1
|
Zhu CY, Luo Q, Zhang ZW, Li YP, Han D, Yan YM. Discovery of metabolite from the insect-derived endophytic Penicillium chrysogenum and their COX-2 inhibitory activity. Fitoterapia 2024; 179:106238. [PMID: 39321858 DOI: 10.1016/j.fitote.2024.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Three new N-alkylated amino acid derivatives, penichrysoamides A-C (1-3), along with a new citric acid derivative, penichrysoacid A (4), a new chromanone lactone penichrysoacid B (5), and a new amide derivative, penichrysoamide D (6), as well as seven known benzamide derivatives (7-13), were isolated from the endophytic fungus Penicillium chrysogenum derived from the insect Periplaneta americana. The structures of these compounds, including their absolute configurations, were elucidated using spectroscopic and computational techniques. Biological evaluation revealed that compounds 8-13 exhibited significant COX-2 inhibitory activity, with IC50 values ranging from 275 nM to 1350 nM.
Collapse
Affiliation(s)
- Chun-Yan Zhu
- Institue for Inheritance-Based Innovation of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Qin Luo
- Clinical Lab, Shenzhen University General Hospital, Shenzhen 518055, PR China
| | - Zi-Wei Zhang
- Institue for Inheritance-Based Innovation of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Yan-Peng Li
- Institue for Inheritance-Based Innovation of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Di Han
- Institue for Inheritance-Based Innovation of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Yong-Ming Yan
- Institue for Inheritance-Based Innovation of Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen 518060, PR China.
| |
Collapse
|
2
|
Li R, Li Y, Wang Z, Suo R, Ma R, Zhang J. miR-181-5p/KLHL5 Promoted Proliferation and Migration of Gastric Cancer Through Activating METTL3-Mediated m6A Process. Mol Biotechnol 2024; 66:2415-2425. [PMID: 37733183 DOI: 10.1007/s12033-023-00877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
KLHL5 was a member of kelch-repeat protein family and was involved in the initiation of progression of a plethora of cancers. However, its specific role in gastric cancer was not explicitly illustrated. In this context, we aimed to investigate the biological role and mechanisms about KLHL5 in gastric cancer. qRT-PCR and western blot were used to investigate the expression of KLHL5 and EMT biomarkers. Wound healing assay, CCK-8, and Transwell assay were used to investigate the biological function of KLHL5. We found that KLHL5 was highly expressed in gastric cancer both in vivo and in vitro; besides, its high expression led to a shorter overall survival. Following statistical analysis showed that KLHL5 was associated with M stage. As for molecular experiments, we found that KLHL5 knockdown significantly reduced the proliferation, migration, and invasion ability of gastric cancer cell line MKN45 and SGC-7901. Furthermore, we found that miR-181-5p targeted KLHL5 to regulate m6A level through METTL3. In addition, KLHL5 knockdown could significantly reduce the lung metastasis rate in mice. In conclusion, we found that miR-181-5p/KLHL5 could promote the proliferation, migration, and invasion of gastric cancer by activating m6A process through regulating METTL3.
Collapse
Affiliation(s)
- Rong Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yixing Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Zhiyu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Ruiyang Suo
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China
| | - Ruining Ma
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jia Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Sui L, Cong Y, Liu M, Liu X, Xu Y, Jiang WG, Ye L. Upregulated bone morphogenetic protein 8A (BMP8A) in triple negative breast cancer (TNBC) and its involvement in the bone metastasis. Front Cell Dev Biol 2024; 12:1374269. [PMID: 39100096 PMCID: PMC11294076 DOI: 10.3389/fcell.2024.1374269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
Objective The present study aimed to investigate the involvement of aberrant BMP8A expression in TNBC and bone metastasis. Methods Aberrant expression of BMP8A in breast cancer was first determined by analyzing The Cancer Genome Atlas breast cancer cohort (TCGA-BRCA) and an immunohistochemical (IHC) staining of BMP8A in a breast cancer tissue microarray (TMA). Clinical relevance of deregulated BMP8A in breast cancer was assessed using Kaplan-Meier online analysis. The influence of BMP8A on cellular functions of two TNBC cell lines was assessed using in vitro assays. Conditional medium (CM) collected from the supernatant of hFOB cells and bone matrix extract (BME) was applied to mimic the bone micro-environment to evaluate the role played by BMP8A in bone metastasis. Correlations with both osteolytic and osteoblastic markers were evaluated in the TCGA-BRCA cohort. Expression of certain responsive genes was quantified in the BMP8A overexpression cell lines. Additionally, signal transduction through both Smad-dependent and independent pathways was evaluated using Western blot assay. Results Compared to the adjacent normal tissues, BMP8A expression was significantly increased in primary tumors (p < 0.05) which was associated with shorter distant metastasis free survival (DMFS) in TNBC (p < 0.05). BMP8A was observed to enhance cell invasion and migration within TNBC cells. In the simulated bone milieu, both MDA-MB-231BMP8Aexp and BT549BMP8Aexp cells presented enhanced invasiveness. BMP8A level was strongly correlated with most osteolytic and osteoblastic markers, suggesting the potential involvement of BMP8A in bone metastasis in TNBC. Receptor activator of nuclear factor kappa-B ligand (RANKL) expression was significantly increased in BMP8A overexpressed triple-negative cell lines (MDA-MB-231 and BT549). Furthermore, enhanced phosphorylation of Smad3 and increased expression of epidermal growth factor receptor (EGFR) were observed in MDA-MB-231 cells overexpressing BMP8A. Conclusion BMP8A was upregulated in TNBC which was associated with poorer DMFS. BMP8A overexpression enhanced the invasion and migration of TNBC cells. With a putative role in osteolytic bone metastasis in TNBC, BMP8A represents a promising candidate for further investigation into its therapeutic potential.
