1
|
Liu Y, Wang H, Zhao S, Wang Z, Yang L, Zhang J, Hou Q, Xiao Z, Wang P, Liu Y. Prognostic value and clinical significance of IL-33 expression in patients with uterine corpus endometrial carcinoma. Cytokine 2025; 185:156828. [PMID: 39657332 DOI: 10.1016/j.cyto.2024.156828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common malignant tumours of the female genital tract. In the occurrence, progression and prognosis of UCEC, chronic inflammation plays an important role, making it pivotal to identify inflammatory response-related endometrial diseases. The cytokine interleukin-33 (IL-33) plays significant roles in immune responses, and has been associated with inappropriate allergic reactions, autoimmune diseases, and cancer pathology. In the past decade, studies have begun to uncover the pivotal roles of IL-33 in shaping tumour microenvironment (TME), where it may promote or inhibit tumorigenesis and development depending on the specific tumour types. However, the association between IL-33 expression and UCEC remains unclear. Here we investigated the expression profiles of IL-33 in pan-cancer based on TCGA database. Then, differential gene expression analysis and correlation analysis of IL-33 was investigated in UCEC. In addition, functional enrichment analysis and Kaplan-Meier survival analysis were performed to predict the potential function of IL-33 and its role in the prognosis of UCEC patients. Also, a nomogram model was constructed to predict the prognosis of UCEC. The expression of the inflammatory factor NF-κB p65 and the IL-33, along with its receptor ST2, was analyzed in UCEC tumour tissues and normal tissues of clinical specimens through immunohistochemical staining. Meanwhile, we used toluidine blue staining and methanol Congo red staining to observe the infiltration of mast cells and eosinophils in the endometrial tissue. The results of Kaplan-Meier plotter data indicated that patients with lower IL-33 expression had poorer progression-free interval than those with higher expression. Based on the results of multifactor Cox regression, a nomogram was generated to predict UCEC occurrence risk and prognosis. Clinical specimen characteristics also confirmed a negative correlation between IL-33 expression and UCEC staging and grading. This comprehensive analysis of IL-33, based on bioinformatics and immunohistochemistry, revealed that IL-33 has the function of inhibiting UCEC occurrence and progression and can be served as a beneficial prognostic marker in the clinic.
Collapse
Affiliation(s)
- Yuqi Liu
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Han Wang
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Shihan Zhao
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Zhenjiang Wang
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Lijuan Yang
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Jihong Zhang
- The Pathology Department of Affiliated Hospital, Beihua University, Jilin 132013, China
| | - Qinlong Hou
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - ZiShen Xiao
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Pengmin Wang
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, Québec, Canada.
| | - Yanbo Liu
- School of Basic Medical College, Beihua University, Jilin 132013, China.
| |
Collapse
|
2
|
Zhao H, Liu J, Yin S, Bao H. PAI-1 promotes human endometrial stromal decidualization via inhibiting VEGFR2/PI3K/AKT signaling pathway mediated F-actin reorganization. FASEB J 2024; 38:e70233. [PMID: 39718443 DOI: 10.1096/fj.202401882r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
Decidualization of endometrial stromal cells is a prerequisite for successful embryo implantation and early pregnancy. Decidualization dysregulation results in implantation failure. In our previous study, we reported that PAI-1 is abnormally downregulated in the endometrial tissue samples of patients with recurrent implantation failure. This study will explore the dynamic expression changes of PAI-1 in the endometrium during the menstrual cycle and its molecular mechanism affecting endometrial decidualization. Our findings indicated that the abundance of PAI-1 increased in the mid-secretory phase and attached a peak in the decidual phase in the endometrium of women with regular menstrual cycles. In human endometrial stromal cells (HESCs), PAI-1 knockdown attenuated endometrial decidualization by upregulating VEGFR2/PI3K/AKT signaling pathway and impaired the F-actin reorganization. Furthermore, axitinib (a VEGFR2 inhibitor) was used to inhibit the VEGFR2 protein activity and the results suggested that it eliminated the effects of PAI-1 on PI3K/AKT signaling pathways and F-actin remodeling. In addition, the interaction between PAI-1 and KNG1 was confirmed by coimmunoprecipitation assay in HESCs. Altogether, PAI-1-KNG1 may enhance the decidualization of endometrium by inhibiting VEGFR2/PI3K/AKT signaling pathway-mediated F-actin reorganization in healthy females.
Collapse
Affiliation(s)
- Huishan Zhao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Juan Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shuyuan Yin
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| | - Hongchu Bao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong Provincial Key Medical and Health Laboratory of Reproductive Health and Genetics (Yantai Yuhuangding Hospital), Yantai, China
| |
Collapse
|
3
|
Domínguez-Lazcano DG, Simón-Lara I, Morales-Romero J, Vásquez-Garzón VR, Arroyo-Helguera OE, López-Vazquez J, Campos-Parra AD, Hernández-Nopaltecatl B, Rivera-Hernández XA, Quintana S, García-Román R. Alpha-fetoprotein, glypican-3, and kininogen-1 as biomarkers for the diagnosis of hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:383-395. [PMID: 39660335 PMCID: PMC11626288 DOI: 10.62347/qsii4050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/23/2024] [Indexed: 12/12/2024]
Abstract
The hepatocarcinoma (HCC) is the most important liver tumor. It represents 90% of liver cancer cases. One of the main problems is the limited prompt cancer diagnosis and the advanced stages where the chances of treatment are limited. The main diagnostic methods for HCC are imaging techniques and liver biopsy. With advances in technology, proteins as significant diagnostic biomarkers have increased. The objective of this review is to describe the role of Alpha-fetoprotein (AFP), Glipican 3 (GPC-3), and Kininogen 1 (KNG-1) as biomarkers for the diagnosis of hepatocellular carcinoma. A systematic search of studies was carried out in the literature and the diagnostic values of these proteins were compared. The results showed that the combined use of biomarkers increases the diagnostic capacity for the detection of hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Ingrid Simón-Lara
- Facultad de Medicina, Región Poza-Rica-Tuxpan, Universidad VeracruzanaXalapa, Veracruz, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Mota GAF, de Souza SLB, Vileigas DF, da Silva VL, Sant'Ana PG, Costa LCDS, Padovani CR, Zanatti Bazan SG, Buzalaf MAR, Santos LDD, Okoshi MP, Gatto M, Cicogna AC. Myocardial proteome changes in aortic stenosis rats subjected to long-term aerobic exercise. J Cell Physiol 2024; 239:e31199. [PMID: 38291668 DOI: 10.1002/jcp.31199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
The effects of exercise training (ET) on the heart of aortic stenosis (AS) rats are controversial and the mechanisms involved in alterations induced by ET have been poorly clarified. In this study, we analyzed the myocardial proteome to identify proteins modulated by moderate-intensity aerobic ET in rats with chronic supravalvular AS. Wistar rats were divided into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary aortic stenosis (AS-Sed), and exercised AS (AS-Ex). ET consisted of five treadmill running sessions per week for 16 weeks. Statistical analysis was performed by ANOVA or Kruskal-Wallis and Goodman tests. Results were discussed at a significance level of 5%. At the end of the experiment, AS-Ex rats had higher functional capacity, lower blood lactate concentration, and better cardiac structural and left ventricular (LV) functional parameters than the AS-Sed. Myocardial proteome analysis showed that AS-Sed had higher relative protein abundance related to the glycolytic pathway, oxidative stress, and inflammation, and lower relative protein abundance related to beta-oxidation than C-Sed. AS-Ex had higher abundance of one protein related to mitochondrial biogenesis and lower relative protein abundance associated with oxidative stress and inflammation than AS-Sed. Proteomic data were validated for proteins related to lipid and glycolytic metabolism. Chronic pressure overload changes the abundance of myocardial proteins that are mainly involved in lipid and glycolytic energy metabolism in rats. Moderate-intensity aerobic training attenuates changes in proteins related to oxidative stress and inflammation and increases the COX4I1 protein, related to mitochondrial biogenesis. Protein changes are combined with improved functional capacity, cardiac remodeling, and LV function in AS rats.
Collapse
Affiliation(s)
- Gustavo Augusto Ferreira Mota
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Sérgio Luiz Borges de Souza
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | | | - Vitor Loureiro da Silva
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Paula Grippa Sant'Ana
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Licia Carla da Silva Costa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Carlos Roberto Padovani
- Department of Biostatistics, Institute of Bioscience, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Silméia Garcia Zanatti Bazan
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | | | | | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Mariana Gatto
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University, UNESP, São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Alberti G, Sánchez-López CM, Marcilla A, Barone R, Caruso Bavisotto C, Graziano F, Conway de Macario E, Macario AJL, Bucchieri F, Cappello F, Campanella C, Rappa F. Hsp70 and Calcitonin Receptor Protein in Extracellular Vesicles from Glioblastoma Multiforme: Biomarkers with Putative Roles in Carcinogenesis and Potential for Differentiating Tumor Types. Int J Mol Sci 2024; 25:3415. [PMID: 38542389 PMCID: PMC10969952 DOI: 10.3390/ijms25063415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a malignancy of bad prognosis, and advances in early detection and treatment are needed. GBM is heterogenous, with varieties differing in malignancy within a tumor of a patient and between patients. Means are needed to distinguish these GMB forms, so that specific strategies can be deployed for patient management. We study the participation of the chaperone system (CS) in carcinogenesis. The CS is dynamic, with its members moving around the body in extracellular vesicles (EVs) and interacting with components of other physiological systems in health and disease, including GBM. Here, we describe the finding of high amounts of Hsp70 (HSPA1A) and the calcitonin receptor protein (CTR) in EVs in patients with GBM. We present a standardized protocol for collecting, purifying, and characterizing EVs carrying Hsp70 and CTR in plasma-derived EVs from patients with GBM. EVs from GBM patients were obtained just before tumor ablative surgery (T0) and 7 days afterwards (T1); Hsp70 was highly elevated at T0 and less so at T1, and CTR was greatly increased at T0 and reduced to below normal values at T1. Our results encourage further research to assess Hsp70 and CTR as biomarkers for differentiating tumor forms and to determine their roles in GBM carcinogenesis.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Christian M. Sánchez-López
- Área de Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, 46100 Burjassot, Spain; (C.M.S.-L.); (A.M.)
- Joint Unit of Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe, 46026 Valencia, Spain
| | - Antonio Marcilla
- Área de Parasitología, Departamento Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, 46100 Burjassot, Spain; (C.M.S.-L.); (A.M.)
