1
|
Ren X, Feng N. Unveiling novel prognostic biomarkers and therapeutic targets for HBV-associated hepatocellular carcinoma through integrated bioinformatic analysis. Medicine (Baltimore) 2024; 103:e40134. [PMID: 39470543 PMCID: PMC11521037 DOI: 10.1097/md.0000000000040134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/15/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, with limited treatment options. The goal of this study was to use integrated bioinformatic analysis to find possible biomarkers for prognosis and therapeutic targets for hepatitis B (HBV)-associated HCC. Three microarray datasets (GSE84402, GSE121248, and E-GEOD-19665) from patients with HBV-associated HCC were combined and analyzed. We identified differentially expressed genes (DEGs) and performed pathway enrichment analysis. We constructed protein-protein interaction networks to identify hub genes. We identified a total of 374 DEGs, which included 90 up-regulated and 284 down-regulated genes. Pathway enrichment analysis revealed associations with cell cycle, oocyte meiosis, and the p53 signaling pathway for up-regulated DEGs. Twenty hub genes were identified, and 9 of them (ZWINT, MELK, DLGAP5, BIRC5, AURKA, HMMR, CDK1, TTK, and MAD2L1) were validated using the Cancer Genome Atlas data and Kaplan-Meier survival analysis. These genes were significantly associated with a poor prognosis in HCC patients. Our research shows that ZWINT, MELK, DLGAP5, BIRC5, AURKA, HMMR, CDK1, TTK, and MAD2L1 may be useful for predicting how HBV-associated HCC will progress and for finding new ways to treat it. In addition to these further studies are needed to elucidate the functions of the remaining 11 identified hub genes (RRM2, NUSAP1, PBK, CCNB1, CCNB2, BUB1B, NEK2, CENPF, ASPM, TOP2A, and BUB1) in HCC development and progression.
Collapse
Affiliation(s)
- Xue Ren
- Medical Laboratory Center, Xi’an TCM Hospital of Encephalopathy, Xi’an, China
| | - Niaoniao Feng
- Medical Laboratory Center, Xi’an TCM Hospital of Encephalopathy, Xi’an, China
| |
Collapse
|
2
|
Jasim SA, Ahmed AT, Kubaev A, Kyada A, Alshahrani MY, Sharma S, Al-Hetty HRAK, Vashishth R, Chauhan AS, Abosaoda MK. Exosomal microRNA as a key regulator of PI3K/AKT pathways in human tumors. Med Oncol 2024; 41:265. [PMID: 39400677 DOI: 10.1007/s12032-024-02529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
MicroRNAs (miRNAs) are conserved non-protein-coding RNAs that are naturally present in organisms and can control gene expression by suppressing the translation of mRNA or causing the degradation of mRNA. MicroRNAs are highly concentrated in the PI3K/AKT pathway, and abnormal activation of the PI3K/AKT pathway plays a role in cancer progression. The AKT/PI3K pathway is critical for cellular functions and can be stimulated by cytokines and in normal situations. It is involved in regulating various intracellular signal transduction, including development, differentiation, transcriptional regulation, protein, and synthesis. There is a growing body of evidence indicating that miRNAs, which are abundant in exosomes released by different cells, can control cellular biological activities via modulating the PI3K/AKT pathway, hence influencing cancer progression and drug resistance. This article provides an overview of the latest research progress regarding the function and medical use of the PI3K/AKT pathway and exosomal miRNA/AKT/PI3K axis in the behaviors of cancer cells.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Anbar, Iraq
- Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, AL-Anbar Governorate, Ramadi, Iraq.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Ashishkumar Kyada
- Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Mohammad Y Alshahrani
- King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | | | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Ma Z, Li Q, Wang W, Deng Z. Transcription factor E2F4 facilitates SUMOylation to promote HCC progression through interaction with LIN9. Int J Oncol 2024; 65:98. [PMID: 39239750 PMCID: PMC11387118 DOI: 10.3892/ijo.2024.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024] Open
Abstract
SUMOylation plays a crucial role in numerous cellular biological and pathophysiological processes associated with human disease; however, the mechanisms regulating the genes involved in SUMOylation remain unclear. In the present study, E2F transcription factor 4 (E2F4) was identified as an E2F member related to hepatocellular carcinoma (HCC) progression by public database analysis. It was found that E2F4 promoted the proliferation and invasiveness of HCC cells via SUMOylation using Soft agar and Transwell migration assays. Mechanistically, it was demonstrated that E2F4 upregulated the transcript and protein expression levels of baculoviral IAP repeat containing 5, cell division cycle associated 8 and DNA topoisomerase II α using western blotting. Furthermore, the interaction between E2F4 with lin‑9 DREAM multi‑vulva class B core complex component (LIN9) was explored by co‑immunoprecipitation, immunofluorescence co‑localization and bimolecular fluorescence complementation assays. Moreover, it was demonstrated that E2F4 promoted the progression of HCC cells via LIN9. Rescue experiments revealed that LIN9 facilitated the SUMOylation and proliferation of HCC cells, which was prevented by knocking down E2F4 expression. In conclusion, the findings of the present study indicated that E2F4 plays a major role in the proliferation of HCC cells and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Qilan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenjing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
4
|
Taylor SJ, Hollis RL, Gourley C, Herrington CS, Langdon SP, Arends MJ. RFWD3 modulates response to platinum chemotherapy and promotes cancer associated phenotypes in high grade serous ovarian cancer. Front Oncol 2024; 14:1389472. [PMID: 38711848 PMCID: PMC11071161 DOI: 10.3389/fonc.2024.1389472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Background DNA damage repair is frequently dysregulated in high grade serous ovarian cancer (HGSOC), which can lead to changes in chemosensitivity and other phenotypic differences in tumours. RFWD3, a key component of multiple DNA repair and maintenance pathways, was investigated to characterise its impact in HGSOC. Methods RFWD3 expression and association with clinical features was assessed using in silico analysis in the TCGA HGSOC dataset, and in a further cohort of HGSOC tumours stained for RFWD3 using immunohistochemistry. RFWD3 expression was modulated in cell lines using siRNA and CRISPR/cas9 gene editing, and cells were characterised using cytotoxicity and proliferation assays, flow cytometry, and live cell microscopy. Results Expression of RFWD3 RNA and protein varied in HGSOCs. In cell lines, reduction of RFWD3 expression led to increased sensitivity to interstrand crosslinking (ICL) inducing agents mitomycin C and carboplatin. RFWD3 also demonstrated further functionality outside its role in DNA damage repair, with RFWD3 deficient cells displaying cell cycle dysregulation, reduced cellular proliferation and reduced migration. In tumours, low RFWD3 expression was associated with increased tumour mutational burden, and complete response to platinum chemotherapy. Conclusion RFWD3 expression varies in HGSOCs, which can lead to functional effects at both the cellular and tumour levels.
Collapse
Affiliation(s)
- Sarah J. Taylor
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert L. Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - C. Simon Herrington
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P. Langdon
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Zhao S, Liu H, Wang H, He X, Tang J, Qi S, Yang R, Xie J. Inhibition of phosphatidylinositol 3-kinase catalytic subunit alpha by miR-203a-3p reduces hypertrophic scar formation via phosphatidylinositol 3-kinase/AKT/mTOR signaling pathway. BURNS & TRAUMA 2024; 12:tkad048. [PMID: 38179473 PMCID: PMC10762504 DOI: 10.1093/burnst/tkad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 01/06/2024]
Abstract
Background Hypertrophic scar (HS) is a common fibroproliferative skin disease that currently has no truly effective therapy. Given the importance of phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in hypertrophic scar formation, the development of therapeutic strategies for endogenous inhibitors against PIK3CA is of great interest. Here, we explored the molecular mechanisms underlying the protective effects of miR-203a-3p (PIK3CA inhibitor) against excessive scar. Methods Bioinformatic analysis, immunohistochemistry, immunofluorescence, miRNA screening and fluorescence in situ hybridization assays were used to identify the possible pathways and target molecules mediating HS formation. A series of in vitro and in vivo experiments were used to clarify the role of PIK3CA and miR-203a-3p in HS. Mechanistically, transcriptomic sequencing, immunoblotting, dual-luciferase assay and rescue experiments were executed. Results Herein, we found that PIK3CA and the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway were upregulated in scar tissues and positively correlated with fibrosis. We then identified miR-203a-3p as the most suitable endogenous inhibitor of PIK3CA. miR-203a-3p suppressed the proliferation, migration, collagen synthesis and contractility as well as the transdifferentiation of fibroblasts into myofibroblasts in vitro, and improved the morphology and histology of scars in vivo. Mechanistically, miR-203a-3p attenuated fibrosis by inactivating the PI3K/AKT/mTOR pathway by directly targeting PIK3CA. Conclusions PIK3CA and the PI3K/AKT/mTOR pathway are actively involved in scar fibrosis and miR-203a-3p might serve as a potential strategy for hypertrophic scar therapy through targeting PIK3CA and inactivating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Shixin Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Hengdeng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Hanwen Wang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Xuefeng He
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Jinming Tang
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, South China University of technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, Guangdong, 510062, China
| |
Collapse
|
6
|
Fan Y, Pan Y, Jia L, Gu S, Liu B, Mei Z, Lv C, Huang H, Zhu G, Deng Q. BIRC5 facilitates cisplatin-chemoresistance in a m 6A-dependent manner in ovarian cancer. Cancer Med 2024; 13:e6811. [PMID: 38112021 PMCID: PMC10807614 DOI: 10.1002/cam4.6811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/26/2023] [Accepted: 09/26/2023] [Indexed: 12/20/2023] Open
Abstract
Cisplatin-based chemotherapy is the standard treatment for metastatic ovarian cancer (OC). However, chemoresistance continues to pose significant clinical challenges. Recent research has highlighted the baculoviral inhibitor of the apoptosis protein repeat-containing 5 (BIRC5) as a member of the inhibitor of the apoptosis protein (IAP) family. Notably, BIRC5, which has robust anti-apoptotic capabilities, is overexpressed in numerous cancers. Its dysfunction has been linked to challenges in cancer treatment. Yet, the role of BIRC5 in the chemoresistance of OC remains elusive. In our present study, we observed an upregulation of BIRC5 in cisplatin-resistant cell lines. This upregulation was associated with enhanced chemoresistance, which was diminished when the expression of BIRC5 was silenced. Intriguingly, BIRC5 exhibited a high number of N6-methyladenosine (m6A) binding sites. The modification of m6A was found to enhance the expression of BIRC5 by recognizing and binding to the 3'-UTR of mRNA. Additionally, the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was shown to stabilize BIRC5 mRNA, synergizing with METTL3 and intensifying chemoresistance. Supporting these in vitro findings, our in vivo experiments revealed that tumors were significantly smaller in size and volume when BIRC5 was silenced. This reduction was notably counteracted by co-silencing BIRC5 and overexpressing IGF2BP1. Our results underscored the pivotal role of BIRC5 in chemoresistance. The regulation of its expression and the stability of its mRNA were influenced by m6A modifications involving both METTL3 and IGF2BP1. These insights presented BIRC5 as a promising potential therapeutic target for addressing cisplatin resistance in OC.