Collapse
Affiliation(s)
- Laijian Sui
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
- Department of Orthopedics, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Yizi Cong
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ming Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Xiangyi Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Yali Xu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
4
|
Yan YM, Li JJ, Cheng YX. Aspongopyrimidine A, a N-Peralkylated Histidine Zwitterion from Aspongopus chinensis against Alzheimer's Disease Targeting MAPRE3. Org Lett 2024; 26:1506-1510. [PMID: 38345436 DOI: 10.1021/acs.orglett.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Aspongopyrimidine A (1), a hexa-1,3-diene-histidine-hexanoic acid adduct featuring a 4,5-dihydro-2H-10λ4-imidazo[5,1-f]pyrrolo[2,1-b]pyrimidine motif, was isolated from the insect Aspongopus chinensis. The structure was clarified by spectroscopic and computational methods and X-ray diffraction. Peralkylation of N-atoms in histidine by two C6 units makes 1 an inner salt with a 5/6/5 tricyclic system. Biological evaluation found that 1 exerts activity against Alzheimer's disease targeting MAPRE3 through a chemical proteomics approach. This study revealed unusual modifications of amino acids as the fundamental units of protein.
Collapse
Affiliation(s)
- Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, PR China
| | - Ji-Jun Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, PR China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, PR China
| |
Collapse
|
5
|
Bi Y, Zheng R, Hu J, Shi R, Shi J, Wang Y, Wang P, Jiang W, Kim G, Liu Z, Li X, Lin L. A novel FGFR1 inhibitor CYY292 suppresses tumor progression, invasion, and metastasis of glioblastoma by inhibiting the Akt/GSK3β/snail signaling axis. Genes Dis 2024; 11:479-494. [PMID: 37588207 PMCID: PMC10425802 DOI: 10.1016/j.gendis.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/12/2023] [Indexed: 04/05/2023] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor that grows quickly, spreads widely, and is resistant to treatment. Fibroblast growth factor receptor (FGFR)1 is a receptor tyrosine kinase that regulates cellular processes, including proliferation, survival, migration, and differentiation. FGFR1 was predominantly expressed in GBM tissues, and FGFR1 expression was negatively correlated with overall survival. We rationally designed a novel small molecule CYY292, which exhibited a strong affinity for the FGFR1 protein in GBM cell lines in vitro. CYY292 also exerted an effect on the conserved Ser777 residue of FGFR1. CYY292 dose-dependently inhibited cell proliferation, epithelial-mesenchymal transition, stemness, invasion, and migration in vitro by specifically targeting the FGFR1/AKT/Snail pathways in GBM cells, and this effect was prevented by pharmacological inhibitors and critical gene knockdown. In vivo experiments revealed that CYY292 inhibited U87MG tumor growth more effectively than AZD4547. CYY292 also efficiently reduced GBM cell proliferation and increased survival in orthotopic GBM models. This study further elucidates the function of FGFR1 in the GBM and reveals the effect of CYY292, which targets FGFR1, on downstream signaling pathways directly reducing GBM cell growth, invasion, and metastasis and thus impairing the recruitment, activation, and function of immune cells.
Collapse
Affiliation(s)
- Yanran Bi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ruiling Zheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiahao Hu
- Department of Dermatology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang 325000, China
| | - Ruiqing Shi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junfeng Shi
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yutao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenyi Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Gyudong Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Zhiguo Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Li Lin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Zhejiang Lab for Regenerative Medicine, Oujiang Laboratory, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
6
|
Yan YM, Luo Q, Li JJ, Tu ZC, Cheng YX. Novel spirooxindole alkaloid derivatives from the medicinal insect Blaps japanensis and their biological evaluation. Bioorg Chem 2023; 141:106845. [PMID: 37797453 DOI: 10.1016/j.bioorg.2023.106845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Blapspirooxindoles A-C (1-3), three novel spirooxindole alkaloids with a unique spiro[chromane-4,3'-indoline]-2,2'-dione motif, blapcumaranons A and B (4 and 5), two new 2-cumaranon derivatives, blapoxindoles A-J (6-15), ten new oxindole alkaloid derivatives, along with one known compound (16), were isolated from the whole bodies of Blaps japanensis. Their structures including absolute configurations were determined by using spectroscopic, X-ray crystallographic, and computational methods. Compounds 1-11 and 13 exist as racemic mixtures in nature, and their (-)- and (+)-antipodes were separated by chiral HPLC. Biological evaluations of these compounds were determined with multiple assays including anti-tumor, anti-inflammatory, and renal protection activities in vitro. Several compounds displayed effective activity in one or more assays.
Collapse
Affiliation(s)
- Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, PR China
| | - Qin Luo
- Clinical Lab, Shenzhen University General Hospital, Shenzhen 518055, PR China
| | - Ji-Jun Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, PR China
| | - Zheng-Chao Tu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Drug Discovery Pipeline & Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou 510530, PR China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, PR China.
| |
Collapse
|
7
|
Ordaz-Ramos A, Tellez-Jimenez O, Vazquez-Santillan K. Signaling pathways governing the maintenance of breast cancer stem cells and their therapeutic implications. Front Cell Dev Biol 2023; 11:1221175. [PMID: 37492224 PMCID: PMC10363614 DOI: 10.3389/fcell.2023.1221175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Breast cancer stem cells (BCSCs) represent a distinct subpopulation of cells with the ability to self-renewal and differentiate into phenotypically diverse tumor cells. The involvement of CSC in treatment resistance and cancer recurrence has been well established. Numerous studies have provided compelling evidence that the self-renewal ability of cancer stem cells is tightly regulated by specific signaling pathways, which exert critical roles to maintain an undifferentiated phenotype and prevent the differentiation of CSCs. Signaling pathways such as Wnt/β-catenin, NF-κB, Notch, Hedgehog, TGF-β, and Hippo have been implicated in the promotion of self-renewal of many normal and cancer stem cells. Given the pivotal role of BCSCs in driving breast cancer aggressiveness, targeting self-renewal signaling pathways holds promise as a viable therapeutic strategy for combating this disease. In this review, we will discuss the main signaling pathways involved in the maintenance of the self-renewal ability of BCSC, while also highlighting current strategies employed to disrupt the signaling molecules associated with stemness.