- Joint Unit of Endocrinology, Nutrition and Clinical Dietetics, Instituto de Investigación Sanitaria-La Fe, 46026 Valencia, Spain
| | - Rosario Barone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Francesca Graziano
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, 95122 Catania, Italy;
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy; (E.C.d.M.); (A.J.L.M.)
| | - Claudia Campanella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (R.B.); (C.C.B.); (F.B.); (F.C.); (C.C.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| |
Collapse
|
7
|
Wang D, Wang Z, Dai X, Zhang L, Li M. Apigenin and Temozolomide Synergistically Inhibit Glioma Growth Through the PI3K/ AKT Pathway. Cancer Biother Radiopharm 2024; 39:125-132. [PMID: 33471569 DOI: 10.1089/cbr.2020.4283] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Glioma is a devastating disease with the worst prognosis among human malignant tumors. Although temozolomide (TMZ) improves the overall survival of glioma patients, there are still many glioma patients who are resistant to TMZ. In this study, we focused on the effect of apigenin (API) and TMZ on glioma cells in vitro and in vivo, and we studied the underlying molecular mechanisms. Materials and Methods: To investigate the effect of API on glioblastoma cell proliferation, cell viability was assessed after glioma cells were incubated with various concentrations of API with or without TMZ using MTT assays. Then, we explored the synergistic effect of API and TMZ on glioma cell cycle, apoptosis, and migration. To investigate the molecular mechanism behind the synergism of API and TMZ, we examined the related genes of the major signaling pathways involved in glioma pathogenesis by Western blotting. Results: In this study, we found that API significantly suppressed the proliferation of glioma cells in a dose- and time-dependent manner. Combining API and TMZ significantly induced glioma cells arrest at the G2 phase and inhibited glioma cells proliferation compared with API or TMZ alone. In addition, API promoted the ability of TMZ to induce glioma cells apoptosis and inhibit glioma cells invasion. Furthermore, compared with treatment with individual agents, the combination of API and TMZ significantly inhibited the growth of subcutaneous tumors in mice. These results implied that API could synergistically suppress the growth of glioma cells when combined with TMZ. Combining API and TMZ significantly inhibited the protein expression of p-AKT, cyclin D1, Bcl-2, Matrix Metallopeptidase 2, and Matrix Metallopeptidase 9. Conclusion: API and TMZ synergistically inhibited glioma growth through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhijun Wang
- Clinical Medicine, Weifang Medical University, Weifang, People's Republic of China
| | - Xuedong Dai
- Department of Neurosurgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Liang Zhang
- Department of Neurosurgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Min Li
- Department of Neurosurgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Wang M, Wang W, You S, Hou Z, Ji M, Xue N, Du T, Chen X, Jin J. ACAT1 deficiency in myeloid cells promotes glioblastoma progression by enhancing the accumulation of myeloid-derived suppressor cells. Acta Pharm Sin B 2023; 13:4733-4747. [PMID: 38045043 PMCID: PMC10692383 DOI: 10.1016/j.apsb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with an immunosuppressive tumor microenvironment (TME). In this environment, myeloid cells, such as myeloid-derived suppressor cells (MDSCs), play a pivotal role in suppressing antitumor immunity. Lipometabolism is closely related to the function of myeloid cells. Here, our study reports that acetyl-CoA acetyltransferase 1 (ACAT1), the key enzyme of fatty acid oxidation (FAO) and ketogenesis, is significantly downregulated in the MDSCs infiltrated in GBM patients. To investigate the effects of ACAT1 on myeloid cells, we generated mice with myeloid-specific (LyzM-cre) depletion of ACAT1. The results show that these mice exhibited a remarkable accumulation of MDSCs and increased tumor progression both ectopically and orthotopically. The mechanism behind this effect is elevated secretion of C-X-C motif ligand 1 (CXCL1) of macrophages (Mφ). Overall, our findings demonstrate that ACAT1 could serve as a promising drug target for GBM by regulating the function of MDSCs in the TME.
Collapse
Affiliation(s)
- Mingjin Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weida Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shen You
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhenyan Hou
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Louati K, Maalej A, Kolsi F, Kallel R, Gdoura Y, Borni M, Hakim LS, Zribi R, Choura S, Sayadi S, Chamkha M, Mnif B, Khemakhem Z, Boudawara TS, Boudawara MZ, Safta F. Differential Proteome Profiling Analysis under Pesticide Stress by the Use of a Nano-UHPLC-MS/MS Untargeted Proteomic-Based Approach on a 3D-Developed Neurospheroid Model: Identification of Protein Interactions, Prognostic Biomarkers, and Potential Therapeutic Targets in Human IDH Mutant High-Grade Gliomas. J Proteome Res 2023; 22:3534-3558. [PMID: 37651309 PMCID: PMC10629271 DOI: 10.1021/acs.jproteome.3c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/02/2023]
Abstract
High-grade gliomas represent the most common group of infiltrative primary brain tumors in adults associated with high invasiveness, agressivity, and resistance to therapy, which highlights the need to develop potent drugs with novel mechanisms of action. The aim of this study is to reveal changes in proteome profiles under stressful conditions to identify prognostic biomarkers and altered apoptogenic pathways involved in the anticancer action of human isocitrate dehydrogenase (IDH) mutant high-grade gliomas. Our protocol consists first of a 3D in vitro developing neurospheroid model and then treatment by a pesticide mixture at relevant concentrations. Furthermore, we adopted an untargeted proteomic-based approach with high-resolution mass spectrometry for a comparative analysis of the differentially expressed proteins between treated and nontreated spheroids. Our analysis revealed that the majority of altered proteins were key members in glioma pathogenesis, implicated in the cellular metabolism, biological regulation, binding, and catalytic and structural activity and linked to many cascading regulatory pathways. Our finding revealed that grade-IV astrocytomas promote the downstream of the mitogen-activated-protein-kinases/extracellular-signal-regulated kinase (MAPK1/ERK2) pathway involving massive calcium influx. The gonadotrophin-releasing-hormone signaling enhances MAKP activity and may serve as a negative feedback compensating regulator. Thus, our study can pave the way for effective new therapeutic and diagnostic strategies to improve the overall survival.
Collapse
Affiliation(s)
- Kaouthar Louati
- Laboratory
of Pharmacology, Analytics and Galenic Drug Development- LR12ES09,
Faculty of Pharmacy, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| | - Amina Maalej
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Fatma Kolsi
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Rim Kallel
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Yassine Gdoura
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mahdi Borni
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Leila Sellami Hakim
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
| | - Rania Zribi
- Higher Institute
of Applied Studies to Humanities of Tunis (ISEAHT), University of Tunis, 11 Road of Jebel Lakdhar, 1005 Tunis, Tunisia
| | - Sirine Choura
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology
Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Mohamed Chamkha
- Laboratory
of Environmental Bioprocesses, Centre of
Biotechnology of Sfax, Road of Sidi-Mansour, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Basma Mnif
- Department
of Bacteriology, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Zouheir Khemakhem
- Legal Medicine
Department, Habib Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Tahya Sellami Boudawara
- Laboratory
of Pathological Anatomy and Cytology, Habib
Bourguiba University Hospital, Road El Ain km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Mohamed Zaher Boudawara
- Department
of Neurosurgery, Habib Bourguiba University
Hospital, Road El Ain
km 1.5, Avenue of Ferdaous, 3089 Sfax, Tunisia
- Faculty of
Medicine, University of Sfax, Avenue of Majida Boulila, 3029 Sfax, Tunisia
| | - Fathi Safta
- Laboratory
of Pharmacology, Analytics and Galenic Drug Development- LR12ES09,
Faculty of Pharmacy, University of Monastir, Road Avicenne, 5000 Monastir, Tunisia
| |
Collapse
|
10
|
Donnaloja F, Izzo L, Campanile M, Perottoni S, Boeri L, Fanizza F, Sardelli L, Jacchetti E, Raimondi MT, Rito LD, Craparotta I, Bolis M, Giordano C, Albani D. Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device. APL Bioeng 2023; 7:036117. [PMID: 37736017 PMCID: PMC10511260 DOI: 10.1063/5.0144862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/08/2023] [Indexed: 09/23/2023] Open
Abstract
We developed an innovative millifluidic organ-on-a-chip device, named MINERVA 2.0, that is optically accessible and suitable to serial connection. In the present work, we evaluated MINERVA 2.0 as millifluidic gut epithelium-on-a-chip by using computational modeling and biological assessment. We also tested MINERVA 2.0 in a serially connected configuration prodromal to address the complexity of multiorgan interaction. Once cultured under perfusion in our device, human gut immortalized Caco-2 epithelial cells were able to survive at least up to 7 days and form a three-dimensional layer with detectable tight junctions (occludin and zonulin-1 positive). Functional layer development was supported by measurable trans-epithelial resistance and FITC-dextran permeability regulation, together with mucin-2 expression. The dynamic culturing led to a specific transcriptomic profile, assessed by RNASeq, with a total of 524 dysregulated transcripts (191 upregulated and 333 downregulated) between static and dynamic condition. Overall, the collected results suggest that our gut-on-a-chip millifluidic model displays key gut epithelium features and, thanks to its modular design, may be the basis to build a customizable multiorgan-on-a-chip platform.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Marzia Campanile
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Francesca Fanizza
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Lorenzo Sardelli
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Manuela T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Laura Di Rito
- Department of Oncology, Computational Oncology Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Craparotta
- Department of Oncology, Computational Oncology Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Bolis
- Department of Oncology, Computational Oncology Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
11
|
Identification of Prognostic Markers of DNA Damage and Oxidative Stress in Diagnosing Papillary Renal Cell Carcinoma Based on High-Throughput Bioinformatics Screening. JOURNAL OF ONCOLOGY 2023; 2023:4640563. [PMID: 36785669 PMCID: PMC9922175 DOI: 10.1155/2023/4640563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Purpose Papillary renal cell carcinoma (pRCC) is the second most common histological subtype of adult kidney tumors, with a poor prognosis due to limited understanding of the disease mechanism. Herein, we have performed high-throughput bioinformatic screening to explore and identify potential biomarkers of DNA damage and oxidative stress for pRCC. Methods RNA sequencing data related to pRCC were downloaded from the TCGA database, and differentially expressed genes (DEG) were identified by a wide variety of clustering and classification algorithms, including self-organized maps (SOM), artificial neural networks (ANN), support vector machines (SVM), fuzzy logic, and hyphenated techniques such as neuro-fuzzy networks. Then DAVID and STRING online biological information tools were used to analyze functional enrichment of the regulatory networks of DEG and construct a protein-protein interaction (PPI) network, and then the Cytoscape software was used to identify hub genes. The importance of key genes was assessed by the analysis of the Kaplan-Meier survival curves using the R software. Lastly, we have analyzed the expression of hub genes of DNA damage and oxidative stress (BDKRB1, NMUR2, PMCH, and SAA1) in pRCC tissues and adjacent normal tissues, as well as the relationship between the expression of hub genes in pRCC tissues and pathological characteristics and prognosis of pRCC patients. Results A total of 1,992 DEGs for pRCC were identified, with 1,142 upregulated ones and 850 downregulated ones. The DEGs were significantly enriched in activities including DNA damage and oxidative stress, chemical synaptic transmission, an integral component of the membrane, calcium ion binding, and neuroactive ligand-receptor interaction. cytoHubba in the Cytoscape software was used to determine the top 10 hub genes in the PPI network as BDKRB2, NMUR2, NMU, BDKRB1, LPAR5, KNG1, LPAR3, SAA1, MCHR1, PMCH, and NCAPH. Furthermore, the expression level of hub genes BDKRB1, NMUR2, PMCH, and SAA1 in pRCC tissues was significantly higher than that in the adjacent normal tissues. Meanwhile, the expression level of hub genes BDKRB1, NMUR2, PMCH, and SAA1 in pRCC tissues was significantly positively correlated with tumor stage, lymph node metastasis, and the histopathology grade of pRCC. In addition, high expression levels of hub genes BDKRB1, NMUR2, PMCH, and SAA1 were associated with a poor prognosis for patients with pRCC. Univariate and multivariate analyses showed that the expression of hub genes BDKRB1, NMUR2, PMCH, and SAA1 were independent risk factors for the prognosis of patients with pRCC. Conclusion The results of this analysis suggested that BDKRB1, NMUR2, PMCH, and SAA1 might be potential prognostic biomarkers and novel therapeutic targets for pRCC.