Collapse
Affiliation(s)
- Yadan Fan
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Yinglian Pan
- Department of OncologyThe First Affiliated Hospital of Hainan Medical CollegeHaikouChina
| | - Liping Jia
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Shuzhen Gu
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Binxin Liu
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Ziman Mei
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Chunyan Lv
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Haohao Huang
- Department of NeurosurgeryGeneral Hospital of Central Theater Command of Chinese People's Liberation ArmyWuhanChina
| | - Genhai Zhu
- Department of GynecologyHainan General Hospital, Hainan Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Qingchun Deng
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| |
Collapse
|
7
|
Safavi P, Moghadam KB, Haghighi Z, Ferns GA, Rahmani F. Interplay between LncRNA/miRNA and TGF-β Signaling in the Tumorigenesis of Gynecological Cancer. Curr Pharm Des 2024; 30:352-361. [PMID: 38303530 DOI: 10.2174/0113816128284380240123071409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Gynecologic cancers are among the most common malignancies with aggressive features and poor prognosis. Tumorigenesis in gynecologic cancers is a complicated process that is influenced by multiple factors, including genetic mutations that activate various oncogenic signaling pathways, including the TGF-β pathway. Aberrant activation of TGF-β signaling is correlated with tumor recurrence and metastasis. It has been shown that non-coding RNAs (ncRNAs) have crucial effects on cancer cell proliferation, migration, and metastasis. Upregulation of various ncRNAs, including long non-coding RNAs (lncRNA) and microRNAs (miRNAs), has been reported in several tumors, like cervical, ovarian, and endometrial cancers, but their cellular mechanisms remain to be investigated. Thus, recognizing the role of ncRNAs in regulating the TGF-β pathway may provide novel strategies for better treatment of cancer patients. The present study summarizes recent findings on the role of ncRNAs in regulating the TGF-β signaling involved in tumor progression and metastasis in gynecologic cancers.
Collapse
Affiliation(s)
- Pegah Safavi
- Department of Medical Radiation, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Kimia Behrouz Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Zahra Haghighi
- Department of Clinical Biochemistry, Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Wu M, Jin Q, Xu X, Fan J, Chen W, Miao M, Gu R, Zhang S, Guo Y, Huang S, Zhang Y, Zhang A, Jia Z. TP53RK Drives the Progression of Chronic Kidney Disease by Phosphorylating Birc5. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301753. [PMID: 37382161 PMCID: PMC10477881 DOI: 10.1002/advs.202301753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 06/30/2023]
Abstract
Renal fibrosis is a common characteristic of various chronic kidney diseases (CKDs) driving the loss of renal function. During this pathological process, persistent injury to renal tubular epithelial cells and activation of fibroblasts chiefly determine the extent of renal fibrosis. In this study, the role of tumor protein 53 regulating kinase (TP53RK) in the pathogenesis of renal fibrosis and its underlying mechanisms is investigated. TP53RK is upregulated in fibrotic human and animal kidneys with a positive correlation to kidney dysfunction and fibrotic markers. Interestingly, specific deletion of TP53RK either in renal tubule or in fibroblasts in mice can mitigate renal fibrosis in CKD models. Mechanistic investigations reveal that TP53RK phosphorylates baculoviral IAP repeat containing 5 (Birc5) and facilitates its nuclear translocation; enhanced Birc5 displays a profibrotic effect possibly via activating PI3K/Akt and MAPK pathways. Moreover, pharmacologically inhibiting TP53RK and Birc5 using fusidic acid (an FDA-approved antibiotic) and YM-155(currently in clinical phase 2 trials) respectively both ameliorate kidney fibrosis. These findings demonstrate that activated TP53RK/Birc5 signaling in renal tubular cells and fibroblasts alters cellular phenotypes and drives CKD progression. A genetic or pharmacological blockade of this axis serves as a potential strategy for treating CKDs.
Collapse
Affiliation(s)
- Mengqiu Wu
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Qianqian Jin
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Xinyue Xu
- School of MedicineSoutheast UniversityNanjing210009P. R. China
| | - Jiaojiao Fan
- School of MedicineSoutheast UniversityNanjing210009P. R. China
| | - Weiyi Chen
- Department of Emergency MedicineChildren's Hospital of Nanjing Medical UniversityNanjing210008P. R. China
| | - Mengqiu Miao
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Ran Gu
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Shengnan Zhang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Yan Guo
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Songming Huang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Yue Zhang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Aihua Zhang
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| | - Zhanjun Jia
- Department of NephrologyNanjing Key Laboratory of PediatricsJiangsu Key Laboratory of PediatricsChildren's Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjing210008P. R. China
| |
Collapse
|
10
|
Benlhachemi S, Abouqal R, Coleman N, Murray MJ, Khattab M, El fahime E. Circulating microRNA profiles in Wilms tumour (WT): A systematic review and meta-analysis of diagnostic test accuracy. Noncoding RNA Res 2023; 8:413-425. [PMID: 37305178 PMCID: PMC10247954 DOI: 10.1016/j.ncrna.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Wilms tumour (WT) is caused by aberrant embryonic kidney development and associated with dysregulated expression of short, non-protein-coding RNAs termed microRNAs (miRNAs). At present, there is no reliable circulating biomarker of WT, and this remains an urgent unmet clinical need. Such biomarkers may assist diagnosis, subtyping/prognostication, and disease-monitoring. Here, we established the list of dysregulated circulating miRNAs in WT from the existing published literature. Methods Regardless of publication date, PubMed, Scopus, Web-of-Science, and Wiley online library databases were searched for English/French studies on WT circulating miRNAs. The PRISMA-compliant search was registered in PROSPERO. The QUADAS tool measured retained article quality. The meta-analysis assessed the sensitivity and specificity of miRNAs for WT diagnosis. Results Qualitative analysis included 280 samples (172 WT patients; 108 healthy controls) from five of 450 published articles. The study uncovered 301 dysregulated miRNAs (144 up-regulated, 143 down-regulated, 14 conflicting). The pooled sensitivity, specificity, and AUC of the 49 significantly dysregulated microRNAs from two studies was 0.67 [0.62; 0.73], 0.95 [0.92; 0.96] and 0.77 [0.73; 0.81] respectively, indicating a stronger diagnostic potential for WT. Conclusions Circulating miRNAs show promise for WT diagnosis and prognosis. More research is needed to confirm these findings and determine associations with tumour stage/subtype. Prospero registration number CRD42022301597.
Collapse
Affiliation(s)
- Sara Benlhachemi
- Laboratory of Genomics and Molecular Epidemiology of Genetic Diseases (GE2MG). Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, Rabat, Morocco
| | - Redouane Abouqal
- Biostatistics Laboratory, Clinical Epidemiology Research. Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Matthew Jonathan Murray
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Mohammed Khattab
- Department of Paediatric Haematology and Oncology, Abulcasis International University of Health Sciences, Rabat, Morocco
| | - Elmostafa El fahime
- Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, Rabat, Morocco
| |
Collapse
|
11
|
Golebiewski C, Gastaldi C, Vieu DL, Mari B, Rezzonico R, Bernerd F, Marionnet C. Identification and functional validation of SRC and RAPGEF1 as new direct targets of miR-203, involved in regulation of epidermal homeostasis. Sci Rep 2023; 13:14006. [PMID: 37635193 PMCID: PMC10460794 DOI: 10.1038/s41598-023-40441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023] Open
Abstract
The epidermis is mostly composed of keratinocytes and forms a protecting barrier against external aggressions and dehydration. Epidermal homeostasis is maintained by a fine-tuned balance between keratinocyte proliferation and differentiation. In the regulation of this process, the keratinocyte-specific miR-203 microRNA is of the outmost importance as it promotes differentiation, notably by directly targeting and down-regulating mRNA expression of genes involved in keratinocyte proliferation, such as ΔNp63, Skp2 and Msi2. We aimed at identifying new miR-203 targets involved in the regulation of keratinocyte proliferation/differentiation balance. To this end, a transcriptome analysis of human primary keratinocytes overexpressing miR-203 was performed and revealed that miR-203 overexpression inhibited functions like proliferation, mitosis and cell cycling, and activated differentiation, apoptosis and cell death. Among the down-regulated genes, 24 putative target mRNAs were identified and 8 of them were related to proliferation. We demonstrated that SRC and RAPGEF1 were direct targets of miR-203. Moreover, both were down-regulated during epidermal morphogenesis in a 3D reconstructed skin model, while miR-203 was up-regulated. Finally silencing experiments showed that SRC or RAPGEF1 contributed to keratinocyte proliferation and regulated their differentiation. Preliminary results suggest their involvement in skin carcinoma hyperproliferation. Altogether this data indicates that RAPGEF1 and SRC could be new mediators of miR-203 in epidermal homeostasis regulation.
Collapse
Affiliation(s)
| | - Cécile Gastaldi
- Medical Biology Department, Centre Scientifique de Monaco, Monaco, Principality of Monaco
- LIA BAHN, CSM-UVSQ, Monaco, Principality of Monaco
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | | | | |
Collapse
|
12
|
Li C, Cui X, Li Y, Guo D, He S. Identification of ferroptosis and drug resistance related hub genes to predict the prognosis in Hepatocellular Carcinoma. Sci Rep 2023; 13:8681. [PMID: 37248280 DOI: 10.1038/s41598-023-35796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Currently, overcoming the drug resistance in HCC is a critical challenge and ferroptosis has emerged as a promising therapeutic option for cancer. We aim to construct a new gene signature related to ferroptosis and drug resistance to predict the prognosis in HCC. The RNA-seq data of HCC patients was obtained from the Cancer Genome Atlas database. Using least absolute shrinkage and selection operator cox regression, Kaplan-Meier analysis, and differential analysis, we constructed a prognostic model consisting of six hub genes (TOP2A, BIRC5, VEGFA, HIF1A, FTH1, ACSL3) related to ferroptosis and drug resistance in HCC. Functional enrichment, pathway enrichment and GSEA analysis were performed to investigate the potential molecular mechanism, and construction of PPI, mRNA-miRNA, mRNA-RBP, mRNA-TF and mRNA-drugs interaction networks to predict its interaction with different molecules. Clinical prognostic characteristics were revealed by univariate, multivariate cox regression analysis and nomogram. We also analyzed the relationship between the signature, immune checkpoints, and drug sensitivity. The expression of the gene signature was detected in HCC cell lines and HPA database. Our prognostic model classified patients into high and low-risk groups based on the risk scores and found the expression level of the genes was higher in the high-risk group than the low-risk group, demonstrating that high expression of the hub genes was associated with poor prognosis in HCC. ROC analysis revealed its high diagnostic efficacy in both HCC and normal tissues. The proportional hazards model and calibration analysis confirmed that the model's prediction was most accurate for 1- and 3-years survival. QRT-PCR showed the high expression level of the gene signature in HCC. Our study built a novel gene signature with good potential to predict the prognosis of HCC, which may provide new therapeutic targets and molecular mechanism for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Chengjun Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiaomeng Cui
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yarui Li
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Dan Guo
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
13
|
Zhuang Z, Chen Q, Zhong X, Chen H, Yu R, Tang Y. Ginsenoside Rg3, a promising agent for NSCLC patients in the pandemic: a large-scale data mining and systemic biological analysis. J Ginseng Res 2023; 47:291-301. [PMID: 36249948 PMCID: PMC9553969 DOI: 10.1016/j.jgr.2022.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Introduction Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runjia Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China,Corresponding author. Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No.12, Ji Chang Road, Baiyun District, Guangzhou, 510405, China
| |
Collapse
|
14
|
Aghayousefi R, Hosseiniyan Khatibi SM, Zununi Vahed S, Bastami M, Pirmoradi S, Teshnehlab M. A diagnostic miRNA panel to detect recurrence of ovarian cancer through artificial intelligence approaches. J Cancer Res Clin Oncol 2023; 149:325-341. [PMID: 36378340 DOI: 10.1007/s00432-022-04468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Ovarian Cancer (OC) is the deadliest gynecology malignancy, whose high recurrence rate in OC patients is a challenging object. Therefore, having deep insights into the genetic and molecular mechanisms of OC recurrence can improve the target therapeutic procedures. This study aimed to discover crucial miRNAs for the detection of tumor recurrence in OC by artificial intelligence approaches. METHOD Through the ANOVA feature selection method, we selected 100 candidate miRNAs among 588 miRNAs. For their classification, a deep-learning model was employed to validate the significance of the candidate miRNAs. The accuracy, F1-score (high-risk), and AUC-ROC of classification test data based on the 100 miRNAs were 73%, 0.81, and 0.65, respectively. Association rule mining was used to discover hidden relations among the selected miRNAs. RESULT Five miRNAs, including miR-1914, miR-203, miR-135a-2, miR-149, and miR-9-1, were identified as the most frequent items among high-risk association rules. The identified miRNAs may target genes/proteins involved in epithelial-mesenchymal transition (EMT), resistance to therapy, and cancer stem cells; being responsible for the heterogeneity and plasticity of the tumor. Our conclusion presents mir-1914 as the significant candidate miRNA and the most frequent item. Current knowledge indicates that the dysregulated miR-1914 may function as a tumor suppressor or oncogene in the development of cancer. CONCLUSION These candidate miRNAs can be considered a powerful tool in the diagnosis of OC recurrence. We hypothesize that mir-1914 might open a new line of research in the realm of managing the recurrence of OC and could be a significant factor in triggering OC recurrence.
