demonstrate BIIG2 reduces tumor growth in two human xenograft mouse models and exhibits a strong specificity for connective tissue-resident fibroblasts and melanoma cells. Using electron microscopy, we map out the molecular interfaces mediating the integrin-antibody interactions and reveal that although both antibodies have overlapping epitopes and block fibronectin binding via steric hindrance, the effect on the conformational equilibrium is drastically different. While MINT1526A constricts α5β1's range of flexibility, BIIG2 binds without restricting the available conformational states. These mechanistic insights, coupled with the functional analysis, guide which aspects should be prioritized to avoid off-target effects or partial agonism in the design of future integrin-targeted therapeutics.
Collapse
Affiliation(s)
- Adam Nguyen
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, Washington 98195, USA
| | - Joel B. Heim
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
- Current Address: Nykode Therapeutics, Oslo Science Park, 0349 Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Matthew C. Chan
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Hedda Johannesen
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Cristine Charlesworth
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ming Li
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Caleigh M. Azumaya
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Current Address: Genentech, South San Francisco, California 94080, USA
| | - Benjamin Madden
- Medical Genome Facility, Proteomics Core, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ute Krengel
- Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Melody G. Campbell
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
8
|
Wang Y, Lin M, Fan T, Zhou M, Yin R, Wang X. Advances of Stimuli-Responsive Amphiphilic Copolymer Micelles in Tumor Therapy. Int J Nanomedicine 2025; 20:1-24. [PMID: 39776491 PMCID: PMC11700880 DOI: 10.2147/ijn.s495387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Amphiphilic copolymers are composed of both hydrophilic and hydrophobic chains, which can self-assemble into polymeric micelles in aqueous solution via the hydrophilic/hydrophobic interactions. Due to their unique properties, polymeric micelles have been widely used as drug carriers. Poorly soluble drugs can be covalently attached to polymer chains or non-covalently incorporated in the micelles, with improved pharmacokinetic profiles and enhanced efficacy. In recent years, stimuli-responsive amphiphilic copolymer micelles have attracted significant attention. These micelles can respond to specific stimuli, including physical triggers (light, temperature, etc). chemical stimuli (pH, redox, etc). and physiological factors (enzymes, ATP, etc). Under these stimuli, the structures or properties of the micelles can change, enabling targeted therapy and controlled drug release in tumors. These stimuli-responsive strategies offer new avenues and approaches to enhance the tumor efficacy and reduce drug side effects. We will review the applications of different types of stimuli-responsive amphiphilic copolymer micelles in tumor therapy, aiming to provide valuable guidance for future research directions and clinical translation.
Collapse
Affiliation(s)
- Yao Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Meng Lin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tianfei Fan
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Minglu Zhou
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ruxi Yin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueyan Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
9
|
Soupir AC, Hayes MT, Peak TC, Ospina O, Chakiryan NH, Berglund AE, Stewart PA, Nguyen J, Segura CM, Francis NL, Echevarria PMR, Chahoud J, Li R, Tsai KY, Balasi JA, Peres YC, Dhillon J, Martinez LA, Gloria WE, Schurman N, Kim S, Gregory M, Mulé J, Fridley BL, Manley BJ. Increased spatial coupling of integrin and collagen IV in the immunoresistant clear-cell renal-cell carcinoma tumor microenvironment. Genome Biol 2024; 25:308. [PMID: 39639369 PMCID: PMC11622564 DOI: 10.1186/s13059-024-03435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Immunotherapy has improved survival for patients with advanced clear cell renal cell carcinoma (ccRCC), but resistance to therapy develops in most patients. We use cellular-resolution spatial transcriptomics in patients with immunotherapy naïve and exposed primary ccRCC tumors to better understand immunotherapy resistance. RESULTS Spatial molecular imaging of tumor and adjacent stroma samples from 21 tumors suggests that viable tumors following immunotherapy harbor more stromal CD8 + T cells and neutrophils than immunotherapy naïve tumors. YES1 is significantly upregulated in immunotherapy exposed tumor cells. Spatial GSEA shows that the epithelial-mesenchymal transition pathway is spatially enriched and the associated ligand-receptor transcript pair COL4A1-ITGAV has significantly higher autocorrelation in the stroma after exposure to immunotherapy. More integrin αV + cells are observed in immunotherapy exposed stroma on multiplex immunofluorescence validation. Compared to other cancers in TCGA, ccRCC tumors have the highest expression of both COL4A1 and ITGAV. Assessing bulk RNA expression and proteomic correlates in CPTAC databases reveals that collagen IV protein is more abundant in advanced stages of disease. CONCLUSIONS Spatial transcriptomics of samples of 3 patient cohorts with cRCC tumors indicates that COL4A1 and ITGAV are more autocorrelated in immunotherapy-exposed stroma compared to immunotherapy-naïve tumors, with high expression among fibroblasts, tumor cells, and endothelium. Further research is needed to understand changes in the ccRCC tumor immune microenvironment and explore potential therapeutic role of integrin after immunotherapy treatment.
Collapse
Affiliation(s)
- Alex C Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Mitchell T Hayes
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Taylor C Peak
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Nicholas H Chakiryan
- Department of Urology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jonathan Nguyen
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | | | | | - Jad Chahoud
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Kenneth Y Tsai
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Jodi A Balasi
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Jasreman Dhillon
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Warren E Gloria
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | | | - Sean Kim
- NanoString, Seattle, WA, 98109, USA
| | | | - James Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
- Division of Health Services and Outcomes Research, Children's Mercy Hospital, Kansas, MO, USA
| | - Brandon J Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA.
| |
Collapse
|
10
|
Bogdanović B, Fagret D, Ghezzi C, Montemagno C. Integrin Targeting and Beyond: Enhancing Cancer Treatment with Dual-Targeting RGD (Arginine-Glycine-Aspartate) Strategies. Pharmaceuticals (Basel) 2024; 17:1556. [PMID: 39598465 PMCID: PMC11597078 DOI: 10.3390/ph17111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Integrins, an important superfamily of cell adhesion receptors, play an essential role in cancer progression, metastasis, and angiogenesis, establishing them as prime targets for both diagnostic and therapeutic applications. Despite their significant potential, integrin-targeted therapies have faced substantial challenges in clinical trials, including variable efficacy and unmet high expectations. Nevertheless, the consistent expression of integrins on tumor and stromal cells underscores their ongoing relevance and potential. Traditional RGD-based imaging and therapeutic agents have faced limitations, such as inconsistent target expression and rapid systemic clearance, which have reduced their effectiveness. To overcome these challenges, recent research has focused on advancing RGD-based strategies and exploring innovative solutions. This review offers a thorough analysis of the latest developments in the RGD-integrin field, with a particular focus on addressing previous limitations. It delves into new dual-targeting approaches and cutting-edge RGD-based agents designed to improve both tumor diagnosis and therapeutic outcomes. By examining these advancements, this review illuminates new pathways for enhancing the specificity and efficacy of integrin-targeted therapies, paving the way for more effective cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Bojana Bogdanović
- INSERM, CHU Grenoble Alpes, Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, 38000 Grenoble, France; (B.B.); (D.F.); (C.G.)
| | - Daniel Fagret
- INSERM, CHU Grenoble Alpes, Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, 38000 Grenoble, France; (B.B.); (D.F.); (C.G.)
| | - Catherine Ghezzi
- INSERM, CHU Grenoble Alpes, Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, 38000 Grenoble, France; (B.B.); (D.F.); (C.G.)
| | | |
Collapse
|
11
|
Mayasin YP, Osinnikova MN, Kharisova CB, Kitaeva KV, Filin IY, Gorodilova AV, Kutovoi GI, Solovyeva VV, Golubev AI, Rizvanov AA. Extracellular Matrix as a Target in Melanoma Therapy: From Hypothesis to Clinical Trials. Cells 2024; 13:1917. [PMID: 39594665 PMCID: PMC11592585 DOI: 10.3390/cells13221917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Melanoma is a malignant, highly metastatic neoplasm showing increasing morbidity and mortality. Tumor invasion and angiogenesis are based on remodeling of the extracellular matrix (ECM). Selective inhibition of functional components of cell-ECM interaction, such as hyaluronic acid (HA), matrix metalloproteinases (MMPs), and integrins, may inhibit tumor progression and enhance the efficacy of combination treatment with immune checkpoint inhibitors (ICIs), chemotherapy, or immunotherapy. In this review, we combine the results of different approaches targeting extracellular matrix elements in melanoma in preclinical and clinical studies. The identified limitations of many approaches, including side effects, low selectivity, and toxicity, indicate the need for further studies to optimize therapy. Nevertheless, significant progress in expanding our understanding of tumor biology and the development of targeted therapies holds great promise for the early approaches developed several decades ago to inhibit metastasis through ECM targeting.
Collapse
Affiliation(s)
- Yuriy P. Mayasin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Maria N. Osinnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Chulpan B. Kharisova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Kristina V. Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Ivan Y. Filin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anna V. Gorodilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Grigorii I. Kutovoi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Anatolii I. Golubev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.P.M.); (M.N.O.); (C.B.K.); (K.V.K.); (I.Y.F.); (A.V.G.); (G.I.K.); (V.V.S.); (A.I.G.)