Collapse
|
12
|
Xu J, Wang J, Zhao M, Li C, Hong S, Zhang J. LncRNA LINC01018/miR-942-5p/KNG1 axis regulates the malignant development of glioma in vitro and in vivo. CNS Neurosci Ther 2022; 29:691-711. [PMID: 36550594 PMCID: PMC9873518 DOI: 10.1111/cns.14053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
AIMS Since the inhibitory effect of KNG1 on glioma has been proved, this study further explores the regulation of the lncRNA/miRNA axis on KNG1 in glioma. METHODS The miRNAs that target KNG1 and the lncRNA that targets miR-942-5p were predicted by bioinformatics analysis and verified by experiments. The correlations between miR-942-5p and the survival of patients and between KNG1 and miR-942-5p were analyzed. After transfection, cell migration, invasion, proliferation, and cell cycle were detected through wound healing, Transwell, colony formation, and flow cytometry assays. A mouse subcutaneous xenotransplanted tumor model was established. The expressions of miR-942-5p, KNG1, LINC01018, and related genes were evaluated by quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), Western blot, or immunohistochemistry. RESULTS MiR-942-5p targeted KNG1, and LINC01018 sponged miR-942-5p. The high survival rate of patients was related to low miR-942-5p level. MiR-942-5p was highly expressed, whereas KNG1 was lowly expressed in glioma. MiR-942-5p was negatively correlated with KNG1. Silent LINC01018 or KNG1 and miR-942-5p mimic enhanced the migration, invasion, and proliferation of glioma cells, and regulated the expressions of metastasis-related and proliferation-related genes. LINC01018 knockdown and miR-942-5p mimic promoted glioma tumor growth in mice. The levels of miR-942-5p and KNG1 were decreased by LINC01018 knockdown, and LINC01018 expression was suppressed by miR-942-5p mimic. MiR-942-5p inhibitor, KNG1, and LINC01018 had the opposite effect to miR-942-5p mimic. CONCLUSION LINC01018/miR-942-5p/KNG1 pathway regulates the development of glioma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Jinfang Xu
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Jianli Wang
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Mingfei Zhao
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Chenguang Li
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Shen Hong
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Jianmin Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital Zhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
13
|
Niu M, Chen C, Gao X, Guo Y, Zhang B, Wang X, Chen S, Niu X, Zhang C, Li L, Li Z, Zhao Z, Jiang X. Comprehensive analysis of the differences between left- and right-side colorectal cancer and respective prognostic prediction. BMC Gastroenterol 2022; 22:482. [PMID: 36419007 DOI: 10.1186/s12876-022-02585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Previous studies have reported that the tumor heterogeneity and complex oncogenic mechanisms of proximal and distal colon cancer (CRC) are divergent. Therefore, we aim to analyze the differences between left-sided CRC (L_cancer) and right-sided CRC (R_cancer), as well as constructing respective nomograms.
Methods
We enrolled 335 colon cancer patients (146 L_cancer patients and 189 R_cancer patients) from The Cancer Genome Atlas (TCGA) data sets, and 102 pairs of color cancer tissue and adjacent normal tissue (51 L_cancer patients and 51 R_cancer patients) from our hospital. Firstly, we analyzed the differences between the L_cancer patients and R_cancer patients, and then established the L_cancer and R_cancer prognostic models using LASSO Cox.
Results
R_cancer patients had lower survival than L_cancer patients. R_cancer patients had higher ESTIMATE and immune scores and lower tumor purity. These patterns of expression of immune checkpoint-related genes and TMB level were higher in R_cancer than in L_cancer patients. Finally, we using Lasso Cox regression analyses established a prognostic model for L_cancer patients and a prognostic model for R_cancer patients. The AUC values of the risk score for OS in L_cancer were 0.862 in the training set and 0.914 in the testing set, while those in R_cancer were 0.835 in the training set and 0.857 in the testing set. The AUC values in fivefold cross-validation were between 0.727 and 0.978, proving that the two prognostic models have great stability. The nomogram of L_cancer included prognostic genes, age, pathological M, pathological stage, and gender, the AUC values of which were 0.800 in the training set and 0.905 in the testing set. Meanwhile, the nomogram of R_cancer comprised prognostic genes, pathological N, pathological T, and age, the AUC values of which were 0.836 in the training set and 0.850 in the testing set. In the R_cancer patients, high-risk patients had a lower proportion of ‘B cells memory’, ‘Dendritic cells resting’, immune score, ESTIMATE score, immune checkpoint-related genes, and HLA-family genes, and a higher proportion of ‘T cells follicular helper’, ‘Dendritic cells activated’, and ‘Mast cells activated’.
Conclusions
We found significant differences between L_cancer and R_cancer patients and established a clinical predictive nomogram for L_cancer patients and a nomogram for R_cancer patients. Additionally, R_cancer patients in low-risk groups may be more beneficial from immunotherapy.
Collapse
|
14
|
Targeted proteomics using parallel reaction monitoring confirms salivary proteins indicative of metastatic triple-negative breast cancer. J Proteomics 2022; 267:104701. [PMID: 35995384 DOI: 10.1016/j.jprot.2022.104701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype due to the absence of hormonal receptors. Our study aimed to identify and determine the effectiveness of salivary proteins as candidate markers for metastatic TNBC subtype using parallel reaction monitoring mass spectrometry (PRM-MS). Three salivary proteins (lipocalin-1, SMR3B, and plastin-2) that showed significant differential expression in label-free quantitation (LFQ) between TNBC (N = 6) and health subjects (HS; N = 6) were selected for further validation. The developed PRM assay was used to quantify peptides GLST and NNLE (lipocalin-1), VYAL and MINL (Plastin-2) and GPYP, and IPPP (SMR3B) on a different cohort of TNBC patients (N = 20) and HS (N = 20) for evaluating their discriminating performances. Quantitative validation using PRM correlated well with the LFQ results, and 5 peptides from three proteins showed a similar up-or down-regulation. Subsequently, these proteins were validated by Western blot analysis. Compared to one protein's performance as an individual marker, the five-signature panel with salivary GLST, VYAL, MINL, GPYP, and IPPP achieved better performance in differentiating aggressive TNBC and HS with sensitivity (80%) and specificity (95%). Targeted proteomic analysis of the prioritized proteins highlights a peptide-based signature in saliva as the potential predictor to distinguish between TNBC and HS. SIGNIFICANCE OF THE STUDY: This study was designed to identify and quantify potential markers in saliva from the triple-negative breast cancer (TNBC) patients using parallel reaction monitoring assay. Three salivary proteins, Lipocalin-1 (LCN-1), Submaxillary androgen-regulated protein 3B (SMR3B), and Plastin-2 (LCP-1) selected in the discovery-phase were further quantified by targeted proteomics and Western blots. The salivary proteins successfully differentiated TNBC patients from healthy subjects with a sensitivity (80%) and specificity (95%).
Collapse
|
15
|
Li Y, Huang H, Yu H, Mo T, Wei T, Li G, Jia Y, Huang X, Tu M, Yan X, Zhang H. Differential gene expression analysis after DAPK1 knockout in hepatocellular carcinoma cells. PeerJ 2022; 10:e13711. [PMID: 35935258 PMCID: PMC9354754 DOI: 10.7717/peerj.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/20/2022] [Indexed: 01/17/2023] Open
Abstract
Background The mechanism through which death-associated protein kinase 1 (DAPK1) causes hepatocellular carcinoma (HCC) progression remains unclear. In this study, we aimed to identify key proteins that were altered after DAPK1 knockout. Methods Stable DAPK1 knockout HCC cell lines were established, then the differentially expressed genes (DEGs) of HCC were screened using the NetworkAnalyst database and enriched using the Metascape software. Protein-protein interaction networks (PPIs) were analyzed and visualized using the STRING database expansion. Results In total, 732 differentially expressed genes were identified, including 415 upregulated genes and 317 downregulated genes. Through Cytoscape software scoring, 10 pivotal genes were found to be closely related to changes in DAPK1 expression; Kininogen-1 (KNG1), Complement C3 (C3), Metalloproteinase inhibitor 1 (TIMP1), and Alpha-2-HS-glycoprotein (AHSG) were the most strongly associated with DAPK1 expression changes. Moreover, western blot analysis results revealed that changes in the levels of proteins encoded by the four key genes after DAPK1 knockout were consistent with those seen in the database screening. Conclusions These results provide a direction for further studies on the DAPK1 gene and on the mechanism through which DAPK1 leads to hepatocellular carcinoma development.
Collapse
Affiliation(s)
- Yuanqi Li
- Guangdong Medical University, Zhanjiang, China
| | - Hui Huang
- Guangdong Medical University, Zhanjiang, China
| | - Huajun Yu
- Guangdong Medical University, Zhanjiang, China
| | - Ting Mo
- Guangdong Medical University, Zhanjiang, China
| | - Ting Wei
- Guangdong Medical University, Zhanjiang, China
| | - Guodan Li
- Guangdong Medical University, Zhanjiang, China
| | - Yufang Jia
- Guangdong Medical University, Zhanjiang, China
| | | | - Mingjin Tu
- Guangdong Medical University, Zhanjiang, China
| | - Xiuwen Yan
- Guangdong Medical University, Zhanjiang, China
| | | |
Collapse
|
16
|
Bioinformatics Study Identified EGF as a Crucial Gene in Papillary Renal Cell Cancer. DISEASE MARKERS 2022; 2022:4761803. [PMID: 35655917 PMCID: PMC9155928 DOI: 10.1155/2022/4761803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022]
Abstract
Background Due to a lack of knowledge of the disease process, papillary renal cell carcinoma (PRCC) has a dismal outlook. This research was aimed at uncovering the possible biomarkers and the underlying principles in PRCC using a bioinformatics method. Methods We searched the Gene Expression Omnibus (GEO) datasets to obtain the GSE11151 and GSE15641 gene expression profiles of PRCC. We used the R package limma to identify the differentially expressed genes (DEGs). The online tool DAVID and ClusterProfiler package in R software were used to analyze Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway dominance, respectively. The STRING database was utilized to construct the PPI network of DEGs. Using the Cytoscape technology, a protein-protein interaction (PPI) network that associated with DEGs was created, and the hub genes were identified using the Cytoscape plug-in CytoHubba. The hub genes were subjected to a Kaplan-Meier analysis to identify their correlations with survival rates. Results From the selected datasets, a total of 240 common DEGs were identified in the PRCC, including 50 upregulated genes and 190 downregulated regulated genes. Renal growth, external exosome, binding of heparin, and metabolic processes were all substantially associated with DEGs. The CytoHubba plug-in-based analysis identified the 10 hub genes (ALB, KNG1, C3, CXCL12, EGF, TIMP1, VCAN, PLG, LAMC1, and CASR) from the original PPI network. The higher expression group of EGF was associated with poor outcome in patients with PRCC. Conclusions We revealed important genes and proposed biological pathways that may be implicated in the formation of PRCC. EGF might be a predictive biomarker for PRCC and therefore should be investigated as a novel treatment strategy.
Collapse
|
17
|
Zhu R, Wang Z. Inhibitory Effect of MicroRNA-376b-Overexpressing Bone Marrow Mesenchymal Stem Cells (BMSCs) on Malignant Characteristics of Glioma Cells Through Targeting Forkhead Box Protein P2 (FOXP2). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated the impact of microRNA (miR)-376b derived from BMSCs on glioma progression. BMSCs were transfected with miR-376b mimic, miR-376b inhibitor or NC and then cocultured with glioma cells followed by measuring cell behaviors by MTT assay, Transwell assay and flow
cytometry, FOXP2 and miR-376b expression by Western blot and RT-qPCR. After confirming the inhibitory and mimicking activity of transfection, we found that overexpression of miR-376b in BMSCs decreased glioma cell invasion, migration and proliferation but promoted cell apoptosis within 24
h and 48 h after transfection along with reduced number of cells in S-phase. Mechanically, miR-376b targeted miR-376b and up-regulation of miR-376b caused down-regulation of FOXP2 (p < 0.05). Overexpression of miR-376b in BMSCs decelerated glioma cell cycle and inhibitedmalignant
behaviors of glioma cells by targeting FOXP2 expression. These evidence unveils the potential role of FOXP2 as a biomarker for the treatment of gliomas.