Collapse
Affiliation(s)
- Alejandro Ordaz-Ramos
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Olivia Tellez-Jimenez
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, México
| | - Karla Vazquez-Santillan
- Innovation in Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, México
| |
Collapse
|
8
|
Huang XL, Cai D, Gao P, Wang JG, Cheng YX. Aquilariperoxide A, a Sesquiterpene Dimer from Agarwood of Aquilaria sinensis with Dual Antitumor and Antimalarial Effects. J Org Chem 2023; 88:8352-8359. [PMID: 37195129 DOI: 10.1021/acs.joc.3c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aquilariperoxide A (1), an unprecedented sesquiterpene dimer characterized by a dioxepane ring connecting two sesquiterpene units via a C-C bond, was isolated from agarwood of Aquilaria sinensis-containing resins. The structure was elucidated by spectroscopic and computational methods. A bioassay revealed that 1 significantly inhibits cell proliferation and migration in human cancer cells. The mechanism of 1 against cancer cells was briefly discussed by analysis of RNA sequence data and epithelial-mesenchymal transition. Besides, the antimalarial activity of 1 was also evaluated.
Collapse
Affiliation(s)
- Xiao-Ling Huang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Dan Cai
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Peng Gao
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ji-Gang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
- Guangdong Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, PR China
| |
Collapse
|
9
|
Ding D, Shen X, Yu L, Zheng Y, Liu Y, Wang W, Liu L, Zhao Z, Nian S, Liu L. Timosaponin BII inhibits TGF-β mediated epithelial-mesenchymal transition through Smad-dependent pathway during pulmonary fibrosis. Phytother Res 2023. [PMID: 36807664 DOI: 10.1002/ptr.7774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/11/2022] [Accepted: 12/11/2022] [Indexed: 02/20/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive and fatal interstitial lung disease with limited therapeutic options at present, and epithelial-mesenchymal transition (EMT) is recognized as a major cause of lung fibrosis. Our previous work has confirmed that total extract of Anemarrhena asphodeloides Bunge [Asparagaceae] exerted the effect of anti-PF. As a main constituent of Anemarrhena asphodeloides Bunge [Asparagaceae], the effect of timosaponin BII (TS BII) on drug-induced EMT process in PF animals and alveolar epithelial cells remains unknown. In this study, we evaluated the effect of TS BII on bleomycin (BLM)-induced PF. The results showed that TS BII could restore the structure of lung architecture and MMP-9/TIMP-1 balance in fibrotic rat lung and inhibit collagen deposition. Moreover, we found that TS BII could reverse the abnormal expression of TGF-β1 and EMT-related marker proteins including E-cadherin, vimentin, and α-SMA. Besides, aberrant TGF-β1 expression and phosphorylation of Smad2 and Smad3 in BLM-induced animal model and TGF-β1-induced cell model were downregulated by TS BII treatment, indicating that EMT in fibrosis was suppressed by inhibition of TGF-β/Smad pathway both in vivo and in vitro. In summary, our study suggested that TS BII could be a promising candidate for PF treatment.
Collapse
Affiliation(s)
- Dali Ding
- School of Pharmacy, Wannan Medical College, Wuhu, China.,Pharmacy Department, The PLA Navy Anqing Hospital, Anqing, China
| | - Xuebin Shen
- School of Pharmacy, Wannan Medical College, Wuhu, China.,Institute of Modern Chinese Medicine, Wannan Medical College, Wuhu, China
| | - Lizhen Yu
- School of Pharmacy, Wannan Medical College, Wuhu, China.,Institute of Modern Chinese Medicine, Wannan Medical College, Wuhu, China.,Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
| | - Yueyue Zheng
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Yao Liu
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Wei Wang
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Li Liu
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Zitong Zhao
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Sihui Nian
- School of Pharmacy, Wannan Medical College, Wuhu, China.,Institute of Modern Chinese Medicine, Wannan Medical College, Wuhu, China.,Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, China
| | - Limin Liu
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, China
| |
Collapse
|
10
|
Zhu Y, Yin WF, Yu P, Zhang C, Sun MH, Kong LY, Yang L. Meso-Hannokinol inhibits breast cancer bone metastasis via the ROS/JNK/ZEB1 axis. Phytother Res 2023. [PMID: 36726293 DOI: 10.1002/ptr.7732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Distal metastases from breast cancer, especially bone metastases, are extremely common in the late stages of the disease and are associated with a poor prognosis. EMT is a biomarker of the early process of bone metastasis, and MMP-9 and MMP-13 are important osteoclastic activators. Previously, we found that meso-Hannokinol (HA) could significantly inhibit EMT and MMP-9 and MMP-13 expressions in breast cancer cells. On this basis, we further explored the role of HA in breast cancer bone metastasis. In vivo, we established a breast cancer bone metastasis model by intracardially injecting breast cancer cells. Intraperitoneal injections of HA significantly reduced breast cancer cell metastasis to the leg bone in mice and osteolytic lesions caused by breast cancer. In vitro, HA inhibited the migration and invasion of breast cancer cells and suppressed the expressions of EMT, MMP-9, MMP-13, and other osteoclastic activators. HA inhibited EMT and MMP-9 by activating the ROS/JNK pathway as demonstrated by siJNK and SP600125 inhibition of JNK phosphorylation and NAC scavenging of ROS accumulation. Moreover, HA promoted bone formation and inhibited bone resorption in vitro. In conclusion, our findings suggest that HA may be an excellent candidate for treating breast cancer bone metastasis.