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
12
|
Zhang Y, Yang Y, Hou Y, Yan W, Zhang X, Huang X, Song Q, He F, Wang J, Sun A, Tian C. ZNF8 promotes progression of gastrointestinal cancers via a p53-dependent mechanism. Cell Signal 2024; 123:111354. [PMID: 39173856 DOI: 10.1016/j.cellsig.2024.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
p53 is a critical tumor suppressor, and the disruption of its normal function is often a prerequisite for the development or progression of tumors. Our previous works revealed that multiple members of Krüppel-associated box (KRAB) domain zinc-finger proteins (KZFPs) family regulate p53 transcriptional activity by interacting with it. But the tumor biology functions of these members have not been fully elucidated. Here, the pan-cancer analysis related to gastrointestinal cancers (GICs) revealed that ZNF8, a p53-interacting protein, is an unfavorable prognostic factor for patients with malignancies. ZNF8 interacts with p53 and further depresses its transcriptional activity in colon cancer cells. The knockdown of ZNF8 or the overexpression of ZNF8 inhibits or facilitates the in vitro colony formation, migration, invasion, and angiogenesis of p53+/+ colon cancer HCT116 cells, HepG2 cells and EC109 cells rather than p53-/- colon cancer HCT116 cells and p53-knockout HepG2 cells, respectively. Xenograft experiments conducted in vivo also showed that the knockdown of ZNF8 in p53+/+ but not in p53-/- HCT116 cells curbs the tumor growth and metastasis to lung, leading to an extended life span for tumor-bearing mice. Clinically, two independent immunohistochemistry cohorts of colon cancer and esophageal cancer also indicated that ZNF8 is higher expression in carcinoma tissues than adjacent tissues and this is associated with worse overall survival outcomes in patients without harboring p53 mutation. Together, our results provide insight into the p53-specific tumor oncogenic function of ZNF8. ZNF8 may prove to be a potential target for GICs treatment.
Collapse
Affiliation(s)
- Yiming Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Yingchuan Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Wei Yan
- The First Medical Center of Chinese PLA General Hospital, Beijing 100036, China
| | - Xiuyuan Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Xiaofen Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Qin Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| | - Aihua Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| | - Chunyan Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China; College of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
13
|
Bile F, Sparaco M, Ruocco E, Miele G, Maida E, Vele R, Mele D, Bonavita S, Lavorgna L. Dermatological Neoplastic Diseases Complicating Treatment with Monoclonal Antibodies for Multiple Sclerosis. J Clin Med 2024; 13:5133. [PMID: 39274345 PMCID: PMC11396336 DOI: 10.3390/jcm13175133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Over the past 20 years, the treatment scenario of multiple sclerosis (MS) has radically changed, and an ever-increasing number of disease-modifying treatments has emerged. Among high-efficacy treatment agents, monoclonal antibodies (mAbs) have become a mainstay in a MS patient's treatment due to their targeted mechanism, high efficacy, and favorable risk profile. The latter varies from drug to drug and a skin cancer warning has emerged with sphingosine 1-phosphate receptor inhibitors. Several cases of skin malignancy in people with MS (pwMS) undergoing therapy with mAbs have also been described, but dermatological follow-up is not currently indicated. Objectives: The aim of this review is to investigate cases of cutaneous malignancy during mAb therapy and to explore possible pathophysiological mechanisms to evaluate the potential need for regular dermatological follow-ups in pwMS treated with mAbs. Methods: A literature search for original articles and reviews in PubMed was conducted with no date restrictions. Results: A total of 1019 results were retrieved. Duplicates were removed using Endnote and manually. Only peer-reviewed studies published in English were considered for inclusion. At the end of these screening procedures, 54 studies published between 2001 and 2024 that met the objectives of this review were selected and reported. Conclusions: The available data do not show a clear link between monoclonal antibody (mAb) treatment in pwMS and the risk of skin cancer. At present, these treatments remain contraindicated for people with cancer. Dermatological screening is advisable before starting mAb treatment in pwMS, and subsequent follow-ups should be individualized according to each patient's risk profile.
Collapse
Affiliation(s)
- Floriana Bile
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Maddalena Sparaco
- 2nd Division of Neurology, University Hospital of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Eleonora Ruocco
- Dermatology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giuseppina Miele
- 2nd Division of Neurology, University Hospital of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Elisabetta Maida
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Renato Vele
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Davide Mele
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, 80131 Naples, Italy
| | - Luigi Lavorgna
- 1st Division of Neurology, University Hospital of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
14
|
Yuan SSF, Chan LP, Nguyen HDH, Su CW, Chen YK, Chen JYF, Shimodaira S, Hu SCS, Lo S, Wang YY. Areca nut-induced metabolic reprogramming and M2 differentiation promote OPMD malignant transformation. J Exp Clin Cancer Res 2024; 43:233. [PMID: 39160581 PMCID: PMC11334407 DOI: 10.1186/s13046-024-03163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Betel quid and its major ingredient, areca nut, are recognized by IARC as major risk factors in oral cancer development. Areca nut extract (ANE) exposure has been linked to OPMD progression and malignant transformation to OSCC. However, the detailed mechanism through which ANE acts on other cell types in the oral microenvironment to promote oral carcinogenesis remains elusive. METHODS Immunoprofiling of macrophages associated with OPMD and OSCC was carried out by immunohistochemical and immunofluorescence staining. Phosphokinase and cytokine arrays and western blotting were performed to determine the underlying mechanisms. Transwell assays were used to evaluate the migration-promoting effect of ANE. Hamster model was finally applied to confirm the in vivo effect of ANE. RESULTS We reported that M2 macrophages positively correlated with oral cancer progression. ANE induced M2 macrophage differentiation, CREB phosphorylation and VCAM-1 secretion and increased mitochondrial metabolism. Conditioned medium and VCAM-1 from ANE-treated macrophages promoted migration and mesenchymal phenotypes in oral precancer cells. In vivo studies showed that ANE enhanced M2 polarization and related signaling pathways in the oral buccal tissues of hamsters. CONCLUSION Our study provides novel mechanisms for areca nut-induced oral carcinogenesis, demonstrating that areca nut promotes M2 macrophage differentiation and secretion of oncogenic cytokines that critically activate malignant transformation of oral premalignant cells.
Collapse
Affiliation(s)
- Shyng-Shiou F Yuan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Biodevices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu, Taiwan
| | - Leong-Perng Chan
- Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hieu D H Nguyen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
| | - Chang-Wei Su
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
- Division of Oral and Maxillofacial Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku, Ishikawa, 920-0293, Japan
- Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Steven Lo
- Canniesburn Regional Plastic Surgery and Burns Unit, Glasgow, G4 0SF, UK
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yen-Yun Wang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708, Taiwan.
| |
Collapse
|
15
|
Sun X, Xiao C, Wang X, Wu S, Yang Z, Sui B, Song Y. Role of post-translational modifications of Sp1 in cancer: state of the art. Front Cell Dev Biol 2024; 12:1412461. [PMID: 39228402 PMCID: PMC11368732 DOI: 10.3389/fcell.2024.1412461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Specific protein 1 (Sp1) is central to regulating transcription factor activity and cell signaling pathways. Sp1 is highly associated with the poor prognosis of various cancers; it is considered a non-oncogene addiction gene. The function of Sp1 is complex and contributes to regulating extensive transcriptional activity, apart from maintaining basal transcription. Sp1 activity and stability are affected by post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, glycosylation, and SUMOylation. These modifications help to determine genetic programs that alter the Sp1 structure in different cells and increase or decrease its transcriptional activity and DNA binding stability in response to pathophysiological stimuli. Investigating the PTMs of Sp1 will contribute to a deeper understanding of the mechanism underlying the cell signaling pathway regulating Sp1 stability and the regulatory mechanism by which Sp1 affects cancer progression. Furthermore, it will facilitate the development of new drug targets and biomarkers, thereby elucidating considerable implications in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Chinese Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyang Wang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhendong Yang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bowen Sui
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Valdez-Salazar F, Jiménez-Del Rio LA, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Valdés-Alvarado E. Advances in Melanoma: From Genetic Insights to Therapeutic Innovations. Biomedicines 2024; 12:1851. [PMID: 39200315 PMCID: PMC11351162 DOI: 10.3390/biomedicines12081851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Advances in melanoma research have unveiled critical insights into its genetic and molecular landscape, leading to significant therapeutic innovations. This review explores the intricate interplay between genetic alterations, such as mutations in BRAF, NRAS, and KIT, and melanoma pathogenesis. The MAPK and PI3K/Akt/mTOR signaling pathways are highlighted for their roles in tumor growth and resistance mechanisms. Additionally, this review delves into the impact of epigenetic modifications, including DNA methylation and histone changes, on melanoma progression. The tumor microenvironment, characterized by immune cells, stromal cells, and soluble factors, plays a pivotal role in modulating tumor behavior and treatment responses. Emerging technologies like single-cell sequencing, CRISPR-Cas9, and AI-driven diagnostics are transforming melanoma research, offering precise and personalized approaches to treatment. Immunotherapy, particularly immune checkpoint inhibitors and personalized mRNA vaccines, has revolutionized melanoma therapy by enhancing the body's immune response. Despite these advances, resistance mechanisms remain a challenge, underscoring the need for combined therapies and ongoing research to achieve durable therapeutic responses. This comprehensive overview aims to highlight the current state of melanoma research and the transformative impacts of these advancements on clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuel Valdés-Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB), Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.V.-S.)
