1
|
Li Y, Tang X, Wang B, Chen M, Zheng J, Chang K. Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers. Noncoding RNA Res 2024; 9:1351-1362. [PMID: 39247145 PMCID: PMC11380467 DOI: 10.1016/j.ncrna.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
| | - Xiaoqi Tang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Binpan Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China
- School of Medicine, Chongqing University, Chongqing, 400030, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China
| |
Collapse
|
2
|
Hu C, Chen Q, Wu T, Du X, Dong Y, Peng Z, Xue W, Sunkara V, Cho YK, Dong L. The Role of Extracellular Vesicles in the Treatment of Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311071. [PMID: 38639331 DOI: 10.1002/smll.202311071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Prostate cancer (PCa) has become a public health concern in elderly men due to an ever-increasing number of estimated cases. Unfortunately, the available treatments are unsatisfactory because of a lack of a durable response, especially in advanced disease states. Extracellular vesicles (EVs) are lipid-bilayer encircled nanoscale vesicles that carry numerous biomolecules (e.g., nucleic acids, proteins, and lipids), mediating the transfer of information. The past decade has witnessed a wide range of EV applications in both diagnostics and therapeutics. First, EV-based non-invasive liquid biopsies provide biomarkers in various clinical scenarios to guide treatment; EVs can facilitate the grading and staging of patients for appropriate treatment selection. Second, EVs play a pivotal role in pathophysiological processes via intercellular communication. Targeting key molecules involved in EV-mediated tumor progression (e.g., proliferation, angiogenesis, metastasis, immune escape, and drug resistance) is a potential approach for curbing PCa. Third, EVs are promising drug carriers. Naïve EVs from various sources and engineered EV-based drug delivery systems have paved the way for the development of new treatment modalities. This review discusses the recent advancements in the application of EV therapies and highlights EV-based functional materials as novel interventions for PCa.
Collapse
Affiliation(s)
- Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qi Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tianyang Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanhao Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zehong Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Vijaya Sunkara
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science Ulsan, Ulsan, 44919, Republic of Korea
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
3
|
Hu S, Zhang C, Ma Q, Li M, Yu X, Zhang H, Lv S, Shi Y, He X. Unveiling the multifaceted roles of microRNAs in extracellular vesicles derived from mesenchymal stem cells: implications in tumor progression and therapeutic interventions. Front Pharmacol 2024; 15:1438177. [PMID: 39161894 PMCID: PMC11330784 DOI: 10.3389/fphar.2024.1438177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the capacity to migrate to tumor sites in vivo and transmit paracrine signals by secreting extracellular vesicles (EVs) to regulate tumor biological behaviors. MSC-derived EVs (MSC-EVs) have similar tumor tropism and pro- or anti-tumorigenesis as their parental cells and exhibit superior properties in drug delivery. MSC-EVs can transfer microRNAs (miRNAs) to tumor cells, thereby manipulating multiple key cancer-related pathways, and further playing a vital role in the tumor growth, metastasis, drug resistance and other aspects. In addition, tumor cells can also influence the behaviors of MSCs in the tumor microenvironment (TME), orchestrating this regulatory process via miRNAs in EVs (EV-miRNAs). Clarifying the specific mechanism by which MSC-derived EV-miRNAs regulate tumor progression, as well as investigating the roles of EV-miRNAs in the TME will contribute to their applications in tumor pharmacotherapy. This article mainly reviews the multifaceted roles and mechanism of miRNAs in MSC-EVs affecting tumor progression, the crosstalk between MSCs and tumor cells caused by EV-miRNAs in the TME. Eventually, the clinical applications of miRNAs in MSC-EVs in tumor therapeutics are illustrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Chen Z, Xia X, Yao M, Yang Y, Ao X, Zhang Z, Guo L, Xu X. The dual role of mesenchymal stem cells in apoptosis regulation. Cell Death Dis 2024; 15:250. [PMID: 38582754 PMCID: PMC10998921 DOI: 10.1038/s41419-024-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Xuewei Xia
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400042, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of orthopedics, The 953th Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Zhaoqi Zhang
- Department of Neurosurgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Li Guo
- Endocrinology Department, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
5
|
Hasoglu I, Karatug Kacar A. The therapeutic effects of exosomes the first time isolated from pancreatic islet-derived progenitor cells in the treatment of pancreatic cancer. PROTOPLASMA 2024; 261:281-291. [PMID: 37798610 DOI: 10.1007/s00709-023-01896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Insulinoma is an excessive insulin-released beta cell tumor. Pancreas cancer is one of the deadliest malignant neoplasms. Exosomes are secreted cell membrane vesicles containing a large number of proteins, lipids, and nucleic acids. The aim of this study is to investigate the effects of exosomes on two cell lines of benign and malignant character. For the first time, exosomes were isolated from pancreatic island-derived progenitor cells (PID-PCs) and applied to INS-1 and MiaPaCa-2 cells. In addition, exosomes isolated from PID-PC, MiaPaca-2, and INS-1 cells were characterized in order to compare their sizes with other previously isolated exosomes. Alix, TSG101, CD9, and CD81 were analyzed. The size and concentration of exosomes and the cell viability were detected. The cells were marked with HSP90, HSF-1, Kaspaz-8, Active-Kaspaz-3, Beclin, and p-Bcl-2. The cell cytotoxicity and insulin levels kit were measured. Alix in all exosomes, and PID-PC, MiaPaca-2 cell lysates; TSG101 in PID-PC and MiaPaca-2 cell lysates; CD9 in INS-1 exosomes were detected. The dimensions of isolated exosomes were 103.6 ± 28.6 nm, 100.7 ± 10 nm, and 147.2 ± 12.3 nm for PID-PCs, MiaPaca-2, and INS-1 cells. The cell viability decreased and HSP90 increased in the MiaPaca-2 cells. The HSF-1 was higher in the control MiaPaca-2 cell compared to the control INS-1 cell, and the exosome-treated MiaPaca-2 cell compared to the exosome-treated INS-1 cell. Beclin and p-Bcl-2 were decreased in the exosome-treated MiaPaca-2 cells. The insulin level in the cell lysates increased compared to cell secretion in INS-1 cells. In conclusion, exosomes isolated from the PID-PC caused cell death in the MiaPaca-2 cells in a time- and dose-dependent manner. The IC50 value determined for MiaPaca-2 cells has no effect on cell viability in INS-1 cells, which best mimics pancreatic beta cells and can be used instead of healthy pancreatic beta cells. Isolated exosomes can kill cancer cells without damaging healthy cells.
Collapse
Affiliation(s)
- Imren Hasoglu
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Ayse Karatug Kacar
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
6
|
Jóźwicka TM, Erdmańska PM, Stachowicz-Karpińska A, Olkiewicz M, Jóźwicki W. Exosomes-Promising Carriers for Regulatory Therapy in Oncology. Cancers (Basel) 2024; 16:923. [PMID: 38473285 DOI: 10.3390/cancers16050923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, together with apoptotic bodies form a diverse group of nanoparticles that play a crucial role in intercellular communication, participate in numerous physiological and pathological processes. In the context of cancer, they can allow the transfer of bioactive molecules and genetic material between cancer cells and the surrounding stromal cells, thus promoting such processes as angiogenesis, metastasis, and immune evasion. In this article, we review recent advances in understanding how EVs, especially exosomes, influence tumor progression and modulation of the microenvironment. The key mechanisms include exosomes inducing the epithelial-mesenchymal transition, polarizing macrophages toward protumoral phenotypes, and suppressing antitumor immunity. The therapeutic potential of engineered exosomes is highlighted, including their loading with drugs, RNA therapeutics, or tumor antigens to alter the tumor microenvironment. Current techniques for their isolation, characterization, and engineering are discussed. Ongoing challenges include improving exosome loading efficiency, optimizing biodistribution, and enhancing selective cell targeting. Overall, exosomes present promising opportunities to understand tumorigenesis and develop more targeted diagnostic and therapeutic strategies by exploiting the natural intercellular communication networks in tumors. In the context of oncology, regulatory therapy provides the possibility of reproducing the original conditions that are unfavorable for the existence of the cancer process and may thus be a feasible alternative to population treatments. We also review current access to the technology enabling regulatory intervention in the cancer process using exosomes.
