1
|
Zhu Z, Lam TYT, Tang RSY, Wong SH, Lui RNS, Ng SSM, Wong SYS, Sung JJY. Triglyceride-glucose index (TyG index) is associated with a higher risk of colorectal adenoma and multiple adenomas in asymptomatic subjects. PLoS One 2024; 19:e0310526. [PMID: 39509387 DOI: 10.1371/journal.pone.0310526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/29/2024] [Indexed: 11/15/2024] Open
Abstract
HYPOTHESIS The objective of this study is to evaluate the predictive ability of the TyG index for the presence of adenoma and multiple adenomas in an asymptomatic population. DESIGN A secondary analysis was conducted on a prospective cohort of asymptomatic subjects aged between 50 and 75 who underwent CRC screening. Fasting blood glucose (FBG) and lipid profiles were measured within three months prior colonoscopy. TyG index was estimated as ln [fasting triglycerides (mg/dL) × FBG (mg/dL)/2]. Multivariate logistic regression was performed to assess the association between the TyG index and the risk of adenoma. Its association with multiple adenomas (≥5) and the continuous number of adenomas were assessed by multinomial regression and log-normal linear regression, respectively. RESULTS A total of 1,538 subjects were recruited among which 876 subjects (57%) had at least one adenoma detected. Elevated TyG index was positively associated with the incidence of adenoma (adjusted odds ratio [aOR]: 1.26, 95% confidence interval [CI]: 1.04-1.54). Compared with the lowest TyG index (≤ 8) group, the risk of adenoma was the highest among subjects in the highest TyG index (> 10) group (aOR: 3.36, 95% CI: 1.44-7.73). As compared to the non-adenoma group, the TyG index was also positively associated with multiple adenomas (aOR: 1.74, 95% CI: 1.17-2.57), and the estimate was also the highest in the highest TyG group (aOR: 14.49, 95% CI: 3.12-67.20). As for the number of adenomas, the positive association was maintained (Estimates: 1.06, 95% CI: 1.01-1.12) while the number of adenomas increase the most in the highest TyG index group (Estimates: 1.35, 95% CI: 1.10-1.65). CONCLUSIONS Elevated TyG index is associated with an increased risk of colorectal adenoma and an increased number of adenomas for asymptomatic subjects aged ≥50. TRIAL REGISTRATION This study was registered on clinicaltrials.gov (NCT03597204 and NCT04034953).
Collapse
Affiliation(s)
- Ziyue Zhu
- Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Thomas Yuen Tung Lam
- The Nethersole School of Nursing, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
- Institute of Digestive Disease, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Raymond Shing Yan Tang
- Institute of Digestive Disease, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Rashid Nok Shun Lui
- Institute of Digestive Disease, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Simon Siu Man Ng
- Institute of Digestive Disease, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Samuel Yeung Shan Wong
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Joseph Jao Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Rostampoor Z, Afrashteh S, Mohammadianpanah M, Ghaem H, Zeegers MP, Fararouei M. Lifestyle, dietary pattern and colorectal cancer: a case-control study. BMC Nutr 2024; 10:138. [PMID: 39420424 PMCID: PMC11488227 DOI: 10.1186/s40795-024-00950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND In Iran, not only the incidence of colorectal cancer (CRC) is increasing but also the age of patients at diagnosis is alarmingly dropping. We need urgent actions to better understand the epidemiology of CRC and the contributing factors for such pattern in Iranian population. The aim of our study was to determine the potential contribution of lifestyle, including dietary pattern, to CRC in a large Iranian province. METHODS A hospital based case-control study was performed on 572 participants (275 cases and 297 controls). Patients in the case group were newly diagnosed with CRC in a referral hospital and patients in the control group were selected from those patients with non-malignancy diseases who were admitted to the same hospital. Control group was frequency matched to the case group for gender and age. RESULTS Based on the results of multivariable logistic regression analysis, direct associations were observed between usual pattern of defecation (OR> 3rd /every day =4.74, 95% CI: 1.78-12.59), chicken consumption (ORsometimes or always/occasionally = 6.33, 95% CI:3.23-12.43), family history of CRC (ORyes/no =5.79, 95% CI: 2.72-12.31), and alcohol consumption (ORyes/no =6.03, 95% CI: 2.14-16.98) with the odds of CRC among the study population. On the other hand, taking multivitamins (ORyes/no=0.09, 95% CI:0.04-0.20), consumption of coffee (ORalways/occasionally =0.29, 95% CI: 0.12-0.69), taking vitamins D supplement (ORyes/no =0.38,95% CI:0.22-0.66), and consumption of garlic (ORsometimes/occasionally =0.53,95% CI: 0.30-0.95) significantly reduced the odds of CRC. CONCLUSIONS We revealed potentially significant effects of several lifestyle related factors with CRC risk in Iranian population. More studies are required to understand the mechanism of action of the associated factors in developing CRC.
Collapse
Affiliation(s)
- Zahra Rostampoor
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Afrashteh
- Department of Biostatistics and Epidemiology, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Haleh Ghaem
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maurice P Zeegers
- NUTRIM School of Translation Research in Metabolism, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Mohammad Fararouei
- HIV/AIDs Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Maimaitijiang A, He D, Li D, Li W, Su Z, Fan Z, Li J. Progress in Research of Nanotherapeutics for Overcoming Multidrug Resistance in Cancer. Int J Mol Sci 2024; 25:9973. [PMID: 39337463 PMCID: PMC11432649 DOI: 10.3390/ijms25189973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Chemotherapy has been widely applied in oncotherapy. However, the development of multidrug resistance (MDR) has diminished the effectiveness of anticancer drugs against tumor cells. Such resistance often results in tumor recurrence, metastasis, and patient death. Fortunately, nanoparticle-based drug delivery systems provide a promising strategy by codelivery of multiple drugs and MDR reversal agents and the skillful, flexible, smart modification of drug targets. Such systems have demonstrated the ability to bypass the ABC transporter biological efflux mechanisms due to drug resistance. Hence, how to deliver drugs and exert potential antitumor effects have been successfully explored, applied, and developed. Furthermore, to overcome multidrug resistance, nanoparticle-based systems have been developed due to their good therapeutic effect, low side effects, and high tumor metastasis inhibition. In view of this, we systematically discuss the molecular mechanisms and therapeutic strategies of MDR from nanotherapeutics. Finally, we summarize intriguing ideas and future trends for further research in overcoming MDR.
Collapse
Affiliation(s)
- Ayitila Maimaitijiang
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Dongze He
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Dingyang Li
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Wenfang Li
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Zhongxiong Fan
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- School of Pharmaceutical Science (Institute of Materia Medica) & College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
4
|
Pan C, Wei Y, Dai J, Yang L, Ding Z, Xinke Wang. Knowledge mapping of metformin use on cancers: a bibliometric analysis (2013-2023). Front Pharmacol 2024; 15:1388253. [PMID: 39193327 PMCID: PMC11347356 DOI: 10.3389/fphar.2024.1388253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
There is substantial evidence from clinical and preclinical studies suggesting an association between metformin use and a reduced risk of cancer. However, the effects of metformin use on cancers have not yet been subjected to bibliometric analysis. The goal of this study was to explore the potential effects of metformin use on cancers and to conduct a comprehensive assessment of research hotspots related to the use of metformin on cancers. The results of the literature analysis were visualized using various tools such as Adobe Illustrator CC 2018, VOSviewer, CiteSpace, and the R package "bibliometric." The average annual publications from 2013 to 2023 was 372. In terms of journals and co-cited journals, a total of 1,064 journals published 1958 papers, and Oncotarget published the highest number of papers (n = 153, 7.81%), while Cancer Research (Co-citation = 5,125) was the most frequently cited journal. A total of 25,665 authors participated in the research on metformin use on cancers. Metformin has demonstrated improved outcomes in various types of cancer, including breast cancer (BC), lung cancer (LC), colorectal cancer (CRC), prostate cancer (PC), and pancreatic cancer. This bibliometric analysis reviews the current literature on the clinical data on metformin use on cancers and describes the preclinical evidence illustrating the potential mechanisms of metformin use on various cancers directly or indirectly.
Collapse
Affiliation(s)
| | | | | | | | - Zhuoyu Ding
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Yang W, Yang Y, Wang Y, Gao Z, Zhang J, Gao W, Chen Y, Lu Y, Wang H, Zhou L, Wang Y, Li J, Tao H. Metformin prevents the onset and progression of intervertebral disc degeneration: New insights and potential mechanisms (Review). Int J Mol Med 2024; 54:71. [PMID: 38963023 PMCID: PMC11232665 DOI: 10.3892/ijmm.2024.5395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 07/05/2024] Open
Abstract
Metformin has been the go‑to medical treatment for addressing type 2 diabetes mellitus (T2DM) as a frontline oral antidiabetic. Obesity, cancer and bone deterioration are linked to T2DM, which is considered a metabolic illness. Numerous diseases associated with T2DM, such as tumours, cardiovascular disease and bone deterioration, may be treated with metformin. Intervertebral disc degeneration (IVDD) is distinguished by degeneration of the spinal disc, accompanied by the gradual depletion of proteoglycans and water in the nucleus pulposus (NP) of the IVD, resulting in lower back pain. The therapeutic effect of metformin on IVDD has also attracted much attention. By stimulating AMP‑activated kinase, metformin could enhance autophagy and suppress cell senescence, apoptosis and inflammation, thus effectively delaying IVDD. The present review aimed to systematically explain the development of IVDD and mechanism of metformin in the treatment and prevention of IVDD to provide a reference for the clinical application of metformin as adjuvant therapy in the treatment of IVDD.
Collapse
Affiliation(s)
- Wenzhi Yang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yong Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Zongshi Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jingtang Zhang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Weimin Gao
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanjun Chen
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - You Lu
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Haoyu Wang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lingyan Zhou
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yifan Wang
- Department of Clinical Medicine, School of The First Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
6
|
Tong J, Li X, Liu T, Liu M. Metformin exposure and the incidence of lactic acidosis in critically ill patients with T2DM: A retrospective cohort study. Sci Prog 2024; 107:368504241262116. [PMID: 39053014 PMCID: PMC11282515 DOI: 10.1177/00368504241262116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The objective of this study was to investigate the correlation between metformin exposure and the incidence of lactic acidosis in critically ill patients. METHODS The patients with type 2 diabetes mellitus (T2DM) were included from Medical Information Mart for Intensive Care IV database (MIMIC-IV). The primary outcome was the incidence of lactic acidosis. The secondary outcomes were lactate level and in-hospital mortality. Propensity score matching (PSM) method was adopted to reduce bias of the confounders. The multivariate logistic regression was used to explore the correlation between metformin exposure and the incidence of lactic acidosis. Subgroup analysis and sensitivity analysis were used to test the stability of the conclusion. RESULTS We included 4939 patients. There were 2070 patients in the metformin group, and 2869 patients in the nonmetformin group. The frequency of lactic acidosis was 5.7% (118/2070) in the metformin group and it was 4.3% (122/2869) in the nonmetformin group. There was a statistically significant difference between the two groups (P < 0.05). The lactate level in the metformin group was higher than in the nonmetformin group (2.78 ± 2.23 vs. 2.45 ± 2.24, P < 0.001). After PSM, the frequency of lactic acidosis (6.3% vs. 3.7%, P < 0.001) and lactate level (2.85 ± 2.38 vs. 2.40 ± 2.14, P < 0.001) were significantly higher in the metformin group compared with the nonmetformin group. In multivariate logistic models, the frequency of lactic acidosis was obviously increased in metformin group, and the adjusted odds ratio (OR) of metformin exposure was 1.852 (95% confidence interval (CI) = 1.298-2.643, P < 0.001). The results were consistent with subgroup analysis except for respiratory failure subgroup. Metformin exposure increased lactate level but did not affect the frequency of lactic acidosis in patients of respiratory failure with hypercapnia. However, the in-hospital mortality between metformin and nonmetformin group had no obvious difference (P = 0.215). In sensitivity analysis, metformin exposure showed similar effect as the original cohort. CONCLUSIONS In critically ill patients with T2DM, metformin exposure elevated the incidence of lactic acidosis except for patients of respiratory failure with hypercapnia, but did not affect the in-hospital mortality.