| |
Collapse
|
17
|
Dong Y, Bai J, Zhou J. Developing a dormancy-associated ECM signature in TNBC that is linked to immunosuppressive tumor microenvironment and selective sensitivity to MAPK inhibitors. Heliyon 2024; 10:e32106. [PMID: 38868025 PMCID: PMC11168407 DOI: 10.1016/j.heliyon.2024.e32106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Aims Cellular dormancy is a state of quiescence subpopulation of tumor cells, characterized by low differentiation and lack of mitotic activity. They could evade chemotherapy and targeted therapy, leading to drug resistance and disease recurrence. Recent studies have shown a correlation between dormant cancer cells and unique extracellular matrix (ECM) composition, which is critical in regulating cell behavior. However, their interacting roles in TNBC patients remains to be characterized. Main methods Dormant cancer cells in MDA-MB-231 cell line with highest PKH26 dye-retaining were FACS-sorted and gene expression was then analyzed. Dormant associated ECM (DA-ECM) signature was characterized by pathway analysis. Unsupervised hierarchical clustering was used to define distinct ECM features for TNBC patients. ECM-specific tumor biology was defined by integration of bulk RNA-seq with single-cell RNA-seq data, analysis of ligand-receptor interactions and enriched biological pathways, and in silico drug screening. We validated the sensitivity of dormant cancer cells to MAPK inhibitors by flow cytometry in vitro. Key findings We observed that dormant TNBC cells preferentially expressed ∼10 % DA-ECM genes. The DA-ECM High subtype defined by unsupervised hierarchical clustering analysis was associated with immunosuppressive tumor microenvironment. Moreover, ligand-receptor interaction and pathway analysis revealed that the DA-ECM High subtype may likely help maintain tumor cell dormancy through MAPK, Hedgehog and Notch signaling pathways. Finally, in silico drug screening against the DA-ECM signature and in vitro assay showed dormant cancer cells were relatively sensitive to the MAPK pathway inhibitors, which may represent a potential therapeutic strategy for treating TNBC. Significance Collectively, our research revealed that dormancy-associated ECM characterized tumor cells possess significant ECM remodeling capacity, and treatment strategies towards these cells could improve TNBC patient outcome.
Collapse
Affiliation(s)
- Yang Dong
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jin Bai
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
18
|
Guo X, Zhang Y, Li Q, Shi F, HuangFu Y, Li J, Lao X. The influence of a modified p53 C-terminal peptide by using a tumor-targeting sequence on cellular apoptosis and tumor treatment. Apoptosis 2024; 29:865-881. [PMID: 38145442 DOI: 10.1007/s10495-023-01926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
The restoration of the function of p53 in tumors is a therapeutic strategy for the highly frequent mutation of the TP53 tumor suppressor gene. P460 is a wild-type peptide derived from the p53 C-terminus and has been proven to be capable of restoring the tumor suppressor function of p53. The poor accumulation of drugs in tumors is a serious hindrance to tumor treatment. For enhancing the activity of P460, the tumor-targeting sequence Arg-Gly-Asp-Arg (RGDR, C-end rule peptide) was introduced into the C-terminus of P460 to generate the new peptide P462. P462 presented better activity than P460 in inhibiting the proliferation of cancer cells and increasing the number of tumor cells undergoing apoptosis. Cell adhesion analysis and tumor imaging results revealed that P462 showed more specific and extensive binding with tumor cells and greater accumulation in tumors than the wild-type peptide. Importantly, treatment with P462 was more efficacious than that with P460 in vivo and was associated with considerably improved tumor-homing activity. This study highlights the importance of the roles of the tumor-homing sequence RGDR in the enhancement in cell attachment and tumor accumulation. The results of this work indicate that P462 could be a novel drug candidate for tumor treatment.
Collapse
Affiliation(s)
- Xiaoye Guo
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yiming Zhang
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Qian Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Fangxin Shi
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yifan HuangFu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| |
Collapse
|
19
|
Yang L, Chen H, Yang C, Hu Z, Jiang Z, Meng S, Liu R, Huang L, Yang K. Research progress on the regulatory mechanism of integrin-mediated mechanical stress in cells involved in bone metabolism. J Cell Mol Med 2024; 28:e18183. [PMID: 38506078 PMCID: PMC10951882 DOI: 10.1111/jcmm.18183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Mechanical stress is an internal force between various parts of an object that resists external factors and effects that cause an object to deform, and mechanical stress is essential for various tissues that are constantly subjected to mechanical loads to function normally. Integrins are a class of transmembrane heterodimeric glycoprotein receptors that are important target proteins for the action of mechanical stress stimuli on cells and can convert extracellular physical and mechanical signals into intracellular bioelectrical signals, thereby regulating osteogenesis and osteolysis. Integrins play a bidirectional regulatory role in bone metabolism. In this paper, relevant literature published in recent years is reviewed and summarized. The characteristics of integrins and mechanical stress are introduced, as well as the mechanisms underlying responses of integrin to mechanical stress stimulation. The paper focuses on integrin-mediated mechanical stress in different cells involved in bone metabolism and its associated signalling mechanisms. The purpose of this review is to provide a theoretical basis for the application of integrin-mediated mechanical stress to the field of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Li Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Hong Chen
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Chanchan Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhengqi Hu
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhiliang Jiang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Shengzi Meng
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | | - Lan Huang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | |
Collapse
|
20
|
Xue M, Xing L, Yang Y, Shao M, Liao F, Xu F, Chen Y, Wang S, Chen B, Yao C, Gu G, Tong C. A decrease in integrin α5β1/FAK is associated with increased apoptosis of aortic smooth muscle cells in acute type a aortic dissection. BMC Cardiovasc Disord 2024; 24:180. [PMID: 38532364 PMCID: PMC10964683 DOI: 10.1186/s12872-024-03778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Acute type A aortic dissection (AAAD) is a devastating disease. Human aortic smooth muscle cells (HASMCs) exhibit decreased proliferation and increased apoptosis, and integrin α5β1 and FAK are important proangiogenic factors involved in regulating angiogenesis. The aim of this study was to investigate the role of integrin α5β1 and FAK in patients with AAAD and the potential underlying mechanisms. METHODS Aortic tissue samples were obtained from 8 patients with AAAD and 4 organ donors at Zhongshan Hospital of Fudan University. The level of apoptosis in the aortic tissues was assessed by immunohistochemical (IHC) staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assays. The expression of integrin α5β1 and FAK was determined. Integrin α5β1 was found to be significantly expressed in HASMCs, and its interaction with FAK was assessed via coimmunoprecipitation (Co-IP) analysis. Proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assays and flow cytometry after integrin α5β1 deficiency. RESULTS The levels of integrin α5β1 and FAK were both significantly decreased in patients with AAAD. Downregulating the expression of integrin α5β1-FAK strongly increased apoptosis and decreased proliferation in HASMCs, indicating that integrin α5β1-FAK might play an important role in the development of AAAD. CONCLUSIONS Downregulation of integrin α5β1-FAK is associated with increased apoptosis and decreased proliferation in aortic smooth muscle cells and may be a potential therapeutic strategy for AAAD.
Collapse
Affiliation(s)
- Mingming Xue
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lingyu Xing
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yilin Yang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mian Shao
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fengqing Liao
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feixiang Xu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yumei Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Sheng Wang
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Chen
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenling Yao
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Guorong Gu
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chaoyang Tong
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Su C, Mo J, Dong S, Liao Z, Zhang B, Zhu P. Integrinβ-1 in disorders and cancers: molecular mechanisms and therapeutic targets. Cell Commun Signal 2024; 22:71. [PMID: 38279122 PMCID: PMC10811905 DOI: 10.1186/s12964-023-01338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 01/28/2024] Open
Abstract
Integrinβ-1 (ITGB1) is a crucial member of the transmembrane glycoprotein signaling receptor family and is also central to the integrin family. It forms heterodimers with other ligands, participates in intracellular signaling and controls a variety of cellular processes, such as angiogenesis and the growth of neurons; because of its role in bidirectional signaling regulation both inside and outside the membrane, ITGB1 must interact with a multitude of substances, so a variety of interfering factors can affect ITGB1 and lead to changes in its function. Over the past 20 years, many studies have confirmed a clear causal relationship between ITGB1 dysregulation and cancer development and progression in a wide range of benign diseases and solid tumor types, which may imply that ITGB1 is a prognostic biomarker and a therapeutic target for cancer treatment that warrants further investigation. This review summarizes the biological roles of ITGB1 in benign diseases and cancers, and compiles the current status of ITGB1 function and therapy in various aspects of tumorigenesis and progression. Finally, future research directions and application prospects of ITGB1 are suggested. Video Abstract.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Shuilin Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| | - Peng Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Yu L, Li J, Xiao M. LncRNA SLC7A11-AS1 stabilizes CTCF by inhibiting its UBE3A-mediated ubiquitination to promote melanoma metastasis. Am J Cancer Res 2023; 13:6256-6269. [PMID: 38187043 PMCID: PMC10767361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Malignant melanoma (MM) is one of the most aggressive types of skin cancer. Long non-coding RNAs (lncRNAs) are important regulatory factors in the pathogenesis of various diseases. Here, we found that the lncRNA SLC7A11-AS1 was highly expressed in MM. Therefore, we investigated its regulatory role in the migration and invasion of MM cells and the associated mechanism. SLC7A11-AS1 and CTCF levels in MM cell lines were detected using RT-qPCR and western blotting, and their regulatory effects on the migratory and invasive abilities were determined using CCK-8, EdU, transwell, wound-healing assays and mouse model. RNA pull-down and RIP assays were performed to explore the association of SLC7A11-AS1 and CTCF and the correlation between CTCF and UBE3A. SLC7A11-AS1 and CTCF were highly expressed in MM cells. The knockdown of SLC7A11-AS1 decreased the expression of CTCF. Mechanistically, SLC7A11-AS1 inhibited the degradation of CTCF by inhibiting the ubiquitination by UBE3A. The knockdown of both SLC7A11-AS1 and CTCF inhibited the migration and invasion of MM cells and attenuated MM-to-lung metastasis in a mouse model. Taken together, SLC7A11-AS1 promoted the invasive and migratory abilities of MM cells by inhibiting the UBE3A-regulated ubiquitination of CTCF. Therefore, SLC7A11-AS1 may be a potential therapeutic target for MM.