Collapse
Affiliation(s)
- Teresa Maria Jóźwicka
- Department of Oncology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Patrycja Maria Erdmańska
- Department of Oncology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Agnieszka Stachowicz-Karpińska
- Department of Lung Diseases, Tuberculosis and Sarcoidosis, Kuyavian-Pomeranian Pulmonology Center, 85-326 Bydgoszcz, Poland
| | - Magdalena Olkiewicz
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Tecnologia Química, Marcel·lí Domingo 2, 43007 Tarragona, Spain
| | - Wojciech Jóźwicki
- Department of Oncology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Pathology, Kuyavian-Pomeranian Pulmonology Center, 85-326 Bydgoszcz, Poland
| |
Collapse
|
7
|
Yuriy K, Kusdemir G, Volodymyr P, Tüzün B, Taslimi P, Karatas OF, Anastasia K, Maryna P, Sayın K. A biochemistry-oriented drug design: synthesis, anticancer activity, enzymes inhibition, molecular docking studies of novel 1,2,4-triazole derivatives. J Biomol Struct Dyn 2024; 42:1220-1236. [PMID: 37671856 DOI: 10.1080/07391102.2023.2253906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/28/2023] [Indexed: 09/07/2023]
Abstract
In this study, we researched the reactions of 5-(5-bromofuran-2-yl)-4-methyl-1,2,4-triazole-3-thiol and 5-thiophene-(3-ylmethyl)-4R-1,2,4-triazole-3-thiols with some halogen-containing compounds, a number of new compounds were synthesized (1.1-1.5 and 2.1-2.8). These compounds showed excellent to good inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. For obtaining the effects of these compounds on AChE and BChE enzymes were determined spectrophotometrically according to Ellman. IC50 values of these enzymes were ranging between 1.63 and 17.68 nM for AChE and 8.71 and 84.02 nM for BChE. After, prostate cancer is the second leading cause of cancer-related mortality for men over the age of 65 in developed countries. Current treatment options remain limited in the treatment of advanced-stage prostate cancer leading to biochemical recurrence in almost 40% of the patients. Therefore, there is an urgent need for development of novel therapeutic tools for treatment of prostate cancer patients. In this study, we aimed at analyzing the potential of all compounds against prostate cancer cells. We found that, of the tested compounds, 2.1, 2.2 and 2.3 showed significant cytotoxic activities against PC3 prostate cancer cells, although their effect on the viability of normal prostate cells was limited. These findings suggest their selective targeting potential for prostate cancer cells and offer them as candidate therapeutic agents against prostate cancer. The inhibitory activities of some chemical compounds, such as (1.1-1.5 and 2.1-2.8) were assessed by performing the molecular docking study in the presence of AChE, BChE and prostate cancer protein. MM/GBSA methods are calculated binding free energy. Finally, ADME/T analysis was performed to examine the drug properties of the 13 studied molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karpenko Yuriy
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Gulnur Kusdemir
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Parchenko Volodymyr
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Khilkovets Anastasia
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Parchenko Maryna
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Koray Sayın
- Deparment of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
8
|
Martínez-Santos M, Ybarra M, Oltra M, Muriach M, Romero FJ, Pires ME, Sancho-Pelluz J, Barcia JM. Role of Exosomal miR-205-5p Cargo in Angiogenesis and Cell Migration. Int J Mol Sci 2024; 25:934. [PMID: 38256008 PMCID: PMC10815498 DOI: 10.3390/ijms25020934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Exosomes or small extracellular vesicles (sEVs) represent a pivotal component in intercellular communication, carrying a diverse array of biomolecules. Several factors can affect sEVs release dynamics, as occurs in hyperglycemia or inflammation. In fact, sEVs release has been associated with the promotion of physio-pathological processes. Among the sEVs cargo, microRNAs play an essential role in cell-to-cell regulation. More concretely, miR-205-5p is related to angiogenesis and cell proliferation. The aim of this study is to understand the specific role of sEVs containing miR-205-5p under high glucose conditions. ARPE-19 cells were cultured with high glucose (HG) for 5 days. sEVs were isolated and characterized. sEVs from ARPE-19 were used for angiogenesis and cell proliferation. HG increased sEVs release but downregulated miR-205-5p cargo expression compared to the control. sEVs from HG-treated ARPE-19 cells promoted tube formation and migration processes. In contrast, miR-205-5p overexpression (by mimic transfection) decreased angiogenesis and cell migration. Our results demonstrate how ARPE-19 cells respond to HG challenge by increasing sEVs with weak miR-205-5p cargo. The absence of this miRNA in sEVs is enough to promote angiogenesis. In contrast, restoring sEVs-miR-205-5p levels decreased it. These findings open new possibilities in sEVs-based therapies containing miR-205-5p against angiogenesis.
Collapse
Affiliation(s)
- Miriam Martínez-Santos
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.M.-S.); (M.Y.); (M.E.P.); (J.M.B.)
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Ybarra
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.M.-S.); (M.Y.); (M.E.P.); (J.M.B.)
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - María Oltra
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - María Muriach
- Facultad de Ciencias de la Salud, Universidad Jaime I, Avda. Vicent Sos Baynat, 12006 Castellón de la Plana, Spain;
| | - Francisco J. Romero
- Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Requena, Spain;
| | - Maria E. Pires
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.M.-S.); (M.Y.); (M.E.P.); (J.M.B.)
| | - Javier Sancho-Pelluz
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| | - Jorge M. Barcia
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.M.-S.); (M.Y.); (M.E.P.); (J.M.B.)
- Centro de Investigación Translacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
- Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
9
|
Song Y, Song Q, Hu D, Sun B, Gao M, Liang X, Qu B, Suo L, Yin Z, Wang L. The potential applications of artificially modified exosomes derived from mesenchymal stem cells in tumor therapy. Front Oncol 2024; 13:1299384. [PMID: 38250549 PMCID: PMC10798044 DOI: 10.3389/fonc.2023.1299384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tumor-homing ability and play critical roles in tumor treatment, but their dual influences on tumor progression limit their therapeutic applications. Exosomes derived from MSCs (MSC-exosomes) exhibit great potential in targeted tumor treatment due to their advantages of high stability, low immunogenicity, good biocompatibility, long circulation time and homing characteristics. Furthermore, the artificial modification of MSC-exosomes could amplify their advantages and their inhibitory effect on tumors and could overcome the limit of tumor-promoting effect. In this review, we summarize the latest therapeutic strategies involving artificially modified MSC-exosomes in tumor treatment, including employing these exosomes as nanomaterials to carry noncoding RNAs or their inhibitors and anticancer drugs, and genetic engineering modification of MSC-exosomes. We also discuss the feasibility of utilizing artificially modified MSC-exosomes as an emerging cell-free method for tumor treatment and related challenges.
Collapse
Affiliation(s)
- Yilin Song
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanlin Song
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Daosheng Hu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Binwen Sun
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingwei Gao
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangnan Liang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Boxin Qu
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lida Suo
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Saadh MJ, Alhuthali HM, Gonzales Aníbal O, Asenjo-Alarcón JA, Younus DG, Alhili A, Adhab ZH, Alsalmi O, Gharib AF, Pecho RDC, Akhavan-Sigari R. Mesenchymal stem cells and their extracellular vesicles in urological cancers: Prostate, bladder, and kidney. Cell Biol Int 2024; 48:3-19. [PMID: 37947445 DOI: 10.1002/cbin.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are recognized for their remarkable ability to differentiate into multiple cell types. They are also known to possess properties that can fight cancer, leading to attempts to modify MSCs for use in anticancer treatments. However, MSCs have also been found to participate in pathways that promote tumor growth. Many studies have been conducted to explore the potential of MSCs for clinical applications, but the results have been inconclusive, possibly due to the diverse nature of MSC populations. Furthermore, the conflicting roles of MSCs in inhibiting tumors and promoting tumor growth hinder their adaptation to anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in urological cancers such as bladder, prostate, and renal are not as well established, and data comparing them are still limited. MSCs hold significant promise as a vehicle for delivering anticancer agents and suicide genes to tumors. Presently, numerous studies have concentrated on the products derived from MSCs, such as extracellular vesicles (EVs), as a form of cell-free therapy. This work aimed to review and discuss the current knowledge of MSCs and their EVs in urological cancer therapy.
Collapse
Affiliation(s)
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | | | | | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Ohud Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
11
|
Pooresmaeil F, Andi S, Hasannejad-Asl B, Takamoli S, Bolhassani A. Engineered exosomes: a promising vehicle in cancer therapy. Ther Deliv 2023; 14:775-794. [PMID: 38116620 DOI: 10.4155/tde-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
During the past few decades, researchers have attempted to discover an effective treatment for cancer. Exosomes are natural nanovesicles released by various cells and play a role in communication between cells. While natural exosomes have high clinical potential, their inherent limitations have prompted researchers to design exosomes with improved therapeutic properties. To achieve this purpose, researchers have undertaken exosome engineering to modify the surface properties or internal composition of exosomes. After these modifications, engineered exosomes can be used as carriers for delivery of chemotherapeutic agents, targeted drug delivery or development of cancer vaccines. The present study provides an overview of exosomes, including their biogenesis, biological functions, isolation techniques, engineering methods, and potential applications in cancer therapy.