Collapse
Affiliation(s)
- Jingkai Tong
- Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
7
|
Li P, Tian X, Zhang D, Ou H, Huang Q, Jin W, Liu R. Discovery of Loureirin analogues with colorectal cancer suppressive activity via regulating cell cycle and Fas death receptor. BMC Pharmacol Toxicol 2024; 25:36. [PMID: 38943212 PMCID: PMC11212204 DOI: 10.1186/s40360-024-00758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
Chalcones and dihydrochalcones (DHCs) are important bioactive natural products (BNPs) isolated from traditional Chinese medicine. In this study, 13 chalcones were designed with the inspiration of Loureirin, a DHC extracted from Resina Draconis, and synthesized by classical Claisen-Schmidt reactions. Afterwards the reduction reactions were carried out to obtain the corresponding DHCs. Cytotoxicity assay indicated chalcones and DHCs possessed selective cytotoxicity against colorectal cancer (CRC) cells. The preliminary structure-activity relationships (SAR) of these compounds suggested the α, β-unsaturated ketone of the chalcones were crucial for the anticancer activity. Interestingly, compounds 3d and 4c exhibited selective anticancer activity against CRC cell line HCT116 with IC50s of 8.4 and 17.9 μM but not normal cell. Moreover, 4c could also inhibit the migration and invasion of CRC cells. Mechanism investigations showed 4c could induce cell cycle G2/M arrest by regulating cell cycle-associated proteins and could also up-regulate Fas cell surface death receptor. The virtual docking further pointed out that compounds 3d and 4c could nicely bind to the Fas/FADD death domain complex (ID: 3EZQ). Furthermore, silencing of Fas significantly enhanced the proliferation of CRC cells and attenuated the cytotoxicity induced by 4c. These results suggested 4c exerted its anticancer activity possibly regulating cell cycle and Fas death receptor. In summary, this study investigated the anticancer activity and mechanism of Loureirin analogues in CRC, suggesting these compounds may warrant further investigation as promising anticancer drug candidates for the treatment of CRC.
Collapse
Affiliation(s)
- Peng Li
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen, 518055, China
| | - Xiangjuan Tian
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen, 518055, China
| | - Die Zhang
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Huiping Ou
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen, 518055, China
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Qiufeng Huang
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen, 518055, China
| | - Wenbin Jin
- Key Laboratory of External Drug Delivery System and Preparation Technology in Universities of Yunnan and Faculty of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China.
| | - Ran Liu
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Lawler T, Walts ZL, Giurini L, Steinwandel M, Lipworth L, Murff HJ, Zheng W, Warren Andersen S. Metformin's role in lowering colorectal cancer risk among individuals with diabetes from the Southern Community Cohort Study. Cancer Epidemiol 2024; 90:102566. [PMID: 38518387 PMCID: PMC11108092 DOI: 10.1016/j.canep.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Metformin, utilized to manage hyperglycemia, has been linked to a reduced risk of colorectal cancer (CRC) among individuals with diabetes. However, evidence is lacking for non-Hispanic Black individuals and those with lower socioeconomic status (SES), who face elevated risk for both diabetes and CRC. In this study, we investigated the association between metformin use and incident CRC risk within the Southern Community Cohort Study (SCCS), a racially- and SES-diverse prospective cohort. METHODS Participants reported their diabetes diagnosis and medications, including metformin, upon enrollment (2002-2009) and during follow-up surveys approximately every five years. Incident cases of CRC were identified through state cancer registries and the National Death Index. Proportional hazards models were employed to explore the relationship between metformin use and CRC risk, adjusted for cancer risk factors. RESULTS A total of 25,992 participants with diabetes were included in the analysis, among whom 10,095 were taking metformin. Of these participants, 76% identified as non-Hispanic Black, and 60% reported household incomes <$15,000/year. Metformin use was associated with a significantly lower CRC risk (HR [95% CI]: 0.71 [0.55-0.93]), with consistent results for both colon (0.80 [0.59-1.07]) and rectal cancers (0.49 [0.28-0.86]). The protective association appeared to be stronger among non-Hispanic White individuals (0.51 [0.31-0.85]) compared to non-Hispanic Black participants (0.80 [0.59-1.08], p-interaction =.13). Additionally, a protective association was observed among obese individuals (BMI ≥30 kg/m2, 0.59 [0.43-0.82] but not among non-obese participants (0.99 [0.65-1.51], p-interaction =.05) CONCLUSION: Our findings indicate that metformin use is associated with a reduced risk of CRC in individuals with diabetes, including among those from predominantly low SES backgrounds. These results support previous epidemiological findings, and demonstrate that the protective association for metformin in relation to incident CRC likely generalizes to populations with higher underlying risk.
Collapse
Affiliation(s)
- Thomas Lawler
- University of Wisconsin Carbone Cancer Center, Madison, WI 53726, USA
| | - Zoe L Walts
- University of Wisconsin Carbone Cancer Center, Madison, WI 53726, USA; Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St, WARF Office Building, Madison, WI 53726, USA
| | - Lauren Giurini
- University of Wisconsin Carbone Cancer Center, Madison, WI 53726, USA; Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St, WARF Office Building, Madison, WI 53726, USA
| | - Mark Steinwandel
- International Epidemiology Field Station, Vanderbilt Institute for Clinical and Translational Research, 1455 Research Blvd.; Suite 550, Rockville, MD 20850, USA
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th floor, Suite 800, Nashville, TN 37203-1738, USA
| | - Harvey J Murff
- Department of Medicine, Vanderbilt University School of Medicine, 6012 Medical Center East, 1215 21st Avenue South, Nashville, TN 37203-1738, USA
| | - Wei Zheng
- International Epidemiology Field Station, Vanderbilt Institute for Clinical and Translational Research, 1455 Research Blvd.; Suite 550, Rockville, MD 20850, USA
| | - Shaneda Warren Andersen
- University of Wisconsin Carbone Cancer Center, Madison, WI 53726, USA; Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 610 Walnut St, WARF Office Building, Madison, WI 53726, USA; International Epidemiology Field Station, Vanderbilt Institute for Clinical and Translational Research, 1455 Research Blvd.; Suite 550, Rockville, MD 20850, USA.
| |
Collapse
|
9
|
Abdulkareem SJ, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Salmani-Javan E, Toroghi F, Zarghami N. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: potential anti-cancer effect in treatment of lung cancer cells. Daru 2024; 32:133-144. [PMID: 38168007 PMCID: PMC11087397 DOI: 10.1007/s40199-023-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 μM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 μM and 78.3 μM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.
Collapse
Affiliation(s)
- Salah Jaafar Abdulkareem
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Toroghi
- Research Center for Molecular Medicine, Hamedan University of Medical Science, Hamedan, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
10
|
Wang Y, Peng J, Yang D, Xing Z, Jiang B, Ding X, Jiang C, Ouyang B, Su L. From metabolism to malignancy: the multifaceted role of PGC1α in cancer. Front Oncol 2024; 14:1383809. [PMID: 38774408 PMCID: PMC11106418 DOI: 10.3389/fonc.2024.1383809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
PGC1α, a central player in mitochondrial biology, holds a complex role in the metabolic shifts seen in cancer cells. While its dysregulation is common across major cancers, its impact varies. In some cases, downregulation promotes aerobic glycolysis and progression, whereas in others, overexpression escalates respiration and aggression. PGC1α's interactions with distinct signaling pathways and transcription factors further diversify its roles, often in a tissue-specific manner. Understanding these multifaceted functions could unlock innovative therapeutic strategies. However, challenges exist in managing the metabolic adaptability of cancer cells and refining PGC1α-targeted approaches. This review aims to collate and present the current knowledge on the expression patterns, regulators, binding partners, and roles of PGC1α in diverse cancers. We examined PGC1α's tissue-specific functions and elucidated its dual nature as both a potential tumor suppressor and an oncogenic collaborator. In cancers where PGC1α is tumor-suppressive, reinstating its levels could halt cell proliferation and invasion, and make the cells more receptive to chemotherapy. In cancers where the opposite is true, halting PGC1α's upregulation can be beneficial as it promotes oxidative phosphorylation, allows cancer cells to adapt to stress, and promotes a more aggressive cancer phenotype. Thus, to target PGC1α effectively, understanding its nuanced role in each cancer subtype is indispensable. This can pave the way for significant strides in the field of oncology.
Collapse
Affiliation(s)
- Yue Wang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Jianing Peng
- Division of Biosciences, University College London, London, United Kingdom
| | - Dengyuan Yang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Zhongjie Xing
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Xu Ding
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Bing Ouyang
- Department of Surgery, Nanjing Central Hospital, Nanjing, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Adhikary K, Sarkar R, Maity S, Banerjee I, Chatterjee P, Bhattacharya K, Ahuja D, Sinha NK, Maiti R. The underlying causes, treatment options of gut microbiota and food habits in type 2 diabetes mellitus: a narrative review. J Basic Clin Physiol Pharmacol 2024; 35:153-168. [PMID: 38748886 DOI: 10.1515/jbcpp-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Type 2 diabetes mellitus is a long-lasting endocrine disorder characterized by persistent hyperglycaemia, which is often triggered by an entire or relative inadequacy of insulin production or insulin resistance. As a result of resistance to insulin (IR) and an overall lack of insulin in the body, type 2 diabetes mellitus (T2DM) is a metabolic illness that is characterized by hyperglycaemia. Notably, the occurrence of vascular complications of diabetes and the advancement of IR in T2DM are accompanied by dysbiosis of the gut microbiota. Due to the difficulties in managing the disease and the dangers of multiple accompanying complications, diabetes is a chronic, progressive immune-mediated condition that plays a significant clinical and health burden on patients. The frequency and incidence of diabetes among young people have been rising worldwide. The relationship between the gut microbiota composition and the physio-pathological characteristics of T2DM proposes a novel way to monitor the condition and enhance the effectiveness of therapies. Our knowledge of the microbiota of the gut and how it affects health and illness has changed over the last 20 years. Species of the genus Eubacterium, which make up a significant portion of the core animal gut microbiome, are some of the recently discovered 'generation' of possibly helpful bacteria. In this article, we have focused on pathogenesis and therapeutic approaches towards T2DM, with a special reference to gut bacteria from ancient times to the present day.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Riya Sarkar
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Sriparna Maity
- Department of Medical Laboratory Technology, 231513 Dr. B. C. Roy Academy of Professional Courses , Durgapur, West Bengal, India
| | - Ipsita Banerjee
- Department of Nutrition, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, Durgapur, West Bengal, India
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Nirmalya Kumar Sinha
- Department of Nutrition and Department of NSS, Raja Narendra Lal Khan Women's College (Autonomous), Midnapore, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
12
|
Mao J, Chen R, Xue L, Zhu Y, Zhao L, Wang J. Metformin and chidamide synergistically suppress multiple myeloma progression and enhance lenalidomide/bortezomib sensitivity. ENVIRONMENTAL TOXICOLOGY 2024; 39:2452-2465. [PMID: 38251764 DOI: 10.1002/tox.24093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
Multiple myeloma (MM) is a common hematological malignancy, and patients with MM are recommended to take immunomodulatory drugs such as lenalidomide along with proteasome inhibitors such as bortezomib to extend survival. However, drug resistance influences the efficacy of treatment for MM. In our study, we found that metformin and chidamide both suppressed MM cell growth in a concentration- and time-dependent way (p < .001). Moreover, combined therapy with metformin and chidamide exhibited enhanced inhibition of the growth of MM cells compared with monotherapy (p < .05). Additionally, the triple-drug combination of metformin and chidamide with lenalidomide or bortezomib was used to stimulate the MM cells, and the results revealed that metformin and chidamide treatment sensitized MM cells to lenalidomide and bortezomib. As a result, the apoptosis (p < .001) together with cell cycle arrest at G0/G1 phase (p < .05) was stimulated by lenalidomide and bortezomib, and showed significant elevation in the triple-drug combination group compared with the lenalidomide or bortezomib treatment alone group (p < .05). Furthermore, the impacts of different drugs on glycolysis in MM cells were examined. We found that metformin and chidamide combined treatment significantly promoted glucose uptake and reduced energy production in MM cells treated with lenalidomide and bortezomib (p < .001), suggesting that metformin and chidamide affected glycolysis in MM cells and enhanced the sensitivity of lenalidomide and bortezomib in MM by regulating glucose metabolism. In conclusion, metformin and chidamide synergistically hindered MM cell growth and sensitized cells to lenalidomide/bortezomib. The findings of this study might provide novel clues to improve MM therapy.