Collapse
Affiliation(s)
- Lingling Yu
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| | - Jing Li
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| | - Ming Xiao
- Department of Dermatology, Shanghai Eighth People's Hospital Shanghai, China
| |
Collapse
|
23
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Soupir AC, Hayes MT, Peak TC, Ospina O, Chakiryan NH, Berglund AE, Stewart PA, Nguyen J, Segura CM, Francis NL, Echevarria PMR, Chahoud J, Li R, Tsai KY, Balasi JA, Peres YC, Dhillon J, Martinez LA, Gloria WE, Schurman N, Kim S, Gregory M, Mulé J, Fridley BL, Manley BJ. Increased spatial coupling of integrin and collagen IV in the immunoresistant clear cell renal cell carcinoma tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567457. [PMID: 38014063 PMCID: PMC10680839 DOI: 10.1101/2023.11.16.567457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Immunotherapy (IO) has improved survival for patients with advanced clear cell renal cell carcinoma (ccRCC), but resistance to therapy develops in most patients. We use cellular-resolution spatial transcriptomics in patients with IO naïve and IO exposed primary ccRCC tumors to better understand IO resistance. Spatial molecular imaging (SMI) was obtained for tumor and adjacent stroma samples. Spatial gene set enrichment analysis (GSEA) and autocorrelation (coupling with high expression) of ligand-receptor transcript pairs were assessed. Multiplex immunofluorescence (mIF) validation was used for significant autocorrelative findings and the cancer genome atlas (TCGA) and the clinical proteomic tumor analysis consortium (CPTAC) databases were queried to assess bulk RNA expression and proteomic correlates. Results 21 patient samples underwent SMI. Viable tumors following IO harbored more stromal CD8+ T cells and neutrophils than IO naïve tumors. YES1 was significantly upregulated in IO exposed tumor cells. The epithelial-mesenchymal transition pathway was enriched on spatial GSEA and the associated transcript pair COL4A1-ITGAV had significantly higher autocorrelation in the stroma. Fibroblasts, tumor cells, and endothelium had the relative highest expression. More integrin αV+ cells were seen in IO exposed stroma on mIF validation. Compared to other cancers in TCGA, ccRCC tumors have the highest expression of both COL4A1 and ITGAV. In CPTAC, collagen IV protein was more abundant in advanced stages of disease. Conclusions On spatial transcriptomics, COL4A1 and ITGAV were more autocorrelated in IO-exposed stroma compared to IO-naïve tumors, with high expression amongst fibroblasts, tumor cells, and endothelium. Integrin represents a potential therapeutic target in IO treated ccRCC.
Collapse
Affiliation(s)
- Alex C Soupir
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Mitchell T Hayes
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| | - Taylor C Peak
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Nicholas H Chakiryan
- Knight Cancer Center, Translation Oncology Program, Oregon Health & Science University, Portland, OR 97239
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Jonathan Nguyen
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612
| | | | | | | | - Jad Chahoud
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| | - Kenneth Y. Tsai
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612
| | - Jodi A. Balasi
- Department of Pathology, Moffitt Cancer Center, Tampa, FL 33612
| | | | | | | | | | | | | | | | - James Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL 33612
| | - Brandon J Manley
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, FL 33612
| |
Collapse
|
25
|
Teng X, Wang Y, You L, Wei L, Zhang C, Du Y. Screening a DNA Aptamer Specifically Targeting Integrin β3 and Partially Inhibiting Tumor Cell Migration. Anal Chem 2023; 95:12406-12418. [PMID: 37555842 PMCID: PMC10448441 DOI: 10.1021/acs.analchem.3c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
Due to its key roles in malignant tumor progression and reprograming of the tumor microenvironment, integrin β3 has attracted great attention as a new target for tumor therapy. However, the structure-function relationship of integrins β3 remains incompletely understood, leading to the shortage of specific and effective targeting probes. This work uses a purified extracellular domain of integrin β3 and integrin β3-positive cells to screen aptamers, specifically targeting integrin β3 in the native conformation on live cells through the SELEX approach. Following meticulous truncation and characterization of the initial aptamer candidates, the optimized aptamer S10yh2 was produced, exhibiting a low equilibrium dissociation constant (Kd) in the nanomolar range. S10yh2 displays specific recognition of cancer cells with varying levels of integrin β3 expression and demonstrates favorable stability in serum. Subsequent analysis of docking sites revealed that S10yh2 binds to the seven amino acid residues located in the core region of integrin β3. The S10yh2 aptamer can downregulate the level of integrin heterodimer αvβ3 on integrin β3 overexpressed cancer cells and partially inhibit cell migration behavior. In summary, S10yh2 is a promising probe with a small size, simple synthesis, good stability, high binding affinity, and selectivity. It therefore holds great potential for investigating the structure-function relationship of integrins.
Collapse
Affiliation(s)
- Xiaoyan Teng
- Department
of Laboratory Medicine, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yu Wang
- State
Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute,
Department of Oncology, Institute of Molecular Medicine, Renji Hospital,
School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liuxia You
- Department
of Clinical Laboratory, The Second Affiliated
Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Lirong Wei
- Department
of Laboratory Medicine, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chao Zhang
- State
Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute,
Department of Oncology, Institute of Molecular Medicine, Renji Hospital,
School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuzhen Du
- Department
of Laboratory Medicine, Shanghai Jiao Tong
University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
26
|
Sutherland M, Gordon A, Al-Shammari FOFO, Throup A, Cilia La Corte A, Philippou H, Shnyder SD, Patterson LH, Sheldrake HM. Synthesis and Biological Evaluation of Cyclobutane-Based β3 Integrin Antagonists: A Novel Approach to Targeting Integrins for Cancer Therapy. Cancers (Basel) 2023; 15:4023. [PMID: 37627051 PMCID: PMC10452181 DOI: 10.3390/cancers15164023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The Arg-Gly-Asp (RGD)-binding family of integrin receptors, and notably the β3 subfamily, are key to multiple physiological processes involved in tissue development, cancer proliferation, and metastatic dissemination. While there is compelling preclinical evidence that both αvβ3 and αIIbβ3 are important anticancer targets, most integrin antagonists developed to target the β3 integrins are highly selective for αvβ3 or αIIbβ3. We report the design, synthesis, and biological evaluation of a new structural class of ligand-mimetic β3 integrin antagonist. These new antagonists combine a high activity against αvβ3 with a moderate affinity for αIIbβ3, providing the first evidence for a new approach to integrin targeting in cancer.
Collapse
Affiliation(s)
- Mark Sutherland
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Andrew Gordon
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | | | - Adam Throup
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Amy Cilia La Corte
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Steven D. Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | | | - Helen M. Sheldrake
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
27
|
Alshanqiti KH, Alomar SF, Alzoman N, Almomen A. Irisin Induces Apoptosis in Metastatic Prostate Cancer Cells and Inhibits Tumor Growth In Vivo. Cancers (Basel) 2023; 15:4000. [PMID: 37568817 PMCID: PMC10416853 DOI: 10.3390/cancers15154000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Prostate cancer is the second most common cancer in males worldwide, with αVβ5 in-tegrin, a coactivator receptor, being highly expressed in advanced prostate cancer. Irisin, a hormone secreted from skeletal muscles, can reduce cell viability and migration and potentially inhibit αVβ5. OBJECTIVE This study investigates the potential impact of irisin on prostate cancer cells and its underlying mechanism. METHODS In vitro evaluation of the antiproliferative action of irisin on metastatic prostate cancer (PC-3) cells was tested through MTT assay, flow cytometry, and Western blot. An in vivo evaluation of the antiproliferative effect on prostate cancer xenograft was evaluated in nude mice. RESULTS In vitro evaluations showed that irisin reduced PC-3 cell viability to 70% and increased the Annexin-V/7AAD positive cell population. Irisin altered the expression of apoptotic proteins, αVβ5, and proteins involved in the P13k-Akt pathway. In vivo, irisin inhibited tumor growth and progression, positively affecting animal well-being. In conclusion, irisin has an apoptotic effect on PC-3, possibly through altering αVβ5 and the Bcl2/BAX and P13k-Akt signaling pathway, inhibiting tumor growth in vivo. CONCLUSION Our findings can serve as a foundation for further evaluation of irisin's role in prostate cancer.