Collapse
Affiliation(s)
- Farkhondeh Pooresmaeil
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sahar Andi
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
12
|
Guo S, Huang J, Li G, Chen W, Li Z, Lei J. The role of extracellular vesicles in circulating tumor cell-mediated distant metastasis. Mol Cancer 2023; 22:193. [PMID: 38037077 PMCID: PMC10688140 DOI: 10.1186/s12943-023-01909-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
Current research has demonstrated that extracellular vesicles (EVs) and circulating tumor cells (CTCs) are very closely related in the process of distant tumor metastasis. Primary tumors are shed and released into the bloodstream to form CTCs that are referred to as seeds to colonize and grow in soil-like distant target organs, while EVs of tumor and nontumor origin act as fertilizers in the process of tumor metastasis. There is no previous text that provides a comprehensive review of the role of EVs on CTCs during tumor metastasis. In this paper, we reviewed the mechanisms of EVs on CTCs during tumor metastasis, including the ability of EVs to enhance the shedding of CTCs, protect CTCs in circulation and determine the direction of CTC metastasis, thus affecting the distant metastasis of tumors.
Collapse
Affiliation(s)
- Siyin Guo
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
13
|
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Kian Saei A, Sadeghizadeh M. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J Cell Commun Signal 2023:10.1007/s12079-023-00794-3. [PMID: 37973719 DOI: 10.1007/s12079-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell-cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system. Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Elahe Asadollahi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Zhang S, Yahaya BH, Pan Y, Liu Y, Lin J. Menstrual blood-derived endometrial stem cell, a unique and promising alternative in the stem cell-based therapy for chemotherapy-induced premature ovarian insufficiency. Stem Cell Res Ther 2023; 14:327. [PMID: 37957675 PMCID: PMC10644549 DOI: 10.1186/s13287-023-03551-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, , China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, East of JinSui Road, Xinxiang, Henan, China.
| |
Collapse
|
15
|
Lv T, Li Z, Wang D, Guo X, Zhang X, Cao J, Wang Z. Role of exosomes in prostate cancer bone metastasis. Arch Biochem Biophys 2023; 748:109784. [PMID: 37816420 DOI: 10.1016/j.abb.2023.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/12/2023]
Abstract
Bone is a preferred metastatic site of prostate cancer (PCa), and most patients with PCa metastases develop osteogenic bone metastasis, which manifests as disturbed bone structure and poor bone quality. However, the underlying mechanisms of PCa bone metastasis remain unclear. In recent years, increasing evidence has implicated extracellular vesicles, especially exosomes, in PCa bone metastasis. Exosomes are 30-150 nm in diameter, enclosing a cargo of biomolecules, such as DNA, RNA, and proteins. Exosomes play a functional role in intercellular communication, modulate the functions of recipient cells, and potentially modulate bone microenvironment changes, thereby influencing the development of PCa bone metastasis. This review summarizes the involvement of exosomes in the imbalance between bone resorption and formation, and establishing a pre-metastatic niche in bone marrow, as well as potential clinical applications of exosomes in therapeutic strategies for treating patients with advanced PCa with bone metastasis.
Collapse
Affiliation(s)
- Tingting Lv
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Zijie Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Dehua Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Xiaojin Guo
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Xiaokuan Zhang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Jing Cao
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, PR China.
| |
Collapse
|
16
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Zhou Y, Dong Y, Zhang A, Wu J, Sun Q. The role of mesenchymal stem cells derived exosomes as a novel nanobiotechnology target in the diagnosis and treatment of cancer. Front Bioeng Biotechnol 2023; 11:1214190. [PMID: 37662434 PMCID: PMC10470003 DOI: 10.3389/fbioe.2023.1214190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), one of the most common types of stem cells, are involved in the modulation of the tumor microenvironment (TME). With the advancement of nanotechnology, exosomes, especially exosomes secreted by MSCs, have been found to play an important role in the initiation and development of tumors. In recent years, nanobiotechnology and bioengineering technology have been gradually developed to detect and identify exosomes for diagnosis and modify exosomes for tumor treatment. Several novel therapeutic strategies bioengineer exosomes to carry drugs, proteins, and RNAs, and further deliver their encapsulated cargoes to cancer cells through the properties of exosomes. The unique properties of exosomes in cancer treatment include targeting, low immunogenicity, flexibility in modification, and high biological barrier permeability. Nevertheless, the current comprehensive understanding of the roles of MSCs and their secreted exosomes in cancer development remain inadequate. It is necessary to better understand/update the mechanism of action of MSCs-secreted exosomes in cancer development, providing insights for better modification of exosomes through bioengineering technology and nanobiotechnology. Therefore, this review focuses on the role of MSCs-secreted exosomes and bioengineered exosomes in the development, progression, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuqing Dong
- China Medical University and Department of Pathology, Shenyang, China
| | - Aixue Zhang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Chen M, Xia Z, Deng J. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles carrying miR-655-3p inhibit the development of esophageal cancer by regulating the expression of HIF-1α via a LMO4/HDAC2-dependent mechanism. Cell Biol Toxicol 2023; 39:1319-1339. [PMID: 36222945 DOI: 10.1007/s10565-022-09759-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/26/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study clarified the function of human umbilical cord mesenchymal stem cell (hUCMSC)-derived extracellular vesicle (EV)-enclosed miR-655-3p in esophageal squamous cell carcinoma (ESCC). METHODS A Chi-square test and the Kaplan-Meier estimator were used to analyze the prognosis of ESCC in relation to the expression of miR-655-3p. ESCC cells were incubated with PBS or hUCMSC-derived EVs (hUCMSC-EVs) in the conditions of gene modification, after which the malignant behaviors of ESCC cells were assessed and the molecular interactions were determined. The effect of hUCMSC-derived EV-miR-655-3p was also investigated in a nude mouse model of ESCC. RESULTS Low expression of miR-655-3p indicated poor prognosis of ESCC. hUCMSC-EVs suppressed the malignant behaviors of ESCC cells and the growth and liver metastasis of transplanted tumors. Inhibition of miR-655-3p in hUCMSCs impaired the therapeutic effect of hUCMSC-EVs. LMO4, targeted by miR-655-3p, activated the transcription of HIF-1α by sequestering HDAC2 from HIF-1α promoter. Knockdown of LMO4 suppressed ESCC cell activities, while overexpression of HIF-1α counteracted the tumor suppressive effect of LMO4 knockdown. CONCLUSION miR-655-3p enclosed in hUCMSC-derived EVs inhibits ESCC progression partially by inactivating HIF-1α via the LMO4/HDAC2 axis.
Collapse
Affiliation(s)
- Mingjiu Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Jie Deng
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
19
|
Mao Y, Zhang M, Wang L, Lu Y, Hu X, Chen Z. Role of microRNA carried by small extracellular vesicles in urological tumors. Front Cell Dev Biol 2023; 11:1192937. [PMID: 37333986 PMCID: PMC10272383 DOI: 10.3389/fcell.2023.1192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.
Collapse
Affiliation(s)
- Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
20
|
Zhao X, Xu M, Hu X, Ding X, Zhang X, Xu L, Li L, Sun X, Song J. Human bone marrow-derived mesenchymal stem overexpressing microRNA-124-3p inhibit DLBCL progression by downregulating the NFATc1/cMYC pathway. Stem Cell Res Ther 2023; 14:148. [PMID: 37248542 DOI: 10.1186/s13287-023-03373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Exosomes play important roles in intercellular communication by delivering microRNAs (miRNAs) that mediate tumor initiation and development, including those in diffuse large B cell lymphoma (DLBCL). To date, however, limited studies on the inhibitory effect of exosomes derived from human bone marrow mesenchymal stem cells (hBMSCs) on DLBCL progression have been reported. Therefore, this study aimed to investigate the role of hBMSC exosomes carrying microRNA-124-3p in the development of DLBCL. METHODS Microarray-based expression analysis was adopted to identify differentially expressed genes and regulatory miRNAs, which revealed the candidate NFATc1. Next, the binding affinity between miR-124-3p and NFATc1 was detected by luciferase activity assays. The mechanism underlying NFATc1 regulation was investigated using lentiviral transfections. Subsequently, DLBCL cells were cocultured with exosomes derived from hBMSCs transfected with a miR-124-3p mimic or control. Proliferation and apoptosis were measured in vitro. Finally, the effects of hBMSC-miR-124-3p on tumor growth were investigated in vivo. RESULTS MiR-124-3p was expressed at low levels, while NFATc1 was highly expressed in DLBCL cells. MiR-124-3p specifically targeted and negatively regulated the expression of NFATc1 in DLBCL cells, upregulated miR-124-3p-inhibited DLBCL cell proliferation and promoted apoptosis. The miR-124-3p derived from hBMSCs inhibits tumor growth both in vivo and in vitro via downregulation of the NFATc1/cMYC pathway. CONCLUSION Human bone marrow-derived mesenchymal stem cell overexpressing microRNA-124-3p represses the development of DLBCL through the downregulation of NFATc1.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Dermatology, Dalian Dermatosis Hospital, Dalian, 116021, Liaoning, People's Republic of China
- Graduate School of China Medical University, Shenyang, People's Republic of China
| | - Mingxi Xu
- Rheumatology Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Xuemeng Hu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Xiaolei Ding
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Xian Zhang
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Liye Xu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China.
| | - Xiuhua Sun
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China.
| | - Jincheng Song
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China.