Collapse
Affiliation(s)
- Jianping Mao
- Department of Hematology, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Ran Chen
- Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lianguo Xue
- Department of Hematology, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Yuanxin Zhu
- Department of Hematology, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Lidong Zhao
- Department of Hematology, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Juan Wang
- Department of Pediatrics, the First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
13
|
Zhang X, Wang K, Zhao Z, Shan X, Wang Y, Feng Z, Li B, Luo C, Chen X, Sun J. Self-Adjuvanting Polyguanidine Nanovaccines for Cancer Immunotherapy. ACS NANO 2024; 18:7136-7147. [PMID: 38407021 DOI: 10.1021/acsnano.3c11637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Tapping into the innate immune system's power, nanovaccines can induce tumor-specific immune responses, which is a promising strategy in cancer immunotherapy. However, traditional vaccine design, requiring simultaneous loading of antigens and adjuvants, is complex and poses challenges for mass production. Here, we developed a tumor nanovaccine platform that integrates adjuvant functions into the delivery vehicle, using branched polyguanidine (PolyGu) nanovaccines. These nanovaccines were produced by modifying polyethylenimine (PEI) with various guanidine groups, transforming PEI's cytotoxicity into innate immune activation. The PolyGu nanovaccines based on poly(phenyl biguanidine ) (Poly-PBG) effectively stimulated dendritic cells, promoted their maturation via the TLR4 and NLRP3 pathways, and displayed robust in vivo immune activity. They significantly inhibited tumor growth and extended mouse survival. The PolyGu also showed promise for constructing more potent mRNA-based nanovaccines, offering a platform for personalized cancer vaccine. This work advances cancer immunotherapy toward potential clinical application by introducing a paradigm for developing self-adjuvanting nanovaccines.
Collapse
Affiliation(s)
- Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Xinzhu Shan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Zunyong Feng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Bingyu Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
14
|
Sun Y, Cheng J, Nie D, Fang Q, Li C, Zhang Y. Metformin inhibits cell proliferation and ACTH secretion in AtT20 cells via regulating the MAPK pathway. Mol Cell Endocrinol 2024; 582:112140. [PMID: 38147953 DOI: 10.1016/j.mce.2023.112140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
We investigated the impact of metformin on ACTH secretion and tumorigenesis in pituitary corticotroph tumors. The mouse pituitary tumor AtT20 cell line was treated with varying concentrations of metformin. Cell viability was assessed using the CCK-8 assay, ACTH secretion was measured using an ELISA kit, changes in the cell cycle were analyzed using flow cytometry, and the expression of related proteins was evaluated using western blotting. RNA sequencing was performed on metformin-treated cells. Additionally, an in vivo BALB/c nude xenograft tumor model was established in nude mice, and immunohistochemical staining was conducted for further verification. Following metformin treatment, cell proliferation was inhibited, ACTH secretion decreased, and G1/S phase arrest occurred. Analysis of differentially expressed genes revealed cancer-related pathways, including the MAPK pathway. Western blotting confirmed a decrease in phosphorylated ERK1/2 and phosphorylated JNK. Combining metformin with the ERK1/2 inhibitor Ulixertinib resulted in a stronger inhibitory effect on cell proliferation and POMC (Precursors of ACTH) expression. In vivo studies confirmed that metformin inhibited tumor growth and reduced ACTH secretion. In conclusion, metformin inhibits tumor progression and ACTH secretion, potentially through suppression of the MAPK pathway in AtT20 cell lines. These findings suggest metformin as a potential drug for the treatment of Cushing's disease.
Collapse
Affiliation(s)
- Yingxuan Sun
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jianhua Cheng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ding Nie
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qiuyue Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Jun SY, Cho S, Kim MJ, Park JW, Ryoo SB, Jeong SY, Park KJ, Shin A. Glycemic traits and colorectal cancer survival in a cohort of South Korean patients: A Mendelian randomization analysis. Cancer Med 2024; 13:e7084. [PMID: 38477501 DOI: 10.1002/cam4.7084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Clinical diabetic traits have been reported to be associated with increased colorectal cancer (CRC) risk in observational studies. Using the Mendelian randomization (MR) analysis method, we examined the causal association between glycemic traits, such as fasting glucose (FG), fasting insulin (FI), and glycosylated hemoglobin A1c (HbA1c), and survival in a cohort of CRC patients. METHODS We conducted a two-sample MR analysis among a cohort of patients with locally advanced CRC at Seoul National University Hospital. Single-nucleotide polymorphisms robustly associated (p < 5 × 10-8 ) with the three glycemic traits were obtained from the Meta-Analyses of Glucose and Insulin-related traits Consortium, Asian Genetic Epidemiology Network, and Korea Biobank Array. Three-year and 5-year overall survival (OS) and progression-free survival (PFS) were used as outcomes. Survival analysis was conducted using subgroup analysis by cancer stage and subsite in a multivariate Cox proportional hazards model adjusted for age and sex to examine whether glycemic traits affected survival. RESULTS A total of 509 patients were included in our final analysis. MR analysis showed that HbA1c levels were associated with poor 3-year OS (β = 4.20, p = 0.02). Sensitivity analyses did not show evidence of any violations of the MR assumptions. In the cancer subgroup analysis of the Cox proportional hazards model, pooled hazard ratios for FG were significantly associated with poor 3-year OS and PFS regardless of cancer stage. FI was not significantly associated with any 3-year survival endpoints. Among Stage III patients, three glycemic traits were significantly associated with both 5-year OS and PFS. Location-specific subgroup analysis showed a significant association between three glycemic traits and 5-year PFS in patients with left-sided colon cancer. FG was associated with poor 3-year survival for colon cancer but not rectal cancer. CONCLUSIONS Our results suggest that FG and HbA1c could be used to predict prognosis in CRC patients. Lifestyle and/or pharmacological interventions targeting glycemic traits could help improve survival for CRC patients.
Collapse
Affiliation(s)
- So Yon Jun
- Department of Preventative Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sooyoung Cho
- Department of Preventative Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Aesun Shin
- Department of Preventative Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Guishard AR, Guishard AF, Semenova N, Kaushik V, Azad N, Iyer AKV, Yakisich JS. A Short Post-Reattachment Ultrasensitive Window of Time in Human Cancer Cells as Therapeutic Target of Prolonged Low-Dose Administration of Specific Compounds. Int J Cell Biol 2024; 2024:2699572. [PMID: 38352698 PMCID: PMC10861276 DOI: 10.1155/2024/2699572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/21/2023] [Accepted: 12/23/2023] [Indexed: 02/16/2024] Open
Abstract
Prolonged low-dose administration (PLDA) of several FDA-approved drugs for noncancer conditions or dietary compounds is associated with a lower incidence of specific types of cancers and with the lower formation of metastasis. However, the underlying mechanism is unknown; there is a discrepancy between the concentration of drugs needed to kill cancer cells in vitro and the actual serum levels (10 and >1000 times lower) found in patients. In this study, we evaluated the hypothesis that clonogenicity may be the target of PLDA. We compared the effect of nigericin (NIG) and menadione (MEN) on the human A549 and H460 lung and MCF-7 and MDA-MB-231 breast cancer cell lines using routine MTT and colony forming assays (CFA). The ability of both NIG and MEN to eliminate 100% of cancer cells was at least 2-10 times more potent in CFA compared to MTT assays. Our results revealed the existence of a short post-reattachment window of time when cancer cells growing at low density are more sensitive to PLDA of specific drugs likely by targeting clonogenic rather than proliferation pathways. This short ultrasensitive window of time (SUSWoT) was cell- and drug-type specific: the SUSWoT for NIG was present in H460, A549, and MDA-MB-231 cells but not evident in MCF-7 cells. Conversely, a similar SUSWoT for MEN was present in MCF-7, MDA-MD-231, and A549 cells but not evident in H460 cells. Our findings partially explain the decreased incidence of specific types of cancer by PLDA of FDA-approved drugs (or dietary compounds) for noncancer conditions.
Collapse
Affiliation(s)
| | | | - Nina Semenova
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton, VA, USA
| | - Vivek Kaushik
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton, VA, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton, VA, USA
- Office of the Vice President for Research, Hampton University, Hampton, VA, USA
| | - Anand K. V. Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton, VA, USA
| | | |
Collapse
|
17
|
Kaczmarek K, Więckiewicz J, Que I, Gałuszka-Bulaga A, Chan A, Siedlar M, Baran J. Human Soluble TRAIL Secreted by Modified Lactococcus lactis Bacteria Promotes Tumor Growth in the Orthotopic Mouse Model of Colorectal Cancer. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0002. [PMID: 38299562 DOI: 10.2478/aite-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of sensitive cancer cells, including colorectal cancer (CRC). Due to its short biological half-life after intravenous administration and related clinical ineffectiveness, novel formulations of TRAIL need to be developed. Here we propose Lactococcus lactis bacteria as a vehicle for local delivery of human soluble TRAIL (hsTRAIL) in CRC. The use of common probiotics targeting guts as carriers for TRAIL could ensure its sustained release at the tumor site and extend the duration of its activity. We have already engineered hsTRAIL-secreting L.lactis bacteria and showed their effectiveness in elimination of human CRC cells in vitro and in vivo in a mouse subcutaneous model. Here, L.lactis(hsTRAIL+) were administered by gastric gavage to SCID mice with orthotopically developed HCT116 tumor in cecum, in monotherapy or in combination with metformin (MetF), already shown to enhance the hsTRAIL anti-tumor activity in subcutaneous CRC model. Oral administration of L.lactis(hsTRAIL+) resulted in significant progression of HCT116 tumors and shortening of the colon crypts. Secretion of hsTRAIL in the colon was accompanied by infiltration of the primary tumor with M2-macrophages, while MetF promoted transient colonization of the gut by L.lactis. Our study indicates that L.lactis bacteria after oral administration enable delivery of biologically active hsTRAIL to colon, however its potential therapeutic effect in CRC treatment is abolished by its pro-tumorigenic signalling, leading to the recruitment of M2-macrophages and tumor growth promotion.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Jerzy Więckiewicz
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Ivo Que
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands
- Currently: Department of Radiology and Nuclear Medicine, Department of Molecular Genetics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Adrianna Gałuszka-Bulaga
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Alan Chan
- Percuros B.V., Zernikedreef 8, 2333 CL Leiden, The Netherlands
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
18
|
Abd-Rabou AA, Abdelaziz AM, Shaker OG, Ayeldeen G. Hyaluronated nanoparticles deliver raloxifene to CD44-expressed colon cancer cells and regulate lncRNAs/miRNAs epigenetic cascade. Cancer Nanotechnol 2023; 14:32. [DOI: 10.1186/s12645-023-00183-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 09/02/2023] Open
Abstract
Abstract
Background
Colorectal malignant cells (CRC) are one of the world’s main causes of cancer mortality and morbidity. Notwithstanding the plenty of anti-CRC therapeutics, its prognosis remains not selective owing to cancer resistance to these therapeutics. Raloxifene (RX), a medication firstly used to treat osteoporosis, was recently licenced for the prevention of CRC. Unfortunately, due to medication resistance, many RX-based therapies are likely to become ineffective. Recently, we identified a novel method of administration to lengthen the half-life of RX by mixing it with chitosan (CS) and hyaluronic acid (HA). Thus, the rationale of the current study was to investigate how colon cancer cells were affected by RX-HA-CS nanoparticles (RX NPs) in terms of targetability, cytotoxicity, and epigenetic cascade alteration.