Collapse
Affiliation(s)
- Reyhaneh Aghayousefi
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Seyed Mahdi Hosseiniyan Khatibi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Milad Bastami
- Non-Communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Teshnehlab
- Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
15
|
Saha C, Bojdo J, Dunne NJ, Duary RK, Buckley N, McCarthy HO. Nucleic acid vaccination strategies for ovarian cancer. Front Bioeng Biotechnol 2022; 10:953887. [PMID: 36420446 PMCID: PMC9677957 DOI: 10.3389/fbioe.2022.953887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
High grade serous carcinoma (HGSC) is one of the most lethal ovarian cancers that is characterised by asymptomatic tumour growth, insufficient knowledge of malignant cell origin and sub-optimal detection. HGSC has been recently shown to originate in the fallopian tube and not in the ovaries. Conventional treatments such as chemotherapy and surgery depend upon the stage of the disease and have resulted in higher rates of relapse. Hence, there is a need for alternative treatments. Differential antigen expression levels have been utilised for early detection of the cancer and could be employed in vaccination strategies using nucleic acids. In this review the different vaccination strategies in Ovarian cancer are discussed and reviewed. Nucleic acid vaccination strategies have been proven to produce a higher CD8+ CTL response alongside CD4+ T-cell response when compared to other vaccination strategies and thus provide a good arena for antitumour immune therapy. DNA and mRNA need to be delivered into the intracellular matrix. To overcome ineffective naked delivery of the nucleic acid cargo, a suitable delivery system is required. This review also considers the suitability of cell penetrating peptides as a tool for nucleic acid vaccine delivery in ovarian cancer.
Collapse
Affiliation(s)
- Chayanika Saha
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - James Bojdo
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Raj Kumar Duary
- Department of Food Engineering and Technology, Tezpur University, Tezpur, India
| | - Niamh Buckley
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University of Belfast, Belfast, United Kingdom
- School of Chemical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
16
|
Johnson B, Zhuang L, Rath EM, Yuen ML, Cheng NC, Shi H, Kao S, Reid G, Cheng YY. Exploring MicroRNA and Exosome Involvement in Malignant Pleural Mesothelioma Drug Response. Cancers (Basel) 2022; 14:cancers14194784. [PMID: 36230710 PMCID: PMC9564288 DOI: 10.3390/cancers14194784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a deadly thoracic malignancy and existing treatment options are limited. Chemotherapy remains the most widely used first-line treatment regimen for patients with unresectable MPM, but is hampered by drug resistance issues. The current study demonstrated a modest enhancement of MPM cell sensitivity to chemotherapy drug treatment following microRNA (miRNA) transfection in MPM cell lines, albeit not for all tested miRNAs. This effect was more pronounced for FAK (PND-1186) small molecule inhibitor treatment; consistent with previously published data. We previously established that MPM response to survivin (YM155) small molecule inhibitor treatment is unrelated to basal survivin expression. Here, we showed that MPM response to YM155 treatment is enhanced following miRNA transfection of YM155-resistant MPM cells. We determined that YM155-resistant MPM cells secrete a higher level of exosomes in comparison to YM155-sensitive MPM cells. Despite this, an exosome inhibitor (GW4896) did not enhance MPM cell sensitivity to YM155. Additionally, our study showed no evidence of a correlation between the mRNA expression of inhibitor of apoptosis (IAP) gene family members and MPM cell sensitivity to YM155. However, two drug transporter genes, ABCA6 and ABCA10, were upregulated in the MPM cell lines and correlated with poor sensitivity to YM155.
Collapse
Affiliation(s)
- Ben Johnson
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
- Correspondence: ; Tel.: +61-976-79869
| | - Ling Zhuang
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Emma M. Rath
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
- Giannoulatou Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Man Lee Yuen
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Ngan Ching Cheng
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Huaikai Shi
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Steven Kao
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
- Chris O’Brien Life House, Sydney, NSW 2050, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glen Reid
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| |
Collapse
|
17
|
Dai L, Zhang W, Wu X, Zhou S. MicroRNA-203a-3p may prevent the development of thyroid papillary carcinoma via repressing MAP3K1 and activating autophagy. J Clin Lab Anal 2022; 36:e24470. [PMID: 35524422 PMCID: PMC9169216 DOI: 10.1002/jcla.24470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC) grows slowly but has a great risk of metastasis. MicroRNAs are well known as vital tumor‐related gene regulators. In PTC, the role of miR‐203a‐3p and the underlying mechanisms remain not completely understood. Methods We conducted CCK8 assay, wound healing assay, transwell experiment and flow cytometry analyses to investigate the function of miRNA‐203a‐3p. The interaction of miRNA‐203a‐3p with its gene MAP3K1 was characterized by quantitative real‐time polymerase chain reaction, western blotting and luciferase assay. Results We found that the levels of miRNA‐203a‐3p were statistically decreased in PTC tissues. When mimics were delivered to TPC‐1 and KTC‐1 cells to upregulate miR‐203a‐3p, it was observed that cell proliferation, metastatic abilities and cell cycle process were prevented but cell apoptosis was enhanced. Furthermore, we proved the interaction between MAP3K1 and miR‐203a‐3p. Intriguingly, similar to miR‐203a‐3p mimics, siMAP3K1 showed a tumor‐suppressive effect, and this effect could be reversed when miR‐203a‐3p was simultaneously inhibited. Finally, selected autophagy‐linked proteins such as LC3 Beclin‐1 were detected and found to be increased when miR‐203a‐3p was upregulated or MAP3K1 was inhibited. Conclusion Overall, miR‐203a‐3p inhibits the oncogenic characteristics of TPC‐1 and KTC‐1 cells via suppressing MAP3K1 and activating autophagy. Our findings might enrich the understanding and the therapeutic strategies of PTC.
Collapse
Affiliation(s)
- Lei Dai
- Department of Otolaryngology, College of Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.,Department of Thyroid Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Weidong Zhang
- Department of Thyroid Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xianjiang Wu
- Department of Thyroid Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Shuihong Zhou
- Department of Otolaryngology, College of Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Zhao Y, Liu S, Li S, Zhang G, Tian A, Wan Y. BIRC5 regulates inflammatory tumor microenvironment-induced aggravation of penile cancer development in vitro and in vivo. BMC Cancer 2022; 22:448. [PMID: 35461228 PMCID: PMC9035256 DOI: 10.1186/s12885-022-09500-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Baculoviral IAP repeat containing 5 (BIRC5) is overexpressed and plays as a key regulator in the progression of various human carcinomas. The inflammatory tumor microenvironment (ITM) is closely associated with the development of cancers. However, the role of BIRC5 in penile cancer (PC) and the ITM-induced abnormal progression of PC is still obscure.
Methods
In this study, serum and tissues of patients with PC were recruited to evaluate the expression profile of BIRC5. We used PC cell lines (Penl1 and Penl2) and constructed a PC xenograft mice model to explore the effects of the silencing of BIRC5 on proliferation, migration, invasion and tumor growth, as well as survival of mice. Besides, interferon (IFN)-γ was utilized to mimic the ITM of PC cells.
Results
Our results showed that BIRC5 was dramatically upregulated in the serum and tissues of PC patients, as well as PC cell lines. Knockdown of BIRC5 inhibited the proliferation, migration and invasion of PC cells. Meanwhile, it suppressed PC xenograft tumor growth and improved mice survival. Moreover, IFN-γ significantly aggravated PC progression both in vivo and in vitro while the silencing of BIRC5 reversed these unfavorable effects.
Conclusions
Taken together, our data revealed that BIRC5 silencing inhibited aggravation of PC cell processes and tumor development induced by ITM. This suggested that BIRC5 may function as a diagnosis and therapy target of PC in the future.
Collapse
|
19
|
Pronina IV, Uroshlev LA, Moskovtsev AA, Zaichenko DM, Filippova EA, Fridman MV, Burdennyy AM, Loginov VI, Kazubskaya TP, Kushlinskii NE, Dmitriev AA, Braga EA, Brovkina OI. Dysregulation of lncRNA–miRNA–mRNA Interactome as a Marker of Metastatic Process in Ovarian Cancer. Biomedicines 2022; 10:biomedicines10040824. [PMID: 35453574 PMCID: PMC9031843 DOI: 10.3390/biomedicines10040824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common types of cancer among malignancies of the female reproductive system. This pathology is asymptomatic until advanced stages and has a poor prognosis. Our study aimed to search for lncRNA–miRNA–mRNA competing triplets that promote ovarian tumorigenesis. For this purpose, we analyzed tumor samples from the TCGA database and verified the results experimentally in a set of 46 paired samples of tumor and matched histologically unchanged ovarian tissues from OC patients. The list of RNAs selected in silico for experimental studies included 13 mRNAs, 10 lncRNAs, and 5 miRNAs related to epithelial–mesenchymal transition and angiogenesis. We evaluated the expression of these RNAs by qRT-PCR and assessed the correlation between levels of miRNAs, mRNAs, and lncRNAs. Sixteen significant triplets were revealed, in some of which, e.g., OIP5-AS1–miR-203a–c-MET and OIP5-AS1–miR-203a–ZEB2, both lncRNA and mRNA had sites for miR-203a direct binding. Transfection of the OVCAR-3 and SKOV-3 cell lines with the miR-203a mimic was used to confirm the novel links of miR-203a with ZEB2 and c-MET in OC. These connections suggest that the interactomes have the potential for diagnostics of metastasis at early onset.
Collapse
Affiliation(s)
- Irina V. Pronina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Leonid A. Uroshlev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey A. Moskovtsev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Danila M. Zaichenko
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Elena A. Filippova
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Marina V. Fridman
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alexey M. Burdennyy
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Vitaly I. Loginov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
| | - Tatiana P. Kazubskaya
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Nikolay E. Kushlinskii
- N. N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (T.P.K.); (N.E.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eleonora A. Braga
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Correspondence:
| | - Olga I. Brovkina
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia; (I.V.P.); (L.A.U.); (A.A.M.); (D.M.Z.); (E.A.F.); (A.M.B.); (V.I.L.); (O.I.B.)