| |
Collapse
|
21
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Heydari Z, Peshkova M, Gonen ZB, Coretchi I, Eken A, Yay AH, Dogan ME, Gokce N, Akalin H, Kosheleva N, Galea-Abdusa D, Ulinici M, Vorojbit V, Shpichka A, Groppa S, Vosough M, Todiras M, Butnaru D, Ozkul Y, Timashev P. EVs vs. EVs: MSCs and Tregs as a source of invisible possibilities. J Mol Med (Berl) 2023; 101:51-63. [PMID: 36527475 PMCID: PMC9759062 DOI: 10.1007/s00109-022-02276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are produced by various cells and exist in most biological fluids. They play an important role in cell-cell signaling, immune response, and tumor metastasis, and also have theranostic potential. They deliver many functional biomolecules, including DNA, microRNAs (miRNA), messenger RNA (mRNA), long non-coding RNA (lncRNA), lipids, and proteins, thus affecting different physiological processes in target cells. Decreased immunogenicity compared to liposomes or viral vectors and the ability to cross through physiological barriers such as the blood-brain barrier make them an attractive and innovative option as diagnostic biomarkers and therapeutic carriers. Here, we highlighted two types of cells that can produce functional EVs, namely, mesenchymal stem/stromal cells (MSCs) and regulatory T cells (Tregs), discussing MSC/Treg-derived EV-based therapies for some specific diseases including acute respiratory distress syndrome (ARDS), autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Zahra Heydari
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | | | - Ianos Coretchi
- Department of Pharmacology and Clinical Pharmacology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ahmet Eken
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Medical Biology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Arzu Hanım Yay
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Histology and Embryology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Muhammet Ensar Dogan
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Nuriye Gokce
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Hilal Akalin
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Daniela Galea-Abdusa
- Genetics Laboratory, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Mariana Ulinici
- Department of Microbiology and Immunology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Valentina Vorojbit
- Department of Microbiology and Immunology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Stanislav Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| | - Mihail Todiras
- Drug Research Center, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Yusuf Ozkul
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey. .,Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
23
|
Salehpour A, Balmagambetova S, Mussin N, Kaliyev A, Rahmanifar F. Mesenchymal stromal/stem cell-derived exosomes and genitourinary cancers: A mini review. Front Cell Dev Biol 2023; 10:1115786. [PMID: 36684446 PMCID: PMC9845763 DOI: 10.3389/fcell.2022.1115786] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stromal/stem cell- (MSC-) derived exosomes are gaining popularity for their involvement in tissue repair and repressing various tumors through extensive patterns. Nevertheless, the impact of extracellular vesicles produced by stem cells on tumor formation and progression is controversial and seems to depend on several factors. The utilization of MSCs' various capabilities in urogenital neoplasms is widely regarded as a potential future therapeutic as well. These genitourinary neoplasms include prostatic neoplasms, ovarian neoplasms, cervical neoplasms, endometrial neoplasms, bladder neoplasms, and renal cell neoplasms. The present study has concentrated on the most recent information on genitourinary neoplasms employing MSCs derived exosomes' many capabilities, such as delivering effective RNAs, extensive tissue compatibility, and specificity with tumor identification without inherent limitations of cell therapy.
Collapse
Affiliation(s)
| | - Saule Balmagambetova
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Nadiar Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
24
|
Wu S, Mu C, Sun JJ, Hu XR, Yao YH. Role of Exosomal Non-Coding RNA in the Tumour Microenvironment of Genitourinary System Tumours. Technol Cancer Res Treat 2023; 22:15330338231198348. [PMID: 37981789 PMCID: PMC10664451 DOI: 10.1177/15330338231198348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 11/21/2023] Open
Abstract
In recent years, genitourinary system tumors are common in people of all ages, seriously affecting the quality of life of patients, the pathogenesis and treatment of these diseases are constantly being updated and improved. Exosomes, with a lipid bilayer that enable delivery of their contents into body fluids or other cells. Exosomes can regulate the tumor microenvironment, and play an important role in tumor development. In turn, cellular and non-cellular components of tumor microenvironment also affect the occurrence, progression, invasion and metastasis of tumor. Non-coding RNAs have been shown to be able to be ingested and released by exosomes, and are seen as a potential tool in cancer diagnosis and treatment. Here, we summarize the effect of non-coding RNAs of exosome contents on the tumor microenvironment of genitourinary system tumor, expound the significance of non-coding RNAs of exosome in the occurrence, development, diagnosis and treatment of cancers.
Collapse
Affiliation(s)
- Shuang Wu
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chao Mu
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jia-jia Sun
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xin-rong Hu
- Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yun-hong Yao
- Professor in Basic Medical College, Department of Pathology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
25
|
Liu SC, Cao YH, Chen LB, Kang R, Huang ZX, Lu XS. BMSC-derived exosomal lncRNA PTENP1 suppresses the malignant phenotypes of bladder cancer by upregulating SCARA5 expression. Cancer Biol Ther 2022; 23:1-13. [PMID: 35998226 PMCID: PMC9415615 DOI: 10.1080/15384047.2022.2102360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
LncRNAs can be transported to tumor cells where they exert regulatory effects by bone marrow mesenchymal stem cells (BMSC)-derived exosomes. Here, we aimed to investigate the functional mechanism of BMSC-derived exosomal lncRNA PTENP1 in the progression of bladder cancer (BC). Methods of BMSC were identified by detecting surface markers through flow cytometry. Exosomes from BMSC were identified by transmission electron microscopy, nanoparticle tracking analysis (NTA), and western blot analysis of exosome markers. Cellular internalization of BMSC-derived exosomes (BMSC-Exo) into BC cells was detected by confocal microscopy. CCK-8, colony formation, flow cytometry, wound healing, and transwell assays were adopted to estimate cell proliferation, apoptosis, migration, and invasion abilities, respectively. Interplay between miR-17 and lncRNA PTENP1 or SCARA5 was verified by dual-luciferase reporter, RNA pull down, and/or RNA immunoprecipitation (RIP) assays. Tumor xenograft assay was conducted in nude mice to study the role of exosomal lncRNA PTENP1 in BC progression in vivo. We showed exosomal lncRNA PTENP1 can be delivered into and suppress the malignant phenotypes of BC cells. LncRNA PTENP1 was identified as a sponge of miR-17, and SCARA5 was identified as a target gene of miR-17. The exosomes derived from PTENP1-overexpressing BMSC (BMSCOE-PTENP1-Exo) abolished the promotive effects of miR-17 overexpression or SCARA5 knockdown on the malignant phenotypes of BC cells. Moreover, exosomal lncRNA PTENP1 was demonstrated to inhibit BC tumor growth in nude mice by miR-17/SCARA5 axis. In conclusion, BMSC-derived exosomal PTENP1 suppressed the BC progression by upregulating the expression of SCARA5 via sponging miR-17, offering a potential novel therapeutic target for BC therapy.
Collapse
Affiliation(s)
- Shu-Cheng Liu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - You-Han Cao
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Li-Bo Chen
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Ran Kang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhong-Xin Huang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xin-Sheng Lu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
26
|
Correction: Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPN2. J Exp Clin Cancer Res 2022; 41:206. [PMID: 35717208 PMCID: PMC9206288 DOI: 10.1186/s13046-022-02417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Dalmizrak A, Dalmizrak O. Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer. Front Bioeng Biotechnol 2022; 10:956563. [PMID: 36225602 PMCID: PMC9548561 DOI: 10.3389/fbioe.2022.956563] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although ongoing medical research is working to find a cure for a variety of cancers, it continues to be one of the major causes of death worldwide. Chemotherapy and immunotherapy, as well as surgical intervention and radiation therapy, are critical components of cancer treatment. Most anti-cancer drugs are given systemically and distribute not just to tumor tissues but also to normal tissues, where they may cause side effects. Furthermore, because anti-cancer drugs have a low delivery efficiency, some tumors do not respond to them. As a result, tumor-targeted drug delivery is critical for improving the safety and efficacy of anti-cancer treatment. Exosomes are microscopic extracellular vesicles that cells produce to communicate with one another. MicroRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids are among the therapeutic cargos found in exosomes. Recently, several studies have focused on miRNAs as a potential therapeutic element for the treatment of cancer. Mesenchymal stem cells (MSC) have been known to have angiogenic, anti-apoptotic, anti-inflammatory and immunomodulatory effects. Exosomes derived from MSCs are gaining popularity as a non-cellular alternative to MSC-based therapy, as this method avoids unwanted lineage differentiation. Therefore more research have focused on transferring miRNAs to mesenchymal stem cells (MSC) and targeting miRNA-loaded exosomes to cancer cells. Here, we initially gave an overview of the characteristics and potentials of MSC as well as the use of MSC-derived exosomes in cancer therapy. Finally, we emphasized the utilization of MSC-derived exosomes for miRNA delivery in the treatment of cancer.