Collapse
Affiliation(s)
- Yuan Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wei-Feng Yin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ming-Hui Sun
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Wang S, Ma Y, Huang Y, Hu Y, Huang Y, Wu Y. Potential bioactive compounds and mechanisms of Fibraurea recisa Pierre for the treatment of Alzheimer's disease analyzed by network pharmacology and molecular docking prediction. Front Aging Neurosci 2022; 14:1052249. [PMID: 36570530 PMCID: PMC9772884 DOI: 10.3389/fnagi.2022.1052249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Heat-clearing and detoxifying Chinese medicines have been documented to have anti-Alzheimer's disease (AD) activities according to the accumulated clinical experience and pharmacological research results in recent decades. In this study, Fibraurea recisa Pierre (FRP), the classic type of Heat-clearing and detoxifying Chinese medicine, was selected as the object of research. Methods 12 components with anti-AD activities were identified in FRP by a variety of methods, including silica gel column chromatography, multiple databases, and literature searches. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Consequently, it was found that these 12 compounds could act on 235 anti-AD targets, of which AKT and other targets were the core targets. Meanwhile, among these 235 targets, 71 targets were identified to be significantly correlated with the pathology of amyloid beta (Aβ) and Tau. Results and discussion In view of the analysis results of the network of active ingredients and targets, it was observed that palmatine, berberine, and other alkaloids in FRP were the key active ingredients for the treatment of AD. Further, Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed that the neuroactive ligand-receptor interaction pathway and PI3K-Akt signaling pathway were the most significant signaling pathways for FRP to play an anti-AD role. Findings in our study suggest that multiple primary active ingredients in FRP can play a multitarget anti-AD effect by regulating key physiological processes such as neurotransmitter transmission and anti-inflammation. Besides, key ingredients such as palmatine and berberine in FRP are expected to be excellent leading compounds of multitarget anti-AD drugs.
Collapse
Affiliation(s)
- Shishuai Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Yuhui Hu
- Medical College, Jinggangshan University, Ji’an, China,*Correspondence: Yuhui Hu,
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China,Yushan Huang,
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China,Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China,Yi Wu,
| |
Collapse
|
12
|
Metastasis prevention: targeting causes and roots. Clin Exp Metastasis 2022; 39:505-519. [PMID: 35347574 DOI: 10.1007/s10585-022-10162-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
The spread of tumor cells from the primary focus, metastasis, is the main cause of cancer mortality. Therefore, anticancer therapy should be focused on the prevention of metastatic disease. Key targets can be conditions in the primary tumor that are favorable for the appearance of metastatic cells and the first steps of the metastatic cascade. Here, we discuss different approaches for targeting metastasis causes (hypoxia, metabolism changes, and tumor microenvironment) and roots (angiogenesis, epithelial-mesenchymal transition, migration, and invasion). Also, we emphasize the challenges of the existing approaches for metastasis prevention and suggest opportunities to overcome them. In conclusion, we highlight the importance of clinical evaluation of the agents showing antimetastatic effects in vivo, especially in patients with early-stage cancers, the identification of metastatic seeds, and the development of therapeutics for their eradication.
Collapse
|
13
|
Cheng LZ, Huang DL, Liao M, Li KM, Wu ZQ, Cheng YX. Structural Optimization and Improving Antitumor Potential of Moreollic Acid from Gamboge. Molecules 2022; 27:482. [PMID: 35056797 PMCID: PMC8846360 DOI: 10.3390/molecules27020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/06/2023] Open
Abstract
Moreollic acid, a caged-tetraprenylated xanthone from Gamboge, has been indicated as a potent antitumor molecule. In the present study, a series of moreollic acid derivatives with novel structures were designed and synthesized, and their antitumor activities were determined in multifarious cell lines. The preliminary screening results showed that all synthesized compounds selectively inhibited human colon cancer cell proliferation. TH12-10, with an IC50 of 0.83, 1.10, and 0.79 μM against HCT116, DLD1, and SW620, respectively, was selected for further antitumor mechanism studies. Results revealed that TH12-10 effectively inhibited cell proliferation by blocking cell-cycle progression from G1 to S. Besides, the apparent structure-activity relationships of target compounds were discussed. To summarize, a series of moreollic acid derivatives were discovered to possess satisfactory antitumor potentials. Among them, TH12-10 displays the highest antitumor activities against human colon cancer cells, in which the IC50 values in DLD1 and SW620 are lower than that of 5-fluorouracil.
Collapse
Affiliation(s)
- Li-Zhi Cheng
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Dan-Ling Huang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; (M.L.); (K.-M.L.)
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Min Liao
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; (M.L.); (K.-M.L.)
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Ke-Ming Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; (M.L.); (K.-M.L.)
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; (M.L.); (K.-M.L.)
- Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
14
|
Ren BX, Li Y, Li HM, Lu T, Wu ZQ, Fu R. The Antibiotic Drug Trimethoprim Suppresses Tumor Growth and Metastasis via Targeting Snail. Br J Pharmacol 2021; 179:2659-2677. [PMID: 34855201 DOI: 10.1111/bph.15763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The zinc finger transcription factor Snail is aberrantly activated in many human cancers and strongly associated with poor prognosis. As a transcription factor, Snail has been traditionally considered an "undruggable" target. Here, we identified a potent small molecule inhibitor of Snail, namely trimethoprim, and investigated its potential antitumor effects and the underlying mechanisms. EXPERIMENTAL APPROACH The inhibitory action of trimethoprim on Snail protein and the related molecular mechanisms were revealed by molecular docking, biolayer interferometry, immunoblotting, immunoprecipitation, qRT-PCR, pull-down, and cycloheximide pulse-chase assays. The anti-proliferative and anti-metastatic effects of trimethoprim via targeting Snail were tested in multiple cell-based assays and animal models. KEY RESULTS This study identified trimethoprim, an antimicrobial drug, as a potent anti-tumor agent via targeting Snail. Molecular modeling analysis predicted that trimethoprim directly binds to the arginine-174 pocket of Snail protein. We further discovered that trimethoprim strongly interrupts the interaction of Snail with CREB-binding protein (CBP)/p300, which consequently suppresses Snail acetylation and promotes Snail degradation through ubiquitin-proteasome pathway. Furthermore, trimethoprim sufficiently inhibited the proliferation, epithelial-mesenchymal transition (EMT), and migration of cancer cells in vitro via specifically targeting Snail. More importantly, trimethoprim effectively reduced Snail-driven tumor growth and metastasis to vital organs such as lung, bone, and liver. CONCLUSIONS AND IMPLICATIONS These findings indicate, for the first time, that trimethoprim suppresses tumor growth and metastasis via targeting Snail. This study provides insights for a better understanding of the anticancer effects of trimethoprim and offers a potential anti-cancer therapeutic agent for clinical treatment.
Collapse
Affiliation(s)
- Bo-Xue Ren
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Yang Li
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Hong-Mei Li
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, China
| | - Zhao-Qiu Wu
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong Fu
- State Key Laboratory of Natural Medicines, School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Wang C, Xu K, Wang R, Han X, Tang J, Guan X. Heterogeneity of BCSCs contributes to the metastatic organotropism of breast cancer. J Exp Clin Cancer Res 2021; 40:370. [PMID: 34801088 PMCID: PMC8605572 DOI: 10.1186/s13046-021-02164-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/31/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most-common female malignancies with a high risk of relapse and distant metastasis. The distant metastasis of breast cancer exhibits organotropism, including brain, lung, liver and bone. Breast cancer stem cells (BCSCs) are a small population of breast cancer cells with tumor-initiating ability, which participate in regulating distant metastasis in breast cancer. We investigated the heterogeneity of BCSCs according to biomarker status, epithelial or mesenchymal status and other factors. Based on the classical “seed and soil” theory, we explored the effect of BCSCs on the metastatic organotropism in breast cancer at both “seed” and “soil” levels, with BCSCs as the “seed” and BCSCs-related microenvironment as the “soil”. We also summarized current clinical trials, which assessed the safety and efficacy of BCSCs-related therapies. Understanding the role of BCSCs heterogeneity for regulating metastatic organotropism in breast cancer would provide a new insight for the diagnosis and treatment of advanced metastatic breast cancer.
Collapse
Affiliation(s)
- Cenzhu Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xin Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
16
|
Ma YS, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Wang HM, Wang PY, Lin QL, Li W, Fu D. Basic approaches, challenges and opportunities for the discovery of small molecule anti-tumor drugs. Am J Cancer Res 2021; 11:2386-2400. [PMID: 34249406 PMCID: PMC8263657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Chemotherapy is one of the main treatments for cancer, especially for advanced cancer patients. In the past decade, significant progress has been made with the research into the molecular mechanisms of cancer cells and the precision medicine. The treatment on cancer patients has gradually changed from cytotoxic chemotherapy to precise treatment strategy. Research into anticancer drugs has also changed from killing effects on all cells to targeting drugs for target genes. Besides, researchers have developed the understanding of the abnormal physiological function, related genomics, epigenetics, and proteomics of cancer cells with cancer genome sequencing, epigenetic research, and proteomic research. These technologies and related research have accelerated the development of related cancer drugs. In this review, we summarize the research progress of anticancer drugs, the current challenges, and future opportunities.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|
17
|
Inhibiting roles of FOXA2 in liver cancer cell migration and invasion by transcriptionally suppressing microRNA-103a-3p and activating the GREM2/LATS2/YAP axis. Cytotechnology 2021; 73:523-537. [PMID: 34349344 DOI: 10.1007/s10616-021-00475-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/08/2021] [Indexed: 01/14/2023] Open
Abstract
Forkhead box A2 (FOXA2) has emerged as a tumor inhibitor in several human malignancies. This work focused on the effect of FOXA2 on liver cancer (LC) cell invasion and migration and the involving molecules. FOXA2 expression in LC tissues and cell lines was determined. The potential target microRNA (miRNA) of FOXA2 was predicted via bioinformatic analysis and validated through a ChIP assay. The mRNA target of miRNA-103a-3p was predicted via bioinformatic analysis and confirmed via a luciferase assay. Altered expression of FOXA2, miR-103a-3p and GREM2 was introduced in cells to identify their roles in LC cell migration and invasion. Consequently, FOXA2 and GREM2 were poorly expressed while miR-103a-3p was highly expressed in LC samples. Overexpression of FOXA2 or GREM2 suppressed migration and invasion of LC cells, while up-regulation of miR-103a-3p led to inverse trends. FOXA2 transcriptionally suppressed miR-103a-3p to increase GREM2 expression. Silencing of GREM2 blocked the effects of FOXA2. GREM2 increased LATS2 activity and YAP phosphorylation and degradation. To conclude, this study demonstrated that FOXA2 suppressed miR-103a-3p transcription to induce GREM2 upregulation, which increased LATS2 activity and YAP phosphorylation to inhibit migration and invasion of LC cells.