- Federal Research and Clinical Center of Federal Medical-Biological Agency of Russia, 115682 Moscow, Russia
| |
Collapse
|
20
|
Zhang Y, Wang F, Yu Y. LncRNA HOXD‐AS1 promotes oral squamous cell carcinoma by sponging miR‐203a‐5p. Oral Dis 2022; 29:1505-1512. [PMID: 35152529 DOI: 10.1111/odi.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE In the present study, we aimed to explore lncRNA HOXD cluster antisense RNA 1 (HOXD-AS1) expression in oral squamous cell carcinoma (OSCC) tissues, its biological roles, and the underlying potential mechanisms in OSCC progression. MATERIALS AND METHODS HOXD-AS1 expression in paired OSCC and non-tumor tissues from 60 OSCC patients was determined by RT-qPCR. The effects of HOXD-AS1 and miR-203a-5p overexpression on expression of Annexin A4, a validated target of miR-203a-5p, were analyzed by RT-qPCR and Western blot. The roles of HOXD-AS1, miR-203a-5p, and Annexin A4 in the invasion and migration of OSCC cells were analyzed by Transwell assays. RESULTS HOXD-AS1 overexpression in OSCC predicted poor survival. HOXD-AS1 was predicted to interact with miR-203a-5p, but its expression was not significantly correlated with miR-203a-5p. HOXD-AS1 overexpression increased Annexin A4 expression, while miR-203a-5p overexpression decreased Annexin A4 expression in OSCC cells. Transwell assays showed that invasion and migration of OSCC cells were enhanced by HOXD-AS1 and Annexin A4 overexpression but were reduced by miR-203a-5p overexpression. In addition, miR-203a-5p overexpression suppressed the role of HOXD-AS1 in cell movement and Annexin A4 expression. CONCLUSIONS HOXD-AS1 may upregulate Annexin A4 by sponging miR-203a-5p in OSCC to promote cancer cell invasion and migration.
Collapse
Affiliation(s)
- Yuchao Zhang
- Department of Oral and Maxillofacial Surgery Affiliated Hospital of Stomatology Nanjing Medical University Jiangsu Province 210029 P. R. China
| | - Feng Wang
- Department of Analysis and Testing Center Nanjing Medical University Jiangsu Province 210029 P. R. China
| | - Yang Yu
- Department of Oral and Maxillofacial Surgery Affiliated Hospital of Stomatology Nanjing Medical University Jiangsu Province 210029 P. R. China
| |
Collapse
|
21
|
Wang Y, Li X, Wang H, Zhang G. CircCAMSAP1 promotes non-small cell lung cancer proliferation and inhibits cell apoptosis by sponging miR-1182 and regulating BIRC5. Bioengineered 2022; 13:2428-2439. [PMID: 35132928 PMCID: PMC8974160 DOI: 10.1080/21655979.2021.2011639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recently, various studies have suggested that circular RNAs (circRNAs) are ubiquitous in various malignant events, including non-small cell lung cancer (NSCLC) and are closely related to cell proliferation and apoptosis. Unfortunately, the molecular functions involved in this action still have little overlap. Therefore, this study aimed to identify a novel circCAMSAP1 role in NSCLC. Overexpression of circCAMSAP1 has been demonstrated in NSCLC lung tissues and cell lines. Sequencing and RNase R experiments were planned to determine whether circCAMSAP1 is looped and exists in NSCLC. We also found that downregulated circCAMSAP1 repressed cell proliferation and increased apoptosis of NSCLC cells in vitro and suppressed xenograft tumor growth in vivo. Furthermore, a luciferase assay revealed that circCAMSAP1 could regulate baculoviral inhibitor of apoptosis protein (IAP) repeat containing 5 (BIRC5, also known as survivin) expression by directly binding to miR-1182. However, BIRC5 without 3ʹ untranslated regions (3ʹUTR) could reverse the influence of downregulated circCAMSAP1 on proliferation and apoptosis in NSCLC. Together, our findings reveal a novel mechanism by which the circCAMSAP1/miR-1182/BIRC5 axis promotes NSCLC progression.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaobo Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Hu Z, Liu X, Guo J, Zhuo L, Chen Y, Yuan H. Knockdown of lncRNA MEG8 inhibits cell proliferation and invasion, but promotes cell apoptosis in hemangioma, via miR‑203‑induced mediation of the Notch signaling pathway. Mol Med Rep 2021; 24:872. [PMID: 34713294 PMCID: PMC8569514 DOI: 10.3892/mmr.2021.12512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022] Open
Abstract
As a member of the long non‑coding (lnc)RNA family, lncRNA maternally expressed 8, small nucleolar RNA host gene (MEG8), has been reported to serve an oncogenic role in several types of malignancies, including hepatocellular carcinoma, non‑small cell lung cancer and pancreatic cancer. The current study aimed to investigate the effect of the knockdown of MEG8 on human hemangioma endothelial cell (HemEC) proliferation, apoptosis and invasion, in addition to determining the underlying molecular mechanism. The knockdown of lncRNA MEG8 was achieved by transfecting lncRNA MEG8 small interfering (si)RNA into HemECs, while the combined knockdown of lncRNA MEG8 knockdown and microRNA (miR)‑203 was established by co‑transfecting lncRNA MEG8 siRNA and a miR‑203 inhibitor into HemECs. The cell proliferation, apoptosis and invasion and the expression levels of miR‑34a, miR‑200b, miR‑200b and Notch signaling pathway‑related factors were detected via CCK‑8 Kit, flow cytometry, Transwell, reverse transcription‑quantitative PCR and western blot assay, respectively. The knockdown of lncRNA MEG8 significantly inhibited proliferation (P<0.05) and invasion (P<0.05), but promoted apoptosis (P<0.01) in HemECs. Furthermore, lncRNA MEG8 knockdown upregulated miR‑203 (P<0.01) expression, but did not alter miR‑34a or miR‑200b expression (both P>0.05). Subsequent experiments revealed that miR‑203 silencing exerted no significant effect on the expression levels of lncRNA MEG8 (P>0.05) in HemECs. In addition, miR‑203 silencing increased cell proliferation (P<0.05) and invasion (P<0.01), but suppressed apoptosis (P<0.05). miR‑203 silencing also reversed the effect of lncRNA MEG8 knockdown on the proliferation (P<0.05), apoptosis (P<0.001) and invasion (P<0.01) of HemECs. Moreover, lncRNA MEG8 knockdown downregulated jagged canonical notch ligand 1 (JAG1; P<0.05) and Notch1 (P<0.05) expression levels, while miR‑203 silencing upregulated JAG1 (P<0.01) and Notch1 (P<0.01) expression levels and reversed the effects of lncRNA MEG8 knockdown on JAG1 (P<0.01) and Notch1 (P<0.01) expression in HemECs. In conclusion, the findings of the present study suggested that lncRNA MEG8 knockdown may inhibit cell proliferation and invasion, but promote cell apoptosis in hemangioma via miR‑203‑induced mediation of the Notch signaling pathway.
Collapse
Affiliation(s)
- Zhenfeng Hu
- Department of General Surgery II (Department of Plastic Surgery), Affiliated Hospital of Hebei University of Engineering, Hebei, Handan 056002, P.R. China
| | - Xiangmei Liu
- Department of Plastic Surgery, Handan Seventh Hospital, Hebei, Handan 056001, P.R. China
| | - Jing Guo
- Department of Cardiology, Handan Central Hospital, Hebei, Handan 056001, P.R. China
| | - Lei Zhuo
- Department of General Surgery II (Department of Plastic Surgery), Affiliated Hospital of Hebei University of Engineering, Hebei, Handan 056002, P.R. China
| | - Yongdong Chen
- Department of General Surgery III, Handan First Hospital, Hebei, Handan 056002, P.R. China
| | - Haojun Yuan
- Department of General Surgery II (Department of Plastic Surgery), Affiliated Hospital of Hebei University of Engineering, Hebei, Handan 056002, P.R. China
| |
Collapse
|
23
|
Wang J, Chen M, Dang C, Zhang H, Wang X, Yin J, Jia R, Zhang Y. The Early Diagnostic and Prognostic Value of BIRC5 in Clear-Cell Renal Cell Carcinoma Based on the Cancer Genome Atlas Data. Urol Int 2021; 106:344-351. [PMID: 34265766 DOI: 10.1159/000517310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/05/2021] [Indexed: 11/19/2022]
Abstract
PURPOSE The aim of this study was to investigate the role of BIRC5 for early diagnosis and prognosis in clear-cell renal cell carcinoma (ccRCC) by studying the expression of BIRC5 and the correlation between BIRC5 expression and clinicopathological parameters and prognosis in ccRCC. METHODS The BIRC5 expression in ccRCC tissues and normal kidney tissues was measured using the Cancer Genome Atlas database and the Human Protein Atlas database. The correlation between BIRC5 expression and clinicopathological parameters and prognosis in ccRCC was analyzed using UALCAN, the Kaplan-Meier plotter, GEPIA, and SurvExpress. Thirteen-paired ccRCC plasma samples were used to verify the BIRC5 early diagnosis value of ccRCC. RESULTS The BIRC5 expression is significantly higher in ccRCC than in normal kidney tissues, and is correlated with the clinical stage and pathological grade of ccRCC (p < 0.05). The result of analyzing the relationship between BIRC5 expression and outcomes in ccRCC indicates that a high BIRC5 expression is an independent prognostic factor affecting the overall survival and disease-free survival of ccRCC (p < 0.05). Compared with normal kidney tissues, the immunohistochemical test shows that BIRC5 is significantly upregulated in ccRCC tissues. mRNA expression levels of BIRC5 were significantly higher in the ccRCC plasma than normal (p < 0.05). CONCLUSIONS The high expression of BIRC5 is an important indicator for the prognosis of ccRCC, which makes BIRC5 an effective biomarker for predicting the prognosis of patients in ccRCC. BIRC5 may be a great potential biomarker for early diagnosis of ccRCC.