Collapse
Affiliation(s)
- Aysegul Dalmizrak
- Department of Medical Biology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Mersin, Turkey
- *Correspondence: Ozlem Dalmizrak,
| |
Collapse
|
28
|
Ding Y, Luo Q, Que H, Wang N, Gong P, Gu J. Mesenchymal Stem Cell-Derived Exosomes: A Promising Therapeutic Agent for the Treatment of Liver Diseases. Int J Mol Sci 2022; 23:ijms231810972. [PMID: 36142881 PMCID: PMC9502508 DOI: 10.3390/ijms231810972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Liver disease has become a major global health and economic burden due to its broad spectrum of diseases, multiple causes and difficult treatment. Most liver diseases progress to end-stage liver disease, which has a large amount of matrix deposition that makes it difficult for the liver and hepatocytes to regenerate. Liver transplantation is the only treatment for end-stage liver disease, but the shortage of suitable organs, expensive treatment costs and surgical complications greatly reduce patient survival rates. Therefore, there is an urgent need for an effective treatment modality. Cell-free therapy has become a research hotspot in the field of regenerative medicine. Mesenchymal stem cell (MSC)-derived exosomes have regulatory properties and transport functional "cargo" through physiological barriers to target cells to exert communication and regulatory activities. These exosomes also have little tumorigenic risk. MSC-derived exosomes promote hepatocyte proliferation and repair damaged liver tissue by participating in intercellular communication and regulating signal transduction, which supports their promise as a new strategy for the treatment of liver diseases. This paper reviews the physiological functions of exosomes and highlights the physiological changes and alterations in signaling pathways related to MSC-derived exosomes for the treatment of liver diseases in some relevant clinical studies. We also summarize the advantages of exosomes as drug delivery vehicles and discuss the challenges of exosome treatment of liver diseases in the future.
Collapse
Affiliation(s)
| | | | | | | | - Puyang Gong
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| | - Jian Gu
- Correspondence: (P.G.); (J.G.); Tel.: +86-28-85656463 (J.G.)
| |
Collapse
|
29
|
Rahimi Tesiye M, Abrishami Kia Z, Rajabi-Maham H. Mesenchymal stem cells and prostate cancer: A concise review of therapeutic potentials and biological aspects. Stem Cell Res 2022; 63:102864. [PMID: 35878578 DOI: 10.1016/j.scr.2022.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Prostate cancer (PCa) arises from a cancer stem or progenitor cell with homogenous characteristics, especially among the aging men population. Over the past decade, the increasing PCa incidence has led to significant changes in both disease diagnosis and treatment. Recently, the therapeutic aspects of stem cells in many cancers, including PCa, have been debatable. The new generation of PCa studies seek to present definitive treatments with reduced therapeutic side effects. Since discovering unique properties of stem cells in modulating immunity, selective migration to inflammatory regions, and secretion of various growth factors, they have been a promising therapeutic target. The existing properties of stem cell therapy bring new opportunities for cancer inhibition: transferring chemotherapeutics, activating prodrugs, affecting the expression of genes involved in cancer, genetically modifying the production of anti-cancer compounds, proteins, and/or deriving extracellular vesicles (EVs) containing therapeutic agents from stem cells. However, their dual properties in carcinogenicity as well as their ability to inhibit cancer result in particular limitations studying them after administration. A clear understanding of the interaction between MSCs and the prostate cancer microenvironment will provide crucial information in revealing the precise applications and new practical protocols for clinical use of these cells..
Collapse
Affiliation(s)
- Maryam Rahimi Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Abrishami Kia
- Faculty of Physical Education and Sport Sciences, University of Mazandaran, Babolsar, Iran.
| | - Hassan Rajabi-Maham
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
30
|
Huang Y, Kanada M, Ye J, Deng Y, He Q, Lei Z, Chen Y, Li Y, Qin P, Zhang J, Wei J. Exosome-mediated remodeling of the tumor microenvironment: From local to distant intercellular communication. Cancer Lett 2022; 543:215796. [PMID: 35728740 DOI: 10.1016/j.canlet.2022.215796] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are membrane-enveloped nanoscale particles that carry various bioactive signaling molecules secreted by cells. Their biological roles depend on the original cell type from which they are derived and their inclusions. Exosomes, a class of EVs, are released by almost all eukaryotic cell types, including tumor cells. Tumor cell-derived exosomes mediate signal transduction between tumor cells and surrounding non-tumor cells. This intercellular communication actively contributes to the remodeling of the tumor microenvironment (TME) to enable tumor growth, invasion, and metastasis. This review summarizes the latest progress in the exploration of exosome-mediated cell-cell communication implicated in TME remodeling and underlying mechanisms. We focus on the role of cell-cell interactions mediated by tumor cell-derived exosomes in promoting invasion and metastasis, and their potential as a therapeutic intervention target against distant metastasis. We also discuss the clinical translational significance of tumor-derived exosomes for early diagnosis, efficacy and progression evaluations.
Collapse
Affiliation(s)
- Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Masamitsu Kanada
- Department of Pharmacology & Toxicology, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, 48824, USA
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, China.
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, China.
| |
Collapse
|
31
|
Yang S, Wang L, Gu L, Wang Z, Wang Y, Wang J, Zhang Y. Mesenchymal stem cell-derived extracellular vesicles alleviate cervical cancer by delivering miR-331-3p to reduce LIMS2 methylation in tumor cells. Hum Mol Genet 2022; 31:3829-3845. [PMID: 35708510 DOI: 10.1093/hmg/ddac130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
This study is to investigate if extracellular vesicles (EVs) from bone marrow mesenchymal stem cells (BMSCs) deliver miR-331-3p to regulate LIMS2 methylation in cervical cancer cells. Cervical cancer cells were incubated with EVs from BMSCs with altered expression of miR-331-3p, DNMT3A or/and LIMS2 and then subjected to EdU, Transwell, flow cytometry and Western blotting analyses. Dual-luciferase reporter assay was conducted to verify the binding between miR-331-3p and DNMT3A. A xenograft model was established to evaluate the effect of BMSC-derived EV-miR-331-3p on cervical tumor growth. miR-331-3p was lowly and DNMT3A was highly expressed in cervical cancer. BMSC-derived EVs delivered miR-331-3p to control the behaviors of cervical cancer cells. miR-331-3p inhibited the expression of DNMT3A by binding DNMT3A mRNA. DNMT3A promoted LIMS2 methylation and reduced the expression of LIMS2. Overexpression of DNMT3A or silencing of LIMS2 in BMSCs counteracted the tumor suppressive effects of miR-331-3p. BMSC-derived EV-miR-331-3p also inhibited the growth of cervical tumors in vivo. BMSC-derived EVs alleviate cervical cancer partially by delivering miR-331-3p to reduce DNMT3A-dependent LIMS2 methylation in tumor cells.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Le Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Lina Gu
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Zhao Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Yuan Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Jianan Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| | - Yunyan Zhang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, P. R. China
| |
Collapse
|
32
|
Zhang Y, Liu Q, Zhang X, Huang H, Tang S, Chai Y, Xu Z, Li M, Chen X, Liu J, Yang C. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnology 2022; 20:279. [PMID: 35701788 PMCID: PMC9194774 DOI: 10.1186/s12951-022-01472-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading public health problem worldwide. Its treatment remains a daunting challenge, although significant progress has been made in existing treatments in recent years. A large concern is the poor therapeutic effect due to lack of specificity and low bioavailability. Gene therapy has recently emerged as a powerful tool for cancer therapy. However, delivery methods limit its therapeutic effects. Exosomes, a subset of extracellular vesicles secreted by most cells, have the characteristics of good biocompatibility, low toxicity and immunogenicity, and great designability. In the past decades, as therapeutic carriers and diagnostic markers, they have caught extensive attention. This review introduced the characteristics of exosomes, and focused on their applications as delivery carriers in DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), circular RNA (circRNA) and other nucleic acids. Meanwhile, their application in cancer therapy and exosome-based clinical trials were presented and discussed. Through systematic summarization and analysis, the recent advances and current challenges of exosome-mediated nucleic acid delivery for cancer therapy are introduced, which will provide a theoretical basis for the development of nucleic acid drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Central Laboratory of Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yujuan Chai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Meirong Li
- Central Laboratory of Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jia Liu
- Central Laboratory of Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
33
|
A Comprehensive Cancer-Associated MicroRNA Expression Profiling and Proteomic Analysis of Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes. Tissue Eng Regen Med 2022; 19:1013-1031. [PMID: 35511336 PMCID: PMC9478013 DOI: 10.1007/s13770-022-00450-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The mesenchymal stem cells (MSCs) have enormous therapeutic potential owing to their multi-lineage differentiation and self-renewal properties. MSCs express growth factors, cytokines, chemokines, and non-coding regulatory RNAs with immunosuppressive, anti-tumor, and migratory properties. MSCs also release several anti-cancer molecules via extracellular vesicles, that act as pro-apoptotic/tumor suppressor factors. This study aimed to identify the stem cell-derived secretome that could exhibit anti-cancer properties through molecular profiling of cargos in MSC-derived exosomes.