Results
RX NP had an entrapment efficiency (EE%) of 90.0 ± 8.12%. Compared to HCT 116 cells, Caco-2 cells were more susceptible to the cytotoxic effects of RX and its NP as well as they had a higher binding affinity to CD44 receptors compared to normal WI-38 cells. In comparison to the free RX, the RX NP’s cytotoxic fold changes in HCT 116 and Caco-2 cells were 2.16 and 2.52, respectively. Furthermore, the epigenetic cascade of some noncoding RNAs was examined. Moreover, particular protein concentrations were investigated in all tested cells after application of the proposed therapies. Our results showed that the RX NP recorded higher remarkable cytotoxic impact on CRC cells compared to the free RX. Intriguingly, it was hypothesized that RX nanoparticles attacked colon cancerous cells by up-regulating miR-944 and E-cadherin (ECN) expressions, while down-regulating the expressions of PPARγ, YKL-40, VEGF, H-19, LINC00641, HULC, HOTTIP, miR-92a, miR-200, and miR-21.
Conclusions
We may conclude that the RX NP effectively targets CRC cells in vitro via altering lncRNAs and miRNAs epigenetic cascade as well as cellular uptake through CD44-expressed CRC cells.
Collapse
|
19
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
20
|
Prabhu SS, Nair AS, Nirmala SV. Multifaceted roles of mitochondrial dysfunction in diseases: from powerhouses to saboteurs. Arch Pharm Res 2023; 46:723-743. [PMID: 37751031 DOI: 10.1007/s12272-023-01465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The fact that mitochondria play a crucial part in energy generation has led to the nickname "powerhouses" of the cell being applied to them. They also play a significant role in many other cellular functions, including calcium signalling, apoptosis, and the creation of vital biomolecules. As a result, cellular function and health as a whole can be significantly impacted by mitochondrial malfunction. Indeed, malignancies frequently have increased levels of mitochondrial biogenesis and quality control. Adverse selection exists for harmful mitochondrial genome mutations, even though certain malignancies include modifications in the nuclear-encoded tricarboxylic acid cycle enzymes that generate carcinogenic metabolites. Since rare human cancers with mutated mitochondrial genomes are often benign, removing mitochondrial DNA reduces carcinogenesis. Therefore, targeting mitochondria offers therapeutic options since they serve several functions and are crucial to developing malignant tumors. Here, we discuss the various steps involved in the mechanism of cancer for which mitochondria plays a significant role, as well as the role of mitochondria in diseases other than cancer. It is crucial to understand mitochondrial malfunction to target these organelles for therapeutic reasons. This highlights the significance of investigating mitochondrial dysfunction in cancer and other disease research.
Collapse
Affiliation(s)
- Surapriya Surendranath Prabhu
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Saiprabha Vijayakumar Nirmala
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
| |
Collapse
|
21
|
Li H, Chen Y, Hu L, Yang W, Gao Z, Liu M, Tao H, Li J. Will metformin use lead to a decreased risk of thyroid cancer? A systematic review and meta-analyses. Eur J Med Res 2023; 28:392. [PMID: 37773165 PMCID: PMC10542235 DOI: 10.1186/s40001-023-01287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/12/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND It has been reported that metformin use may reduce the risk of thyroid cancer, but existing studies have generated inconsistent results. The purpose of this study was to investigate such association between metformin use and the risk of thyroid cancer. METHODS Studies of metformin use for the risk of thyroid cancer were searched in Web of Science, PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, China Biomedical Database, Wanfang Data, and Chinese Scientific Journals Database (VIP) from the establishment date to December 2022. Newcastle-Ottawa scale is adopted for assessing the methodological quality of included studies, and the inter-study heterogeneity was assessed by using the I-squared statistic. Combined odds ratios (ORs) with the corresponding 95% confidence intervals (CIs) were calculated through either fixed-effects or random-effects model according to the heterogeneity. Besides, subgroup analyses, sensitivity analyses and test for publication bias were conducted. RESULTS Five studies involving 1,713,528 participants were enrolled in the qualitative and quantitative synthesis. The result of the meta-analyses showed that metformin use was associated with a statistically significant lower risk of thyroid cancer (pooled OR = 0.68, 95% CI = 0.50-0.91, P = 0.011). Moreover, in the subgroup analysis, we found that the use of metformin may also aid in the prevention of thyroid cancer in Eastern population (pooled OR = 0.55, 95% CI = 0.35-0.88, P = 0.012) rather than Western population (pooled OR = 0.89, 95% CI = 0.52-1.54, P = 0.685). Sensitivity analysis suggested the results of this meta-analyses were relatively stable. No publication bias was detected. CONCLUSION Metformin use is beneficial for reducing the risk of thyroid cancer. For further investigation, more well-designed studies are still needed to elucidate the association between metformin use and the risk of thyroid cancer.
Collapse
Affiliation(s)
- Hailong Li
- Department of Clinical Medicine, Sun Yat-Sen University, No.74 Nonglin Road, Guangzhou, 510030, Guangdong, People's Republic of China
| | - Yue Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
| | - Lei Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
| | - Wenzhi Yang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
| | - Zongshi Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China
| | - Mengqing Liu
- Department of Clinical Medicine, School of Chaohu Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Hui Tao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.
| | - Jie Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, People's Republic of China.
| |
Collapse
|
22
|
De Falco V, Vitale P, Brancati C, Cicero G, Auriemma A, Addeo R. Prognostic value of diabetes and metformin use in a real-life population of head and neck cancer patients. Front Med (Lausanne) 2023; 10:1252407. [PMID: 37746082 PMCID: PMC10514209 DOI: 10.3389/fmed.2023.1252407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Head and neck carcinoma (HNC) is a disease with a poor prognosis despite currently available treatments. The management of patients with this tumor is often complicated by several comorbidities. Among these, diabetes is the second most frequent and its influence on the prognosis is not known. Methods In this work, we collected data on progression free survival (PFS) and overall survival (OS) of one hundred twenty-three patients with HNC who received biweekly cetuximab maintenance treatment after first-line chemotherapy. We then compared the survival of nondiabetic patients versus diabetics' one. Results Surprisingly, both PFS (4 vs. 5 months, HR 2.297, p < 0.0001) and OS (7 vs. 10 months, HR 3.138, p < 0.0001) were in favor of diabetic patients, even after excluding other clinical confounding factors. In addition, we also studied survivals in patients taking metformin, a widely used oral antidiabetic drug that has demonstrated antitumor efficacy in some cancers. Indeed, diabetic patients taking metformin had better PFS and OS than those not taking it, 7 vs. 5 months (HR 0.56, p = 0.0187) and 11 vs. 8.5 months (HR 0.53, p = 0.017), respectively. Discussion In conclusion, real-world outcomes of biweekly cetuximab maintenance remain comparable to clinical trials. The prognostic role of diabetes and metformin was confirmed to be significant in our series, but further prospective studies are needed for a definitive evaluation.
Collapse
Affiliation(s)
- Vincenzo De Falco
- Medical Oncology Unit, San Giovanni di Dio Hospital, Frattamaggiore, Italy
| | - Pasquale Vitale
- Medical Oncology Unit, San Giovanni di Dio Hospital, Frattamaggiore, Italy
| | - Christian Brancati
- Medical Oncology Unit, San Giovanni di Dio Hospital, Frattamaggiore, Italy
| | - Giuseppe Cicero
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | | | - Raffaele Addeo
- Medical Oncology Unit, San Giovanni di Dio Hospital, Frattamaggiore, Italy
| |
Collapse
|
23
|
颜 畅, 刘 爽, 宋 庆, 胡 艺. [Metformin inhibits self-renewal of colorectal cancer stem cells by inhibiting mitochondrial oxidative phosphorylation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1279-1286. [PMID: 37712263 PMCID: PMC10505579 DOI: 10.12122/j.issn.1673-4254.2023.08.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE To investigate the mechanism of metformin for inhibiting self-renewal of colorectal cancer stem cells (CSCs). METHODS CSCs were sorted from Wnt reporter- transfected colorectal cancer patient-derived organoids (PDOs) by fluorescence-activated cell sorting (FACS) and treated with metformin. The changes in self-renewal of the cells were assessed using sphere formation, colony formation and limiting dilution assays. The mRNA expressions of genes related with stemness and differentiation and Wnt target genes was detected by qRT-PCR. Wnt activity was assessed using flow cytometry in the CSCs. Seahorse analysis was used to evaluate cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) after metformin treatment. Mitochondrial membrane potential levels were detected with TMRE staining, and reactive oxygen species (ROS) levels were detected using MitoSOX staining. Galactose (10 mmol/L), metformin (10 μmol/L), NAC (5 mmol/L), and galactose+metformin were used to modulate ROS levels in the CSCs, and sphere-formation assay and flow cytometry were used to assess the changes in self- renewal capacity and Wnt activity. The effect of lentiviral transfection of yeast NADH dehydrogenase NDI1 on TMRE staining, MitoSOX staining and Wnt activity in the CSCs were analyzed with flow cytometry. RESULTS Metformin significantly decreased the capacities of CSCs to form spheres, colonies and xenografts and reduced Wnt activity in the cells (P < 0.01). The mRNA levels of stemness-related genes and Wnt target genes decreased significantly while those of differentiation-related genes increased in metformin-treated CSCs (P < 0.05), which also showed significantly decreased OCR, TMRE and ROS levels with enhanced ECAR (P < 0.001). Galactose significantly increased sphereforming capacity, ROS levels and Wnt activity of the cells, and these effects were significantly inhibited by metformin (P < 0.05). Transfection of the CSCs with NDI1 significantly attenuated the inhibitory effects of metformin on proportion of CSCs and Wnt signaling pathway activity. CONCLUSION Metformin reduces mitochondrial oxidative phosphorylation and ROS levels by inhibiting mitochondrial complex Ⅰ, thereby suppressing Wnt signaling pathway to reduce selfrenewal ability of colorectal CSCs.