Collapse
|
18
|
Kalita B, Coumar MS. Deciphering molecular mechanisms of metastasis: novel insights into targets and therapeutics. Cell Oncol (Dordr) 2021; 44:751-775. [PMID: 33914273 DOI: 10.1007/s13402-021-00611-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The transition of a primary tumour to metastatic progression is driven by dynamic molecular changes, including genetic and epigenetic alterations. The metastatic cascade involves bidirectional interactions among extracellular and intracellular components leading to disintegration of cellular junctions, cytoskeleton reorganization and epithelial to mesenchymal transition. These events promote metastasis by reprogramming the primary cancer cell's molecular framework, enabling them to cause local invasion, anchorage-independent survival, cell death and immune resistance, extravasation and colonization of distant organs. Metastasis follows a site-specific pattern that is still poorly understood at the molecular level. Although various drugs have been tested clinically across different metastatic cancer types, it has remained difficult to develop efficacious therapeutics due to complex molecular layers involved in metastasis as well as experimental limitations. CONCLUSIONS In this review, a systemic evaluation of the molecular mechanisms of metastasis is outlined and the potential molecular components and their status as therapeutic targets and the associated pre-clinical and clinical agents available or under investigations are discussed. Integrative methods like pan-cancer data analysis, which can provide clinical insights into both targets and treatment decisions and help in the identification of crucial components driving metastasis such as mutational profiles, gene signatures, associated pathways, site specificities and disease-gene phenotypes, are discussed. A multi-level data integration of the metastasis signatures across multiple primary and metastatic cancer types may facilitate the development of precision medicine and open up new opportunities for future therapies.
Collapse
Affiliation(s)
- Bikashita Kalita
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014, India.
| |
Collapse
|
19
|
Ma YS, Liu JB, Wu TM, Fu D. New Therapeutic Options for Advanced Hepatocellular Carcinoma. Cancer Control 2021; 27:1073274820945975. [PMID: 32799550 PMCID: PMC7791453 DOI: 10.1177/1073274820945975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common lethal diseases in the world, has a 5-year survival rate of only 7%. Hepatocellular carcinoma has no symptoms in the early stage but obvious symptoms in the late stage, leading to delayed diagnosis and reduced treatment efficacy. In recent years, as the scope of HCC research has increased in depth, the clinical development and application of molecular targeted drugs and immunotherapy drugs have brought new breakthroughs in HCC treatment. Targeted therapy drugs for HCC have high specificity, allowing them to selectively kill tumor cells and minimize damage to normal tissues. At present, these targeted drugs are mainly classified into 3 categories: small molecule targeted drugs, HCC antigen-specific targeted drugs, and immune checkpoint targeted drugs. This article reviews the latest research progress on the targeted drugs for HCC.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Ting-Miao Wu
- Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da Fu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Ma YS, Xin R, Yang XL, Shi Y, Zhang DD, Wang HM, Wang PY, Liu JB, Chu KJ, Fu D. Paving the way for small-molecule drug discovery. Am J Transl Res 2021; 13:853-870. [PMID: 33841626 PMCID: PMC8014367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins, which have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. As commonly used medications, small-molecule drugs can be taken orally, which enter cells to act on intracellular targets. These characteristics make small-molecule drugs promising candidates for drug development, and they are increasingly favored in the pharmaceutical market. Despite the advancements in molecular genetics and effective new processes in drug development, the drugs currently used in clinical practice are inadequate due to their poor efficacy or severe side effects. Therefore, developing new safe and efficient drugs is a top priority for disease control and curing.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Kai-Jian Chu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical UniversityShanghai 200438, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|
21
|
Yan YM, Meng XH, Bai HF, Cheng YX. Nonpeptide small molecules with a ten-membered macrolactam or a morpholine motif from the insect American cockroach and their antiangiogenic activity. Org Chem Front 2021. [DOI: 10.1039/d0qo01653e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(±)-Periplactam A (1), a rare ten-membered macrolactam composed of lignan and putrescine, (±)-periplanol E (2), a dimeric phenethyl alcohol derivative formed via morpholine, and periplactams B (3) and C (4) were isolated from American cockroach.
Collapse
Affiliation(s)
- Yong-Ming Yan
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| | - Xiao-Hui Meng
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| | - Hong-Fu Bai
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences
- Shenzhen University Health Science Center
- Shenzhen
- P.R. China
| |
Collapse
|
22
|
Islam R, Lam KW. Recent progress in small molecule agents for the targeted therapy of triple-negative breast cancer. Eur J Med Chem 2020; 207:112812. [DOI: 10.1016/j.ejmech.2020.112812] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
|
23
|
Luo M, Zhang L, Yang H, Luo K, Qing C. Long non‑coding RNA NEAT1 promotes ovarian cancer cell invasion and migration by interacting with miR‑1321 and regulating tight junction protein 3 expression. Mol Med Rep 2020; 22:3429-3439. [PMID: 32945443 PMCID: PMC7453588 DOI: 10.3892/mmr.2020.11428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies have reported that long non‑coding RNAs (lncRNAs) have a significant role in the metastasis of tumors, including ovarian cancer (OC). The aim of the present study was to demonstrate the function and working mechanism of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in OC. The expressions of NEAT1 in OC were measured by reverse transcription‑quantitativePCR (RT‑qPCR). The effects of NEAT1 on cell proliferation, invasion, migration and epithelial‑mesenchymal transition (EMT) were detected by Cell Counting Kit‑8, transwell and wound healing assays, and western blotting. Dual‑luciferase reporter assays were performed to confirm the correlated between NEAT and miR‑1321, miR‑1321 and TJP3. The effect of NEAT1 on miR‑1321 and TJP3 was confirmed by RT‑qPCR and western blotting. Elevated expression of NEAT1 was observed in OC cell lines, and NEAT1 expression was found to be positively related to the expression of tight junction protein 3 (TJP3), which is important in cancer development. Moreover, the present results indicated that NEAT1 and TJP3 expression levels were negatively correlated with microRNA (miR)‑1321 expression in OC. Knockdown of NEAT1 attenuated the migration and invasion of OC cells, as well as increased miR‑1321 expression and in turn led to the reduction of TJP3. Thus, the present study demonstrated that NEAT1 regulates TJP3 expression by sponging miR‑1321 and enhances the epithelial‑mesenchymal transition, invasion and migration of OC cells. Overall, the present study identified the function and mechanism of NEAT1 in OC, suggesting that NEAT1 may be a promising therapeutic target for OC metastasis.