Collapse
Affiliation(s)
- Jingyuan Wang
- Department of Clinical Lab Diagnosis, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min Chen
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianhao Yin
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Jia
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Li X, Chu Q, Wang H. MicroRNA-16 regulates lipopolysaccharide-induced inflammatory factor expression by targeting TLR4 in normal human bronchial epithelial cells. Exp Ther Med 2021; 22:982. [PMID: 34345264 PMCID: PMC8311244 DOI: 10.3892/etm.2021.10414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury (ALI) is mainly caused by inflammation and is associated with high mortality rates. Emerging evidence has suggested that microRNAs (miRNAs or miRs) serve a significant function in ALI. However, the fundamental mechanism underlying ALI remain to be fully elucidated. Although miR-16 has been reported to be involved in the occurrence and development of a number of diseases its association with ALI has not been previously investigated. Therefore, the present study aimed to explore the role of miR-16 in the lipopolysaccharide (LPS)-induced ALI model. The expression levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-6 were measured by ELISA in the blood samples of rats with ALI and in the normal human bronchial epithelial (NHBE) cell line. The role of miR-16 in inflammation was evaluated using gene overexpression and silencing experiments in NHBE cells by reverse transcription-quantitative PCR. In addition, the expression levels of inflammatory factors TNF-α, IL-1β and IL-6 were also determined using ELISA. The potential interaction between miR-16 and TLR4 was assessed using bioinformatics analysis by the TargetScan database and then verified in 293T cells using luciferase reporter assay. The expression of miR-16 was notably decreased in the lung tissues of rats with LPS-induced ALI compared with the PBS treated-group. Additionally, the levels of the proinflammatory cytokines TNF-α, IL-1β and IL-6 were reduced following transfection of NHBE cells with miR-16 mimics compared with those in the miR-negative control group. Western blot analysis revealed that miR-16 overexpression could downregulate TLR4 expression in NHBE cells compared with that in the miR-NC group. Luciferase reporter assay confirmed that TLR4 may be directly targeted by miR-16. The effect of miR-16 on TLR4 was rescued in NHBE cells following treatment with LPS. Overall, these aforementioned findings suggest that miR-16 may serve a protective role against LPS-mediated inflammatory responses in NHBE cells by regulating TLR4, where this mechanism may be considered to be a novel approach for treating ALI in the future.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qian Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huaqi Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
25
|
Lin X, Zhou M, Xu Z, Chen Y, Lin F. Bioinformatics study on genes related to a high-risk postoperative recurrence of lung adenocarcinoma. Sci Prog 2021; 104:368504211018053. [PMID: 34304612 PMCID: PMC10450722 DOI: 10.1177/00368504211018053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we aimed to screen out genes associated with a high risk of postoperative recurrence of lung adenocarcinoma and investigate the possible mechanisms of the involvement of these genes in the recurrence of lung adenocarcinoma. We identify Hub genes and verify the expression levels and prognostic roles of these genes. Datasets of GSE40791, GSE31210, and GSE30219 were obtained from the Gene Expression Omnibus database. Enrichment analysis of gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed for the screened candidate genes using the DAVID database. Then, we performed protein-protein interaction (PPI) network analysis through the database STRING. Hub genes were screened out using Cytoscape software, and their expression levels were determined by the GEPIA database. Finally, we assessed the relationships of Hub genes expression levels and the time of survival. Forty-five candidate genes related to a high-risk of lung adenocarcinoma recurrence were screened out. Gene ontology analysis showed that these genes were enriched in the mitotic spindle assembly checkpoint, mitotic sister chromosome segregation, G2/M-phase transition of the mitotic cell cycle, and ATP binding, etc. KEGG analysis showed that these genes were involved predominantly in the cell cycle, p53 signaling pathway, and oocyte meiosis. We screened out the top ten Hub genes related to high expression of lung adenocarcinoma from the PPI network. The high expression levels of eight genes (TOP2A, HMMR, MELK, MAD2L1, BUB1B, BUB1, RRM2, and CCNA2) were related to short recurrence-free survival and they can be used as biomarkers for high risk of lung adenocarcinoma recurrence. This study screened out eight genes associated with a high risk of lung adenocarcinoma recurrence, which might provide novel insights into researching the recurrence mechanisms of lung adenocarcinoma as well as into the selection of targets in the treatment of the disease.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Meng Zhou
- Department of Rheumatology and Immunology, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Zehong Xu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yusheng Chen
- Department of Pulmonary and Critical Care Unit, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Fan Lin
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
26
|
Xu R, Lin L, Zhang B, Wang J, Zhao F, Liu X, Li Y, Li Y. Identification of prognostic markers for hepatocellular carcinoma based on the epithelial-mesenchymal transition-related gene BIRC5. BMC Cancer 2021; 21:687. [PMID: 34112092 PMCID: PMC8194133 DOI: 10.1186/s12885-021-08390-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The baculoviral IAP repeat containing 5 (BIRC5) related to epithelial-mesenchymal transition (EMT) plays a crucial role in the pathogenesis of hepatocellular carcinoma (HCC). However, it remains unclear whether BIRC5-related genes can be used as prognostic markers of HCC. METHODS Kaplan-Meier (K-M) survival curve was used to assess the Overall Survival (OS) of high- and low-expression group divided by the median of BIRC5 expression. The differentially expressed genes (DEGs) between the two groups were screened using the limma package, and performed the functional enrichment analysis by the clusterProfiler package. WGCNA was used to analyze the relationship of the module and the clinical traits. The risk signature was constructed by univariate and multivariate Cox regression analyses and the enrichment analysis of genes in the risk signature was performed by the Intelligent pathway analysis (IPA). The immunophenoscore (IPS) and the tumor immune dysfunction and exclusion (TIDE) were used to estimate the clinical significance of the risk groups. RESULTS BIRC5 was high-expressed in HCC samples and associated with a poor prognosis (p-value < 0.0001). WGCNA screened 180 module genes which were overlapped with the 241 DEGs, ultimately getting 33 candidate genes. After the Cox regression analyses, CENPA, CDCA8, EZH2, KIF20A, KPNA2, CCNB1, KIF18B and MCM4 were preserved and used to construct risk signature, followed by calculating the risk score. The patients in high-risk groups stratified by median of the risk score were associated with a poor prognosis. The risk score had high accuracy [the area under the curve (AUC) > 0.72] and was closely associated with clinicopathological characteristics of HCC patients. IPA suggested that the 8 genes were enriched in Cancer and Immunological disease related pathways. IPS and TIDE score indicated that the genes in low-risk group could cause an immune response, and patients in the low-risk group may be more sensitive to the immune checkpoint blockade (ICB) therapy. CONCLUSION The risk score constructed by the 8 genes could not only predict the clinical outcome but also distinguish the cohort of ICB therapy in HCC, which exerted a vital value in treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Rongzhong Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Liubing Lin
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bo Zhang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jian Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Fanchen Zhao
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaolin Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yiping Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
27
|
Shaosheng W, Shaochuang W, Lichun F, Na X, Xiaohong Z. ITPKA induces cell senescence, inhibits ovarian cancer tumorigenesis and can be downregulated by miR-203. Aging (Albany NY) 2021; 13:11822-11832. [PMID: 33879633 PMCID: PMC8109125 DOI: 10.18632/aging.202880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/14/2021] [Indexed: 01/26/2023]
Abstract
Overcoming senescence is a feature of ovarian cancer cells; however, the mechanisms underlying senescence regulation in ovarian cancer cells remain largely unknown. In this study, we found that ITPKA was downregulated in ovarian cancer samples, and the lower expression correlated with poor survival. Overexpression of ITPKA inhibited the anchorage-independent growth of ovarian cancer cells and induced senescence. However, knockdown of ITPKA promoted the anchorage-independent growth of ovarian cancer cells and inhibited senescence. Mechanistically, ITPKA was found to interact with MDM2, which stabilized P53, an essential regulator of senescence. Moreover, ITPKA was negatively regulated by miR-203, a microRNA that has been previously reported to be upregulated in ovarian cancer. Taken together, the results of this study demonstrated the tumor suppressive roles of ITPKA in ovarian cancer and provided a good explanation for the oncogenic roles of miR-203.
Collapse
Affiliation(s)
- Wang Shaosheng
- Maternity Service Center of Pengzhou Maternal & Children Health Care Hospital, Chengdu, Sichuan Province 611930, People’s Republic of China
| | - Wang Shaochuang
- Department of Hepatobiliary and Pancreatic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu Province, People’s Republic of China
| | - Fan Lichun
- Hainan Maternal and Children’s Medical Center, Haikou 570206, Hainan Province, People’s Republic of China
| | - Xie Na
- Department of Pathology, The Affiliated Hospital of Hainan Medical University, Haikou 571101, Hainan Province, People’s Republic of China
| | - Zhao Xiaohong
- Hainan Maternal and Children’s Medical Center, Haikou 570206, Hainan Province, People’s Republic of China
| |
Collapse
|
28
|
Li S, Liang X, Liang Y, Li L, Gan J, Cao L, Zou Y. Identification of the transcription factor, AFF4, as a new target of miR-203 in CNS. Int J Biol Macromol 2021; 181:919-927. [PMID: 33878354 DOI: 10.1016/j.ijbiomac.2021.04.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
MiR-203 was identified as a hub of a potential regulatory miRNA network in central nervous system. Overexpressing of miR-203 in the frontal cortex of C57BL/6J wild type mouse induced neurodegeneration by increasing the apoptotic pathway and neuron death. AFF4, a transcription factor, was identified as a new bona fida protein target of miR-203 in CNS. The miRNA:mRNA interaction of miR-203 and AFF4 was verified using Dural-luciferase assay. Down-regulated expression of AFF4 was induced by overexpressing miR-203 both in vitro and in vivo. Open field test, Y maze and Morris water maze test were conducted for the behavioral assessment of the mice with stereotactic injection of lentiviral vector overexpressing miR-203 in the hippocampus. No anxiety-like behavior or impaired cognition was noticed in these mice. Consistent with the results of the behavioral assessment, the electron micrograph and Nissl staining revealed no significant change in the synaptic density and no neuron injuries in the hippocampus of mice overexpressing miR-203, respectively. Our results indicated that instead of promoting neurodegenerative phenotype, a more profound function should be ascribed to miR-203 in regulating neuron behavioral activities and cognition. Neuron-type specific functions of miR-203 are likely to be executed via its various downstream protein interactors.
Collapse
Affiliation(s)
- Shufang Li
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Xiaosheng Liang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Yaohui Liang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Linpeng Li
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Jia Gan
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.
| |
Collapse
|
29
|
Zhang M, Yan X, Wen P, Bai W, Zhang Q. CircANKRD52 Promotes the Tumorigenesis of Hepatocellular Carcinoma by Sponging miR-497-5p and Upregulating BIRC5 Expression. Cell Transplant 2021; 30:9636897211008874. [PMID: 33845641 PMCID: PMC8058805 DOI: 10.1177/09636897211008874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CircRNAs participate in the pathogenesis of a variety of cancers. Previous studies showed that baculoviral IAP repeat containing 5 (BIRC5) can promote tumor progression. But, the mechanisms by which circRNAs regulate BIRC5 expression in hepatocellular carcinoma (HCC) remain unknown. The clinical prognosis of BIRC5 or miR-497-5p expression in patients with HCC was assessed by TCGA RNA-seq dataset. hsa_circ_0026939 (circANKRD52) or BIRC5 was identified to bind with miR-497-5p by luciferase gene report, RIP and circRIP assays. MTT, colony formation, Transwell assays and a xenograft tumor model were used to estimate the role of miR-497-5p or circANKRD52 in HCC cells. As a result, we found that elevated expression of BIRC5 or decreased expression of miR-497-5p was linked to poor survival in HCC. Restored expression of miR-497-5p repressed cell proliferation, colony formation and invasiveness by targeting BIRC5, but its inhibitor showed the opposite results. Furthermore, circANKRD52 possessed a tumor-promoting effect by acting as a sponge of miR-497-5p and thereby upregulated BIRC5 in HCC cells. In conclusion, our findings demonstrated that circANKRD52 enhances the tumorigenesis of HCC by sponging miR-497-5p and upregulating BIRC5 expression.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gastroenterology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xinxin Yan
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China.,Geriatric Department, Aerospace Central Hospital, Beijing, China
| | - Peihao Wen
- Department of Liver Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenkun Bai
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Huang Z, Huang L, Liu L, Wang L, Lin W, Zhu X, Su W, Lv C. Knockdown of microRNA-203 reduces cisplatin chemo-sensitivity to osteosarcoma cell lines MG63 and U2OS in vitro by targeting RUNX2. J Chemother 2021; 33:328-341. [PMID: 33764270 DOI: 10.1080/1120009x.2021.1899441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Clinical studies have reported that miRNAs abnormal expression are associated with the generation of cisplatin-resistant to osteosarcoma. Our previous research found that miR-203 is downregulated in osteosarcoma cells and overexpressed miR-203 exerts antitumor properties on osteosarcoma cells. However, the role and mechanism of miR-203 in regulating the sensitivity of cisplatin in osteosarcoma cells remains unclear. This study aimed to investigate the effects of miR-203 in cisplatin therapy for osteosarcoma cells in vitro and determined the underlying mechanism. In this study, we found that miR-203 was significantly upregulated in osteosarcoma cells after exposure to cisplatin. miR-203 knockdown reduced the sensitivity of osteosarcoma cells to cisplatin by suppressing cell apoptosis, cell cycle arrest, and inducing invasion. Meanwhile, we found that miR-203 knockdown reduces the therapeutic sensitivity of osteosarcoma cells by upregulating RUNX2. Moreover, we found that RUNX2 silencing sensitizes osteosarcoma cells to chemotherapy treatment of cisplatin. In summary, our findings demonstrated that miR-203 knockdown reduces cisplatin chemo-sensitivity to osteosarcoma cells in vitro by targeting RUNX2, and speculated that miR-203 may be a target for drug resistance of osteosarcoma to cisplatin.