Collapse
Affiliation(s)
- 畅 颜
- 北京大学深圳医院胃肠外科,广东 深圳 518036Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - 爽 刘
- 北京大学深圳医院胃肠外科,广东 深圳 518036Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - 庆志 宋
- 北京大学深圳医院胃肠外科,广东 深圳 518036Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - 艺冰 胡
- 北京大学深圳医院乳甲外科,广东 深圳 518036Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
24
|
Dimou N, Kim AE, Flanagan O, Murphy N, Diez-Obrero V, Shcherbina A, Aglago EK, Bouras E, Campbell PT, Casey G, Gallinger S, Gruber SB, Jenkins MA, Lin Y, Moreno V, Ruiz-Narvaez E, Stern MC, Tian Y, Tsilidis KK, Arndt V, Barry EL, Baurley JW, Berndt SI, Bézieau S, Bien SA, Bishop DT, Brenner H, Budiarto A, Carreras-Torres R, Cenggoro TW, Chan AT, Chang-Claude J, Chanock SJ, Chen X, Conti DV, Dampier CH, Devall M, Drew DA, Figueiredo JC, Giles GG, Gsur A, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jordahl K, Kawaguchi E, Keku TO, Larsson SC, Le Marchand L, Lewinger JP, Li L, Mahesworo B, Morrison J, Newcomb PA, Newton CC, Obon-Santacana M, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Peoples AR, Pharoah PDP, Platz EA, Potter JD, Rennert G, Scacheri PC, Schoen RE, Su YR, Tangen CM, Thibodeau SN, Thomas DC, Ulrich CM, Um CY, van Duijnhoven FJB, Visvanathan K, Vodicka P, Vodickova L, White E, Wolk A, Woods MO, Qu C, Kundaje A, Hsu L, Gauderman WJ, Gunter MJ, Peters U. Probing the diabetes and colorectal cancer relationship using gene - environment interaction analyses. Br J Cancer 2023; 129:511-520. [PMID: 37365285 PMCID: PMC10403521 DOI: 10.1038/s41416-023-02312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Diabetes is an established risk factor for colorectal cancer. However, the mechanisms underlying this relationship still require investigation and it is not known if the association is modified by genetic variants. To address these questions, we undertook a genome-wide gene-environment interaction analysis. METHODS We used data from 3 genetic consortia (CCFR, CORECT, GECCO; 31,318 colorectal cancer cases/41,499 controls) and undertook genome-wide gene-environment interaction analyses with colorectal cancer risk, including interaction tests of genetics(G)xdiabetes (1-degree of freedom; d.f.) and joint testing of Gxdiabetes, G-colorectal cancer association (2-d.f. joint test) and G-diabetes correlation (3-d.f. joint test). RESULTS Based on the joint tests, we found that the association of diabetes with colorectal cancer risk is modified by loci on chromosomes 8q24.11 (rs3802177, SLC30A8 - ORAA: 1.62, 95% CI: 1.34-1.96; ORAG: 1.41, 95% CI: 1.30-1.54; ORGG: 1.22, 95% CI: 1.13-1.31; p-value3-d.f.: 5.46 × 10-11) and 13q14.13 (rs9526201, LRCH1 - ORGG: 2.11, 95% CI: 1.56-2.83; ORGA: 1.52, 95% CI: 1.38-1.68; ORAA: 1.13, 95% CI: 1.06-1.21; p-value2-d.f.: 7.84 × 10-09). DISCUSSION These results suggest that variation in genes related to insulin signaling (SLC30A8) and immune function (LRCH1) may modify the association of diabetes with colorectal cancer risk and provide novel insights into the biology underlying the diabetes and colorectal cancer relationship.
Collapse
Affiliation(s)
- Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France.
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Orlagh Flanagan
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, 08908, Spain
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, 08908, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Barcelona, 08908, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, 08908, Spain
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Elom K Aglago
- School of Public Health, Imperial College London, London, United Kingdom
| | - Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Graham Casey
- Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Stephen B Gruber
- Center for Precision Medicine, Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Victor Moreno
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, 08908, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Mariana C Stern
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Kostas K Tsilidis
- School of Public Health, Imperial College London, London, United Kingdom
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique médicale, F-44000, Nantes, France
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - D Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 8908, Barcelona, Spain
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher H Dampier
- Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, USA
- Department of General Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Matthew Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - David A Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kristina Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Christina C Newton
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Mireia Obon-Santacana
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Avda Gran Via Barcelona 199-203, 08908L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Anita R Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Duncan C Thomas
- Department of Population and Public Health Sciences & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UH, USA
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Kala Visvanathan
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
- School of Public Health, Imperial College London, London, United Kingdom
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Guo D, Zhang S, Gao Y, Shi J, Wang X, Zhang Z, Zhang Y, Wang Y, Zhao K, Li M, Wang A, Wang P, Gou Y, Zhang M, Liu M, Zhang Y, Chen R, Sun J, Wang S, Wu X, Liang Z, Chen J, Lang J. Exploring the cellular and molecular differences between ovarian clear cell carcinoma and high-grade serous carcinoma using single-cell RNA sequencing and GEO gene expression signatures. Cell Biosci 2023; 13:139. [PMID: 37525249 PMCID: PMC10391916 DOI: 10.1186/s13578-023-01087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
The two most prevalent subtypes of epithelial ovarian carcinoma (EOC) are ovarian clear cell carcinoma (OCCC) and high-grade serous ovarian carcinoma (HGSC). Patients with OCCC have a poor prognosis than those with HGSC due to chemoresistance, implying the need for novel treatment target. In this study, we applied single-cell RNA sequencing (scRNA-seq) together with bulk RNA-seq data from the GEO (Gene Expression Omnibus) database (the GSE189553 dataset) to characterize and compare tumor heterogeneity and cell-level evolution between OCCC and HGSC samples. To begin, we found that the smaller proportion of an epithelial OCCC cell subset in the G2/M phase might explain OCCC chemoresistance. Second, we identified a possible pathogenic OCCC epithelial cell subcluster that overexpresses LEFTY1. Third, novel biomarkers separating OCCC from HGSC were discovered and subsequently validated on a wide scale using immunohistochemistry. Amine oxidase copper containing 1 (AOC1) was preferentially expressed in OCCC over HGSC, while S100 calcium-binding protein A2 (S100A2) was detected less frequently in OCCC than in HGSC. In addition, we discovered that metabolic pathways were enriched in the epithelial compartment of the OCCC samples. In vitro experiments verified that inhibition of oxidative phosphorylation or glycolysis pathways exerted direct antitumor effects on both OCCC and HGSC cells, while targeting glutamine metabolism or ferroptosis greatly attenuated chemosensitivity only in OCCC cells. Finally, to determine whether there were any variations in immune cell subsets between OCCC and HGSC, data from scRNA-seq and mass cytometry were pooled for analysis. In summary, our work provides the first holistic insights into the cellular and molecular distinctions between OCCC and HGSC and is a valuable source for discovering new targets to leverage in clinical treatments to improve the poor prognosis of patients with OCCC.
Collapse
Affiliation(s)
- Dan Guo
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sumei Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yike Gao
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jinghua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Xiaoxi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zixin Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaran Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuming Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Kun Zhao
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mei Li
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Anqi Wang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pan Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanqin Gou
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Miao Zhang
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meiyu Liu
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhan Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Rui Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jian Sun
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Shu Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China.
| | - Xunyao Wu
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jie Chen
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
26
|
Drzał A, Dziurman G, Hoła P, Lechowski J, Delalande A, Swakoń J, Pichon C, Elas M. Murine Breast Cancer Radiosensitization Using Oxygen Microbubbles and Metformin: Vessels Are the Key. Int J Mol Sci 2023; 24:12156. [PMID: 37569531 PMCID: PMC10418665 DOI: 10.3390/ijms241512156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Radiotherapy is a cornerstone of cancer treatment, but tumor hypoxia and resistance to radiation remain significant challenges. Vascular normalization has emerged as a strategy to improve oxygenation and enhance therapeutic outcomes. In this study, we examine the radiosensitization potential of vascular normalization using metformin, a widely used anti-diabetic drug, and oxygen microbubbles (OMBs). We investigated the synergistic action of metformin and OMBs and the impact of this therapeutic combination on the vasculature, oxygenation, invasiveness, and radiosensitivity of murine 4T1 breast cancer. We employed in vivo Doppler ultrasonographic imaging for vasculature analysis, electron paramagnetic resonance oximetry, and immunohistochemical assessment of microvessels, perfusion, and invasiveness markers. Our findings demonstrate that both two-week metformin therapy and oxygen microbubble treatment normalize abnormal cancer vasculature. The combination of metformin and OMB yielded more pronounced and sustained effects than either treatment alone. The investigated therapy protocols led to nearly twice the radiosensitivity of 4T1 tumors; however, no significant differences in radiosensitivity were observed between the various treatment groups. Despite these improvements, resistance to treatment inevitably emerged, leading to the recurrence of hypoxia and an increased incidence of metastasis.
Collapse
Affiliation(s)
- Agnieszka Drzał
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Gabriela Dziurman
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Paweł Hoła
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Jakub Lechowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| | - Anthony Delalande
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France; (A.D.); (C.P.)
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Jan Swakoń
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, Poland;
| | - Chantal Pichon
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France; (A.D.); (C.P.)
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
- Institut Universitaire de France, 75231 Paris, France
| | - Martyna Elas
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, 30-387 Krakow, Poland; (A.D.); (G.D.); (P.H.); (J.L.)
| |
Collapse
|
27
|
Lai IL, You JF, Tsai WS, Hsu YJ, Chern YJ, Wu MY. Metformin increases pathological responses to rectal cancers with neoadjuvant chemoradiotherapy: a systematic review and meta-analysis. World J Surg Oncol 2023; 21:224. [PMID: 37491250 PMCID: PMC10369710 DOI: 10.1186/s12957-023-03087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND To summarize the chemo-radio effect of metformin in rectal cancers with neoadjuvant chemoradiotherapy on pathological response, tumor regression grade (TRG), and T/N downstaging. METHODS PubMed, MEDLINE, Embase, and Cochrane Database of collected reviews were searched up to June 30, 2022. This study conducted systematic review and meta-analysis based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) sheet. Odds ratios (ORs) and confidence intervals (CIs) which calculated by random-effects models were displayed in forest plots. Newcastle-Ottawa scale was used to assess the risk of bias of the observational cohort studies. RESULTS This systematic review and meta-analysis comprised eight cohorts out of seven studies, with 2294 patients in total. We performed two-way comparison for metformin in diabetic patients vs (1) non-metformin drugs in diabetic patients and (2) nondiabetic patients. In diabetes patient studies, the metformin group had a significantly increased pathological response on TRG (OR: 3.28, CI: 2.01-5.35, I2 = 0%, p < 0.001) and T downstaging (OR: 2.14, CI: 1.24-3.67, I2 = 14%, p = 0.006) in comparison with a non-metformin group. When compared with nondiabetic patients, the pathological response on TRG (OR: 2.67, CI: 1.65-4.32, I2 = 43%, p < 0.001) and T downstaging (OR: 1.96, CI: 1.04-3.71, I2 = 66%, p = 0.04) were also higher in metformin group. The limitation was that no randomized controlled trials were available based on current literature review. Small sample sizes for diabetic metformin or non-metformin users in rectal cancer patients reduced the power of the study. CONCLUSIONS For patients with rectal cancer and treated with neoadjuvant chemoradiotherapy, metformin administration in diabetic patients increased the pathological response on tumor-regression grade and T downstaging. Further well-designed, high-quality randomized controlled trials are required to reveal the actual effect of metformin.
Collapse
Affiliation(s)
- I-Li Lai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Guei-Shan District, Linkou Branch, No. 5, Fu-Hsing Street, Taoyuan City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No. 259, Wenhua 1St Rd, Guei-Shan District, Taoyuan City, Taiwan
- Department of SurgeryTen-Chen Medical GroupZhongli Dist., Zhong-Li Metropolitan Hospital, Yanping Rd, No. 155, Taoyuan City, Taiwan
| | - Jeng-Fu You
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Guei-Shan District, Linkou Branch, No. 5, Fu-Hsing Street, Taoyuan City, Taiwan
| | - Wen-Sy Tsai
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Guei-Shan District, Linkou Branch, No. 5, Fu-Hsing Street, Taoyuan City, Taiwan
| | - Yu-Jen Hsu
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Guei-Shan District, Linkou Branch, No. 5, Fu-Hsing Street, Taoyuan City, Taiwan
| | - Yih-Jong Chern
- Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, Guei-Shan District, Linkou Branch, No. 5, Fu-Hsing Street, Taoyuan City, Taiwan
| | - Ming-Ying Wu
- Department of Dermatology, Chang Gung Memorial Hospital, Guei-Shan District, Linkou Branch, No. 5, Fu-Hsing Street, Taoyuan City, Taiwan.