Collapse
|
28
|
Li J, Ren H, Huai H, Li J, Xie P, Li X. The evaluation of tumor microenvironment infiltration and the identification of angiogenesis-related subgroups in skin cutaneous melanoma. J Cancer Res Clin Oncol 2023; 149:7259-7273. [PMID: 36912943 DOI: 10.1007/s00432-023-04680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND There are limited studies on the association between angiogenesis-related genes (ARGs) and the predictive risk of melanoma, even though angiogenic factors, which are essential for tumor growth and metastasis, might be secreted by angiogenesis-related protein in skin cutaneous melanoma (SKCM). To forecast patient outcomes, this study attempts to develop a predictive risk signature linked to angiogenesis in cutaneous melanoma. METHODS In 650 patients with SKCM, the expression and mutation of ARGs were examined, and this information was related to the clinical prognosis. SKCM patients were split into two groups based on how well they performed on the ARG. The link between ARGs, risk genes, and immunological microenvironment was examined using a range of algorithmic analysis techniques. Based on these five risk genes, an angiogenesis risk signature was created. We developed a nomogram and examined the sensitivity of antineoplastic medications to help the proposed risk model's clinical applicability. RESULTS The risk model developed by ARGs revealed that the prognosis for the two groups was significantly different. The predictive risk score was negatively connected with memory B cells, activated memory CD4 + T cells, M1 macrophages, and CD8 + T cells, and favorably correlated with dendritic cells, mast cells, and neutrophils. CONCLUSIONS Our findings offer fresh perspectives on prognostic evaluation and imply that ARG modulation is implicated in SKCM. Potential medications for the treatment of individuals with various SKCM subtypes were predicted by drug sensitivity analysis.
Collapse
Affiliation(s)
- Junpeng Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Hangjun Ren
- Department of General Surgery, First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Hongyu Huai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Junliang Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Pan Xie
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Xiaolu Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Zia A, Litvin Y, Voskoboynik R, Klein A, Shachaf C. Transcriptome Analysis Identifies Oncogenic Tissue Remodeling during Progression from Common Nevi to Early Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:995-1004. [PMID: 37146966 DOI: 10.1016/j.ajpath.2023.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Early detection and treatment of melanoma, the most aggressive skin cancer, improves the median 5-year survival rate of patients from 25% to 99%. Melanoma development involves a stepwise process during which genetic changes drive histologic alterations within nevi and surrounding tissue. Herein, a comprehensive analysis of publicly available gene expression data sets of melanoma, common or congenital nevi (CN), and dysplastic nevi (DN), assessed molecular and genetic pathways leading to early melanoma. The results demonstrate several pathways reflective of ongoing local structural tissue remodeling activity likely involved during the transition from benign to early-stage melanoma. These processes include the gene expression of cancer-associated fibroblasts, collagens, extracellular matrix, and integrins, which assist early melanoma development and the immune surveillance that plays a substantial role at this early stage. Furthermore, genes up-regulated in DN were also overexpressed in melanoma tissue, supporting the notion that DN may serve as a transitional phase toward oncogenesis. CN collected from healthy individuals exhibited different gene signatures compared with histologically benign nevi tissue located adjacent to melanoma (adjacent nevi). Finally, the expression profile of microdissected adjacent nevi tissue was more similar to melanoma compared with CN, revealing the melanoma influence on this annexed tissue.
Collapse
Affiliation(s)
- Amin Zia
- Orlucent, Inc., Los Gatos, California
| | | | | | - Amit Klein
- Department of Bioengineering: Bioinformatics, University of California, San Diego, San Diego, California
| | | |
Collapse
|
30
|
Wu A, Mazurkiewicz E, Donizy P, Kotowski K, Pieniazek M, Mazur AJ, Czogalla A, Trombik T. ABCA1 transporter promotes the motility of human melanoma cells by modulating their plasma membrane organization. Biol Res 2023; 56:32. [PMID: 37312227 DOI: 10.1186/s40659-023-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Melanoma is one of the most aggressive and deadliest skin tumor. Cholesterol content in melanoma cells is elevated, and a portion of it accumulates into lipid rafts. Therefore, the plasma membrane cholesterol and its lateral organization might be directly linked with tumor development. ATP Binding Cassette A1 (ABCA1) transporter modulates physico-chemical properties of the plasma membrane by modifying cholesterol distribution. Several studies linked the activity of the transporter with a different outcome of tumor progression depending on which type. However, no direct link between human melanoma progression and ABCA1 activity has been reported yet. METHODS An immunohistochemical study on the ABCA1 level in 110 patients-derived melanoma tumors was performed to investigate the potential association of the transporter with melanoma stage of progression and prognosis. Furthermore, proliferation, migration and invasion assays, extracellular-matrix degradation assay, immunochemistry on proteins involved in migration processes and a combination of biophysical microscopy analysis of the plasma membrane organization of Hs294T human melanoma wild type, control (scrambled), ABCA1 Knockout (ABCA1 KO) and ABCA1 chemically inactivated cells were used to study the impact of ABCA1 activity on human melanoma metastasis processes. RESULTS The immunohistochemical analysis of clinical samples showed that high level of ABCA1 transporter in human melanoma is associated with a poor prognosis. Depletion or inhibition of ABCA1 impacts invasion capacities of aggressive melanoma cells. Loss of ABCA1 activity partially prevented cellular motility by affecting active focal adhesions formation via blocking clustering of phosphorylated focal adhesion kinases and active integrin β3. Moreover, ABCA1 activity regulated the lateral organization of the plasma membrane in melanoma cells. Disrupting this organization, by increasing the content of cholesterol, also blocked active focal adhesion formation. CONCLUSION Human melanoma cells reorganize their plasma membrane cholesterol content and organization via ABCA1 activity to promote motility processes and aggressiveness potential. Therefore, ABCA1 may contribute to tumor progression and poor prognosis, suggesting ABCA1 to be a potential metastatic marker in melanoma.
Collapse
Affiliation(s)
- Ambroise Wu
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Krzysztof Kotowski
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Małgorzata Pieniazek
- Department of Oncology and Division of Surgical Oncology, Wrocław Medical University, Pl. Hirszfelda 12, 53-413, Wrocław, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Tomasz Trombik
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
31
|
Dietsch B, Weller C, Sticht C, de la Torre C, Kramer M, Goerdt S, Géraud C, Wohlfeil SA. Hepatic passaging of NRAS-mutant melanoma influences adhesive properties and metastatic pattern. BMC Cancer 2023; 23:436. [PMID: 37179302 PMCID: PMC10182637 DOI: 10.1186/s12885-023-10912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Liver metastasis is a poor prognostic factor for treatment of advanced cutaneous melanoma with either immunotherapy or targeted therapies. In this study we focused on NRAS mutated melanoma, a cohort with high unmet clinical need. METHODS WT31 melanoma was repeatedly passaged over the liver after intravenous injections five times generating the subline WT31_P5IV. The colonization of target organs, morphology, vascularization and the gene expression profiles of metastases were analyzed. RESULTS After intravenous injection lung metastasis was significantly decreased and a trend towards increased liver metastasis was detected for WT31_P5IV as compared to parental WT31. Besides, the ratio of lung to liver metastases was significantly smaller. Histology of lung metastases revealed reduced proliferation of WT31_P5IV in relation to WT31 while both size and necrotic areas were unaltered. Liver metastases of both sublines showed no differences in vascularization, proliferation or necrosis. To identify tumor-intrinsic factors that altered the metastatic pattern of WT31_P5IV RNA sequencing was performed and revealed a differential regulation of pathways involved in cell adhesion. Ex vivo fluorescence imaging confirmed that initial tumor cell retention in the lungs was significantly reduced in WT31_P5IV in comparison to WT31. CONCLUSION This study demonstrates that tumor-intrinsic properties influencing the metastatic pattern of NRAS mutated melanoma are strongly affected by hepatic passaging and the hematogenous route tumor cells take. It has implications for the clinical setting as such effects might also occur during metastatic spread or disease progression in melanoma patients.
Collapse
Affiliation(s)
- Bianca Dietsch
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Céline Weller
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Kramer
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sergij Goerdt
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian A Wohlfeil
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, Mannheim, Germany.
- Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
33
|
The Association of Integrins β3, β4, and αVβ5 on Exosomes, CTCs and Tumor Cells with Localization of Distant Metastasis in Breast Cancer Patients. Int J Mol Sci 2023; 24:ijms24032929. [PMID: 36769251 PMCID: PMC9918050 DOI: 10.3390/ijms24032929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Integrins are cell adhesion receptors, which play a role in breast cancer invasion, angiogenesis, and metastasis. Moreover, it has been shown that exosomal integrins provide organotropic metastasis in a mouse model. In our study, we aimed to investigate the expression of integrins β3, β4, and αVβ5 on exosomes and tumor cells (circulating tumor cells and primary tumor) and their association with the localization of distant metastasis. We confirmed the association of exosomal integrin β4 with lung metastasis in breast cancer patients. However, we were unable to evaluate the role of integrin β3 in brain metastasis due to the rarity of this localization. We established no association of exosomal integrin αVβ5 with liver metastasis in our cohort of breast cancer patients. The further evaluation of β3, β4, and αVβ5 integrin expression on CTCs revealed an association of integrin β4 and αVβ5 with liver, but not the lung metastases. Integrin β4 in the primary tumor was associated with liver metastasis. Furthermore, an in-depth analysis of phenotypic characteristics of β4+ tumor cells revealed a significantly increased proportion of E-cadherin+ and CD44+CD24- cells in patients with liver metastases compared to patients with lung or no distant metastases.