Collapse
Affiliation(s)
- Ruoyu Zhu
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jianan, Shandong, 250014, China
| | - Zhonglin Wang
- Department of Neurology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| |
Collapse
|
18
|
Li CQ, Liu ZQ, Liu SS, Zhang GT, Jiang L, Chen C, Luo DQ. Transcriptome Analysis of Liver Cancer Cell Huh-7 Treated With Metformin. Front Pharmacol 2022; 13:822023. [PMID: 35401213 PMCID: PMC8985428 DOI: 10.3389/fphar.2022.822023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
Metformin is a kind of widely used antidiabetic drug that regulates glucose homeostasis by inhibiting liver glucose production and increasing muscle glucose uptake. Recently, some studies showed that metformin exhibits anticancer properties in a variety of cancers. Although several antitumor mechanisms have been proposed for metformin action, its mode of action in human liver cancer remains not elucidated. In our study, we investigated the underlying molecular mechanisms of metformin's antitumor effect on Huh-7 cells of hepatocellular carcinoma (HCC) in vitro. RNA sequencing was performed to explore the effect of metformin on the transcriptome of Huh-7 cells. The results revealed that 4,518 genes (with log2 fold change > 1 or < −1, adjusted p-value < 0.05) were differentially expressed in Huh-7 cells with treatment of 25-mM metformin compared with 0-mM metformin, including 1,812 upregulated and 2,706 downregulated genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified 54 classical pathways that were significantly enriched, and 16 pathways are closely associated with cancer, such as cell cycle, DNA replication, extracellular matrix–receptor interaction, and so on. We selected 11 differentially expressed genes, which are closely associated with HCC, to validate their differential expressions through a quantitative real-time reverse transcription-polymerase chain reaction. The result exhibited that the genes of fatty acid synthase, mini-chromosome maintenance complex components 6 and 5, myristoylated alanine-rich C-kinase substrate, fatty acid desaturase 2, C-X-C motif chemokine ligand 1, bone morphogenetic protein 4, S-phase kinase-associated protein 2, kininogen 1, and proliferating cell nuclear antigen were downregulated, and Dual-specificity phosphatase-1 is significantly upregulated in Huh-7 cells with treatment of 25-mM metformin. These differentially expressed genes and pathways might play a crucial part in the antitumor effect of metformin and might be potential targets of metformin treating HCC. Further investigations are required to evaluate the metformin mechanisms of anticancer action in vivo.
Collapse
Affiliation(s)
- Chun-Qing Li
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| | - Zhi-Qin Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding, China
| | - Sha-Sha Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China.,College of Science and Technology, Hebei Agricultural University, Huanghua, China
| | - Gao-Tao Zhang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| | - Li Jiang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| | - Chuan Chen
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| | - Du-Qiang Luo
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
19
|
Zheng X, Wang Y, Wang D, Wan J, Qin X, Mu Z, Hu N. PSMC2 is overexpressed in glioma and promotes proliferation and anti-apoptosis of glioma cells. World J Surg Oncol 2022; 20:84. [PMID: 35287689 PMCID: PMC8922849 DOI: 10.1186/s12957-022-02533-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
Background This study aims to investigate the effect of PSMC2 expression on the clinical prognosis of glioma patients and its molecular mechanism. Methods TCGA multi-tumor screening and survival analysis were combined to explore the differential expression of PSMC2 in multi-tumor. PSMC2 expression in glioma and normal tissues was detected by Western blot and RT-qPCR. Kaplan-Meier survival curve was used to visualize the effect of PSMC2 expression on the overall survival rate and disease-free survival rate of patients with glioma. The highly expressed cell line U343MG was selected to construct a PSMC2 knockdown model by siRNA transfection, and the effect of PSMC2 knockdown on cell proliferation ability was evaluated by CCK-8 assay. Gene-set enrichment analysis of PSMC2 co-expression genes was carried out to predict the molecular mechanism of their regulation of tumor cell phenotypes, and the analysis results were verified by flow cytometry and Western blot. Results Through broad-spectrum screening of 31 kinds of tumors, we found that PSMC2 was upregulated in most tumors, but PSMC2 was most significantly overexpressed in gliomas and correlated with poor prognosis in glioma patients. The results of Western blot and qRT-PCR showed that PSMC2 was significantly overexpressed in glioma tissues. Further survival analysis revealed that the overall survival and disease-free survival of patients with low PSMC2 expression were significantly better than that of patients with high PSMC2 expression. The proliferation of U343MG cells was significantly inhibited after PSMC2 knockdown. Enrichment analysis of PSMC2 co-expression genes indicated that PSMC2 affected the apoptosis process. The expression of apoptosis-related proteins also significantly changed following PSMC2 knockdown. Conclusions PSMC2 promotes the proliferation of glioma cells and inhibits the apoptosis, which is expected to be a potential therapeutic target for glioma. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02533-1.
Collapse
|
20
|
Li Z, Li X, Jin M, Liu Y, He Y, Jia N, Cui X, Liu Y, Hu G, Yu Q. Identification of potential blood biomarkers for early diagnosis of schizophrenia through RNA sequencing analysis. J Psychiatr Res 2022; 147:39-49. [PMID: 35016150 DOI: 10.1016/j.jpsychires.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/06/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Schizophrenia (SCZ) is a highly heritable, polygenic complex mental disorder with imprecise diagnostic boundaries. Finding sensitive and specific novel biomarkers to improve the biological homogeneity of SCZ diagnosis is still one of the research hotspots. To identify the blood specific diagnostic biomarkers of SCZ, we performed RNA sequencing (RNA-seq) on 30 peripheral blood samples from 15 first-episode drug-naïve SCZ patients and 15 healthy controls (CTL). By performing multiple bioinformatics analysis algorithms based on RNA-seq data and microarray datasets, including differential expression genes (DEGs) analysis, WGCNA and CIBERSORT, we first identified 6 specific key genes (TOMM7, SNRPG, KRT1, AQP10, TMEM14B and CLEC12A) in SCZ. Moreover, we found that the proportions of lymphocyte, monocyte and neutrophils were significantly distinct in SCZ patients with CTL samples. Therefore, combining various features including age, sex and the novel blood biomarkers, we constructed the risk prediction model with three classifiers (RF: Random Forest; SVM: support vector machine; DT: decision tree) through repeated k-fold cross validation ensuring better generalizability. Finest result of Area under Receiver Operating Characteristic (AUROC) score of 0.91 was achieved by RF classifier and with a comparable good performance of AUROC 0.77 in external validation dataset. A lower AUROC of 0.63 was demonstrated when it was further applied to a Bipolar disorder (BPD) cohort. In conclusion, the study identified three peripheral core immunocytes and six key genes associated with the occurrence of SCZ, and further studies are required to test and validate these novel biomarkers for early diagnosis and treatment of SCZ.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xinwei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yang Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yang He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xingyao Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yane Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Guoyan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
21
|
Qin L, Kuai J, Yang F, Yang L, Sun P, Zhang L, Li G. Selected by bioinformatics and molecular docking analysis, Dhea and 2-14,15-Eg are effective against cholangiocarcinoma. PLoS One 2022; 17:e0260180. [PMID: 35113866 PMCID: PMC8812988 DOI: 10.1371/journal.pone.0260180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/03/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECT To identify novel targets for the diagnosis, treatment and prognosis of cholangiocarcinoma, we screen ideal lead compounds and preclinical drug candidates with MYC inhibitory effect from the ZINC database, and verify the therapeutic effect of Dhea and 2-14,15-Eg on cholangiocarcinoma. METHODS The gene expression profiles of GSE132305, GSE89749, and GSE45001 were obtained respectively from the Gene Expression Omnibus database. The DEGs were identified by comparing the gene expression profiles of cholangiocarcinoma and normal tissues. GO, KEGG analysis and PPI network analyses were performed. LibDock, ADME and toxicity prediction, molecular docking and molecular dynamics simulations were used to identify potential inhibitors of MYC. Moreover, in vitro, MTT assay, colony-forming assay, the scratch assay and Western blotting were performed to verify the therapeutic effect of Dhea and 2-14,15-Eg. RESULTS PPI network analysis showed that ALB, MYC, APOB, IGF1 and KNG1 were hub genes, of which MYC was mainly studied in this study. A battery of computer-aided virtual techniques showed that Dhea and 2-14,15-Eg have lower rodent carcinogenicity, Ames mutagenicity, developmental toxicity potential, and high tolerance to cytochrome P4502D6, as well as could exist stably in natural circumstances. In vitro assays showed that Dhea and 2-14,15-Eg inhibited cholangiocarcinoma cellular viability, proliferation, and migration inhibiting expression of MYC. CONCLUSION This study suggested that Dhea and 2-14,15-Eg were novel potential inhibitors of MYC targeting, as well as are a promising drug in dealing with cholangiocarcinoma and have a perspective application.
Collapse
Affiliation(s)
- Lei Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang, China
| | - Jun Kuai
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang, China
| | - Fang Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang, China
| | - Lu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang, China
| | - Peisheng Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang, China
| | - Lanfang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang, China
| | - Guangpeng Li
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang, China
| |
Collapse
|
22
|
Tripathi PH, Akhtar J, Arora J, Saran RK, Mishra N, Polisetty RV, Sirdeshmukh R, Gautam P. Quantitative proteomic analysis of GnRH agonist treated GBM cell line LN229 revealed regulatory proteins inhibiting cancer cell proliferation. BMC Cancer 2022; 22:133. [PMID: 35109816 PMCID: PMC8812247 DOI: 10.1186/s12885-022-09218-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) receptor, a rhodopsin-like G-protein coupled receptor (GPCR) family member involved in GnRH signaling, is reported to be expressed in several tumors including glioblastoma multiforme (GBM), one of the most malignant and aggressive forms of primary brain tumors. However, the molecular targets associated with GnRH receptor are not well studied in GBM or in other cancers. The present study aims at investigating the effect of GnRH agonist (Gosarelin acetate) on cell proliferation and associated signaling pathways in GBM cell line, LN229. METHODS LN229 cells were treated with different concentrations of GnRH agonist (10-10 M to 10-5 M) and the effect on cell proliferation was analyzed by cell count method. Further, total protein was extracted from control and GnRH agonist treated cells (with maximum reduction in cell proliferation) followed by trypsin digestion, labeling with iTRAQ reagents and LC-MS/MS analysis to identify differentially expressed proteins. Bioinformatic analysis was performed for annotation of proteins for the associated molecular function, altered pathways and network analysis using STRING database. RESULTS The treatment with different concentrations of GnRH agonist showed a reduction in cell proliferation with a maximum reduction of 48.2% observed at 10-6 M. Quantitative proteomic analysis after GnRH agonist treatment (10-6 M) led to the identification of a total of 29 differentially expressed proteins with 1.3-fold change (23 upregulated, such as, kininogen-1 (KNG1), alpha-2-HS-glycoprotein (AHSG), alpha-fetoprotein (AFP), and 6 downregulated, such as integrator complex subunit 11 (CPSF3L), protein FRG1 (FRG1). Some of them are known [KNG1, AHSG, AFP] while others such as inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2), ITIH4, and LIM domain-containing protein 1 (LIMD1) are novel to GnRH signaling pathway. Protein-protein interaction analysis showed a direct interaction of KNG1, a hub molecule, with GnRH, GnRH receptor, EGFR and other interactors including ITIH2, ITIH4 and AHSG. Overexpression of KNG1 after GnRH agonist treatment was validated using Western blot analysis, while a significant inhibition of EGFR was observed after GnRH agonist treatment. CONCLUSIONS The study suggests a possible link of GnRH signaling with EGFR signaling pathways likely via KNG1. KNG1 inhibitors may be investigated independently or in combination with GnRH agonist for therapeutic applications.