Collapse
Affiliation(s)
- Zhengxiang Huang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintuo Huang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lue Liu
- Department of Orthopedics, the Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang, China
| | - Lu Wang
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Lin
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiongbai Zhu
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Su
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Lv
- Department of Orthopedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
31
|
Jiang A, Liu N, Bai S, Wang J, Gao H, Zheng X, Fu X, Ren M, Zhang X, Tian T, Ruan Z, Liang X, Yao Y. Identification and validation of an autophagy-related long non-coding RNA signature as a prognostic biomarker for patients with lung adenocarcinoma. J Thorac Dis 2021; 13:720-734. [PMID: 33717544 PMCID: PMC7947511 DOI: 10.21037/jtd-20-2803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Lung adenocarcinoma (LUAD) is the most predominant pathological subtype of lung cancer, accounting for 40–70% of all lung cancer cases. Although significant improvements have been made in the screening, diagnosis, and precise management in recent years, the prognosis of LUAD remains bleak. This study aimed to investigate the prognostic significance of autophagy-related long non-coding RNAs (lncRNAs) and construct an autophagy-related lncRNA prognostic model in LUAD. Methods The gene expression data of LUAD patients were obtained from The Cancer Genome Atlas (TCGA) database. All autophagy-related genes were downloaded from the Human Autophagy Database (HADb). Spearman’s correlation test was exploited to identify potential autophagy-related lncRNAs. The multivariate Cox regression analysis was used to construct the prognostic signature, which divided LUAD patients into high-risk and low-risk groups. Subsequently, the receiver operating characteristic (ROC) curves were generated to assess the predictive ability of this prognostic model for overall survival (OS) in these individuals. Then, the Gene set enrichment analysis (GSEA) was conducted to execute pathway enrichment analysis. Finally, a multidimensional validation was exploited to verify our findings. Results A total of 1,144 autophagy-related lncRNAs were identified to construct the co-expression network via Spearman’s correlation test (|R2| >0.4 and P≤0.001). Ultimately, a 16 autophagy-related lncRNAs prognostic model was constructed, and the area under the ROC curve (AUC) was 0.775. The results of GSEA enrichment analysis showed that the genes in the high-risk group were mainly enriched in cell cycle and p53 signaling pathways. The results of the multidimensional database validation indicated that the expression level of BIRC5 was significantly correlated with the expression level of TMPO-AS1. Furthermore, both TMPO-AS1 and BIRC5 had a higher expression level in LUAD samples. LUAD patients with high expression levels of TMPO-AS1 and BIRC5 were correlated with advanced disease stage and poor OS. Conclusions In summary, our results suggested that the prognostic signature of the 16 autophagy-related lncRNAs has significant prognostic value for LUAD patients. Furthermore, TMPO-AS1 and BIRC5 are potential predictors and therapeutic targets in these individuals.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuheng Bai
- Department of Radiotherapy Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengdi Ren
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoni Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Rezaei Z, Sadri F. MicroRNAs Involved in Inflammatory Breast Cancer: Oncogene and Tumor Suppressors with Possible Targets. DNA Cell Biol 2021; 40:499-512. [PMID: 33493414 DOI: 10.1089/dna.2020.6320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Inflammatory breast cancer (IBC) as a rare and highly aggressive type of breast cancer displays phenotypic characteristics. To date, the IBC-associated molecular mechanisms are entirely unknown. In addition, there is an urgent need to identify the new biomarkers involved in the diagnosis and therapeutic purposes of IBC. MicroRNAs, a category of short noncoding RNAs, are capable of controlling the post-transcriptional expression of genes and thus can act as diagnostic predictive tools. In this review, we addressed the status of oncogenic and tumor suppressor miRNA-mediated IBC in current studies. Furthermore, based on their targets, their involvement in cancer progression, angiogenesis, metastasis, and apoptosis were determined.
Collapse
Affiliation(s)
- Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.,Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Farzad Sadri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
33
|
Parol M, Gzil A, Bodnar M, Grzanka D. Systematic review and meta-analysis of the prognostic significance of microRNAs related to metastatic and EMT process among prostate cancer patients. J Transl Med 2021; 19:28. [PMID: 33413466 PMCID: PMC7788830 DOI: 10.1186/s12967-020-02644-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of tumor cells to spread from their origin place and form secondary tumor foci is determined by the epithelial-mesenchymal transition process. In epithelial tumors such as prostate cancer (PCa), the loss of intercellular interactions can be observed as a change in expression of polarity proteins. Epithelial cells acquire ability to migrate, what leads to the formation of distal metastases. In recent years, the interest in miRNA molecules as potential future treatment options has increased. In tumor microenvironment, miRNAs have the ability to regulate signal transduction pathways, where they can act as suppressors or oncogenes. MiRNAs are secreted by cancer cells, and the changes in their expression levels are closely related to a cancer progression, including epithelial-mesenchymal transition. These molecules offer new diagnostic and therapeutic possibilities. Therapeutics which make use of synthesized RNA fragments and mimic or block miRNAs affected in PCa, may lead to inhibition of tumor progression and even disease re-emission. Based on appropriate qualification criteria, we conducted a selection process to identify scientific articles describing miRNAs and their relation to epithelial-mesenchymal transition in PCa patients. The studies were published in English on Pubmed, Scopus and the Web of Science before August 08, 2019. Hazard ratios (HRs) and 95% confidence intervals (CI) as well as total Gleason score were used to assess the concordance between miRNAs and presence of metastases. A total of 13 studies were included in our meta-analysis, representing 1608 PCa patients and 15 miRNA molecules. Our study clarifies a relationship between the clinicopathological features of PCa and the aberrant expression of several miRNA as well as the complex mechanism of miRNA molecules involvement in the induction and promotion of the metastatic mechanism in PCa.
Collapse
Affiliation(s)
- Martyna Parol
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
34
|
Panoutsopoulou K, Avgeris M, Mavridis K, Dreyer T, Dorn J, Obermayr E, Reinthaller A, Michaelidou K, Mahner S, Vergote I, Vanderstichele A, Braicu I, Sehouli J, Zeillinger R, Magdolen V, Scorilas A. miR-203 is an independent molecular predictor of prognosis and treatment outcome in ovarian cancer: a multi-institutional study. Carcinogenesis 2020; 41:442-451. [PMID: 31586203 DOI: 10.1093/carcin/bgz163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/04/2019] [Accepted: 10/02/2019] [Indexed: 01/29/2023] Open
Abstract
Ovarian cancer (OC) accounts for the most gynecological cancer-related deaths in developed countries. Unfortunately, the lack of both evident early symptoms and effective asymptomatic population screening results in late diagnosis and inevitably poor prognosis. Hence, it is urgent to identify novel molecular markers to support personalized prognosis. In the present study, we have analyzed the clinical significance of miR-203 in OC using two institutionally independent cohorts. miR-203 levels were quantified in a screening (n = 125) and a validation cohort (n = 100, OVCAD multicenter study). Survival analysis was performed using progression and death as clinical endpoint events. Internal validation was conducted by bootstrap analysis, and decision curve analysis was used to evaluate the clinical benefit. Increased miR-203 levels in OC patients were correlated with unfavorable prognosis and higher risk for disease progression, independently of FIGO stage, tumor grade, residual tumor after surgery, chemotherapy response and age. The analysis of the institutionally independent validation cohort (OVCAD study) clearly confirmed the shorter survival outcome of the patients overexpressing miR-203. Additionally, integration of miR-203 levels with the established disease prognostic markers led to a superior stratification of OC patients that can ameliorate prognosis and benefit patient clinical management. In this regard, miR-203 expression constitutes a novel independent molecular marker to improve patients' prognosis in OC.
Collapse
Affiliation(s)
- Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Mavridis
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Tobias Dreyer
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Dorn
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Eva Obermayr
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Alexander Reinthaller
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Kleita Michaelidou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sven Mahner
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ignace Vergote
- Department of Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Europe
| | - Adriaan Vanderstichele
- Department of Gynecologic Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Europe
| | - Ioana Braicu
- Department of Gynecology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité University Medicine, Campus Virchow, Berlin, Germany
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
35
|
Zhao H, Xu F, Li J, Ni M, Wu X. A Population-Based Study on Liver Metastases in Women With Newly Diagnosed Ovarian Cancer. Front Oncol 2020; 10:571671. [PMID: 33102229 PMCID: PMC7545579 DOI: 10.3389/fonc.2020.571671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
Aim: The purpose of this study was to analyze the incidence, clinical characteristics, prognostic factors and survival of ovarian cancer patients with liver metastases upon initial diagnosis. Methods: Patients with ovarian cancer liver metastases upon initial diagnosis between 2010 and 2016 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate logistic regression was performed to identify the predictors of the presence of liver metastases in newly diagnosed ovarian cancer patients. Overall survival (OS) was assessed using the Kaplan-Meier method and log-rank test. Univariate and multivariate Cox regression was conducted to determine the independent prognostic factors for OS. Results: A total of 1,744 ovarian cancer patients with liver metastases was identified from the SEER database, accounting for 6.7% of the entire ovarian cancer patients. As to the unique distant organ provided by SEER, liver was the most common metastatic site of ovarian cancer (4.65%). Age, race, laterality, histology, pathological grade, extrahepatic sites, stage of tumor were the predictors of the presence with liver metastases revealed by multivariable logistic regression model. Median OS for the patients with liver metastases at initial diagnosis of ovarian cancer was 16.0 months. Multivariate Cox regression model confirmed race, histology, extrahepatic metastatic sites, surgery and marital status were independent prognostic factors for OS. Conclusion: The study provided population-based estimates of the incidence and prognosis of newly diagnosed ovary cancer patients with liver metastases, which could be potentially used for the risk assessment and individualized treatment.
Collapse
Affiliation(s)
- Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Gerloff D, Sunderkötter C, Wohlrab J. Importance of microRNAs in Skin Oncogenesis and Their Suitability as Agents and Targets for Topical Therapy. Skin Pharmacol Physiol 2020; 33:270-279. [PMID: 33080592 DOI: 10.1159/000509879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Skin cancer is the most common cancer worldwide, with rapidly increasing incidence and consistent mortality. Skin cancer encompasses melanoma and non-melanoma skin cancer, which in turn is mainly divided into cutaneous squamous cell carcinoma and basal cell carcinoma. Small noncoding micro-RNAs (miRNAs) regulate protein expression after transcription and play a role in the development and progression of skin cancer. Deregulated expression of miRNAs in skin cancer is associated with cell proliferation, angiogenesis, metastasis, apoptosis, immune response, and drug resistance. Specific patterns of miRNAs in specific skin cancer types can be used as diagnostic markers. For therapeutic purposes, both miRNA and chemically modified variants thereof as well as miRNA antagonists (antagomiRs) or RNA inhibitors may be applied topically. Due to their specific physicochemical properties, physical or chemical diffusion promoters are used with varying degrees of success. There is no question by now that such preparations have a high potential for the treatment of epithelial skin tumors in particular.