- Institute of Epidemiology and Preventive Medicine, Zhongzheng Dist., National Taiwan University, Xuzhou Rd, No. 17, Taipei City, Taiwan.
| |
Collapse
|
28
|
Chen Y, Mushashi F, Son S, Bhatti P, Dummer T, Murphy RA. Diabetes medications and cancer risk associations: a systematic review and meta-analysis of evidence over the past 10 years. Sci Rep 2023; 13:11844. [PMID: 37481610 PMCID: PMC10363143 DOI: 10.1038/s41598-023-38431-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 07/07/2023] [Indexed: 07/24/2023] Open
Abstract
Diabetes medications may modify the risk of certain cancers. We systematically searched MEDLINE, Embase, Web of Science, and Cochrane CENTRAL from 2011 to March 2021 for studies evaluating associations between diabetes medications and the risk of breast, lung, colorectal, prostate, liver, and pancreatic cancers. A total of 92 studies (3 randomized controlled trials, 64 cohort studies, and 25 case-control studies) were identified in the systematic review, involving 171 million participants. Inverse relationships with colorectal (n = 18; RR = 0.85; 95% CI = 0.78-0.92) and liver cancers (n = 10; RR = 0.55; 95% CI = 0.46-0.66) were observed in biguanide users. Thiazolidinediones were associated with lower risks of breast (n = 6; RR = 0.87; 95% CI = 0.80-0.95), lung (n = 6; RR = 0.77; 95% CI = 0.61-0.96) and liver (n = 8; RR = 0.83; 95% CI = 0.72-0.95) cancers. Insulins were negatively associated with breast (n = 15; RR = 0.90; 95% CI = 0.82-0.98) and prostate cancer risks (n = 7; RR = 0.74; 95% CI = 0.56-0.98). Positive associations were found between insulin secretagogues and pancreatic cancer (n = 5; RR = 1.26; 95% CI = 1.01-1.57), and between insulins and liver (n = 7; RR = 1.74; 95% CI = 1.08-2.80) and pancreatic cancers (n = 8; RR = 2.41; 95% CI = 1.08-5.36). Overall, biguanide and thiazolidinedione use carried no risk, or potentially lower risk of some cancers, while insulin secretagogue and insulin use were associated with increased pancreatic cancer risk.
Collapse
Affiliation(s)
- Yixian Chen
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | - Surim Son
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Parveen Bhatti
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Cancer Control Research, BC Cancer, Vancouver, British Columbia, Canada
| | - Trevor Dummer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel A Murphy
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Cancer Control Research, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Zhao JY, Sheng XL, Li CJ, Qin T, He RD, Dai GY, Cao Y, Lu HB, Duan CY, Hu JZ. Metformin promotes angiogenesis and functional recovery in aged mice after spinal cord injury by adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway. Neural Regen Res 2023; 18:1553-1562. [PMID: 36571362 PMCID: PMC10075126 DOI: 10.4103/1673-5374.360245] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury. However, its effect on spinal cord injury in aged mice remains unclear. Considering the essential role of angiogenesis during the regeneration process, we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells, thereby promoting microvascular regeneration in aged mice after spinal cord injury. In this study, we established young and aged mouse models of contusive spinal cord injury using a modified Allen method. We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord. Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro. Furthermore, intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord, thereby improving neurological function. The role of metformin was reversed by compound C, an adenosine monophosphate-activated protein kinase inhibitor, both in vivo and in vitro, suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury. These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway, thereby improving the neurological function of aged mice after spinal cord injury.
Collapse
Affiliation(s)
- Jin-Yun Zhao
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Xiao-Long Sheng
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Cheng-Jun Li
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Tian Qin
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Run-Dong He
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Guo-Yu Dai
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Yong Cao
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Hong-Bin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health; Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Chun-Yue Duan
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| | - Jian-Zhong Hu
- Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University; Hunan Engineering Research Center of Sports and Health, Changsha, Hunan Province, China
| |
Collapse
|
30
|
Zhang C, Zhang L, Zhang W, Guan B, Li S. An adjusted Asia-Pacific colorectal screening score system to predict advanced colorectal neoplasia in asymptomatic Chinese patients. BMC Gastroenterol 2023; 23:223. [PMID: 37386357 DOI: 10.1186/s12876-023-02860-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
PURPOSE The Asia-Pacific Colorectal Screening (APCS) score and its derivatives have been used to predict advanced colorectal neoplasia (ACN). However, it remains unknown whether they apply to the current Chinese population in general clinical practice. Therefore, we aimed to update the APCS score system by applying data from two independent asymptomatic populations to predict the risk of ACN in China. METHODS We developed an adjusted APCS (A-APCS) score by using the data of asymptomatic Chinese patients undergoing colonoscopies from January 2014 to December 2018. Furthermore, we validated this system in another cohort of 812 patients who underwent screening colonoscopy between January and December 2021. The discriminative calibration ability of the A-APCS and APCS scores was comparatively evaluated. RESULTS Univariate and multivariate logistic regression were applied to assess the risk factors for ACN, and an adjusted scoring system of 0 to 6.5 points was schemed according to the results. Utilizing the developed score, 20.2%, 41.2%, and 38.6% of patients in the validation cohort were classified as average, moderate, and high risk, respectively. The corresponding ACN incidence rates were 1.2%, 6.0%, and 11.1%, respectively. In addition, the A-APCS score (c-statistics: 0.68 for the derivation and 0.80 for the validation cohort) showed better discriminative power than using predictors of APCS alone. CONCLUSIONS The A-APCS score may be simple and useful in clinical applications for predicting ACN risk in China.
Collapse
Affiliation(s)
- Chenchen Zhang
- Department of Gastroenterology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Beiyuan Street & 247, Jinan, 0531, Shandong, China
| | - Liting Zhang
- Department of Gastrointestinal Endoscopy Center, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weihao Zhang
- Department of Gastroenterology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Beiyuan Street & 247, Jinan, 0531, Shandong, China
| | - Bingxin Guan
- Department of Pathology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuai Li
- Department of Gastroenterology, the Second Hospital, Cheeloo College of Medicine, Shandong University, Beiyuan Street & 247, Jinan, 0531, Shandong, China.
| |
Collapse
|
31
|
Lee DE, Lee GY, Lee HM, Choi SY, Lee SJ, Kwon OS. Synergistic apoptosis by combination of metformin and an O-GlcNAcylation inhibitor in colon cancer cells. Cancer Cell Int 2023; 23:108. [PMID: 37268905 DOI: 10.1186/s12935-023-02954-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Although autophagy is an important mediator of metformin antitumor activity, the role of metformin in the crosstalk between autophagy and apoptosis remains unclear. The aim was to confirm the anticancer effect by inducing apoptosis by co-treatment with metformin and OSMI-1, an inhibitor of O-GlcNAcylation, in colon cancer cells. METHODS Cell viability was measured by MTT in colon cancer cell lines HCT116 and SW620 cells. Co-treatment with metformin and OSMI-1 induced autophagy and apoptosis, which was analyzed using western blot, reverse transcription-polymerase chain reaction (RT-PCR) analysis, and fluorescence-activated cell sorting (FACS). Combined treatment with metformin and OSMI-1 synergistically inhibit the growth of HCT116 was confirmed by xenograft tumors. RESULTS We showed that metformin inhibited mammalian target of rapamycin (mTOR) activity by inducing high levels of C/EBP homologous protein (CHOP) expression through endoplasmic reticulum (ER) stress and activating adenosine monophosphate-activated protein kinase (AMPK) to induce autophagy in HCT116 cells. Interestingly, metformin increased O-GlcNAcylation and glutamine:fructose-6-phosphate amidotransferase (GFAT) levels in HCT116 cells. Thus, metformin also blocks autophagy by enhancing O-GlcNAcylation, whereas OSMI-1 increases autophagy via ER stress. In contrast, combined metformin and OSMI-1 treatment resulted in continuous induction of autophagy and disruption of O-GlcNAcylation homeostasis, resulting in excessive autophagic flux, which synergistically induced apoptosis. Downregulation of Bcl2 promoted apoptosis via the activation of c-Jun N-terminal kinase (JNK) and CHOP overexpression, synergistically inducing apoptosis. The activation of IRE1α/JNK signaling by OSMI-1 and PERK/CHOP signaling by metformin combined to inhibit Bcl2 activity, ultimately leading to the upregulation of cytochrome c release and activation of caspase-3. CONCLUSIONS In conclusion, combinatorial treatment of HCT116 cells with metformin and OSMI-1 resulted in more synergistic apoptosis being induced by enhancement of signal activation through ER stress-induced signaling rather than the cell protective autophagy function. These results in HCT116 cells were also confirmed in xenograft models, suggesting that this combination strategy could be utilized for colon cancer treatment.
Collapse
Affiliation(s)
- Da Eun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Geun Yong Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hae Min Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Su Jin Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Oh-Shin Kwon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
32
|
Han R, Li J, Wang Y, He T, Zheng J, He Y. Low BMI patients with advanced EGFR mutation-positive NSCLC can get a better outcome from metformin plus EGFR-TKI as first-line therapy: A secondary analysis of a phase 2 randomized clinical trial. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:119-124. [PMID: 39170825 PMCID: PMC11332817 DOI: 10.1016/j.pccm.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 08/23/2024]
Abstract
Background The synergistic association between metformin and epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has been confirmed in in vitro studies. It is still controversial which patients can benefit from metformin plus EGFR-TKIs treatment. Body mass index (BMI) was proved to be independently associated with prolonged progression-free survival (PFS) and overall survival (OS). This study aimed to investigate whether BMI is associated with the synergistic effect of metformin and EGFR-TKIs in advanced EGFR mutation (EGFRm)-positive non-small cell lung cancer (NSCLC) among nondiabetic Asian population. Methods We performed a post hoc analysis of a prospective, double-blind phase II randomized clinical trial (COAST, NCT01864681), which enrolled 224 patients without diabetes with treatment-naïve stage IIIB-IV EGFRm NSCLC. We stratified patients into those with a high BMI (≥24 kg/m2) and those with a low BMI (<24 kg/m2) to allow an analysis of the difference in PFS and OS between the two groups. The PFS and OS were analyzed using Kaplan-Meier curves, and the differences between groups were compared using log-rank test. Results In the univariate analysis, patients who had a high BMI (n = 56) in the gefitinib + metformin group (n = 28) did not have a better PFS (8.84 months vs. 11.67 months; P = 0.351) or OS (15.58 months vs. 24.36 months; P = 0.095) than those in the gefitinib + placebo group (n = 28). Similar results were also observed in the low-BMI groups. Strikingly, in the metformin plus gefitinib group, patients who had low BMI (n = 69) showed significantly better OS than those with high BMI (24.89 months [95% CI, 20.68 months-not reached] vs. 15.58 months [95% CI, 13.78-31.53 months]; P = 0.007), but this difference was not observed in PFS (10.78 months vs. 8.84 months; P = 0.285). Conclusions Our study showed that nondiabetic Asian advanced NSCLC patients with EGFR mutations who have low BMI seem to get better OS from metformin plus EGFR-TKI treatment.
Collapse
Affiliation(s)
| | | | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Tingting He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| |
Collapse
|
33
|
Vedire YR, Mukherjee S, Dondapati S, Yendamuri S. Association between visceral obesity, metformin use, and recurrence risk in early-stage colorectal cancer. Sci Rep 2023; 13:8401. [PMID: 37225730 DOI: 10.1038/s41598-023-34690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
We sought to investigate the association between visceral obesity with disease recurrence and survival in early-stage colorectal cancer (CRC) patients. We also wanted to examine if such an association, if exists, is influenced by metformin use. Stage I/II CRC adenocarcinoma patients treated surgically were identified. L3 level CT VFI (visceral fat index) was used as a metric of visceral obesity and was calculated as the proportion of total fat area composed of visceral fat. N = 492. 53% were males, 90% were Caucasians, 35% had stage I disease, and 14% used metformin. 20.3% patients developed a recurrence over a median follow-up of 56 months. VFI was associated with both RFS and OS in a multivariate model, but not BMI. The final multivariate model for RFS included an interaction term for VFI and metformin (p = 0.04). Confirming this result, subgroup analysis showed an increasing VFI was associated with a poor RFS (p = 0.002), and OS (p < 0.001) in metformin non-users only and metformin use was associated with a better RFS only in the top VFI tertile (p = 0.01). Visceral obesity, but not BMI, is associated with recurrence risk and poorer survival in stage I/II CRC. Interestingly, this association is influenced by metformin use.