Collapse
Affiliation(s)
- Priyanka H Tripathi
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Symbiosis International (Deemed University), Pune, 412115, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Jyoti Arora
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Ravindra Kumar Saran
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India
| | - Neetu Mishra
- Symbiosis International (Deemed University), Pune, 412115, India
| | - Ravindra Varma Polisetty
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
23
|
Ke CH, Wang YS, Chiang HC, Wu HY, Liu WJ, Huang CC, Huang YC, Lin CS. Xenograft cancer vaccines prepared from immunodeficient mice increase tumor antigen diversity and host T cell efficiency against colorectal cancers. Cancer Lett 2022; 526:66-75. [PMID: 34808284 DOI: 10.1016/j.canlet.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Autologous cancer vaccines (ACVs) are a desirable approach for personalized medicine, but the efficiency of ACVs remains unsatisfactory due to their low immunogenicity. This study developed a platform that can enhance the immunogenicity of ACVs by transplanting the tumors into immunodeficient mice. The CT26 cell line was inoculated into severe combined immunodeficient mice (SCID) for vaccine preparation where escalates tumor development, subsequently diversifying the tumor antigenic topology. CT26/SCID cancer vaccines significantly inhibited tumor growth, increased the amount of tumor infiltrating lymphocytes, and triggered Th-1 predominant immune responses. Tumor antigenic profiles of CT26/SCID cells were further analyzed by liquid chromatography-tandem mass spectrometry. Compared to CT26 parental cells, a total of 428 differentially expressed proteins (DEPs) were detected. These DEPs revealed that CT26/SCID cells overexpressed several novel therapeutic targets, including KNG1, apoA-I and, β2-GPI, which can trigger cytotoxic T cells towards Th-1 predominant immune responses and directly suppress proliferation in tumors. CT26/SCID cancer vaccines can be easily manufactured, while traits of triggering stronger antigen-specific Th-1 immune activity against tumors, are retained. Results of this study provide an effective proof-of-concept of an ACV for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd., 106319, Taipei, Taiwan
| | - Yu-Shan Wang
- Lab. 2612, Rekiin Biotech Inc., 114737, Taipei, Taiwan
| | | | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, 106319, Taipei, Taiwan
| | - Wang-Jing Liu
- Department of Earth and Life Science, University of Taipei, 1 Ai-Guo West Road, Taipei, 100234, Taipei, Taiwan
| | | | - Yi-Chun Huang
- Lab. 2612, Rekiin Biotech Inc., 114737, Taipei, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, No.1 Sec.4 Roosevelt Rd., 106319, Taipei, Taiwan.
| |
Collapse
|
24
|
Zhen J, Zhao P, Li Y, Cai Y, Yu W, Wang W, Zhao L, Wang H, Huang G, Xu A. The Multiomics Analyses of Gut Microbiota, Urine Metabolome and Plasma Proteome Revealed Significant Changes in Allergy Featured with Indole Derivatives of Tryptophan. J Asthma Allergy 2022; 15:117-131. [PMID: 35125876 PMCID: PMC8809677 DOI: 10.2147/jaa.s334752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/18/2022] [Indexed: 12/21/2022] Open
Abstract
Objective To explore changes in the gut microbiota (GM), urine metabolome and plasma proteome in individuals with allergies using multiomics analyses, and identify the key components and mechanism. Methods This was a cross-sectional study. All subjects were recruited to collect fecal, urine and blood samples. 16S rDNA sequencing was used to analyze the structure and function of the GM, liquid chromatography mass spectrometry was used to quantify metabolites in the urine, and data-independent acquisition quantitative proteome analysis was used to detect proteins in the plasma. Differences in GM, urine metabolites and plasma proteins between allergic and healthy individuals were displayed using principal component analysis (PCoA) and heatmap, and the co-occurrence network was visualized in Cytoscape using Spearman correlation among differential predominant genera, metabolites and proteins. The functional analysis was performed according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) dataset. The allergy-related cytokines, IL-4, IL-6 and IL-13, were measured to evaluate the effect of indole derivatives on LPS-induced macrophage activation. Results GM α indexes, β distances and the relative abundance of the core differential genera in the allergic group were different from those of healthy individuals, which resulted in a separate distribution in the PCoA and enterotypes. Similarly, the concentrations of 393 metabolites and 144 proteins were different between allergic and healthy individuals. Then, 634 significant correlations were identified among 6 predominant differential genera, 24 differential metabolites and 104 differential proteins, 301 of which were negative and 333 of which were positive. Notably, a core network centered on tryptophan metabolites, indole-3-butyric acid (IBA) and indole-3-lactic acid (ILA), displayed high consistency with the results of KEGG pathway analysis. In the LPS-stimulated macrophages, IBA reduced the expression of IL-4 and IL-6, and ILA inhibited the upregulation of IL-6. Conclusion The GM, urine metabolome and plasma proteome underwent systematic change in allergic individuals compared to healthy individuals, among which indole derivatives from tryptophan metabolism might play key roles in the progression of allergies and could serve as therapeutic targets of allergy.
Collapse
Affiliation(s)
- Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Pengfei Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yini Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yanan Cai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wanchen Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lu Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hesong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- State Key Laboratory of Bio-control, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Correspondence: Anlong Xu; Guangrui Huang, Email ;
| |
Collapse
|
25
|
Souza MM, Coutinho-Camillo CM, de Paula FM, de Paula F, Bologna SB, Lourenço SV. Relevant proteins for the monitoring of engraftment phases after allogeneic hematopoietic stem cell transplantation. Clinics (Sao Paulo) 2022; 77:100134. [PMID: 36403426 PMCID: PMC9678684 DOI: 10.1016/j.clinsp.2022.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Hematopoietic Stem Cell Transplant (HSCT) has been successfully used as standard therapy for hematological disorders. After conditioning therapy, patients undergoing allogeneic HSCT, present three different phases of engraftment: early pre-engraftment, early post-engraftment, and late engraftment. Severe complications are associated with morbidity, mortality, and malignancies in these phases, which include effects on the oral cavity. OBJECTIVES The changes in the salivary composition after HSCT may contribute to identifying relevant proteins that could map differences among the phases of diseases, driven for personalized diagnostics and therapy. METHODS Unstimulated whole saliva was collected from patients submitted to HSCT. The samples were submitted to trypsin digestion for a Mass spectrometry analysis. MaxQuant processed the Data analysis, and the relevant expressed proteins were subjected to pathway and network analyses. RESULTS Differences were observed in the most identified proteins, specifically in proteins involved with the regulation of body fluid levels and the mucosal immune response. The heatmap showed a list of proteins exclusively expressed during the different phases of HSCT: HBB, KNG1, HSPA, FGB, APOA1, PFN1, PRTN3, TMSB4X, YWHAZ, CAP1, ACTN1, CLU and ALDOA. Bioinformatics analysis implicated pathways involved in protein processing in the endoplasmic reticulum, complement and coagulation cascades, apoptosis signaling, and cholesterol metabolism. CONCLUSION The compositional changes in saliva reflected the three phases of HSCT and demonstrated the usefulness of proteomics and computational approaches as a revolutionary field in diagnostic methods.
Collapse
Affiliation(s)
- Milena Monteiro Souza
- Department of Dermatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil; International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Fabiana Martins de Paula
- Medical Research Laboratory, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda de Paula
- Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sheyla Batista Bologna
- Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia Vanessa Lourenço
- Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil; Medical Research Laboratory, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Dong Y, Ma WM, Yang W, Hao L, Zhang SQ, Fang K, Hu CH, Zhang QJ, Shi ZD, Zhang WD, Fan T, Xia T, Han CH. Identification of C3 and FN1 as potential biomarkers associated with progression and prognosis for clear cell renal cell carcinoma. BMC Cancer 2021; 21:1135. [PMID: 34688260 PMCID: PMC8539775 DOI: 10.1186/s12885-021-08818-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urological malignancies, but the pathogenesis and prognosis of ccRCC remain obscure, which need to be better understand. Methods Differentially expressed genes were identified and function enrichment analyses were performed using three publicly available ccRCC gene expression profiles downloaded from the Gene Expression Omnibus database. The protein-protein interaction and the competing endogenous RNA (ceRNA) networks were visualized by Cytoscape. Multivariate Cox analysis was used to predict an optimal risk mode, and the survival analysis was performed with the Kaplan-Meier curve and log-rank test. Protein expression data were downloaded from Clinical Proteomic Tumor Analysis Consortium database and Human Protein Atlas database, and the clinical information as well as the corresponding lncRNA and miRNA expression data were obtained via The Cancer Genome Atlas database. The co-expressed genes and potential function of candidate genes were explored using data exacted from the Cancer Cell Line Encyclopedia database. Results Of the 1044 differentially expressed genes shared across the three datasets, 461 were upregulated, and 583 were downregulated, which significantly enriched in multiple immunoregulatory-related biological process and tumor-associated pathways, such as HIF-1, PI3K-AKT, P53 and Rap1 signaling pathways. In the most significant module, 36 hub genes were identified and were predominantly enriched in inflammatory response and immune and biotic stimulus pathways. Survival analysis and validation of the hub genes at the mRNA and protein expression levels suggested that these genes, particularly complement component 3 (C3) and fibronectin 1 (FN1), were primarily responsible for ccRCC tumorigenesis and progression. Increased expression of C3 or FN1 was also associated with advanced clinical stage, high pathological grade, and poor survival in patients with ccRCC. Univariate and multivariate Cox regression analysis qualified the expression levels of the two genes as candidate biomarkers for predicting poor survival. FN1 was potentially regulated by miR-429, miR-216b and miR-217, and constructed a bridge to C3 and C3AR1 in the ceRNA network, indicating a critical position of FN1. Conclusions The biomarkers C3 and FN1 could provide theoretical support for the development of a novel prognostic tool to advance ccRCC diagnosis and targeted therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08818-0.
Collapse
Affiliation(s)
- Yang Dong
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Wei-Ming Ma
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Wen Yang
- Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China.,Medical College of Soochow University, Suzhou, China
| | - Shao-Qi Zhang
- Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Kun Fang
- Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China.,Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Chun-Hui Hu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qian-Jin Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen-Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Wen-da Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tao Fan
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Tian Xia
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China
| | - Cong-Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou, China. .,Department of Nephrology, The First Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China. .,Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
27
|
Li J, Li MH, Wang TT, Liu XN, Zhu XT, Dai YZ, Zhai KC, Liu YD, Lin JL, Ge RL, Sun SH, Wang F, Yuan JH. SLC38A4 functions as a tumour suppressor in hepatocellular carcinoma through modulating Wnt/β-catenin/MYC/HMGCS2 axis. Br J Cancer 2021; 125:865-876. [PMID: 34274945 DOI: 10.1038/s41416-021-01490-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Many molecular alterations are shared by embryonic liver development and hepatocellular carcinoma (HCC). Identifying the common molecular events would provide a novel prognostic biomarker and therapeutic target for HCC. METHODS Expression levels and clinical relevancies of SLC38A4 and HMGCS2 were investigated by qRT-PCR, western blot, TCGA and GEO datasets. The biological roles of SLC38A4 were investigated by functional assays. The downstream signalling pathway of SLC38A4 was investigated by qRT-PCR, western blot, immunofluorescence, luciferase reporter assay, TCGA and GEO datasets. RESULTS SLC38A4 silencing was identified as an oncofetal molecular event. DNA hypermethylation contributed to the downregulations of Slc38a4/SLC38A4 in the foetal liver and HCC. Low expression of SLC38A4 was associated with poor prognosis of HCC patients. Functional assays demonstrated that SLC38A4 depletion promoted HCC cellular proliferation, stemness and migration, and inhibited HCC cellular apoptosis in vitro, and further repressed HCC tumorigenesis in vivo. HMGCS2 was identified as a critical downstream target of SLC38A4. SLC38A4 increased HMGCS2 expression via upregulating AXIN1 and repressing Wnt/β-catenin/MYC axis. Functional rescue assays showed that HMGCS2 overexpression reversed the oncogenic roles of SLC38A4 depletion in HCC. CONCLUSIONS SLC38A4 downregulation was identified as a novel oncofetal event, and SLC38A4 was identified as a novel tumour suppressor in HCC.
Collapse
Affiliation(s)
- Jie Li
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Ming-Han Li
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Tian-Tian Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Xiao-Ning Liu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ting Zhu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Zhang Dai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Ke-Chao Zhai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yong-da Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jia-Li Lin
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Rui-Liang Ge
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shu-Han Sun
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Fang Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China.
| | - Ji-Hang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, China.
| |
Collapse
|
28
|
Rügen N, Jenkins TP, Wielsch N, Vogel H, Hempel BF, Süssmuth RD, Ainsworth S, Cabezas-Cruz A, Vilcinskas A, Tonk M. Hexapod Assassins' Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus. Biomedicines 2021; 9:biomedicines9070819. [PMID: 34356883 PMCID: PMC8301361 DOI: 10.3390/biomedicines9070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.