Collapse
|
34
|
Zhao L, Ma X, Li G, Zhao P, Lin H, Ma Y, Li H, Yu J. Downregulation of ITGβ3 in colon adenocarcinoma reveals poor prognosis by affecting genome stability, cell cycle, and the tumor immune microenvironment. Front Oncol 2023; 12:1047648. [PMID: 36741730 PMCID: PMC9895777 DOI: 10.3389/fonc.2022.1047648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/12/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Abnormal expression of integrin subunit beta 3 (ITGβ3), a gene-encoding protein, is related to the occurrence and development of cancers; however, the biological role of ITGβ3 in colon adenocarcinoma (COAD) remains unclear. Methods We used the Cancer Genome Atlas database to obtain the clinical data of patients with COAD, analyzed the mRNA gene clusters related to ITGβ3, and analyzed the interaction signal pathway and interaction protein network of the differentially expressed gene clusters. The results showed that ITGβ3 expression in COAD tumor tissues was significantly downregulated compared with that in paracancerous tissues. Low ITGβ3 expression in tumor tissues is associated with poor overall survival of patients with COAD. In multivariate analysis, stage IV and ITGβ3 low expression were independent prognostic factors. Gene Ontology analysis showed that differentially expressed genes (DEGs) were significantly enriched in leukocyte migration, cell adhesion, and extracellular matrix (ECM) organization. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the DEGs were mainly enriched in ECM-receptor interactions, focal adhesion, and the PI3K-Akt signaling pathway. Protein-protein interaction network analysis revealed the hub and seed genes of the key modules related to ITGβ3. Finally, we analyzed the correlation between TGβ3 and immune-related genes and found that ITGβ3 expression was significantly correlated with tumor purity and infiltration level of dominant immune cells. Discussion These findings indicate that ITGβ3 downregulation in COAD may profoundly affect genome stability and multiple steps of the cell cycle, alter the tumor immune microenvironment, and be related to the prognosis of patients with COAD.
Collapse
Affiliation(s)
- Lei Zhao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoting Ma
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangxin Li
- Radiation Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Pengfei Zhao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haishan Lin
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yingjie Ma
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huihui Li
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China,*Correspondence: Jing Yu, ; Huihui Li,
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China,*Correspondence: Jing Yu, ; Huihui Li,
| |
Collapse
|
35
|
Schanknecht E, Bachari A, Nassar N, Piva T, Mantri N. Phytochemical Constituents and Derivatives of Cannabis sativa; Bridging the Gap in Melanoma Treatment. Int J Mol Sci 2023; 24:ijms24010859. [PMID: 36614303 PMCID: PMC9820847 DOI: 10.3390/ijms24010859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Melanoma is deadly, physically impairing, and has ongoing treatment deficiencies. Current treatment regimens include surgery, targeted kinase inhibitors, immunotherapy, and combined approaches. Each of these treatments face pitfalls, with diminutive five-year survival in patients with advanced metastatic invasion of lymph and secondary organ tissues. Polyphenolic compounds, including cannabinoids, terpenoids, and flavonoids; both natural and synthetic, have emerging evidence of nutraceutical, cosmetic and pharmacological potential, including specific anti-cancer, anti-inflammatory, and palliative utility. Cannabis sativa is a wellspring of medicinal compounds whose direct and adjunctive application may offer considerable relief for melanoma suffers worldwide. This review aims to address the diverse applications of C. sativa's biocompounds in the scope of melanoma and suggest it as a strong candidate for ongoing pharmacological evaluation.
Collapse
Affiliation(s)
- Ellen Schanknecht
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Terrence Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
36
|
Ruiz-Llorente L, Ruiz-Rodríguez MJ, Savini C, González-Muñoz T, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Peinado H, Bernabeu C. Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:253-272. [PMID: 37093432 DOI: 10.1007/978-3-031-26163-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-β family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of hsa-mir-214 and hsa-mir-370 in melanoma development and progression.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Claudia Savini
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Teresa González-Muñoz
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Erica Riveiro-Falkenbach
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - José L Rodríguez-Peralto
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| |
Collapse
|
37
|
Bugatti K, Sartori A, Battistini L, Ruzzolini J, Nediani C, Curti C, Bianchini F, Zanardi F. Nintedanib‐α
V
β
3
Integrin Ligand Dual‐Targeting Conjugates towards Precision Treatment of Melanoma. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kelly Bugatti
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Andrea Sartori
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Lucia Battistini
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Viale Morgagni 50 50134 Florence Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Viale Morgagni 50 50134 Florence Italy
| | - Claudio Curti
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence Viale Morgagni 50 50134 Florence Italy
| | - Franca Zanardi
- Department of Food and Drug University of Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| |
Collapse
|
38
|
Parashar P, Das MK, Tripathi P, Kataria T, Gupta D, Sarin D, Hazari PP, Tandon V. DMA, a Small Molecule, Increases Median Survival and Reduces Radiation-Induced Xerostomia via the Activation of the ERK1/2 Pathway in Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194908. [PMID: 36230831 PMCID: PMC9562201 DOI: 10.3390/cancers14194908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Survival, recurrence, and xerostomia are considerable problems in the treatment of oral squamous carcinoma patients. In this study, we investigated the role of DMA (5-(4-methylpiperazin-1-yl)-2-[2′-(3,4-dimethoxyphenyl)5″benzimidazoyl]benzimidazole) as a salivary gland cytoprotectant in a patient-derived xenograft mouse model. A significant increase in saliva secretion was observed in the DMA-treated xenograft compared to radiation alone. Repeated doses of DMA with a high dose of radiation showed a synergistic effect on mice survival and reduced tumor growth. The mean survival rate of tumor-bearing mice was significantly enhanced. The increased number of Ki-67-stained cells in the spleen, intestine, and lungs compared to the tumor suggests DMA ablates the tumor but protects other organs. The expression of aquaporin-5 was restored in tumor-bearing mice injected with DMA before irradiation. The reduced expression of αvβ3 integrin and CD44 in DMA alone and DMA with radiation-treated mice suggests a reduced migration of cells and stemness of cancer cells. DMA along with radiation treatment results in the activation of the Ras/Raf/MEK/ERK pathway in the tumor, leading to apoptosis through caspase upregulation. In conclusion, DMA has strong potential for use as an adjuvant in radiotherapy in OSCC patients.
Collapse
Affiliation(s)
- Palak Parashar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Monoj Kumar Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pragya Tripathi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Tejinder Kataria
- Division of Radiation Oncology, Medanta―The Medicity, Gurgaon 122001, India
| | - Deepak Gupta
- Division of Radiation Oncology, Medanta―The Medicity, Gurgaon 122001, India
| | - Deepak Sarin
- Head and Neck OncoSurgery, Medanta―The Medicity, Gurgaon 122001, India
| | - Puja Panwar Hazari
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
- Correspondence: ; Tel.: +91-11-26742181
| |
Collapse
|
39
|
Jámbor K, Koroknai V, Kiss T, Szász I, Pikó P, Balázs M. Gene Expression Patterns of Osteopontin Isoforms and Integrins in Malignant Melanoma. PATHOLOGY AND ONCOLOGY RESEARCH 2022; 28:1610608. [PMID: 36091936 PMCID: PMC9448871 DOI: 10.3389/pore.2022.1610608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Osteopontin (OPN) is a multifunctional glycoprotein that physiologically interacts with different types of integrins. It is considered to be a possible prognostic biomarker in certain tumor types; however, various splicing isoforms exist, which have not been investigated in melanoma. We aimed to define the relative expression pattern of five OPN isoforms and clarify the prognostic significance of the splice variants in melanoma. We also aimed to investigate the expression pattern of eight integrins in the same tumors. Gene expression analyses revealed that the relative expression of OPNa, OPNb, and OPNc is significantly higher in metastatic tumors compared to primary lesions (p < 0.01), whereas the expression of OPN4 and OPN5 was low in both. The more aggressive nodular melanomas had higher expression levels compared to the superficial spreading subtype (p ≤ 0.05). The relative expression of the eight tested integrins was low, with only the expression of ITGB3 being detectable in nodular melanoma (Medianlog2 = 1.274). A positive correlation was found between Breslow thickness and the expression of OPNc variant, whereby thicker tumors (>4 mm) had significantly higher expression (p ≤ 0.05). The Breslow thickness was negatively correlated with the expression of OPN4, and similarly with ITGA2. OPNc also exhibited significant positive correlation with the presence of metastasis. Our data show that high expression of OPNa, OPNb, and especially OPNc and low expression of OPN4 and ITGA2 are associated with an advanced stage of tumor progression and poor prognosis in melanoma.