Collapse
Affiliation(s)
- Min Luo
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, P.R. China
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Yunnan Key Laboratory of Quality Standards for Traditional Chinese Medicine and National Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Lei Zhang
- Department of Gynecology, Yunnan Tumor Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Hongying Yang
- Department of Gynecology, Yunnan Tumor Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Kaili Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
24
|
Vuoso DC, D'Angelo S, Ferraro R, Caserta S, Guido S, Cammarota M, Porcelli M, Cacciapuoti G. Annurca apple polyphenol extract promotes mesenchymal-to-epithelial transition and inhibits migration in triple-negative breast cancer cells through ROS/JNK signaling. Sci Rep 2020; 10:15921. [PMID: 32985606 PMCID: PMC7522716 DOI: 10.1038/s41598-020-73092-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Aberrant activation of epithelial-to-mesenchymal transition has been shown to correlate with triple-negative breast cancer (TNBC) progression and metastasis. Thus, the induction of the reverse process might offer promising opportunities to restrain TNBC metastatic spreading and related mortality. Recently, the Annurca apple polyphenol extract (APE) has been highlighted as a multi-faceted agent that selectively kills TNBC cells by ROS generation and sustained JNK activation. Here, by qualitatively and quantitatively monitoring the real-time movements of live cells we provided the first evidence that APE inhibited the migration of MDA-MB-231 and MDA-MB-468 TNBC cells and downregulated metalloproteinase-2 and metalloproteinase-9. In MDA-MB-231 cells APE decreased SMAD-2/3 and p-SMAD-2/3 levels, increased E-cadherin/N-cadherin protein ratio, induced the switch from N-cadherin to E-cadherin expression and greatly reduced vimentin levels. Confocal and scanning electron microscopy imaging of APE-treated MDA-MB-231 cells evidenced a significant cytoskeletal vimentin and filamentous actin reorganization and revealed considerable changes in cell morphology highlighting an evident transition from the mesenchymal to epithelial phenotype with decreased migratory features. Notably, all these events were reverted by N-acetyl-l-cysteine and JNK inhibitor SP600125 furnishing evidence that APE exerted its effects through the activation of ROS/JNK signaling. The overall data highlighted APE as a potential preventing agent for TNBC metastasis.
Collapse
Affiliation(s)
- Daniela Cristina Vuoso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Stefania D'Angelo
- Department of Motor Sciences and Wellness, "Parthenope" University, Via Medina 40, 80133, Naples, Italy
| | - Rosalia Ferraro
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.,CEINGE Advanced Biotechnologies, 80145, Naples, Italy
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.,CEINGE Advanced Biotechnologies, 80145, Naples, Italy
| | - Stefano Guido
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.,CEINGE Advanced Biotechnologies, 80145, Naples, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Luciano Armanni 5, 80138, Naples, Italy
| | - Marina Porcelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138, Naples, Italy
| | - Giovanna Cacciapuoti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
25
|
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies. Expert Rev Anticancer Ther 2020; 20:797-811. [PMID: 32772585 DOI: 10.1080/14737140.2020.1807950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer in women throughout the world. Patients who are diagnosed early generally have better prognosis and survivability. Indeed, advanced stage breast cancer often develops osteolytic metastases, leading to bone destruction. Although there are select drugs available to treat bone metastatic disease, these drugs have shown limited success. AREA COVERED This paper emphasizes updated mechanisms of bone remodeling and osteolytic bone metastases of breast cancer. This article also aims to explore the potential of novel natural and synthetic therapeutics in the effective prevention of breast cancer-induced osteolysis and osteolytic metastases of breast cancer. EXPERT OPINION Targeting TGFβ and BMP signaling pathways, along with osteoclast activity, appears to be a promising therapeutic strategy in the prevention of breast cancer-induced osteolytic bone destruction and metastatic growth at bone metastatic niches. Pilot studies in animal models suggest various natural and synthetic compounds and monoclonal antibodies as putative therapeutics in the prevention of breast cancer stimulated osteolytic activity. However, comprehensive pre-clinical studies demonstrating the PK/PD and in-depth understanding of molecular mechanism(s) by which these potential molecules exhibit anti-tumor growth and anti-osteolytic activity are still required to develop effective therapies against breast cancer-induced osteolytic bone disease.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
26
|
Todd GM, Gao Z, Hyvönen M, Brazil DP, Ten Dijke P. Secreted BMP antagonists and their role in cancer and bone metastases. Bone 2020; 137:115455. [PMID: 32473315 DOI: 10.1016/j.bone.2020.115455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are multifunctional secreted cytokines that act in a highly context-dependent manner. BMP action extends beyond the induction of cartilage and bone formation, to encompass pivotal roles in controlling tissue and organ homeostasis during development and adulthood. BMPs signal via plasma membrane type I and type II serine/threonine kinase receptors and intracellular SMAD transcriptional effectors. Exquisite temporospatial control of BMP/SMAD signalling and crosstalk with other cellular cues is achieved by a series of positive and negative regulators at each step in the BMP/SMAD pathway. The interaction of BMP ligand with its receptors is carefully controlled by a diverse set of secreted antagonists that bind BMPs and block their interaction with their cognate BMP receptors. Perturbations in this BMP/BMP antagonist balance are implicated in a range of developmental disorders and diseases, including cancer. Here, we provide an overview of the structure and function of secreted BMP antagonists, and summarize recent novel insights into their role in cancer progression and bone metastasis. Gremlin1 (GREM1) is a highly studied BMP antagonist, and we will focus on this molecule in particular and its role in cancer. The therapeutic potential of pharmacological inhibitors for secreted BMP antagonists for cancer and other human diseases will also be discussed.