Collapse
Affiliation(s)
- Nicolai Rügen
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Natalie Wielsch
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany;
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany;
| | - Benjamin-Florian Hempel
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
- BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; (B.-F.H.); (R.D.S.)
| | - Stuart Ainsworth
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, F-94700 Maisons-Alfort, France;
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (N.R.); (A.V.)
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Miray Tonk
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
29
|
Liu Y, Wu H, Jing J, Li H, Dong S, Meng Q. Downregulation of hsa_circ_0001836 Induces Pyroptosis Cell Death in Glioma Cells via Epigenetically Upregulating NLRP1. Front Oncol 2021; 11:622727. [PMID: 33869006 PMCID: PMC8044449 DOI: 10.3389/fonc.2021.622727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background It has been shown that circular RNAs (circRNAs) play a vital role in the progression of glioma. Recently, hsa_circ_0001836 was found to be upregulated in glioma tissues, but the role of hsa_circ_0001836 in glioma remains unclear. Methods EdU staining and flow cytometry assays were used to measure the viability and death of glioma cells. In addition, scanning electron microscopy (SEM) was used to observe the morphology of cells undergoing cell death. Results Hsa_circ_0001836 expression was upregulated in U251MG and SHG-44 cells. In addition, hsa_circ_0001836 knockdown significantly reduced the viability and proliferation of U251MG and SHG-44 cells. Moreover, hsa_circ_0001836 knockdown markedly induced the pyroptosis of U251MG and SHG-44 cells, evidenced by the increased expressions of NLRP1, cleaved caspase 1 and GSDMD-N. Meanwhile, methylation specific PCR (MSP) results indicated that hsa_circ_0001836 knockdown epigenetically increased NLRP1 expression via mediating DNA demethylation of NLRP1 promoter region. Furthermore, downregulation of hsa_circ_0001836 notably induced pyroptosis and inhibited tumor growth in a mouse xenograft model of glioma. Conclusion Collectively, hsa_circ_0001836 knockdown could induce pyroptosis cell death in glioma cells in vitro and in vivo via epigenetically upregulating NLRP1 expression. These findings suggested that hsa_circ_0001836 may serve as a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiangpeng Jing
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huanfa Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shan Dong
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Cheng X, Liu D, Song H, Tian X, Yan C, Han Y. Overexpression of Kininogen-1 aggravates oxidative stress and mitochondrial dysfunction in DOX-induced cardiotoxicity. Biochem Biophys Res Commun 2021; 550:142-150. [PMID: 33706097 DOI: 10.1016/j.bbrc.2021.02.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a widely used cancer chemotherapeutic drug with cardiotoxicity effect limiting its clinical use. DOX induced cardiotoxicity is mediated by oxidative stress and mitochondrial damage. Kininogen-1(KNG1) is an important pro-inflammatory and pro-oxidant factor, and studies have found that it can aggravate lung and brain damage. However, it has not been known in terms of cardiotoxicity. Therefore, the purpose of this study is to understand the mechanism of KNG1 in DOX-induced heart injury. METHODS C57 mice were selected for intraperitoneal injection of DOX. The model was successfully established, and fresh ventricular tissues were isolated from the ctrl group and the DOX group for mass spectrometry analysis to screen for differentially expressed proteins. Nuclear Factor-Like 2 (Nrf2), Heme Oxygenase 1 (HO-1), 4-Hydroxynonenal (4-HNE) were used to evaluate oxidative stress level, Cytochrome C Oxidase Subunit 4 (COX4) was used to evaluate mitochondria function. Mitochondrial inner membrane potential (ΔΨm) was monitored with JC-1 fluorescence. RESULTS KNG1 was identified as a core gene which was highly expressed in the DOX myocardial injury model. Following this, an overexpression adenovirus was constructed, and KNG1 was overexpressed in vivo (mice) and in vitro (neonatal mouse cardiomyocytes (NMCMs)). It was found that overexpression of KNG1 can aggravate heart oxidative stress and mitochondrial damage. Besides, a knockdown KNG1 model was constructed, and the low expression of KNG1 was performed in cytology. It was found that knockdown of KNG1 can improve cardiomyocyte oxidative stress and mitochondrial damage caused by DOX. Nrf2 is an important antioxidant factor. Further, following KNG1 knock down, Nrf2 was also knocked down, and found that its cardiomyocyte protective effect was weakened. CONCLUSION The overexpression of KNG1 aggravates the oxidative stress and mitochondrial damage of the heart in vivo and in vitro, which might play a role by regulating Nrf2, providing a therapeutic target for DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaoli Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Haixu Song
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Yaling Han
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
31
|
Flores J, Takvorian PM, Weiss LM, Cali A, Gao N. Human microsporidian pathogen Encephalitozoon intestinalis impinges on enterocyte membrane trafficking and signaling. J Cell Sci 2021; 134:jcs253757. [PMID: 33589497 PMCID: PMC7938802 DOI: 10.1242/jcs.253757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Microsporidia are a large phylum of obligate intracellular parasites. Approximately a dozen species of microsporidia infect humans, where they are responsible for a variety of diseases and occasionally death, especially in immunocompromised individuals. To better understand the impact of microsporidia on human cells, we infected human colonic Caco2 cells with Encephalitozoon intestinalis, and showed that these enterocyte cultures can be used to recapitulate the life cycle of the parasite, including the spread of infection with infective spores. Using transmission electron microscopy, we describe this lifecycle and demonstrate nuclear, mitochondrial and microvillar alterations by this pathogen. We also analyzed the transcriptome of infected cells to reveal host cell signaling alterations upon infection. These high-resolution imaging and transcriptional profiling analysis shed light on the impact of the microsporidial infection on its primary human target cell type.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | - Peter M Takvorian
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
- Departments of Medicine and Pathology, Albert Einstein College of Medicine Bronx, New York 10461, USA
| | - Louis M Weiss
- Departments of Medicine and Pathology, Albert Einstein College of Medicine Bronx, New York 10461, USA
| | - Ann Cali
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
32
|
Hsu TY, Tsai KW, Lan KC, Hung HN, Lai YJ, Cheng HH, Tsai CC, Li SC. Identifying the potential protein biomarkers of preterm birth in amniotic fluid. Taiwan J Obstet Gynecol 2021; 59:366-371. [PMID: 32416881 DOI: 10.1016/j.tjog.2020.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Preterm birth severely threatens neonatal health and life. Although the detailed mechanism of preterm birth is not well understood, accurately predicting preterm birth can help people make preparations in advance, greatly reducing the subsequent health risk of neonates. Therefore, in this study, we aimed to identify potential protein biomarkers of preterm birth in amniotic fluid (AF). MATERIALS AND METHODS We first enrolled pregnant subjects and collected their AF samples when they underwent amniocentesis at the second trimester of gestation. After delivery, the collected AF samples were classified into a full-term birth (sample size n = 21) set or preterm birth (n = 36) set, followed by 2-D DIGE and MS/MS assays. RESULTS By doing so, we identified seven potential protein biomarkers of preterm birth, three of which were further validated in all samples with ELISA, including Apolipoprotein A-IV (Apoa4), Lumican (Lum) and Kininogen-1 (Kng1). As a result, all three potential biomarkers were significantly differently expressed between preterm and full-term birth AF samples. Furthermore, without prior classification, we found that these three biomarkers were positively correlated with gestation age (correlation coefficient ranging from 0.25 to 0.38) and were able to predict the occurrence of preterm birth. CONCLUSION In this study, by examining amniotic fluid, we identified three biomarker proteins that may facilitate the identification of preterm birth. There three proteins were never reported to be related to preterm birth. Their pathogenesis roles in preterm birth deserve further investigations by using in vitro cell model or in vivo animal model assays.
Collapse
Affiliation(s)
- Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan.
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Hsuan-Ning Hung
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Yun-Ju Lai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Hsin-Hsin Cheng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Chih-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
33
|
Niu Y, Chen L, Wu M, Huang W, Wu X, Huang D, Xie Y, Shi G. Partial abrogation of FXR-KNG1 signaling by carboxyl-terminal truncated HBx-C30 in hepatitis B virus-associated hepatocellular carcinoma. Virus Res 2021; 293:198264. [PMID: 33359549 DOI: 10.1016/j.virusres.2020.198264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a key regulator of HBV-associated hepatocarcinogenesis. C-terminal-truncated HBx is frequently detected in hepatocellular carcinoma (HCC). The role of HBx, especially C-terminal-truncated HBx, in HCC pathogenesis has been controversial. To elucidate the biological role of C-terminal-truncated HBx underlying HBV-associated hepato-oncogenesis, we constructed a vector expressing HBx-C30 (deletion of 30 aa from the C terminus of HBx) and functionally analyzed its regulation on farnesoid X receptor (FXR) signaling, which is known to inhibit hepatocarcinogenesis. In the present study, we found full-length HBx and HBx C-terminal truncation coexist in HCC, and both full length HBx and HBx-C30 can activate FXR signaling. Moreover, HBx-C30 weakly coactivates FXR-KNG1 signaling compared to full-length HBx.
Collapse
Affiliation(s)
- Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Guangdong, China.
| | - Liming Chen
- Department of Oncology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Manpeng Wu
- The Second People's Hospital of Shantou, Shantou, China
| | - Weiyi Huang
- Department of Pharmacology, Shantou University Medical College, Guangdong, China
| | - Xuejun Wu
- Department of Pharmacology, Shantou University Medical College, Guangdong, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Guangdong, China
| | - Yangmin Xie
- Department of Experimental Animal Center, Medical College of Shantou University, Guangdong, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Guangdong, China.
| |
Collapse
|
34
|
Mo BY, Li GS, Huang SN, Wei ZX, Su YS, Dai WB, Ruan L. Laryngeal Squamous Cell Carcinoma: Potential Molecular Mechanism and Prognostic Signature Based on Immune-Related Genes. Med Sci Monit 2020; 26:e928185. [PMID: 33361747 PMCID: PMC7772955 DOI: 10.12659/msm.928185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune-related genes (IRGs) are closely related to the incidence and progression of tumors, potentially indicating that IRGs play an important role in laryngeal squamous cell carcinoma (LSCC). MATERIAL AND METHODS An RNA sequencing dataset containing 123 samples was collected from The Cancer Genome Atlas. Based on immune-related differentially expressed genes (IRDEGs), a potential molecular mechanism of LSCC was explored through analysis of information in the Gene Ontology (GO) resource and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPIs). A regulatory network of transcriptional regulators and IRDEGs was constructed to explore the underlying molecular mechanism of LSCC at the upstream level. Candidates from IRDEGs for signature were screened via univariate Cox analysis and using the least absolute shrinkage and selection operator (LASSO) technique. The IRDEG signature of LSCC was constructed by using a multivariate Cox proportional hazards model. RESULTS GO and KEGG analysis showed that IRDEGs may participate in the progression of LSCC through immune-related reactions. PPI analysis demonstrated that, among the IRDEGs in LSCC, the Kininogen 1; C-X-X motif chemokine ligand 10; elastase, neutrophil expressed; and LYZ genes are hub genes in the development of LSCC. At the upstream level, SPI1, SP140, signal transducer and activator of transcription 4, zinc finger E-box binding homeobox, and Ikaros family zinc finger 2 are the hub transcriptional regulators of IRDEGs. The risk score based on the IRDEG signature was able to distinguish prognosis in patients with LSCC and represents an independent prognostic risk factor for LSCC. CONCLUSIONS From the perspective of IRGs, we first constructed an IRDEG signature related to the prognosis of LSCC, which can be used as a novel marker to predict prognosis in patients with LSCC.