Collapse
Affiliation(s)
- Krisztina Jámbor
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Koroknai
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Tímea Kiss
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Szász
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter Pikó
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
| | - Margit Balázs
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Public Health Research Group, University of Debrecen, Debrecen, Hungary
- *Correspondence: Margit Balázs,
| |
Collapse
|
40
|
Gu Y, Du Y, Jiang L, Tang X, Li A, Zhao Y, Lang Y, Liu X, Liu J. αvβ3 integrin-specific exosomes engineered with cyclopeptide for targeted delivery of triptolide against malignant melanoma. J Nanobiotechnology 2022; 20:384. [PMID: 35999612 PMCID: PMC9400227 DOI: 10.1186/s12951-022-01597-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/16/2022] [Indexed: 12/18/2022] Open
Abstract
Background Melanoma is the most malignant skin tumor and is difficult to cure with the alternative treatments of chemotherapy, biotherapy, and immunotherapy. Our previous study showed that triptolide (TP) exhibited powerful tumoricidal activity against melanoma. However, the clinical potential of TP is plagued by its poor aqueous solubility, short half-life, and biotoxicity. Therefore, developing an ideal vehicle to efficiently load TP and achieving targeted delivery to melanoma is a prospective approach for making full use of its antitumor efficacy. Results We applied exosome (Exo) derived from human umbilical cord mesenchymal stromal cells (hUCMSCs) and engineered them exogenously with a cyclic peptide, arginine-glycine-aspartate (cRGD), to encapsulate TP to establish a bionic-targeted drug delivery system (cRGD-Exo/TP), achieving synergism and toxicity reduction. The average size of cRGD-Exo/TP was 157.34 ± 6.21 nm, with a high drug loading of 10.76 ± 1.21%. The in vitro antitumor results showed that the designed Exo delivery platform could be effectively taken up by targeted cells and performed significantly in antiproliferation, anti-invasion, and proapoptotic activities in A375 cells via the caspase cascade and mitochondrial pathways and cell cycle alteration. Furthermore, the biodistribution and pharmacokinetics results demonstrated that cRGD-Exo/TP possessed superior tumor targetability and prolonged the half-life of TP. Notably, cRGD-Exo/TP significantly inhibited tumor growth and extended survival time with negligible systemic toxicity in tumor-bearing mice. Conclusion The results indicated that the functionalized Exo platform provides a promising strategy for targeted therapy of malignant melanoma. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01597-1.
Collapse
Affiliation(s)
- Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Pharmacy, Children's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Liangdi Jiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Aixue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yitian Lang
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaoyan Liu
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, SAR, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
41
|
Tsavlis D, Katopodi T, Anestakis D, Petanidis S, Charalampidis C, Chatzifotiou E, Eskitzis P, Zarogoulidis P, Porpodis K. Molecular and Immune Phenotypic Modifications during Metastatic Dissemination in Lung Carcinogenesis. Cancers (Basel) 2022; 14:cancers14153626. [PMID: 35892884 PMCID: PMC9332629 DOI: 10.3390/cancers14153626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Metastatic cancer is a multifaceted complex disease. It is mainly characterized by a strong invasive potential, metastasis, resistance to therapy, and poor clinical prognosis. Although the use of immune checkpoint inhibitors (ICI) has substantially improved cancer treatment and therapy, there are many significant challenges to be addressed. In this review, we provide an overview of the mechanisms used by metastatic or disseminating tumor cells (DTCs) in order to understand cancer progression to metastasis, and establish new strategies for novel therapeutic interventions. Abstract The tumor microenvironment plays a key role in the progression of lung tumorigenesis, progression, and metastasis. Recent data reveal that disseminated tumor cells (DTCs) appear to play a key role in the development and progression of lung neoplasiaby driving immune system dysfunction and established immunosuppression, which is vital for evading the host immune response. As a consequence, in this review we will discuss the role and function of DTCs in immune cell signaling routes which trigger drug resistance and immunosuppression. We will also discuss the metabolic biology of DTCs, their dormancy, and their plasticity, which are critical for metastasis and drive lung tumor progression. Furthermore, we will consider the crosstalk between DTCs and myeloid cells in tumor-related immunosuppression. Specifically, we will investigate the molecular immune-related mechanisms in the tumor microenvironment that lead to decreased drug sensitivity and tumor relapse, along with strategies for reversing drug resistance and targeting immunosuppressive tumor networks. Deciphering these molecular mechanisms is essential for preclinical and clinical investigations in order to enhance therapeutic efficacy. Furthermore, a better understanding of these immune cell signaling pathways that drive immune surveillance, immune-driven inflammation, and tumor-related immunosuppression is necessary for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Drosos Tsavlis
- Department of Medicine, Laboratory of Experimental Physiology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Katopodi
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Doxakis Anestakis
- Department of Anatomy, Medical School, University of Cyprus, Nicosia 1678, Cyprus; (D.A.); (C.C.)
| | - Savvas Petanidis
- Department of Medicine, Laboratory of Medical Biology and Genetics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2310-999-205; Fax: +30-2310-999-208
| | | | - Evmorfia Chatzifotiou
- Department of Pathology, Forensic Medical Service of Thessaloniki, 57008 Diavata, Greece;
| | - Panagiotis Eskitzis
- Department of Obstetrics, University of Western Macedonia, 50100 Kozani, Greece;
| | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece;
| | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| |
Collapse
|
42
|
Jiang B, Zhao X, Chen W, Diao W, Ding M, Qin H, Li B, Cao W, Chen W, Fu Y, He K, Gao J, Chen M, Lin T, Deng Y, Yan C, Guo H. Lysosomal protein transmembrane 5 promotes lung-specific metastasis by regulating BMPR1A lysosomal degradation. Nat Commun 2022; 13:4141. [PMID: 35842443 PMCID: PMC9288479 DOI: 10.1038/s41467-022-31783-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Organotropism during cancer metastasis occurs frequently but the underlying mechanism remains poorly understood. Here, we show that lysosomal protein transmembrane 5 (LAPTM5) promotes lung-specific metastasis in renal cancer. LAPTM5 sustains self-renewal and cancer stem cell-like traits of renal cancer cells by blocking the function of lung-derived bone morphogenetic proteins (BMPs). Mechanistic investigations showed that LAPTM5 recruits WWP2, which binds to the BMP receptor BMPR1A and mediates its lysosomal sorting, ubiquitination and ultimate degradation. BMPR1A expression was restored by the lysosomal inhibitor chloroquine. LAPTM5 expression could also serve as an independent predictor of lung metastasis in renal cancer. Lastly, elevation of LAPTM5 expression in lung metastases is a common phenomenon in multiple cancer types. Our results reveal a molecular mechanism underlying lung-specific metastasis and identify LAPTM5 as a potential therapeutic target for cancers with lung metastasis. The mechanisms that confer lung-specific metastasis in renal cell carcinomas (RCC) remain to be detailed. Here the authors show that LAPTM5 contributes to lung-specific metastasis of RCCs by suppressing BMP signalling and thus, enhancing self-renewal and cancer stem cell-like traits of RCCs.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Haixiang Qin
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Binghua Li
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yao Fu
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Kuiqiang He
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Mengxia Chen
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Tingsheng Lin
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yongming Deng
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Institute of Urology, Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
43
|
Cyclic Peptides for the Treatment of Cancers: A Review. Molecules 2022; 27:molecules27144428. [PMID: 35889301 PMCID: PMC9317348 DOI: 10.3390/molecules27144428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Cyclic peptides have been widely reported to have therapeutic abilities in the treatment of cancer. This has been proven through in vitro and in vivo studies against breast, lung, liver, colon, and prostate cancers, among others. The multitude of data available in the literature supports the potential of cyclic peptides as anticancer agents. This review summarizes the findings from previously reported studies and discusses the different cyclic peptide compounds, the sources, and their modes of action as anticancer agents. The prospects and future of cyclic peptides will also be described to give an overview on the direction of cyclic peptide development for clinical applications.
Collapse
|
44
|
Nkandeu DS, Basson C, Joubert AM, Serem JC, Bipath P, Nyakudya T, Hlophe Y. The involvement of a chemokine receptor antagonist CTCE-9908 and kynurenine metabolites in cancer development. Cell Biochem Funct 2022; 40:608-622. [PMID: 35789495 DOI: 10.1002/cbf.3731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/22/2022] [Indexed: 11/06/2022]
Abstract
Cancer is the second leading cause of mortality worldwide. Skin cancer is the most common cancer in South Africa with nearly 20,000 reported cases every year and 700 deaths. If diagnosed early, the 5-year survival rate is about 90%, however, when diagnosed late, the 5-year survival rate decreases to about 20%. Melanoma is a type of skin cancer with an estimated 5-year survival rate of approximately 90%. Neuroblastoma is a paediatric cancer with a low survival rate. Sixty percent of patients with metastatic disease do not survive 5 years after diagnosis. Despite recent advances in targeted therapies, there is a crucial need to identify reliable prognostic biomarkers which will be able to contribute to the development of more precision-based chemotherapeutic strategies to prevent tumour migration and metastasis. The compound, CTCE-9908 inhibits the binding of CXC chemokine ligand 12 (CXCL12) to the CXC chemokine receptor 4 (CXCR4) receptor leading to reduced metastasis. Kynurenine metabolites are derived tryptophan, which is an essential amino acid. Kynurenine metabolites inhibit T-cell proliferation resulting in cell growth arrest. For this reason, chemokines receptors represent potential targets for the treatment of cancer growth and metastasis. In this review paper, the role of the CXCL12/CXCR4 signalling pathway in the development of cancer is highlighted together with the current available treatments involving the CTCE-9908 compound in combination with microtubule inhibitors like paclitaxel and docetaxel.