Methods: Human umbilical cord mesenchymal stem cells (hUCMSCs) were isolated from umbilical cord tissues and culture expanded. Subsequently, exosomes were isolated from hUCMSC conditioned medium and characterized by DLS, electron microscopy. Western blot for exosome surface marker protein CD63 expression was performed. The miRNA profiling of hUCMSCs and hUCMSC-derived exosomes was performed, followed by functional enrichment analysis. Results: The tri-lineage differentiation potential, fibroblastic morphology, and strong expression of pluripotency genes indicated that isolated fibroblasts are MSCs. The isolated extracellular vesicles were 133.8 ± 42.49 nm in diameter, monodispersed, and strongly expressed the exosome surface marker protein CD63. The miRNA expression profile and gene ontology (GO) depicted the differential expression patterns of high and less-expressed miRNAs that are crucial to be involved in the regulation of apoptosis. The LCMS/MS data and GO analysis indicate that hUCMSC secretomes are involved in several oncogenic and inflammatory signaling cascades. Conclusion: Primary human MSCs released miRNAs and growth factors via exosomes that are increasingly implicated in intercellular communications, and hUCMSC-exosomal miRNAs have a critical influence in regulating cell death and apoptosis of cancer cells. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13770-022-00450-8.
Collapse
|
34
|
Mesenchymal Stem Cells and their Derived Exosomes Promote Malignant Phenotype of Polyploid Non-Small-Cell Lung Cancer Cells through AMPK Signaling Pathway. Anal Cell Pathol 2022; 2022:8708202. [PMID: 35419253 PMCID: PMC9001126 DOI: 10.1155/2022/8708202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is an important method for the treatment of non-small-cell lung cancer (NSCLC), but it can lead to side effects and polyploid cancer cells. The polyploid cancer cells can live and generate daughter cancer cells via budding. Mesenchymal stem cells (MSCs) are pluripotent stem cells with repair and regeneration functions and can resist tissue damage caused by tumor therapy. This study is aimed at investigating the effects of MSCs and their derived exosomes on the biological characteristics of polyploid NSCLC cells and the potential mechanisms. We found that MSC conditioned medium (CM), MSCs, and MSC-exosomes had no effect on cell proliferation of the polyploid A549 and H1299 cells. Compared with the control group, MSCs and MSC-exosomes significantly promoted epithelial mesenchymal transformation, cell migration, antiapoptosis, and autophagy in the polyploid A549 and H1299 by activating AMPK signaling pathway, but no significant changes were observed in MSC-CM treatment. These results revealed that MSCs and MSC-exosomes promoted malignant phenotype of polyploid NSCLC cells through the AMPK signaling pathway.
Collapse
|
35
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles: Pleiotropic Impacts on Breast Cancer Occurrence, Development, and Therapy. Int J Mol Sci 2022; 23:ijms23062927. [PMID: 35328347 PMCID: PMC8954385 DOI: 10.3390/ijms23062927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 01/27/2023] Open
Abstract
Breast cancer (BC) is one of the most devastating cancers, with high morbidity and mortality, among the female population worldwide. In BC, mesenchymal stem cells (MSCs), as pluripotent stromal stem cells, play a significant role in TME formation and tumor progression. Recently, an increasing number of studies have demonstrated that extracellular vesicles (EVs) are essential for the crosstalk between MSCs and BC cells. MSC-derived EVs (MSC-EVs) can deliver a diversity of molecules, including lipids, proteins, and nucleic acids, etc., to target cells, and produce corresponding effects. Studies have demonstrated that MSC-EVs exert both inhibitory and promotive effects in different situations and different stages of BC. Meanwhile, MSC-EVs provide novel therapeutic options for BC, such as EVs as carriers for drug delivery. Therefore, in this review, we summarize the role of MSC-EVs in BC progression and application in clinical treatment, in the hope of providing a basis for further research.
Collapse
|
36
|
NEAT1 in bone marrow mesenchymal stem cell-derived extracellular vesicles promotes melanoma by inducing M2 macrophage polarization. Cancer Gene Ther 2022; 29:1228-1239. [PMID: 35115683 DOI: 10.1038/s41417-021-00392-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/23/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles (EVs) reportedly play an important role in melanoma pathogenesis. This study aimed to explore the mechanisms of EVs-carried long non-coding RNA (lncRNA) NEAT1 involvement in melanoma. Gain- and loss-of-function experiments were performed to determine biological characteristics of A-375 melanoma cells. Bioinfomatic prediction, RNA immunoprecipitation (RIP), and dual luciferase reporter gene experiments were applied to investigate the roles of NEAT1 and microRNA-374a-5p (miR-374a-5p), and leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4). A subcutaneous tumor model was constructed using nude mice, and in vivo fluorescence imaging was used to observe the effect of NEAT1 on the growth and metastasis of melanoma cells in vivo. The results indicated that BMSC-EVs could be internalized by macrophages to promote the expression of macrophages M2 markers. M2 type macrophages promoted malignancy of melanoma cells. NEAT1 derived from BMSC-EVs promoted the progression of melanoma by promoting M2 polarization of macrophages. NEAT1 inhibits miR-374 expression, while miR-374 could upregulate LGR4-dependent IQGAP1 expression. The tumor-inhibiting effect of NEAT1 silencing was validated in the nude mouse xenograft model. Collectively, the results demonstrated that BMSC-EVs carrying NEAT1 can promote the progression of melanoma by inducing M2 polarization of macrophages, and thus may be considered as a potential target for melanoma therapeutics.
Collapse
|
37
|
Jiang S, Chen H, He K, Wang J. Human bone marrow mesenchymal stem cells-derived exosomes attenuated prostate cancer progression via the miR-99b-5p/IGF1R axis. Bioengineered 2022; 13:2004-2016. [PMID: 35030978 PMCID: PMC8973722 DOI: 10.1080/21655979.2021.2009416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-99b-5p (miR-99b-5p) has been shown to be enriched in serum exosomes of prostate cancer (PCa) patients treated with radiotherapy, while its function in PCa progression remains unclear. The expression levels of miR-99b-5p in PCa tissues, cancer cell lines and human bone marrow mesenchymal stem cells (HBMSCs), as well as HBMSCs-derived exosomes were assessed by quantitative real-time PCR (qRT-PCR). MiR-99b-5p mimics or inhibitor was transfected into HBMSCs, and HBMSCs-derived exosomes with abnormal expression of miR-99b-5p were used to stimulate PCa cell-line LNCaP cells. Cell proliferative rate was evaluated using Cell Counting Kit-8 (CCK-8) and 5‐ethynyl‐2′‐deoxyuridine (EdU) staining assays. Cell migration and invasion were analyzed by Transwell assay. The epithelial-mesenchymal transition (EMT) was evaluated by detecting EMT-related markers using Western blot analysis. The animal model was constructed to confirm the function of miR-99b-5p in vivo. The expression levels of MiR-99b-5p were decreased in PCa tissues and cell lines, while elevated in HBMSCs-derived exosomes. HBMSCs-derived exosomes significantly inhibited cell malignant phenotypes of PCa cells, and miR-99b-5p mimics transfected HBMSCs further enhanced the inhibitory effects of HBMSCs on PCa progression. In addition, miR-99b-5p inhibitor transfected HBMSCs-derived exosomes promoted the progression of PCa in vitro. Insulin-like growth factor 1 receptor (IGF1R) was identified as a downstream target of miR-99b-5p. Moreover, miR-99b-5p mimics transfected HBMSCs obviously inhibited tumor progression by downregulating IGF1R in animal model in vivo. Our results demonstrated that HBMSCs could attenuate PCa progression, and exosomal miR-99b-5p and IGF1R participated in the regulatory process, contributing to our understanding of the pathogenic mechanism of PCa.
Collapse
Affiliation(s)
- Shichun Jiang
- Department of Urology, Mianyang Central Hospital, Mianyang City, Sichuan Province, PR. China
| | - Haiyu Chen
- Department of Surgery, Haikou Hospital of Traditional Chinese Medicine, Haikou City, Hainan Province, PR. China
| | - Kai He
- Department of Urology, Mianyang Central Hospital, Mianyang City, Sichuan Province, PR. China
| | - Juan Wang
- Department of Surgery, Haikou Hospital of Traditional Chinese Medicine, Haikou City, Hainan Province, PR. China
| |
Collapse
|
38
|
Yassine S, Alaaeddine N. Mesenchymal Stem Cell Exosomes and Cancer: Controversies and Prospects. Adv Biol (Weinh) 2021; 6:e2101050. [PMID: 34939371 DOI: 10.1002/adbi.202101050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have displayed a novel therapeutic strategy for a wide range of diseases and conditions. Their secretome and exosome-based paracrine activity are considered as the main processes harboring their diverse therapeutic properties. Several investigations have examined the effects of MSC-derived exosomes on cancer growth, yet, controversial results have always emerged. Although MSC-derived exosomes are able to rigorously enforce the repression of cancer proliferation and progression, it is shown that MSCs exosomal activity displays numerous protumorigenic effects. This discrepancy over the dual effects of MSCs on cancer growth may be mediated by many factors including experimental design, stem cells origins, culture conditions, in addition to cancer-MSCs cross-talks. Despite the controversial effects of MSCs on carcinogenesis, scientists are able to overcome a number of obstacles by modifying MSCs to deliver antioncogenic miRNAs, anticancer drugs, and oncolytic viruses into tumor sites. This review discusses the controversial effects of MSC-derived exosomes on tumorigenesis, investigates the main causes that underlie this discrepancy, summarizes the pattern of engineered-MSCs, and finally highlights how future studies should advance the research in the field of MSCs-based cancer therapies in order to accelerate the transition from preclinical studies to clinical practice.