Collapse
Affiliation(s)
- Bin-Yu Mo
- Department of Otolaryngology, Liuzhou People's Hospital of Guangxi, Liuzhou, Guangxi, China (mainland)
| | - Guo-Sheng Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Zhu-Xin Wei
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ya-Si Su
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, China (mainland)
| | - Wen-Bin Dai
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, China (mainland)
| | - Lin Ruan
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
35
|
Lv QL, Wang LC, Li DC, Lin QX, Shen XL, Liu HY, Li M, Ji YL, Qin CZ, Chen SH. Knockdown lncRNA DLEU1 Inhibits Gliomas Progression and Promotes Temozolomide Chemosensitivity by Regulating Autophagy. Front Pharmacol 2020; 11:560543. [PMID: 33362537 PMCID: PMC7756250 DOI: 10.3389/fphar.2020.560543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most fatal malignant cerebral tumors. Temozolomide (TMZ), as the primary chemotherapy drug, has been widely used in clinics. However, resistance of TMZ still remains to poor defined. LncRNAs have been reported to play crucial roles in progression of various cancers and resistance of multiple drugs. However, the biological function and underlying mechanisms of most lncRNAs in glioma still remains unclear. Based on the TCGA database, a total of 94 differentially expressed lncRNAs, including 16 up-regulated genes and 78 downregulated genes were identified between gliomas and normal brain tissues. Subsequently, lncRNA DLEU1, HOTAIR, and LOC00132111 were tested to be significantly related to overall survival (OS) between high- and low-expression groups. Additionally, we verified that lncRNA DLEU1 was high expressed in 108 gliomas, compared with 19 normal brain tissues. And high expression of lncRNA DLEU1 predicted a poor prognosis (HR = 1.703, 95%CI: 1.133–2.917, p-value = 0.0159). Moreover, functional assays revealed that knockdown of lncRNA DLEU1 could suppress the proliferation by inducing cell cycle arrest at G1 phase and reducing the S phase by down-regulating the CyclinD1 and p-AKT, as the well as migration and invasion by inhibiting the epithelial–mesenchymal transition (EMT) markers, such as ZEB1, N-cadherin, β-catenin and snail in glioma cells. Furthermore, silencing lncRNA DLEU1 suppressed TMZ-activated autophagy via regulating the expression of P62 and LC3, and promoted sensitivity of glioma cells to TMZ by triggering apoptosis. Conclusively, our study indicated that lncRNA DLEU1 might perform as a prognostic potential target and underlying therapeutic target for sensitivity of glioma to TMZ.
Collapse
Affiliation(s)
- Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Li-Chong Wang
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dang-Chi Li
- Jiangxi University of Technology High School, Nanchang, China
| | - Qian-Xia Lin
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiao-Li Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai-Yun Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Min Li
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Yu-Long Ji
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chong-Zhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Yao Q, Lan QH, Jiang X, Du CC, Zhai YY, Shen X, Xu HL, Xiao J, Kou L, Zhao YZ. Bioinspired biliverdin/silk fibroin hydrogel for antiglioma photothermal therapy and wound healing. Theranostics 2020; 10:11719-11736. [PMID: 33052243 PMCID: PMC7545989 DOI: 10.7150/thno.47682] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Photothermal therapy employs the photoabsorbers to generate heat under the near-infrared (NIR) irradiation for thermal tumor ablation. However, NIR irradiation might damage the adjacent tissue due to the leakage of the photoabsorbers and the residual materials after treatment might hinder the local healing process. A bifunctional hydrogel that holds both photothermal property and potent pro-healing ability provides a viable option to resolve this issue. Methods: In this study, we developed a bioinspired green hydrogel (BVSF) with the integration of bioproduct biliverdin into natural derived silk fibroin matrix for antiglioma photothermal therapy and wound healing. Results: The BVSF hydrogel possessed excellent and controllable photothermal activity under NIR irradiation and resulted in effective tumor ablation both in vitro and in vivo. Additionally, the BVSF hydrogel exerted anti-inflammatory effects both in vitro and in vivo, and stimulated angiogenesis and wound healing in a full-thickness defect rat model. Conclusion: Overall, this proof-of-concept study was aimed to determine the feasibility and reliability of using an all-natural green formulation for photothermal therapy and post-treatment care.
Collapse
|
37
|
Brückner M, Simon J, Jiang S, Landfester K, Mailänder V. Preparation of the protein corona: How washing shapes the proteome and influences cellular uptake of nanocarriers. Acta Biomater 2020; 114:333-342. [PMID: 32726673 DOI: 10.1016/j.actbio.2020.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022]
Abstract
A protein coat, termed the protein corona, assembles around the nanocarriers´ surface once it gets in contact with a biological environment. We show that the media used for the washing of protein corona can be crucial. This is true for the downstream analysis as well as for the pre-coating used in in vitro or in vivo. This has been widely overlooked so far. In this paper we focus on eight different washing media and analyze how they influence the composition of the hard protein corona of several nanocarriers incubated with human blood plasma and serum. SDS-PAGE and LC-MS analysis showed major differences in protein corona profiles when using diverse washing media. While plasma and serum proteins already have different complexities, each washing media changes the composition of proteins detected by downstream methods with different key proteins bound to the nanocarriers´ surface. Furthermore, the protein structure of the most abundant blood proteins incubated in the different media was analyzed with nanoDSF. This also emphasized the importance of the washing media, which had a significant influence on the protein adsorption stability. Lastly, cell uptake experiments for HeLa and RAW 264.7 macrophages also indicated an influence of the washing media. In conclusion, picking a specific washing media is on the one hand an important factor for downstream detection of protein compositions and may on the other hand be used to deliberately tune the protein corona for pre-adsorbed proteins from complex protein compositions. This might further support a guided delivery of the nanocarrier to a desired location within a physiological environment. STATEMENT OF SIGNIFICANCE: The successfully application of nanocarriers as drug delivery vehicles is currently hampered by a limited understanding of the nanocarriers´ behavior in a complex biological environment. Once the nanocarrier comes into contact with blood plasma or serum, biomolecules rapidly adsorb onto their surface, covering the nanocarriers and forming a protein corona, which then dictates their biological identity. Analyzing the composition of this dynamic network of bound molecules, has already been shown to be influenced by various factors. However, the impact of the washing media used for the protein corona preparation has so far been neglected. In the present study, we demonstrate a quantitative influence of the washing media on the composition of the hard corona of different nanocarrier systems, which additionally affects protein stability and cellular uptake behavior.
Collapse
|
38
|
Cui H, Xu L, Li Z, Hou KZ, Che XF, Liu BF, Liu YP, Qu XJ. Integrated bioinformatics analysis for the identification of potential key genes affecting the pathogenesis of clear cell renal cell carcinoma. Oncol Lett 2020; 20:1573-1584. [PMID: 32724399 PMCID: PMC7377202 DOI: 10.3892/ol.2020.11703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
Clear cell renal cell carcinoma (CCRCC) is a typical type of RCC with the worst prognosis among the common epithelial neoplasms of the kidney. However, its molecular pathogenesis remains unknown. Therefore, the aim of the present study was to screen for effective and potential pathogenic biomarkers of CCRCC. The gene expression profile of the GSE16441, GSE36895, GSE40435, GSE46699, GSE66270 and GSE71963 datasets were downloaded from the Gene Expression Omnibus database. First, the limma package in R language was used to identify differentially expressed genes (DEGs) in each dataset. The robust and strong DEGs were explored using the robust rank aggregation method. A total of 980 markedly robust DEGs were identified (429 upregulated and 551 downregulated). According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, these DEGs exhibited an obvious enrichment in various cancer-related biological pathways and functions. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used for the construction of a protein-protein interaction (PPI) network, the Cytoscape MCODE plug-in for module analysis and the cytoHubba plug-in to identify hub genes from the aforementioned DEGs. A total of four key modules were identified in the PPI network. A total of six hub genes, including C-X-C motif chemokine ligand 12, bradykinin receptor B2, adenylate cyclase 7, calcium sensing receptor (CASR), kininogen 1 and lysophosphatidic acid receptor 5, were identified. The DEG results of the hub genes were verified using The Cancer Genome Atlas database, and CASR was found to be significantly associated with the prognosis of patients with CCRCC. In conclusion, the present study provided new insight and potential biomarkers for the diagnosis and prognosis of CCRCC.
Collapse
Affiliation(s)
- Hao Cui
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Xu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiao-Fang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo-Fang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
39
|
Wang M, Yang C, Liu X, Zheng J, Xue Y, Ruan X, Shen S, Wang D, Li Z, Cai H, Liu Y. An upstream open reading frame regulates vasculogenic mimicry of glioma via ZNRD1-AS1/miR-499a-5p/ELF1/EMI1 pathway. J Cell Mol Med 2020; 24:6120-6136. [PMID: 32368853 PMCID: PMC7294115 DOI: 10.1111/jcmm.15217] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that gliomas can supply blood through vasculogenic mimicry. In this study, the expression and function of ZNRD1‐AS1‐144aa‐uORF (144aa‐uORF) and some non‐coding RNAs in gliomas were assessed. Real‐time quantitative PCR or Western blot was used to discover the expression of 144aa‐uORF, ZNRD1‐AS1, miR‐499a‐5p, ELF1 and EMI1 in gliomas. In addition, RIP and RNA pull‐down assays were applied to explore the interrelationship between 144aa‐uORF and ZNRD1‐AS1. The role of the 144aa‐uORF\ZNRD1‐AS1\miR‐499a‐5p\ELF1\EMI1 axis in vasculogenic mimicry formation of gliomas was analysed. This study illustrates the reduced expression of the 144aa‐uORF in glioma tissues and cells. Up‐regulation of 144aa‐uORF inhibits proliferation, migration, invasion and vasculogenic mimicry formation within glioma cells. The up‐regulated 144aa‐uORF can increase the degradation of ZNRD1‐AS1 through the nonsense‐mediated RNA decay (NMD) pathway. Knockdown of ZNRD1‐AS1 inhibits vasculogenic mimicry in glioma cells by modulating miR‐499a‐5p. At the same time, miR‐499a‐5p is down‐regulated and has a tumour‐suppressive effect in gliomas. In addition, ZNRD1‐AS1 serves as a competitive endogenous RNA (ceRNA) and regulates the expression of ELF1 by binding to miR‐499a‐5p. Notably, ELF1 binds to the promoter region of EMI1 and up‐regulates EMI1 expression, while simultaneously promoting vasculogenic mimicry in glioma cells. This study suggests that the 144aa‐uORF\ZNRD1‐AS1\miR‐499a‐5p\ELF1\EMI1 axis takes key part in regulating the formation of vasculogenic mimicry in gliomas and may provide a potential target for glioma treatment.
Collapse
Affiliation(s)
- Mo Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
40
|
Mohammed SI, Torres-Luquis O, Zhou W, Lanman NA, Espina V, Liotta L. Tumor-Draining Lymph Secretome En Route to the Regional Lymph Node in Breast Cancer Metastasis. BREAST CANCER (DOVE MEDICAL PRESS) 2020; 12:57-67. [PMID: 32273752 PMCID: PMC7104086 DOI: 10.2147/bctt.s236168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND During metastasis, tumor cells metastasize from primary tumors to distant organs via the circulatory and the lymphatic systems. There is a plethora of information about metastasis through the circulatory system, however not much information is available about the tumor cells dissemination through the lymphatic system or the lymphatic microenvironment that aids in this process in breast cancer metastasis. PURPOSE The study designed to examine the tumor-derived secretome in lymph before reaching the draining lymph nodes. METHODS Using a microsurgical technique, we have collected the lymph in transit from the primary tumor en route to the regional lymph node in animals with metastatic and non-metastatic mammary carcinoma and healthy controls. The lymph samples were subjected to LC-MS/MS analysis, bioinformatics, and pathway analysis. RESULTS The metastatic tumor-draining lymph before its entry into the closest regional lymph node contain 26 proteins with >175-folds in abundance compared to lymph from non-metastatic tumor-bearing animals. Among these proteins were biliverdin reductase B, heat shock protein, coagulation factor XIII, lymphocytes cytosol protein 1, and aldose reductase. These proteins were not identified in the lymph from healthy animals. Pathways analysis revealed that cadherin-mediated endocytosis, acute phase response, junction signaling, gap junction, VEGF singling, and PI3K/AKT singling pathways are overrepresented in the lymph from metastatic tumor-bearing compared to the lymph from non-metastatic tumor-bearing animals. Among the significantly up-regulated proteins in the lymph from metastatic tumor-bearing animals were proteins that identified in exosomes include heat shock protein, enolase 1 alpha, S100, and biliverdin reductase B. One of the proteins significantly down-regulated in lymph from animals with metastasis is Kininogen, a known metastasis inhibitor protein. CONCLUSION Proteins and exosomal proteins in lymph draining a metastatic tumor are different from those in lymph draining non-metastatic tumors, and these proteins involved in pathways that regulate tumor cells migration and invasion.