Collapse
Affiliation(s)
- Yeshwanth Reddy Vedire
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Sarbajit Mukherjee
- Department of Medical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Sumedha Dondapati
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
34
|
Lepore Signorile M, Grossi V, Fasano C, Simone C. Colorectal Cancer Chemoprevention: A Dream Coming True? Int J Mol Sci 2023; 24:ijms24087597. [PMID: 37108756 PMCID: PMC10140862 DOI: 10.3390/ijms24087597] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) is one of the deadliest forms of cancer worldwide. CRC development occurs mainly through the adenoma-carcinoma sequence, which can last decades, giving the opportunity for primary prevention and early detection. CRC prevention involves different approaches, ranging from fecal occult blood testing and colonoscopy screening to chemoprevention. In this review, we discuss the main findings gathered in the field of CRC chemoprevention, focusing on different target populations and on various precancerous lesions that can be used as efficacy evaluation endpoints for chemoprevention. The ideal chemopreventive agent should be well tolerated and easy to administer, with low side effects. Moreover, it should be readily available at a low cost. These properties are crucial because these compounds are meant to be used for a long time in populations with different CRC risk profiles. Several agents have been investigated so far, some of which are currently used in clinical practice. However, further investigation is needed to devise a comprehensive and effective chemoprevention strategy for CRC.
Collapse
Affiliation(s)
- Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
35
|
Piao S, Lee I, Kim S, Park H, Nagar H, Choi SJ, Vu GH, Kim M, Lee EO, Jeon BH, Kim DW, Seo Y, Kim CS. CRIF1 siRNA-Encapsulated PLGA Nanoparticles Suppress Tumor Growth in MCF-7 Human Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24087453. [PMID: 37108616 PMCID: PMC10138627 DOI: 10.3390/ijms24087453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) system dysfunction in cancer cells has been exploited as a target for anti-cancer therapeutic intervention. The downregulation of CR6-interacting factor 1 (CRIF1), an essential mito-ribosomal factor, can impair mitochondrial function in various cell types. In this study, we investigated whether CRIF1 deficiency induced by siRNA and siRNA nanoparticles could suppress MCF-7 breast cancer growth and tumor development, respectively. Our results showed that CRIF1 silencing decreased the assembly of mitochondrial OXPHOS complexes I and II, which induced mitochondrial dysfunction, mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential depolarization, and excessive mitochondrial fission. CRIF1 inhibition reduced p53-induced glycolysis and apoptosis regulator (TIGAR) expression, as well as NADPH synthesis, leading to additional increases in ROS production. The downregulation of CRIF1 suppressed cell proliferation and inhibited cell migration through the induction of G0/G1 phase cell cycle arrest in MCF-7 breast cancer cells. Similarly, the intratumoral injection of CRIF1 siRNA-encapsulated PLGA nanoparticles inhibited tumor growth, downregulated the assembly of mitochondrial OXPHOS complexes I and II, and induced the expression of cell cycle protein markers (p53, p21, and p16) in MCF-7 xenograft mice. Thus, the inhibition of mitochondrial OXPHOS protein synthesis through CRIF1 deletion destroyed mitochondrial function, leading to elevated ROS levels and inducing antitumor effects in MCF-7 cells.
Collapse
Affiliation(s)
- Shuyu Piao
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ikjun Lee
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seonhee Kim
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyewon Park
- Department of Anatomy and Cell Biology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Harsha Nagar
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Giang-Huong Vu
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Minsoo Kim
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Eun-Ok Lee
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Byeong-Hwa Jeon
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy and Cell Biology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Youngduk Seo
- Department of Nuclear Medicine, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
36
|
Lin Y, Liu Y, Gao Z, Jing D, Bi R, Cui X, Cao Q, Zhao Q, Gao R, Su Y, Liu S, Zhao M, Yang Y, Chen A, Dai B, Gao X. Beta-adrenergic receptor blocker propranolol triggers anti-tumor immunity and enhances irinotecan therapy in mice colorectal cancer. Eur J Pharmacol 2023; 949:175718. [PMID: 37054937 DOI: 10.1016/j.ejphar.2023.175718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Colorectal cancer (CRC) stands as the second leading cause of cancer-related deaths worldwide with limited available medicines. While drug repurposing comes as a promising strategy for cancer treatment, we discovered that propranolol (Prop), a non-selective β1 and β2 adrenergic receptor blocker, significantly inhibited the development of subcutaneous CT26 CRC and AOM/DSS-induced CRC models. The RNA-seq analysis highlighted the activated immune pathways after Prop treatment, with GO analysis enriched in T-cell differentiation, leukocyte-mediated immunity, regulation of leukocyte-mediated cytotoxicity, and interferon-gamma production. Routine analyses of blood revealed a decrease in neutrophil to lymphocyte ratio, a biomarker of systemic inflammation, and a prognostic indicator in the Prop-treated groups in both CRC models. Analysis of the tumor-infiltrating immune cells exhibited that Prop regressed the exhaustion of CD4+ and CD8+ T cells in the CT26-derived graft models, which was further corroborated in the AOM/DSS-induced models. Furthermore, bioinformatic analysis fitted well with the experimental data, showing that β2 adrenergic receptor (ADRB2) was positively correlated with T-cell exhaustion signature in various tumors. The in vitro experiment showed no direct effect of Prop on CT26 cell viability, while T cells were activated with significantly-upregulated production of IFN-γ and Granzyme B. Consistently, Prop was unable to restrain CT26 tumor growth in nude mice. At last, the combination of Prop and the chemotherapeutic drug Irinotecan acted out the strongest inhibition in CT26 tumor progress. Collectively, we repurpose Prop as a promising and economical therapeutic drug for CRC treatment and highlight T-cell as its target.
Collapse
Affiliation(s)
- Yanting Lin
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yiming Liu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Zhenhua Gao
- Shandong University Cancer Center, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dongquan Jing
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Ran Bi
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Xinmeng Cui
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Qiuhua Cao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Qixiang Zhao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Rui Gao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yali Su
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Siliang Liu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Mingrui Zhao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Anqi Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| | - Xinghua Gao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| |
Collapse
|
37
|
Morrison KR, Wang T, Chan KY, Trotter EW, Gillespie A, Michael MZ, Oakhill JS, Hagan IM, Petersen J. Elevated basal AMP-activated protein kinase activity sensitizes colorectal cancer cells to growth inhibition by metformin. Open Biol 2023; 13:230021. [PMID: 37042113 PMCID: PMC10090877 DOI: 10.1098/rsob.230021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/13/2023] Open
Abstract
Expression and activity of the AMP-activated protein kinase (AMPK) α1 catalytic subunit of the heterotrimeric kinase significantly correlates with poor outcome for colorectal cancer patients. Hence there is considerable interest in uncovering signalling vulnerabilities arising from this oncogenic elevation of AMPKα1 signalling. We have therefore attenuated mammalian target of rapamycin (mTOR) control of AMPKα1 to generate a mutant colorectal cancer in which AMPKα1 signalling is elevated because AMPKα1 serine 347 cannot be phosphorylated by mTORC1. The elevated AMPKα1 signalling in this HCT116 α1.S347A cell line confers hypersensitivity to growth inhibition by metformin. Complementary chemical approaches confirmed this relationship in both HCT116 and the genetically distinct HT29 colorectal cells, as AMPK activators imposed vulnerability to growth inhibition by metformin in both lines. Growth inhibition by metformin was abolished when AMPKα1 kinase was deleted. We conclude that elevated AMPKα1 activity modifies the signalling architecture in such a way that metformin treatment compromises cell proliferation. Not only does this mutant HCT116 AMPKα1-S347A line offer an invaluable resource for future studies, but our findings suggest that a robust biomarker for chronic AMPKα1 activation for patient stratification could herald a place for the well-tolerated drug metformin in colorectal cancer therapy.
Collapse
Affiliation(s)
- Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Kuan Yoow Chan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Eleanor W. Trotter
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Ari Gillespie
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Flinders Centre for Innovation in Cancer, Dept. Gastroenterology and Hepatology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Victoria 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria 3000, Australia
| | - Iain M. Hagan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, SouthAustralia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
38
|
Cancer-associated fibroblasts-derived exosomes from chemoresistant patients regulate cisplatin resistance and angiogenesis by delivering VEGFA in colorectal cancer. Anticancer Drugs 2023; 34:422-430. [PMID: 36730310 PMCID: PMC9891287 DOI: 10.1097/cad.0000000000001445] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to investigate the effect of chemoresistant cancer-associated fibroblasts (R-CAFs) against cisplatin (DDP) on colorectal cancer (CRC) progression. First, clinical tissue samples of chemoresistant or chemosensitive CRC patients were collected to isolate R-CAFs or chemosensitive CAFs (S-CAFs), respectively. HT29 cells or HUVECs were co-cultured with R-CAFs by transwell device. Then the proliferation and apoptosis of HT29 cells were detected with Cell Counting Kit-8 (CCK-8) and flow cytometry. Transwell assay and tube formation assay was used to detect the migration and angiogenesis of HUVECs. In addition, a colorectal cancer transplantation model was established subcutaneously in nude mice by injecting stably transfected HT29 cells and exosomes from different CAF groups, and then the tumor volume and weight were measured and recorded. Hematoxylin and eosin staining, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) staining were performed to characterize the histopathological characteristics and apoptosis level of tumor tissues, respectively. S-CAFs and R-CAFs were isolated successfully. HT29 cell co-culture with R-CAFs significantly affected the proliferation and apoptosis of HT29 cells. Exosomes derived from R-CAFs (R-CAFs-Exo) were delivered to HT29 cells, which could induce viability, suppress apoptosis and accelerate the angiogenesis of CRC. In addition, VEGFA was highly expressed in R-CAFs-Exo, which might indicate that R-CAFs could transmit VEGFA through exosomes. Overexpressed VEGFA in R-CAFs apparently regulates the viability, apoptosis, DDP resistance, and angiogenesis of CRC. In-vivo experiments confirmed that R-CAFs-Exo promoted the progression of CRC and DDP resistance by delivering VEGFA . R-CAFs-derived exosomes promote the viability, apoptosis, DDP resistance, and angiogenesis of CRC by delivering VEGFA .
Collapse
|
39
|
Nguyen TTT, Katt WP, Cerione RA. Alone and together: current approaches to targeting glutaminase enzymes as part of anti-cancer therapies. FUTURE DRUG DISCOVERY 2023; 4:FDD79. [PMID: 37009252 PMCID: PMC10051075 DOI: 10.4155/fdd-2022-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
Metabolic reprogramming is a major hallmark of malignant transformation in cancer, and part of the so-called Warburg effect, in which the upregulation of glutamine catabolism plays a major role. The glutaminase enzymes convert glutamine to glutamate, which initiates this pathway. Inhibition of different forms of glutaminase (KGA, GAC, or LGA) demonstrated potential as an emerging anti-cancer therapeutic strategy. The regulation of these enzymes, and the molecular basis for their inhibition, have been the focus of much recent research. This review will explore the recent progress in understanding the molecular basis for activation and inhibition of different forms of glutaminase, as well as the recent focus on combination therapies of glutaminase inhibitors with other anti-cancer drugs.