Collapse
Affiliation(s)
- Sirine Yassine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, 1100, Lebanon
| | - Nada Alaaeddine
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, 1100, Lebanon
| |
Collapse
|
39
|
Phetfong J, Tawonsawatruk T, Kamprom W, Ontong P, Tanyong D, Borwornpinyo S, Supokawej A. Bone marrow-mesenchymal stem cell-derived extracellular vesicles affect proliferation and apoptosis of leukemia cells in vitro. FEBS Open Bio 2021; 12:470-479. [PMID: 34907674 PMCID: PMC8804606 DOI: 10.1002/2211-5463.13352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been proposed to have potential for tissue engineering and cell therapy due to their multilineage differentiation potential and ability to secrete numerous paracrine factors, including extracellular vesicles (EVs). Increasing evidence has demonstrated that MSC‐derived EVs (MSC‐EVs) are able to induce the repair of tissue damage and regulate the immune system. However, their role in cancer development is still unclear. Reports have suggested that whether MSC‐EVs have an inhibitory or promoting effect on cancer is dependent on the type of cancer. In this study, the role of MSC‐EVs in the regulation of leukemic cell growth in vitro was investigated. The EVs were collected from conditioned media of MSCs by ultrafiltration using a 10 kDa molecular weight cutoff (MWCO) filter. The isolated MSC‐EVs were comprised of microvesicles and exosomes, as examined by the size of vesicles and exosomal proteins, CD81 and flotillin‐1. Cell proliferation, cell cycle status, apoptosis, and gene expression were examined in the leukemic cell lines NB4 and K562 after treatment with MSC‐EVs. Suppression of cell proliferation and induction of apoptosis was observed. Gene expression analysis revealed differential expression of apoptotic‐related genes in NB4 and K562. MSC‐EVs increased the expression of BID and BAX and decreased expression of BCL2, indicating the induction of intrinsic apoptosis in NB4. In contrast, MSC‐EVs increased the expression of the death receptor gene TRAILR2 and cell cycle regulator genes P21 and CCNE2 in K562. In conclusion, MSC‐EVs partially induce leukemic cell apoptosis, and thus may have potential for the development of supportive therapies for leukemia.
Collapse
Affiliation(s)
- Jitrada Phetfong
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Witchayapon Kamprom
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Pawared Ontong
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
40
|
Gu WJ, Shen YW, Zhang LJ, Zhang H, Nagle DG, Luan X, Liu SH. The multifaceted involvement of exosomes in tumor progression: Induction and inhibition. MedComm (Beijing) 2021; 2:297-314. [PMID: 34766148 PMCID: PMC8554660 DOI: 10.1002/mco2.49] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
As key performers in intercellular communication, exosomes released by tumor cells play an important role in cancer development, including angiogenesis, cancer‐associated fibroblasts activation, epithelial‐mesenchymal transformation (EMT), immune escape, and pre‐metastatic niche formation. Meanwhile, other cells in tumor microenvironment (TME) can secrete exosomes and facilitate tumor progression. Elucidating mechanisms regarding these processes may offer perspectives for exosome‐based antitumor strategies. In this review, we mainly introduce the versatile roles of tumor or stromal cell derived exosomes in cancer development, with a particular focus on the biological capabilities and functionalities of their diverse contents, such as miRNAs, lncRNAs, and circRNAs. The potential clinical application of exosomes as biomarkers in cancer diagnosis and prognosis is also discussed. Finally, the current antitumor strategies based on exosomes in immunotherapy and targeted delivery for chemotherapeutic or biological agents are summarized.
Collapse
Affiliation(s)
- Wen-Jie Gu
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Yi-Wen Shen
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences School of Pharmacy University of Mississippi University Mississippi USA
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - San-Hong Liu
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| |
Collapse
|
41
|
Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
|
42
|
Luo T, von der Ohe J, Hass R. MSC-Derived Extracellular Vesicles in Tumors and Therapy. Cancers (Basel) 2021; 13:cancers13205212. [PMID: 34680359 PMCID: PMC8533755 DOI: 10.3390/cancers13205212] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Therapeutic functions of mesenchymal stroma-/stem-like cells (MSCs) are mediated predominantly through paracrine effects by the release of various different components. Upon recruitment of MSCs to damaged tissue sites or tumors, several bioactive molecules and organelles that are secreted by MSCs among others are cytokines, chemokines, metabolites, and extracellular vesicles including exosomes. The MSC-mediated cargo of released exosomes contains specific proteins and nucleic acids with varying regulatory microRNAs according to the tissue origin and the MSC microenvironment. These MSC-released exosomes are taken up by different target cells in damaged tissues to promote a regulatory network of tissue repair, including immune modulation and induction of angiogenesis. Conversely, in tumors, MSC-derived exosomes can confer predominant signals to suppress neovascularization and to relay further tumor-inhibitory effects. However, MSCs that adapted to the tumor tissue by mutual interaction with cancer cells progressively alter to an aberrant phenotype with the release of exosomes carrying tumor-supportive material. Abstract Exosomes derived from mesenchymal stroma-/stem-like cells (MSCs) as part of extracellular vesicles are considered cell-free biocompatible nanovesicles that promote repair activities of damaged tissues or organs by exhibiting low immunogenic and cytotoxic effects. Contributions to regenerative activities include wound healing, maintenance of stem cell niches, beneficial regenerative effects in various diseases, and reduction of senescence. However, the mode of action in MSC-derived exosomes strongly depends on the biological content like different regulatory microRNAs that are determined by the tissue origin of MSCs. In tumors, MSCs use indirect and direct pathways in a communication network to interact with cancer cells. This leads to mutual functional changes with the acquisition of an aberrant tumor-associated MSC phenotype accompanied by altered cargo in the exosomes. Consequently, MSC-derived exosomes either from normal tissue-originating MSCs or from aberrant tumor-associated MSCs can confer different actions on tumor development. These processes exhibiting tumor-inhibitory and tumor-supportive effects with a focus on exosome microRNA content will be discriminated and discussed within this review.
Collapse
Affiliation(s)
| | | | - Ralf Hass
- Correspondence: ; Tel.: +49-511-532-6070
| |
Collapse
|
43
|
Wang Y, Wu N, Jiang N. Autophagy provides a conceptual therapeutic framework for bone metastasis from prostate cancer. Cell Death Dis 2021; 12:909. [PMID: 34611139 PMCID: PMC8492756 DOI: 10.1038/s41419-021-04181-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a common malignant tumor, which can spread to multiple organs in the body. Metastatic disease is the dominant reason of death for patients with prostate cancer. Prostate cancer usually transfers to bone. Bone metastases are related to pathologic fracture, pain, and reduced survival. There are many known targets for prostate cancer treatment, including androgen receptor (AR) axis, but drug resistance and metastasis eventually develop in advanced disease, suggesting the necessity to better understand the resistance mechanisms and consider multi-target medical treatment. Because of the limitations of approved treatments, further research into other potential targets is necessary. Metastasis is an important marker of cancer development, involving numerous factors, such as AKT, EMT, ECM, tumor angiogenesis, the development of inflammatory tumor microenvironment, and defect in programmed cell death. In tumor metastasis, programmed cell death (autophagy, apoptosis, and necroptosis) plays a key role. Malignant cancer cells have to overcome the different forms of cell death to transfer. The article sums up the recent studies on the mechanism of bone metastasis involving key regulatory factors such as macrophages and AKT and further discusses as to how regulating autophagy is crucial in relieving prostate cancer bone metastasis.