Collapse
Affiliation(s)
- Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN47907, USA
| | - Odalys Torres-Luquis
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN47907, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA20110, USA
| | - Nadia Attalah Lanman
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN47907, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA20110, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA20110, USA
| |
Collapse
|
41
|
Identification and Analysis of Novel Biomarkers Involved in Chromophobe Renal Cell Carcinoma by Integrated Bioinformatics Analyses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2671281. [PMID: 32090070 PMCID: PMC7029304 DOI: 10.1155/2020/2671281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/06/2020] [Indexed: 12/26/2022]
Abstract
In renal cell carcinoma, chromophobe renal cell carcinoma (ChRCC) is a distinct subtype, whose clinical manifestations often lack specificity, and the molecular mechanisms of ChRCC tumorigenesis remain generally vague. The target of this study was to discover novel biomarkers involved in ChRCC by integrated bioinformatics analyses. We found 2608 differentially expressed genes (DEGs), of which 1518 were upregulated and 1090 were downregulated. Gene ontology (GO) analysis of DEGs uncovered significant functional enrichment in three aspects: biological process (BP), molecular function (MF), and cellular component (CC). The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated DEGs were largely enriched in retinol metabolism, arachidonic acid metabolism, and pentose and glucuronate interconversions. Then, the protein–protein interactions (PPI) network was constructed and top three hub genes were identified by the Cytoscape plugin cytoHubba. Through calculating the degree, betweenness centrality, and Stress of mRNAs, CENPA was upregulated and KNG1 and AGT were downregulated. A survival assay performed according to Oncomine data showed only CENPA high expression exhibited a worse prognosis. This study identified crucial genes and pathways for the progress of ChRCC, and CENPA might be a novel biomarker for diagnosis, treatment, and prognosis of ChRCC.
Collapse
|
42
|
Wang W, Wang S, Zhang M. Evaluation of kininogen 1, osteopontin and α-1-antitrypsin in plasma, bronchoalveolar lavage fluid and urine for lung squamous cell carcinoma diagnosis. Oncol Lett 2020; 19:2785-2792. [PMID: 32218831 PMCID: PMC7068235 DOI: 10.3892/ol.2020.11376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) progression is accompanied by changes in protein levels that may be reflected in body fluids, such as plasma, bronchoalveolar lavage fluid (BALF) and urine. Certain proteins present in these biofluids can facilitate lung cancer diagnosis. Kininogen 1 (KNG1), osteopontin (OPN) and α-1-antitrypsin (AAT) are associated with tumorigenesis. The present study aimed to explore the combined monitoring of plasma, urine and BALF to gain insight into LUSC by monitoring the levels of the above three protein using ELISA. LUSC (n=31) and healthy controls with benign lung diseases (n=20) were enrolled in the study. KNG1 levels in plasma, BALF and urine were significantly higher in patients with LUSC patients than in controls (P<0.0001, P<0.0001 and P=0.0010, respectively). OPN was upregulated in the plasma and BALF of patients with LUSC relative to controls (P=0.0107 and P=0.0004, respectively), whereas its levels in the urine of healthy controls were significantly higher (P=0.0088). Patients with LUSC had higher AAT levels in plasma, BALF and urine compared with those of the controls (P=0.0022, P=0.0014 and P=0.0005, respectively). Receiver operating characteristic analysis showed an area under the curve (AUC) of 0.81 for KNG1 in plasma, 0.91 in BALF and 0.81 in urine. The AUC for OPN was 0.71 in plasma, 0.83 in BALF and 0.75 in urine. The AUC for AAT was 0.74 in plasma, 0.74 in BALF and 0.86 in urine. Immunohistochemical staining in 20 paired LUSC and adjacent normal tissues showed that KNG1, OPN and AAT levels were higher in LUSC tissues. Therefore, our results showed that KNG1, OPN and AAT in biofluids might be useful for the diagnosis of LUSC. These markers in urine and BALF may be better than in plasma for detecting LUSC.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Shanshan Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Man Zhang
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
43
|
A systems biology approach to identifying genetic factors affected by aging, lifestyle factors, and type 2 diabetes that influences Parkinson's disease progression. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
44
|
Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis 2019; 10:792. [PMID: 31624242 PMCID: PMC6797747 DOI: 10.1038/s41419-019-2028-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/27/2023]
Abstract
Prostate cancer (PCa) is one of the major men's malignancies with high mortality worldwide. Circular RNAs (circRNAs) have been shown to serve as essential regulators in human cancers. CircRNA can exert their functions by cooperating with their host genes. In the present study, microarray analysis revealed an upregulated mRNA in PCa samples. X-linked inhibitor of apoptosis protein (XIAP), a key regulator in the progression of human cancers. Through bioinformatics analysis, we determined that XIAP is a host gene for circRNA0005276. Therefore, this study focused on the interaction between circ0005276 and XIAP as well as their functions in PCa progression. The upregulation of XIAP and circ0005276 was determined in PCa tissues and cell lines. Moreover, we confirmed the positive regulation of circ0005276 on XIAP expression. Functionally, we validated that circ0005276 and XIAP promoted cell proliferation, migration and epithelial-mesenchymal transition. Mechanistically, we verified that circ0005276 interacted with FUS binding protein (FUS) so as to activate the transcription of XIAP. Rescue assays were conducted to determine the crucial role of XIAP in circ0005276 and FUS-mediated PCa cellular processes. Collectively, our study revealed the mechanism and function of circ0005276 and its host gene XIAP in PCa progression.
Collapse
|
45
|
Xu Z, Wang X, Chen X, Zeng S, Qian L, Wei J, Gong Z, Yan Y. Identification of Aloperine as an anti-apoptotic Bcl2 protein inhibitor in glioma cells. PeerJ 2019; 7:e7652. [PMID: 31534865 PMCID: PMC6730530 DOI: 10.7717/peerj.7652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/09/2019] [Indexed: 02/05/2023] Open
Abstract
Objective Aloperine (ALO), an alkaloid isolated from the leaves of Sophora alopecuroides, has been suggested to exhibit anti-inflammatory and anti-tumor properties and is traditionally used to treat various human diseases, including cancer. However, limited information is available about the mechanisms that determine the anti-tumor activities of ALO. Methods Herein, through comprehensive bioinformatics methods and in vitro functional analyses, we evaluated the detailed anti-tumor mechanisms of ALO. Results Using the databases Bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine and PubChem Project, we identified the potential targets of ALO. A protein–protein interaction network was constructed to determine the relationship among these probable targets. Functional enrichment analysis revealed that ALO is potentially involved in the induction of apoptosis. In addition, molecular docking demonstrated that ALO expectedly docks into the active pocket of the Bcl2 protein, suggesting Bcl2 as a direct target of ALO. Moreover, western blot and qPCR analysis showed that ALO downregulated Bcl2 expression in human glioma cell lines, SK-N-AS and U118. Using flow cytometry methods, we further confirmed that ALO significantly promotes apoptosis in SK-N-AS and U118 cell lines, similar to the effect induced by ABT-737, a well-known Bcl2 inhibitor. In addition, Bcl-2 overexpression could rescue ALO-induced Bcl-2 inhibition and suppress pro-apoptotic effects in glioma cells. Conclusion Taken together, these findings suggest that the natural agent ALO effectively enhances apoptosis by acting as a potential Bcl2 inhibitor in human glioma cells.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Wen ZP, Zeng WJ, Chen YH, Li H, Wang JY, Cheng Q, Yu J, Zhou HH, Liu ZZ, Xiao J, Chen XP. Knockdown ATG4C inhibits gliomas progression and promotes temozolomide chemosensitivity by suppressing autophagic flux. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:298. [PMID: 31291988 PMCID: PMC6617611 DOI: 10.1186/s13046-019-1287-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Gliomas are the most common primary tumors in central nervous system. Despite advances in diagnosis and therapy, the prognosis of glioma remains gloomy. Autophagy is a cellular catabolic process that degrades proteins and damaged organelles, which is implicated in tumorigenesis and tumor progression. Autophagy related 4C cysteine peptidase (ATG4C) is an autophagy regulator responsible for cleaving of pro-LC3 and delipidation of LC3 II. This study was designed to investigate the role of ATG4C in glioma progression and temozolomide (TMZ) chemosensitivity. METHODS The association between ATG4C mRNA expression and prognosis of gliomas patients was analyzed using the TCGA datasets. The role of ATG4C in proliferation, apoptosis, autophagy, and TMZ chemosensitivity were investigated by silencing ATG4C in vivo. Ectopic xenograft nude mice model was established to investigate the effects of ATG4C on glioma growth in vivo. RESULTS The median overall survival (OS) time of patients with higher ATG4C expression was significantly reduced (HR: 1.48, p = 9.91 × 10- 7). ATG4C mRNA expression was evidently increased with the rising of glioma grade (p = 2.97 × 10- 8). Knockdown ATG4C suppressed glioma cells proliferation by inducing cell cycle arrest at G1 phase. ATG4C depletion suppressed autophagy and triggered apoptosis through ROS accumulation. Depletion of ATG4C suppressed TMZ-activated autophagy and promoted sensitivity of glioma cells to TMZ. Additionally, ATG4C knockdown suppressed the growth of glioma remarkably in nude mice. CONCLUSION ATG4C is a potential prognostic predictor for glioma patient. Targeting ATG4C may provide promising therapy strategies for gliomas treatment.
Collapse
Affiliation(s)
- Zhi-Peng Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wen-Jing Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yan-Hong Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, Hunan, People's Republic of China
| | - He Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jie-Ya Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Zheng-Zheng Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan province, China.
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
47
|
Xie P, Wang Y, Liao Y, Han Q, Qiu Z, Chen Y, Zuo X. MicroRNA-628-5p inhibits cell proliferation in glioma by targeting DDX59. J Cell Biochem 2019; 120:17293-17302. [PMID: 31111544 DOI: 10.1002/jcb.28991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022]
Abstract
Recent study has reported that microRNA-628-5p (miR-628-5p) is involved in the development of epithelial ovarian cancer; however, the mechanisms of miR-628-5p in glioma remain unclear. In this study, we explored the potential biological roles of miR-628-5p in glioma. First, we found that miR-628-5p was decreased in the tissues and cells (U87 and T98) of glioma. Second, overexpressing miR-628-5p reduced the ability of glioma cells' proliferation and induced glioma cells' cycle arrest in G1. Then, we found that miR-628-5p directly bound to the 3'-untranslated region of DDX59 and decreased the protein level of DDX59. The decrease of DDX59 was found to lead to the decrease of p-AKT. Mechanistic studies revealed that restoring the expression of DDX59 alleviated miR-628-5p-induced inhibition of proliferation of glioma. These findings suggest that the miR-628-5p/DDX59 axis has a key role in the development of glioma, and miR-628-5p might be a new therapeutic target against glioma.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Yan Wang
- Department of Medicine Laboratory, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Yuanmei Liao
- Department of Medical Technology, Gannan Healthcare Vocational College, Ganzhou, China
| | - Qiu Han
- Department of Neurology, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Zhichao Qiu
- Department of Neurosurgery, BenQ Medical Center, The Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinbing Chen
- Department of Orthopedic Surgery, The Affiliated Haian Hospital of Nantong University, Haian, Jiangsu, China
| | - Xiaohua Zuo
- Department of Pain Management, The Second People's Hospital of Huai'an, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China.,Department of Anesthesiology, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|