Collapse
Affiliation(s)
- Danielle Sandra Nkandeu
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Charlize Basson
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Trevor Nyakudya
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Yvette Hlophe
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
45
|
Deletion of TRIB3 disrupts the tumor progression induced by integrin αvβ3 in lung cancer. BMC Cancer 2022; 22:459. [PMID: 35473511 PMCID: PMC9044834 DOI: 10.1186/s12885-022-09593-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Integrin αvβ3 has been proposed as crucial determinant for tumor sustained progression and a molecular marker for the estimation of tumor angiogenesis. Our study suggested that integrin αvβ3 could efficiently promote lung cancer cell proliferation and stem-like phenotypes in a tribbles homolog 3 (TRIB3) dependent manner. RESULT Integrin αvβ3 could mediate the activation of FAK/AKT pro-survival signaling pathway. Meanwhile, activated TRIB3 interacted with AKT to upregulated FOXO1 and SOX2 expression, resulting in sustained tumor progression in lung cancer. Our further analysis revealed that TRIB3 was significantly upregulated in lung tumor tissues and correlated with the poor outcome in clinical patients, indicating the potential role of TRIB3 in diagnostic and prognostic estimation for patients with lung cancer. CONCLUSION Our study showed here for the first time that integrin αvβ3 promote lung cancer development by activating the FAK/AKT/SOX2 axis in a TRIB3 dependent signaling pathway, and interrupting TRIB3/AKT interaction significantly improved the outcome of chemotherapy in tumor-bearing mice, representing a promising therapeutic strategy in lung cancer.
Collapse
|
46
|
Huang Q, Wu D, Zhao J, Yan Z, Chen L, Guo S, Wang D, Yuan C, Wang Y, Liu X, Xing J. TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis. EMBO J 2022; 41:e110324. [PMID: 35451091 PMCID: PMC9156967 DOI: 10.15252/embj.2021110324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
The mechanisms underlying cancer metastasis remain poorly understood. Here, we report that TFAM deficiency rapidly and stably induced spontaneous lung metastasis in mice with liver cancer. Interestingly, unexpected polymerization of nuclear actin was observed in TFAM-knockdown HCC cells when cytoskeleton was examined. Polymerization of nuclear actin is causally linked to the high-metastatic ability of HCC cells by modulating chromatin accessibility and coordinating the expression of genes associated with extracellular matrix remodeling, angiogenesis, and cell migration. Mechanistically, TFAM deficiency blocked the TCA cycle and increased the intracellular malonyl-CoA levels. Malonylation of mDia2, which drives actin assembly, promotes its nuclear translocation. Importantly, inhibition of malonyl-CoA production or nuclear actin polymerization significantly impeded the spread of HCC cells in mice. Moreover, TFAM was significantly downregulated in metastatic HCC tissues and was associated with overall survival and time to tumor recurrence of HCC patients. Taken together, our study connects mitochondria to the metastasis of human cancer via uncovered mitochondria-to-nucleus retrograde signaling, indicating that TFAM may serve as an effective target to block HCC metastasis.
Collapse
Affiliation(s)
- Qichao Huang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Dan Wu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jing Zhao
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Zeyu Yan
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin Chen
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Dalin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chong Yuan
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yinping Wang
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Liu
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
47
|
Bai S, Wang Z, Wang M, Li J, Wei Y, Xu R, Du J. Tumor-Derived Exosomes Modulate Primary Site Tumor Metastasis. Front Cell Dev Biol 2022; 10:752818. [PMID: 35309949 PMCID: PMC8924426 DOI: 10.3389/fcell.2022.752818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived exosomes (TDEs) are actively produced and released by tumor cells and carry messages from tumor cells to healthy cells or abnormal cells, and they participate in tumor metastasis. In this review, we explore the underlying mechanism of action of TDEs in tumor metastasis. TDEs transport tumor-derived proteins and non-coding RNA to tumor cells and promote migration. Transport to normal cells, such as vascular endothelial cells and immune cells, promotes angiogenesis, inhibits immune cell activation, and improves chances of tumor implantation. Thus, TDEs contribute to tumor metastasis. We summarize the function of TDEs and their components in tumor metastasis and illuminate shortcomings for advancing research on TDEs in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zunyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Minghua Wang
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Junai Li
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Yuan Wei
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Ruihuan Xu
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
48
|
Li S, Zhang N, Liu S, Zhang H, Liu J, Qi Y, Zhang Q, Li X. ITGA5 Is a Novel Oncogenic Biomarker and Correlates With Tumor Immune Microenvironment in Gliomas. Front Oncol 2022; 12:844144. [PMID: 35371978 PMCID: PMC8971292 DOI: 10.3389/fonc.2022.844144] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most aggressive primary intracranial malignancies with poor overall survival. ITGA5 is one member of the integrin adhesion molecule family and is implicated in cancer metastasis and oncogenesis. However, few studies have explored the association between tumor immune microenvironment and ITGA5 expression level in gliomas. Firstly, we analyzed 3,047 glioma patient samples collected from the TCGA, the CGGA, and the GEO databases, proving that high ITGA5 expression positively related to aggressive clinicopathological features and poor survival in glioma patients. Then, based on the ITGA5 level, immunological characteristics and genomic alteration were explored through multiple algorithms. We observed that ITGA5 was involved in pivotal oncological pathways, immune-related processes, and distinct typical genomic alterations in gliomas. Notably, ITGA5 was found to engage in remolding glioma immune infiltration and immune microenvironment, manifested by higher immune cell infiltration when ITGA5 is highly expressed. We also demonstrated a strong correlation between ITGA5 and immune checkpoint molecules that may be beneficial from immune checkpoint blockade strategies. In addition, ITGA5 was found to be a robust and sensitive indicator for plenty of chemotherapy drugs through drug sensitivity prediction. Altogether, our comprehensive analyses deciphered the prognostic, immunological, and therapeutic value of ITGA5 in glioma, thus improving individual and precise therapy for combating gliomas.
Collapse
Affiliation(s)
- Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Zhang
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiajing Liu
- Department of Neurology, Affiliated People’s Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yiwei Qi
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xingrui Li, ; Qi Zhang, ; Yiwei Qi,
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xingrui Li, ; Qi Zhang, ; Yiwei Qi,
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xingrui Li, ; Qi Zhang, ; Yiwei Qi,
| |
Collapse
|
49
|
Super-sensitive bifunctional nanoprobe: Self-assembly of peptide-driven nanoparticles demonstrating tumor fluorescence imaging and therapy. Acta Pharm Sin B 2022; 12:1473-1486. [PMID: 35530136 PMCID: PMC9069314 DOI: 10.1016/j.apsb.2021.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
The development of nanomedicine has recently achieved several breakthroughs in the field of cancer treatment; however, biocompatibility and targeted penetration of these nanomaterials remain as limitations, which lead to serious side effects and significantly narrow the scope of their application. The self-assembly of intermediate filaments with arginine-glycine-aspartate (RGD) peptide (RGD-IFP) was triggered by the hydrophobic cationic molecule 7-amino actinomycin D (7-AAD) to synthesize a bifunctional nanoparticle that could serve as a fluorescent imaging probe to visualize tumor treatment. The designed RGD-IFP peptide possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method. This fluorescent nanoprobe with RGD peptide could be targeted for delivery into tumor cells and released in acidic environments such as endosomes/lysosomes, ultimately inducing cytotoxicity by arresting tumor cell cycling with inserted DNA. It is noteworthy that the RGD-IFP/7-AAD nanoprobe tail-vein injection approach demonstrated not only high tumor-targeted imaging potential, but also potent antitumor therapeutic effects in vivo. The proposed strategy may be used in peptide-driven bifunctional nanoparticles for precise imaging and cancer therapy.
Collapse
|
50
|
Koroknai V, Szász I, Jámbor K, Balázs M. Cytokine and Chemokine Receptor Patterns of Human Malignant Melanoma Cell Lines. Int J Mol Sci 2022; 23:2644. [PMID: 35269787 PMCID: PMC8910570 DOI: 10.3390/ijms23052644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/19/2022] Open
Abstract
Cytokine and chemokine receptors can promote tumor progression, invasion, and metastasis development by inducing different intracellular signaling pathways. The aim of this study was to determine the cytokine and chemokine receptor gene expression patterns in human melanoma cell lines. We found a large set of cytokine and chemokine receptor genes that were significantly differentially expressed between melanoma cell lines that originated from different subtypes of primary melanomas as well as cell lines that originated from melanoma metastases. The relative expressions of two receptor genes (CCR2 and TNFRSF11B) were positively correlated with the invasive potential of the cell lines, whereas a negative correlation was observed for the TNFRSF14 gene expression. We also found a small set of receptor genes that exhibited a significantly decreased expression in association with a BRAFV600E mutation. Based on our results, we assume that the analyzed cytokine and chemokine receptor collection may provide potential to distinguish the different subtypes of melanomas, helping us to understand the biological behavior of BRAFV600E-mutated melanoma cells.
Collapse
Affiliation(s)
- Viktoria Koroknai
- MTA-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary; (V.K.); (I.S.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - István Szász
- MTA-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary; (V.K.); (I.S.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Krisztina Jámbor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Margit Balázs
- MTA-DE Public Health Research Group, University of Debrecen, 4032 Debrecen, Hungary; (V.K.); (I.S.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|