Collapse
Affiliation(s)
- YouZhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Ning Wu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, 300060, Tianjin, China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
| |
Collapse
|
44
|
Wang J, Cao Z, Wang P, Zhang X, Tang J, He Y, Huang Z, Mao X, Shi S, Kou X. Apoptotic Extracellular Vesicles Ameliorate Multiple Myeloma by Restoring Fas-Mediated Apoptosis. ACS NANO 2021; 15:14360-14372. [PMID: 34506129 DOI: 10.1021/acsnano.1c03517] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Apoptosis is critical for maintaining bodily homeostasis and produces a large number of apoptotic extracellular vesicles (apoEVs). Several types of cancer cells display reduced expression of Fas on the cell surface and are thus capable of escaping Fas ligand-induced apoptosis. However, it is unknown whether normal cell-derived apoEVs can regulate tumor growth. In this study, we show that apoEVs can induce multiple myeloma (MM) cell apoptosis and inhibit MM cell growth. Systemic infusion of mesenchymal stem cell (MSC)-derived apoEVs significantly prolongs the lifespan of MM mice. Mechanistically, apoEVs directly contact MM cells to facilitate Fas trafficking from the cytoplasm to the cell membrane by evoking Ca2+ influx and elevation of cytosolic Ca2+. Subsequently, apoEVs use their Fas ligand to activate the Fas pathway in MM cells, leading to the initiation of apoptosis. This study identifies the role of apoEVs in inducing MM apoptosis and suggests a potential for apoEVs to treat MM.
Collapse
Affiliation(s)
- Juan Wang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Zeyuan Cao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Panpan Wang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Xiao Zhang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Jianxia Tang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Hunan Key Laboratory of Oral Health Research and Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha 410000, China
| | - Yifan He
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Zhiqing Huang
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania 19104, United States
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania 19104, United States
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
45
|
Weng Z, Zhang B, Wu C, Yu F, Han B, Li B, Li L. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J Hematol Oncol 2021; 14:136. [PMID: 34479611 PMCID: PMC8414028 DOI: 10.1186/s13045-021-01141-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane structures enclosing proteins, lipids, RNAs, metabolites, growth factors, and cytokines. EVs have emerged as essential intercellular communication regulators in multiple physiological and pathological processes. Previous studies revealed that mesenchymal stem cells (MSCs) could either support or suppress tumor progression in different cancers by paracrine signaling via MSC-derived EVs. Evidence suggested that MSC-derived EVs could mimic their parental cells, possessing pro-tumor and anti-tumor effects, and inherent tumor tropism. Therefore, MSC-derived EVs can be a cell-free cancer treatment alternative. This review discusses different insights regarding MSC-derived EVs' roles in cancer treatment and summarizes bioengineered MSC-derived EVs’ applications as safe and versatile anti-tumor agent delivery platforms. Meanwhile, current hurdles of moving MSC-derived EVs from bench to bedside are also discussed.
Collapse
Affiliation(s)
- Zhijie Weng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
46
|
Yang J, Li X, Wei S, Peng L, Sang H, Jin D, Chen M, Dang Y, Zhang G. Evaluation of the Diagnostic Potential of a Plasma Exosomal miRNAs Panel for Gastric Cancer. Front Oncol 2021; 11:683465. [PMID: 34422636 PMCID: PMC8371241 DOI: 10.3389/fonc.2021.683465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/19/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose Gastric cancer (GC) is often difficult to diagnose early in the disease and remains one of the most frequently occurring malignancies. This investigation looks at the diagnostic potential of a specific plasma exosomal miRNAs panel for GC. Methods This study analyzed 216 individual peripheral blood samples. 2 GEO datasets were analyzed and two miRNAs were selected - plasma exosomal miR-195-5p and miR-211-5p. Quantitative reverse-transcriptase PCR (qRT–PCR) was used to assess relative expressions and receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic efficiency of miR-195-5p and miR-211-5p panel. The Kaplan-Meier method was used to assess the prognostic value of plasma exosomal miR-195-5p and miR-211-5p. Results GC patients possessed notably raised plasma levels of exosomal miR-195-5p and miR-211-5p. The area under ROC curves (AUCs) of miR-195-5p, miR-211-5p were 0.745, 0.798 in the screening phase and 0.762, 0.798 in the training stage respectively. GC was able to be diagnosed more accurately when both miRNAs were interpreted together (AUC=0.820 in the validation stage). Poorer prognosis was observed in GC patients who had plasma exosomal miR-195-5p and miR-211-5p of higher levels. In vitro experiments also confirmed that miR-195-5p and miR-211-5p is able to be transmitted between cells, and works to enhance tumor invasion, migration and proliferation while inhibiting cell apoptosis. Conclusion Plasma exosomal miR-195-5p and miR-211-5p may become potential biomarkers for GC diagnosis, and may be useful in predicting tumor phenotype.
Collapse
Affiliation(s)
- Jiajia Yang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Li
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuchun Wei
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Peng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huaiming Sang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Duochen Jin
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meihong Chen
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yini Dang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxin Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Yan L, He Z, Li W, Liu N, Gao S. P76RBE silencing inhibits ovarian cancer cell proliferation, migration, and invasion via suppressing the integrin β1/NF-κB pathway. Cell Cycle 2021; 20:1875-1889. [PMID: 34382920 DOI: 10.1080/15384101.2021.1963910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Rhophilin Rho GTPase binding protein 2 (P76RBE) belongs to rhophilin family of Rho-GTPase-binding proteins and is found to contribute to the development of diverse cancers. Data in Oncomine and Kaplan-Meier Plotter databases showed that P76RBE was upregulated in ovarian cancer tissues compared with normal tissues, and patients with high P76RBE expression had worse overall survival, which indicated P76RBE may be associated with the pathogenesis of ovarian cancer. This study aimed to investigate the role of P76RBE in ovarian cancer and to reveal the possible underlying mechanisms. The results demonstrated that P76RBE was highly expressed in ovarian cancer tissues and ovarian cancer cell lines. Functionally, silencing of P76RBE suppressed the proliferation, induced cell cycle arrest, and inhibited migration and invasion in OVCAR-3 and OV-90 cells, while overexpression of P76RBE showed opposite effects on A2780 cells. Mechanically, P76RBE silencing resulted in downregulation of integrin β1, accompanying the reduced NF-κB p65 phosphorylation and nuclear translocation. Importantly, integrin β1 knockdown effectively rescued the effects of P76RBE overexpression on ovarian cancer cells with suppressed proliferation, migration, and invasion. Additionally, in the xenograft tumors derived from OVCAR-3 and OV-90 cell lines, P76RBE knockdown inhibited tumor growth. Meanwhile, the expression of integrin β1 and NF-κB p65 phosphorylation was decreased. In summary, our findings indicate that P76RBE contributes to the progression of ovarian cancer through regulating the integrin β1/NF-κB signaling, and it may be a promising target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Limei Yan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zeping He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
48
|
Shen M, Li X, Qian B, Wang Q, Lin S, Wu W, Zhu S, Zhu R, Zhao S. Crucial Roles of microRNA-Mediated Autophagy in Urologic Malignancies. Int J Biol Sci 2021; 17:3356-3368. [PMID: 34512152 PMCID: PMC8416737 DOI: 10.7150/ijbs.61175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Urologic oncologies are major public health problems worldwide. Both microRNA and autophagy, separately or concurrently, are involved in a variety of the cellular and molecular processes of multiple cancers, including urologic malignancies. In this review, we have summarized the related studies and found that microRNA-mediated autophagy acted as carcinogenic factors or suppressors in prostate cancer, kidney cancer, and bladder cancer. MiRNAs, targeted genes, and the different signaling pathways constitute a complex network that orchestrates autophagy regulation, militating the oncogenic and tumor-suppressive effects in urologic malignancies. Aberrant expression of miRNAs may induce the dysregulation of the autophagy process, resulting in tumorigenesis, progression, and resistance to anticancer therapies. Targeting specific miRNAs for autophagy modulation may present as reliable diagnostic and prognostic biomarkers or promising therapeutic strategies for urologic oncologies.
Collapse
Affiliation(s)
- Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Wang
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Shanan Lin
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Wenhao Wu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Shuai Zhu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Rui Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| |
Collapse
|
49
|
Exosomal circRNA HIPK3 knockdown inhibited cell proliferation and metastasis in prostate cancer by regulating miR-212/BMI-1 pathway. J Biosci 2021. [DOI: 10.1007/s12038-021-00190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Roles of Mesenchymal Stem Cell-Derived Exosomes in Cancer Development and Targeted Therapy. Stem Cells Int 2021; 2021:9962194. [PMID: 34335792 PMCID: PMC8289580 DOI: 10.1155/2021/9962194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Exosomes have emerged as a new drug delivery system. In particular, exosomes derived from mesenchymal stem cells (MSCs) have been extensively studied because of their tumor-homing ability and yield advantages. Considering that MSC-derived exosomes are a double-edged sword in the development, metastasis, and invasion of tumors, engineered exosomes have broad potential use. In this review, we focused on the latest development in the treatment of tumors using engineered and nonengineered MSC-derived exosomes (MSC-EXs). Nonengineered MSC-EXs exert an antitumor effect on several well-studied tumors by affecting tumor growth, angiogenesis, metastasis, and invasion. Furthermore, engineered exosomes have promising research prospects as drug-carrying tools for the transport of miRNAs, small-molecule drugs, and proteins. Although exosomes lack uniform standards in terms of definition, separation, and purification, they still have great research value because of their unique advantages, such as high biocompatibility and low toxicity. Future studies on MSC-EXs should elucidate the mechanisms underlying their anticancer effect and the safety of their application.
Collapse
|