Collapse
Affiliation(s)
- Dennis Gerloff
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany,
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes Wohlrab
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
37
|
Zhao X, Yang Y, Yu H, Wu W, Sun Y, Pan Y, Kong L. Polydatin inhibits ZEB1-invoked epithelial-mesenchymal transition in fructose-induced liver fibrosis. J Cell Mol Med 2020; 24:13208-13222. [PMID: 33058500 PMCID: PMC7701525 DOI: 10.1111/jcmm.15933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
High fructose intake is a risk factor for liver fibrosis. Polydatin is a main constituent of the rhizome of Polygonum cuspidatum, which has been used in traditional Chinese medicine to treat liver fibrosis. However, the underlying mechanisms of fructose-driven liver fibrosis as well as the actions of polydatin are not fully understood. In this study, fructose was found to promote zinc finger E-box binding homeobox 1 (ZEB1) nuclear translocation, decrease microRNA-203 (miR-203) expression, increase survivin, activate transforming growth factor β1 (TGF-β1)/Smad signalling, down-regulate E-cadherin, and up-regulate fibroblast specific protein 1 (FSP1), vimentin, N-cadherin and collagen I (COL1A1) in rat livers and BRL-3A cells, in parallel with fructose-induced liver fibrosis. Furthermore, ZEB1 nuclear translocation-mediated miR-203 low-expression was found to target survivin to activate TGF-β1/Smad signalling, causing the EMT in fructose-exposed BRL-3A cells. Polydatin antagonized ZEB1 nuclear translocation to up-regulate miR-203, subsequently blocked survivin-activated TGF-β1/Smad signalling, which were consistent with its protection against fructose-induced EMT and liver fibrosis. These results suggest that ZEB1 nuclear translocation may play an essential role in fructose-induced EMT in liver fibrosis by targeting survivin to activate TGF-β1/Smad signalling. The suppression of ZEB1 nuclear translocation by polydatin may be a novel strategy for attenuating the EMT in liver fibrosis associated with high fructose diet.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanzi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hanwen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenyuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
38
|
Nguyen VHL, Yue C, Du KY, Salem M, O’Brien J, Peng C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21197093. [PMID: 32993038 PMCID: PMC7583982 DOI: 10.3390/ijms21197093] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and the major cause of death is mainly attributed to metastasis. MicroRNAs (miRNAs) are a group of small non-coding RNAs that exert important regulatory functions in many biological processes through their effects on regulating gene expression. In most cases, miRNAs interact with the 3′ UTRs of target mRNAs to induce their degradation and suppress their translation. Aberrant expression of miRNAs has been detected in EOC tumors and/or the biological fluids of EOC patients. Such dysregulation occurs as the result of alterations in DNA copy numbers, epigenetic regulation, and miRNA biogenesis. Many studies have demonstrated that miRNAs can promote or suppress events related to EOC metastasis, such as cell migration, invasion, epithelial-to-mesenchymal transition, and interaction with the tumor microenvironment. In this review, we provide a brief overview of miRNA biogenesis and highlight some key events and regulations related to EOC metastasis. We summarize current knowledge on how miRNAs are dysregulated, focusing on those that have been reported to regulate metastasis. Furthermore, we discuss the role of miRNAs in promoting and inhibiting EOC metastasis. Finally, we point out some limitations of current findings and suggest future research directions in the field.
Collapse
Affiliation(s)
- Vu Hong Loan Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chenyang Yue
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Kevin Y. Du
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Jacob O’Brien
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
39
|
Kadkhoda S, Darbeheshti F, Tavakkoly-Bazzaz J. Identification of dysregulated miRNAs-genes network in ovarian cancer: An integrative approach to uncover the molecular interactions and oncomechanisms. Cancer Rep (Hoboken) 2020; 3:e1286. [PMID: 32886452 PMCID: PMC7941472 DOI: 10.1002/cnr2.1286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Ovarian (OV) cancer is considered as one of the most deadly malignancies in women, since it is unfortunately diagnosed in advanced stages. Nowadays, the importance of bioinformatics tools and their frequent usage in tracking dysregulated cancer‐related genes and pathways have been highlighted in researches. Aim The aim of this study is to investigate dysregulated miRNAs‐genes network and its function in OV tumors based on the integration of microarray data through a system biology approach. Methods Two microarray data (GSE119056 and GSE4122) were analyzed to explore the differentially expressed miRNAs (DEmiRs) and genes among OV tumors and normal tissues. Then, through the help of TargetScan, miRmap, and miRTarBase databases, the dysregulated miRNA‐gene network in OV tumors was constructed by Cytoscape. In the next step, co‐expression and protein‐protein interaction networks were made using GEPIA and STRING databases. Moreover, the functional analysis of the hub genes was done by DAVID, KEGG, and Enrichr databases. Eventually, the regulatory network of TF‐miRNA‐gene was constructed. Results The potential dysregulated miRNAs‐genes network in OV tumors has been constructed, including 109 differentially expressed genes (DEGs), 25 DEmiRs, and 213 interactions. Two down‐regulated microRNAs, miR‐660‐3p and hsa‐miR‐4510, have the most interactions with up‐expressed oncogenic DEGs. CDK1, PLK1, CCNB1, CCNA2, and EZH2 are involved in protein module, which show significant overexpression in OV tumors according to The Cancer Genome Atlas (TCGA) data. EZH2 shows amplification in OV tumors with remarkable percentage. The transcription factors TFAP2C and GATA4 have the pivotal regulatory functions in oncotranscriptomic profile of OV tumors. Conclusion In current study, we have collected and integrated different data to uncover the complex molecular interactions and oncomechanisms in OV tumors. The DEmiRs‐DEGs and TF‐miRNA‐gene networks reveal the potential interactions that could be a significant piece of the OV onco‐puzzle.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Hasanzadeh M, Parizadeh SMR, Hassanian SM, Rezaei-Kalat A, Aghabozorgi AS, Rahimi-Kakhki R, Zargaran B, Ferns GA, Avan A. Circulating and Tissue microRNAs as Biomarkers for Ovarian Cancer Prognosis. Curr Drug Targets 2020; 20:1447-1460. [PMID: 31284859 DOI: 10.2174/1389450120666190708100308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/09/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Ovarian cancer (OC) is one of the most common cancers globally with a high rate of cancer- associated mortality. OC may be classified into epithelial cell neoplasms, germ cell neoplasms and stromal cell neoplasms. The five-year survival in the early and advanced stages of disease is approximately 90% and 15%, respectively. microRNAs are short, single-stranded, non-coding ribonucleic acid (RNA). miRNAs play critical roles in post transcriptionally regulations of gene expression. miRNAs are found in different tissues and body fluids. In carcinogenesis the expression of miRNAs are altered. Recent studies have revealed that there is a relationship between alteration of miRNAs expression and the prognosis of patients with OC. The aim of this review was to summarize the findings of recent studies that have investigated the expression of circulating and tissue miRNAs as novel biomarkers in the prognosis of OC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Mashhad, Iran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirsaeed Sabeti Aghabozorgi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Rana Rahimi-Kakhki
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Zargaran
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Gu HY, Lin LL, Zhang C, Yang M, Zhong HC, Wei RX. The Potential of Five Immune-Related Prognostic Genes to Predict Survival and Response to Immune Checkpoint Inhibitors for Soft Tissue Sarcomas Based on Multi-Omic Study. Front Oncol 2020; 10:1317. [PMID: 32850416 PMCID: PMC7396489 DOI: 10.3389/fonc.2020.01317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Low response rates to immunotherapy have been reported in soft tissue sarcoma (STS). There are few predictive biomarkers of response, and the tumor immune microenvironment associated with progression and prognosis remains unclear in STS. Gene expression data from the Cancer Genome Atlas were used to identify the immune-related prognostic genes (IRPGs) and construct the immune gene-related prognostic model (IGRPM). The tumor immune microenvironment was characterized to reveal differences between patients with different prognoses. Furthermore, somatic mutation data and DNA methylation data were analyzed to understand the underlying mechanism leading to different prognoses. The IGRPM was constructed using five IRPGs (IFIH1, CTSG, STC2, SECTM1, and BIRC5). Two groups (high- and low-risk patients) were identified based on the risk score. Low-risk patients with higher overall survival time had higher immune scores, more immune cell infiltration (e.g., CD8 T cell and activated natural killer cells), higher expression of immune-stimulating molecules, higher stimulating cytokines and corresponding receptors, higher innate immunity molecules, and stronger antigen-presenting capacity. However, inhibition of immunity was observed in low-risk patients owing to the higher expression of immune checkpoint molecules and inhibiting cytokines. High-risk patients had high tumor mutation burden, which did not significantly influence survival. Gene set enrichment analysis further revealed that pathways of cell cycle and cancers were activated in high-risk patients. DNA methylation analysis indicated that relative high methylation was associated with better overall survival. Finally, the age, mitotic counts, and risk scores were independent prognostic factors for STS. Five IRPGs performed well in risk stratification of patients and are candidate biomarkers for predicting response to immunotherapy. Differences observed through the multi-omic study of patients with different prognoses may reveal the underlying mechanism of the development and progression of STS, and thereby improve treatment.
Collapse
Affiliation(s)
- Hui-Yun Gu
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lu-Lu Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Min Yang
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hou-Cheng Zhong
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ren-Xiong Wei
- Department of Spine and Orthopedic Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
42
|
Mo X, Sun J, Xu L, Zhao N, Yan M, Li H, Qin P. Nucleosome Assembly Protein 1-Like 3 Enhances Cisplatin Resistance of Ovarian Cancer Cell by Activating Transforming Growth Factor-Beta Pathway. J Interferon Cytokine Res 2020; 40:333-340. [PMID: 32701410 DOI: 10.1089/jir.2020.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy resistance is one of the main reasons for tumor-related death. In particular, ovarian cancer patients often acquire drug resistance after chemotherapy. In this study, we found that the histone chaperone, nucleosome assembly protein 1-like 3 (NAP1L3), was significantly upregulated in tissues with cisplatin resistance compared with cisplatin-sensitive tissues. Patients with high NAP1L3 levels had poor prognosis, suggesting that NAP1L3 might regulate ovarian cancer resistance. Colony formation and terminal deoxynulceotidyl transferase nick-end-labeling (TUNEL) assays showed cells with high NAP1L3 had high cisplatin resistance, whereas cells with low NAP1L3 had poor cisplatin resistance. NAP1L3 overexpression significantly increased cisplatin resistance, whereas NAP1L3 knockdown significantly reduced cisplatin resistance, suggesting that NAP1L3 promoted cisplatin resistance. Mechanistically, gene set enrichment analysis and luciferase reporter assays showed that NAP1L3 regulated the transforming growth factor-beta (TGF-β) pathway. NAP1L3 overexpression increased the phosphorylation and nuclear translocation of SMAD family member 2 (SMAD2) and SMAD3, confirming that NAP1L3 activated the TGF-β pathway. Therefore, NAP1L3 might represent a novel target to overcome ovarian cancer chemoresistance.