Collapse
Affiliation(s)
- Grace M Todd
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Zhichun Gao
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Peter Ten Dijke
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
27
|
Scimeca M, Trivigno D, Bonfiglio R, Ciuffa S, Urbano N, Schillaci O, Bonanno E. Breast cancer metastasis to bone: From epithelial to mesenchymal transition to breast osteoblast-like cells. Semin Cancer Biol 2020; 72:155-164. [PMID: 32045651 DOI: 10.1016/j.semcancer.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
In this review we highlighted the newest aspects concerning the physiopathology of breast cancer metastatization into the bone including: a) in situ biomarkers of breast cancer metastatic diseases, b) biological processes related to the origin of metastatic cells (epithelial to mesenchymal transition), c) the nature and the possible role of Breast Osteoblast-Like Cells in the formation of bone lesions and d) the prognostic value of breast microcalcifications for the bone metastatic disease. In addition, the more recent data about the biology of breast cancer metastatic process and the origin and function of Breast Osteoblast-Like Cells have been analyzed to propose the use of molecular imaging investigations able to identify early neoplastic lesions with high propensity to form bone metastasis in vivo.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano, Mi, Italy; Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
28
|
Zhu Q, Shen Y, Chen X, He J, Liu J, Zu X. Self-Renewal Signalling Pathway Inhibitors: Perspectives on Therapeutic Approaches for Cancer Stem Cells. Onco Targets Ther 2020; 13:525-540. [PMID: 32021295 PMCID: PMC6970631 DOI: 10.2147/ott.s224465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022] Open
Abstract
The poor survival and prognosis of individuals with cancer are often attributed to tumour relapse and metastasis, which may be due to the presence of cancer stem cells (CSCs). CSCs have the characteristics of self-renewal, differentiation potential, high carcinogenicity, and drug resistance. In addition, CSCs exhibit many characteristics similar to those of embryonic or tissue stem cells while displaying persistent abnormal activation of self-renewal pathways associated with development and tissue homeostasis, including the Wnt, Notch, Hedgehog (Hh), TGF-β, JAK/STAT3, and NF-κB pathways. Therefore, we can eliminate CSCs by targeting these self-renewal pathways to constrain stem cell replication, survival and differentiation. At the same time, we cannot neglect the ping-pong effect of the tumour microenvironment, which releases cytokines and promotes self-renewal pathways in CSCs. Recently, meaningful progress has been made in the study of inhibitors of self-renewal pathways in tumours. This review primarily summarizes several representative and novel agents targeting these self-renewal signalling pathways and the tumour microenvironment and that represent a promising strategy for treating refractory and recurrent cancer.
Collapse
Affiliation(s)
- Qingyun Zhu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yingying Shen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xiguang Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jun He
- Department of Spine Surgery, The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jianghua Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
29
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 730] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
30
|
Atypical Mesenchymal Stromal Cell Responses to Topographic Modifications of Titanium Biomaterials Indicate Cytoskeletal- and Genetic Plasticity-Based Heterogeneity of Cells. Stem Cells Int 2019; 2019:5214501. [PMID: 31354840 PMCID: PMC6636474 DOI: 10.1155/2019/5214501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023] Open
Abstract
Titanium (Ti) is widely used as a biomaterial for endosseous implants due to its relatively inert surface oxide layer that enables implanted devices the ability of assembling tissue reparative components that culminate in osseointegration. Topographic modifications in the form of micro- and nanoscaled structures significantly promote osseointegration and enhance the osteogenic differentiation of adult mesenchymal stromal cells (MSCs). While the biological mechanisms central to the differential responses of tissues and cells to Ti surface modifications remain unknown, adhesion and morphological adaptation are amongst the earliest events at the cell-biomaterial interface that are highly influenced by surface topography and profoundly impact the regulation of stem cell fate determination. This study correlated the effects of Ti topographic modifications on adhesion and morphological adaptation of human MSCs with phenotypic change. The results showed that modified Ti topographies precluded the adhesion of a subset of MSCs while incurring distinct morphological constraints on adherent cells. These effects anomalously corresponded with a differential expression of stem cell pluripotency and Wnt signalling-associated markers on both modified surfaces while additionally differing between hydrophobic and hydrophilic surface modifications—though extent of osteogenic differentiation induced by both modified topographies yielded similarly significant higher levels of cellular mineralisation in contrast to polished Ti. These results suggest that in the absence of deposited proteins and soluble factors, both modified topographies incur the selective adhesion of a subpopulation of progenitors with relatively higher cytoskeletal plasticity. While the presence of deposited proteins and soluble factors does not significantly affect adherence of cells, nanotopographic modifications enhance expression of pluripotency markers in proliferative conditions, which are conversely overridden by both modified topographies in osteogenic inductive conditions. Further deciphering the mechanisms underlying cellular selectivity and Ti topographic responsiveness will improve our understanding of stem cell heterogeneity and advance the potential of MSCs in regenerative medicine.
Collapse
|