Collapse
Affiliation(s)
- Xiaomei Mo
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| | - Jinghua Sun
- Gynecological Center, Qingdao Women and Children's Hospital, Qingdao, China
| | - Lujie Xu
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| | - Na Zhao
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| | - Meixing Yan
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| | - Huahui Li
- Department of Laboratory Medicine, Qingdao Municipal Hospital, Qingdao, China
| | - Pengfei Qin
- Department of Pharmacy, Qingdao Women and Children's Hospital, Qingdao, China
| |
Collapse
|
43
|
Soghli N, Qujeq D, Yousefi T, Soghli N. The regulatory functions of circular RNAs in osteosarcoma. Genomics 2020; 112:2845-2856. [DOI: 10.1016/j.ygeno.2020.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
44
|
Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M, Pasdar A. Current insights into the metastasis of epithelial ovarian cancer - hopes and hurdles. Cell Oncol (Dordr) 2020; 43:515-538. [PMID: 32418122 DOI: 10.1007/s13402-020-00513-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of cancer-related mortality in women worldwide. Despite various attempts to improve the diagnosis and therapy of ovarian cancer patients, the survival rate for these patients is still dismal, mainly because most of them are diagnosed at a late stage. Up to 90% of ovarian cancers arise from neoplastic transformation of ovarian surface epithelial cells, and are usually referred to as epithelial ovarian cancer (EOC). Unlike most human cancers, which are disseminated through blood-borne metastatic routes, EOC has traditionally been thought to be disseminated through direct migration of ovarian tumor cells to the peritoneal cavity and omentum via peritoneal fluid. It has recently been shown, however, that EOC can also be disseminated through blood-borne metastatic routes, challenging previous thoughts about ovarian cancer metastasis. CONCLUSIONS Here, we review our current understanding of the most updated cellular and molecular mechanisms underlying EOC metastasis and discuss in more detail two main metastatic routes of EOC, i.e., transcoelomic metastasis and hematogenous metastasis. The emerging concept of blood-borne EOC metastasis has led to exploration of the significance of circulating tumor cells (CTCs) as novel and non-invasive prognostic markers in this daunting cancer. We also evaluate the role of tumor stroma, including cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs), endothelial cells, adipocytes, dendritic cells and extracellular matrix (ECM) components in EOC growth and metastasis. Lastly, we discuss therapeutic approaches for targeting EOC. Unraveling the mechanisms underlying EOC metastasis will open up avenues to the design of new therapeutic options. For instance, understanding the molecular mechanisms involved in the hematogenous metastasis of EOC, the biology of CTCs, and the detailed mechanisms through which EOC cells take advantage of stromal cells may help to find new opportunities for targeting EOC metastasis.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran
| | - Sara Rajaie
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Malihe Hasanzadeh
- Department of Gynecologic Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran. .,Division of Applied Medicine, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
45
|
Abstract
Introduction: Ovarian carcinoma (OC) is the leading cause of death in women with gynecologic cancers. Most patients are diagnosed at an advanced stage with a low five-year survival rate of 20-30%. Discovering novel biomarkers for early detection and outcome prediction of OC is an urgent medical need. miRNAs, a group of small non-coding RNAs, play critical roles in multiple biologic processes and cancer pathogenesis.Areas covered: We provide an in-depth look at the functions of miRNAs in OC, particularly focusing on their roles in chemoresistance and metastasis in OC. We also discuss the biological and clinical significance of miRNAs in exosomes and expand on long non-coding RNA which acts as ceRNA of miRNAs.Expert opinion: miRNAs participate in many biological processes including proliferation, apoptosis, chemoresistance, metastasis, epithelial-mesenchymal transition, and cancer stem cell. They will substantially contribute to our understanding of OC pathogenesis. Given their resistance to the degradation of ribonucleases and availability in plasma exosomes, miRNAs may serve as emerging biomarkers for cancer detection, therapeutic assessment, and prognostic prediction. Being a messenger, exosomal miRNAs are crucial for the crosstalk between cancer cells and stromal cells in tumor microenvironment.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
46
|
Guo Q, Ke XX, Liu Z, Gao WL, Fang SX, Chen C, Song YX, Han H, Lu HL, Xu G. Evaluation of the Prognostic Value of STEAP1 in Lung Adenocarcinoma and Insights Into Its Potential Molecular Pathways via Bioinformatic Analysis. Front Genet 2020; 11:242. [PMID: 32265985 PMCID: PMC7099762 DOI: 10.3389/fgene.2020.00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
Background Upregulation of the six-transmembrane epithelial antigen of prostate-1 (STEAP1) is closely associated with prognosis of numerous malignant cancers. However, its role in lung adenocarcinoma (LUAD), the most common type of lung cancer, remains unknown. This study aimed to investigate the role of STEAP1 in the occurrence and progression of LUAD and the potential mechanisms underlying its regulatory effects. Methods STEAP1 mRNA and protein expression were analyzed in 40 LUAD patients via real-time PCR and western blotting, respectively. We accessed the clinical data of 522 LUAD patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to investigate the expression and prognostic role of STEAP1 in LUAD. Further, we performed gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) to elucidate the potential mechanism underlying the role of STEAP1 in LUAD. The protein-protein interaction (PPI) network of STEAP1 was analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) database, and hub genes with significant positive and negative associations with STEAP1 were identified and their role in LUAD prognosis was predicted. Results STEAP1 was significantly upregulated in LUAD patients and associated with LUAD prognosis. Further, TCGA data indicated that STEAP1 upregulation is correlated with the clinical prognosis of LUAD. GO and KEGG analysis revealed that the genes co-expressed with STEAP1 were primarily involved in cell division, DNA replication, cell cycle, apoptosis, cytokine signaling, NF-kB signaling, and TNF signaling. GSEA revealed that homologous recombination, p53 signaling pathway, cell cycle, DNA replication, apoptosis, and toll-like receptor signaling were highly enriched upon STEAP1 upregulation. Gene Expression Profiling Interactive Analysis (GEPIA) analysis revealed that the top 10 hub genes associated with STEAP1 expression were also associated with the LUAD prognosis. Conclusion STEAP1 upregulation potentially influences the occurrence and progression of LUAD and its co-expressed genes via regulation of homologous recombination, p53 signaling, cell cycle, DNA replication, and apoptosis. STEAP1 is a potential prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xi-Xian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhou Liu
- Department of Cardiac Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei-Long Gao
- Department of Cardiac Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shi-Xu Fang
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yong-Xiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hao Han
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong-Ling Lu
- Department of Biochemistry, Zunyi Medical University, Zunyi, China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
47
|
Yang Z, An Y, Wang N, Dong X, Kang H. LINC02595 promotes tumor progression in colorectal cancer by inhibiting miR-203b-3p activity and facilitating BCL2L1 expression. J Cell Physiol 2020; 235:7449-7464. [PMID: 32064615 PMCID: PMC7496558 DOI: 10.1002/jcp.29650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent tumors worldwide. Recently, long noncoding RNAs (lncRNAs) have been recognized as key regulators in postgenomic biology. Numerous lncRNAs have been identified as diagnostic biomarkers and therapeutic targets. However, the molecular mechanisms underlying the role of lncRNAs in CRC progression are not fully understood. Differentially expressed lncRNAs and messenger RNAs were investigated using a microarray approach in five paired primary CRC tumor tissues and the corresponding nontumor tissues and confirmed in an additional 116 paired tissues and 21 inflammatory bowel disease tissues and 15 adjacent normal tissues by a quantitative real‐time polymerase chain reaction. We also performed comprehensive transcriptome profiling analysis on Gene Expression Omnibus and The Cancer Genome Atlas datasets. We identified LINC02595 and evaluated its clinical significance as a plasma biomarker. The function of LINC02595 was evaluated using a panel of in vivo and vitro assays, including cell counting kit‐8, colony formation, cell cycle, apoptosis, RNA fluorescence in situ hybridization, luciferase reporter, immunohistochemistry, and CRC xenografts. We found that LINC02595 is upregulated in tumor tissues and blood samples of patients with CRC and CRC cell lines. Functional research found that LINC02595 promotes CRC cell growth, influences the cell cycle, and reduces apoptosis in vitro and vivo. Mechanistically, LINC02595 promoted BCL2‐like 1 (BCL2L1) expression through miR‐203b‐3p sponging. Our research demonstrated that LINC02595 is an oncogene in CRC and established the presence of a LINC02595‐miR‐203b‐BCL2L1 axis in CRC, which might provide a new diagnostic biomarker and therapeutic targets for the treatment of this disease.
Collapse
Affiliation(s)
- Zhidong Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue An
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ningning Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xihua Dong
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Kang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
48
|
Yang D, He Y, Wu B, Deng Y, Wang N, Li M, Liu Y. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. J Ovarian Res 2020; 13:10. [PMID: 31987036 PMCID: PMC6986075 DOI: 10.1186/s13048-020-0613-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Ovarian cancer (OC) ranks fifth as a cause of gynecological cancer-associated death globally. Until now, the molecular mechanisms underlying the tumorigenesis and prognosis of OC have not been fully understood. This study aims to identify hub genes and therapeutic drugs involved in OC. Methods Four gene expression profiles (GSE54388, GSE69428, GSE36668, and GSE40595) were downloaded from the Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) in OC tissues and normal tissues with an adjusted P-value < 0.05 and a |log fold change (FC)| > 1.0 were first identified by GEO2R and FunRich software. Next, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were performed for functional enrichment analysis of these DEGs. Then, the hub genes were identified by the cytoHubba plugin and the other bioinformatics approaches including protein-protein interaction (PPI) network analysis, module analysis, survival analysis, and miRNA-hub gene network construction was also performed. Finally, the GEPIA2 and DGIdb databases were utilized to verify the expression levels of hub genes and to select the candidate drugs for OC, respectively. Results A total of 171 DEGs were identified, including 114 upregulated and 57 downregulated DEGs. The results of the GO analysis indicated that the upregulated DEGs were mainly involved in cell division, nucleus, and protein binding, whereas the biological functions showing enrichment in the downregulated DEGs were mainly negative regulation of transcription from RNA polymerase II promoter, protein complex and apicolateral plasma membrane, and glycosaminoglycan binding. As for the KEGG-pathway, the upregulated DEGs were mainly associated with metabolic pathways, biosynthesis of antibiotics, biosynthesis of amino acids, cell cycle, and HTLV-I infection. Additionally, 10 hub genes (KIF4A, CDC20, CCNB2, TOP2A, RRM2, TYMS, KIF11, BIRC5, BUB1B, and FOXM1) were identified and survival analysis of these hub genes showed that OC patients with the high-expression of CCNB2, TYMS, KIF11, KIF4A, BIRC5, BUB1B, FOXM1, and CDC20 were statistically more likely to have poorer progression free survival. Meanwhile, the expression levels of the hub genes based on GEPIA2 were in accordance with those based on GEO. Finally, DGIdb database was used to identify 62 small molecules as the potentially targeted drugs for OC treatment. Conclusions In summary, the data may produce new insights regarding OC pathogenesis and treatment. Hub genes and candidate drugs may improve individualized diagnosis and therapy for OC in future.
Collapse
Affiliation(s)
- Dan Yang
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yang He
- Department of Central Laboratory, The First Affiliated Hospital, China Medical University, 155th Nanjing North Street, Shenyang, 110001, Liaoning, China
| | - Bo Wu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital, China Medical University, 155th Nanjing North Street, Shenyang, 110001, Liaoning, China
| | - Yan Deng
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China
| | - Nan Wang
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China
| | - Menglin Li
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yang Liu
- Department of Environmental Health, School of Public Health, China Medical University, 77th Puhe Road, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
49
|
Solé C, Lawrie CH. MicroRNAs and Metastasis. Cancers (Basel) 2019; 12:cancers12010096. [PMID: 31906022 PMCID: PMC7016783 DOI: 10.3390/cancers12010096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Metastasis, the development of secondary malignant growths at a distance from the primary site of a cancer, is associated with almost 90% of all cancer deaths, and half of all cancer patients present with some form of metastasis at the time of diagnosis. Consequently, there is a clear clinical need for a better understanding of metastasis. The role of miRNAs in the metastatic process is beginning to be explored. However, much is still to be understood. In this review, we present the accumulating evidence for the importance of miRNAs in metastasis as key regulators of this hallmark of cancer.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, 20014 San Sebastián, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Correspondence: or ; Tel.: +34-943-006138
| |
Collapse
|
50
|
Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:368. [PMID: 31439015 PMCID: PMC6704566 DOI: 10.1186/s13046-019-1362-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Survivin (also named BIRC5) is a well-known cancer therapeutic target. Since its discovery more than two decades ago, the use of survivin as a target for cancer therapeutics has remained a central goal of survivin studies in the cancer field. Many studies have provided intriguing insight into survivin's functional role in cancers, thus providing promise for survivin as a cancer therapeutic target. Despite this, moving survivin-targeting agents into and through the clinic remains a challenge. In order to address this challenge, we may need to rethink current strategies in order to develop a new mindset for targeting survivin. In this Review, we will first summarize the current survivin mechanistic studies, and then review the status of survivin cancer therapeutics, which is classified into five categories: (i) survivin-partner protein interaction inhibitors, (ii) survivin homodimerization inhibitors, (iii) survivin gene transcription inhibitors, (iv) survivin mRNA inhibitors and (v) survivin immunotherapy. We will then provide our opinions on cancer therapeutics using survivin as a target, with the goal of stimulating discussion that might facilitate translational research for discovering improved strategies and/or more effective anticancer agents that target survivin for cancer therapy.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA. .,Developmental Therapeutics Program, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.
| | - Ieman Aljahdali
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Department of Cellular & Molecular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Canget BioTekpharma LLC, Buffalo, New York, USA
| |
Collapse
|