Collapse
Affiliation(s)
- Thuy-Tien T Nguyen
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Richard A Cerione
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Integrative analyses of biomarkers and pathways for metformin reversing cisplatin resistance in head and neck squamous cell carcinoma cells. Arch Oral Biol 2023; 147:105637. [PMID: 36738487 DOI: 10.1016/j.archoralbio.2023.105637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES In this study, transcriptome sequencing were performed to elucidate the molecular mechanism by which metformin inhibits head and neck squamous cell carcinoma (HNSCC) cells progression and sensitizes HNSCC cells to chemotherapy. We aimed to propose a novel chemotherapeutic approach with high efficacy and few side effects and provide a new strategy for HNSCC treatment. DESIGN The effects of metformin on the biological behaviors of HNSCC cells were validated by CCK8 cell proliferation assays, would healing assays and flow cytometric apoptosis assays. The appropriate metformin concentrations for the experimental pretreatment of HNSCC cells were selected based on experimental results, and the treated cells were subjected to transcriptome sequencing. After bioinformatics analysis and intersection with a post-chemotherapy resistance dataset from the GEO database numbered GSE102787, the genes were identified and used to predict potential metformin targets after functional enrichment analysis. RESULTS Metformin significantly inhibited the proliferation and migration and induced the apoptosis of Cal27 and FaDu cells. A total of 284 genes that are potentially targeted by metformin during HNSCC cell sensitization were identified by bioinformatics, and ten hub genes with high connectivity were selected. In particular, Fen1 overexpression was associated with poor prognosis in HNSCC patients. CONCLUSIONS Our study demonstrates that Fen1 is overexpressed in HNSCC tissues compared with normal tissues and that Fen1 overexpression is a poor prognostic factor in HNSCC patients. Metformin enhances the ability of cisplatin to inhibit HNSCC progression. Further studies are needed to explore the therapeutic value of Fen1 in HNSCC.
Collapse
|
41
|
Zhang L, Zhang X, Guan L, Zhou D, Ge J. AMPK/mTOR-mediated therapeutic effect of metformin on myocardial ischaemia reperfusion injury in diabetic rat. Acta Cardiol 2023; 78:64-71. [PMID: 34994666 DOI: 10.1080/00015385.2021.2024701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The autophagy associated signalling pathways such as AMPK/mTOR previously were suggested to play a crucial role in protecting from ischaemia-reperfusion injury (IRI). The objective of this study was to evaluate the effect of metformin (DMBG) on autophagy during myocardial IRI with diabetes mellitus (DM). METHODS The DM rat model was established using streptozocin, and further induced ischaemia model via transitory ligation of the left anterior coronary artery and following reperfusion. The model rats were treated with 400 mg/kg/day DMBG for 1 week. Autophagosomes were investigated using transmission electron microscopy. Autophagy-associated signalling pathways were detected by western blot. RESULTS The myocardial infarct size was shown to significantly increase in the DM rats exposed to IRI compared to negative control, but decrease in DMBG treated. The mature autophagosomes were elevated in infarction and marginal zones of DM + IRI + DMBG compared to DM + IRI. Furthermore, the increasing protein levels of LC3-II, BECLIN 1, autophagy related 5 (ATG5) and AMP-activated protein kinase suggested activated autophagy-associated intracellular signalling AMPK and mTOR pathways upon DMBG treated. CONCLUSIONS Taken together, the outcomes determinate a novel mechanism that DMBG could activate autophagy process to provide a cardio-protective effect against DM induced myocardial IRI.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Lihua Guan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
42
|
Beena TB, Jesil MA, Harikumar KB. Cross-talk between AMP-activated protein kinase and the sonic hedgehog pathway in the high-fat diet triggered colorectal cancer. Arch Biochem Biophys 2023; 735:109500. [PMID: 36608915 DOI: 10.1016/j.abb.2022.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The major cause of colorectal cancer (CRC) related mortality is due to its metastasis. Signaling pathways play a definite role in the development and progression of CRC. Recent studies demonstrate that the regulation of the sonic hedgehog (Shh) pathway is beneficial in the CRC treatment strategy. Also, 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a well-known regulator of metabolism and inflammation, making it a suitable treatment option for CRC. Consumption of a high-fat diet (HFD) is a significant cause of CRC genesis. Also, the lipids play an indispensable role in aberrant activation of the Shh pathway. This review explains in detail the interconnection between HFD consumption, Shh pathway activation, and the progression of CRC. According to recent studies and literature, AMPK is a potential regulator that can control the complexities of CRC and reduce lipid levels and may directly inhibit shh signalling. The review also suggests the possible risk elements of AMPK activation in CRC due to its context-dependent role. Also, the activation of AMPK in HFD-induced CRC may modulate cancer progression by regulating the Shh pathway and metabolism.
Collapse
Affiliation(s)
- T B Beena
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India
| | - Mathew A Jesil
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Science, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, India.
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| |
Collapse
|
43
|
Fan L, Zeng X, Xu G. Metformin Regulates Gut Microbiota Abundance to Suppress M2 Skewing of Macrophages and Colorectal Tumorigenesis in Mice. J Microbiol 2023; 61:109-120. [PMID: 36701104 DOI: 10.1007/s12275-022-00010-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 01/27/2023]
Abstract
The correlation of imbalanced gut microbiota with the onset and progression of colorectal cancer (CRC) has become clear. This work investigates the effect of metformin on gut microbiota and genesis of CRC in mice. Human fecal samples were collected from healthy control (HC) donors and CRC patients. Compared to HC donors, CRC patients had reduced abundance of gut microbiota; however, they had increased abundance of detrimental Bacteroidetes. Mice were injected with azomethane (AOM) to induce colorectal tumorigenesis models. Treatment of CRC patients-sourced fecal microbiota promoted tumorigenesis, and it increased the expression of Ki67, β-catenin, COX-2, and Cyclin D1 in mouse colon tissues. Further treatment of metformin blocked the colorectal tumorigenesis in mice. Fecal microbiota from the metformin-treated mice was collected, which showed decreased Bacteroidetes abundance and suppressed AOM-induced colorectal tumorigenesis in mice as well. Moreover, the metformin- modified microbiota promoted the M1 macrophage-related markers IL-6 and iNOS but suppressed the M2 macrophage-related markers IL-4R and Arg1 in mouse colon tissues. In conclusion, this study suggests that metformin-mediated gut microbiota alteration suppresses macrophage M2 polarization to block colorectal tumorigenesis.
Collapse
Affiliation(s)
- Linfeng Fan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiangfu Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Guofeng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
44
|
Liu Y, Sun Y, Guo Y, Shi X, Chen X, Feng W, Wu LL, Zhang J, Yu S, Wang Y, Shi Y. An Overview: The Diversified Role of Mitochondria in Cancer Metabolism. Int J Biol Sci 2023; 19:897-915. [PMID: 36778129 PMCID: PMC9910000 DOI: 10.7150/ijbs.81609] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are intracellular organelles involved in energy production, cell metabolism and cell signaling. They are essential not only in the process of ATP synthesis, lipid metabolism and nucleic acid metabolism, but also in tumor development and metastasis. Mutations in mtDNA are commonly found in cancer cells to promote the rewiring of bioenergetics and biosynthesis, various metabolites especially oncometabolites in mitochondria regulate tumor metabolism and progression. And mutation of enzymes in the TCA cycle leads to the unusual accumulation of certain metabolites and oncometabolites. Mitochondria have been demonstrated as the target for cancer treatment. Cancer cells rely on two main energy resources: oxidative phosphorylation (OXPHOS) and glycolysis. By manipulating OXPHOS genes or adjusting the metabolites production in mitochondria, tumor growth can be restrained. For example, enhanced complex I activity increases NAD+/NADH to prevent metastasis and progression of cancers. In this review, we discussed mitochondrial function in cancer cell metabolism and specially explored the unique role of mitochondria in cancer stem cells and the tumor microenvironment. Targeting the OXPHOS pathway and mitochondria-related metabolism emerging as a potential therapeutic strategy for various cancers.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yihong Sun
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyun Shi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xi Chen
- Xi Chen, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wenfeng Feng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 39216, Jackson, Mississippi, USA
| | - Shibo Yu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.,Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China
| |
Collapse
|
45
|
Kao TW, Chuang YC, Lee HL, Kuo CC, Shen YA. Therapeutic Targeting of Glutaminolysis as a Novel Strategy to Combat Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms232315296. [PMID: 36499623 PMCID: PMC9737183 DOI: 10.3390/ijms232315296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Rare subpopulations of cancer stem cells (CSCs) have the ability to self-renew and are the primary driving force behind cancer metastatic dissemination and the preeminent hurdle to cancer treatment. As opposed to differentiated, non-malignant tumor offspring, CSCs have sophisticated metabolic patterns that, depending on the kind of cancer, rely mostly on the oxidation of major fuel substrates such as glucose, glutamine, and fatty acids for survival. Glutaminolysis is a series of metabolic reactions that convert glutamine to glutamate and, eventually, α-ketoglutarate, an intermediate in the tricarboxylic acid (TCA) cycle that provides biosynthetic building blocks. These building blocks are mostly utilized in the synthesis of macromolecules and antioxidants for redox homeostasis. A recent study revealed the cellular and molecular interconnections between glutamine and cancer stemness in the cell. Researchers have increasingly focused on glutamine catabolism in their attempt to discover an effective therapy for cancer stem cells. Targeting catalytic enzymes in glutaminolysis, such as glutaminase (GLS), is achievable with small molecule inhibitors, some of which are in early-phase clinical trials and have promising safety profiles. This review summarizes the current findings in glutaminolysis of CSCs and focuses on novel cancer therapies that target glutaminolysis in CSCs.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yao-Chen Chuang
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 110301, Taiwan
| | - Chia-Chun Kuo
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 110301, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Correspondence:
| |
Collapse
|
46
|
Costa B, Fernandez LM, Parés O, Rio-Tinto R, Santiago I, Castillo-Martin M, Parvaiz A, Fior R. Zebrafish Avatars of rectal cancer patients validate the radiosensitive effect of metformin. Front Oncol 2022; 12:862889. [PMID: 36249066 PMCID: PMC9554544 DOI: 10.3389/fonc.2022.862889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Neoadjuvant chemoradiation (nCRT) followed by surgery represents the standard of care in patients with locally advanced rectal cancer. Increasing radiotherapy (RT) doses and chemotherapy cycles with 5FU have been associated with increased rates of complete response, however these strategies imply significant toxicity. In the last years, epidemiologic findings have demonstrated that metformin is associated with significantly higher rates of pathological complete response to nCRT. Also, pre-clinical studies using cell lines provide evidence for the radiosensitive effect of metformin. However, no studies have been performed using rectal cancer patient samples to test this radiosensitive effect of metformin and compared it to the standard 5FU. Here, we designed an experimental study to compare both radiosensitizers in the zebrafish xenograft model (zAvatar), using rectal cancer surgical specimens and diagnostic biopsies. Patient zAvatars confirmed that metformin has indeed a powerful in vivo radiosensitizer effect, similar to 5FU. Our work confirms that metformin constitutes a promising less toxic alternative to the standard 5FU, which could be game changing in elderly/frail patients to optimize tumor regression.
Collapse
Affiliation(s)
- Bruna Costa
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- *Correspondence: Bruna Costa, ; Laura M. Fernandez, ; Rita Fior,
| | - Laura M. Fernandez
- Colorectal Surgery Department, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- *Correspondence: Bruna Costa, ; Laura M. Fernandez, ; Rita Fior,
| | - Oriol Parés
- Radiation Oncology Department, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Ricardo Rio-Tinto
- Gastroenterology Department, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Inês Santiago
- Radiology Department, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Mireia Castillo-Martin
- Pathology Service, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Amjad Parvaiz
- Colorectal Surgery Department, Champalimaud Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
| | - Rita Fior
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- *Correspondence: Bruna Costa, ; Laura M. Fernandez, ; Rita Fior,
| |
Collapse
|
47
|
Gales L, Forsea L, Mitrea D, Stefanica I, Stanculescu I, Mitrica R, Georgescu M, Trifanescu O, Anghel R, Serbanescu L. Antidiabetics, Anthelmintics, Statins, and Beta-Blockers as Co-Adjuvant Drugs in Cancer Therapy. Medicina (B Aires) 2022; 58:medicina58091239. [PMID: 36143915 PMCID: PMC9503803 DOI: 10.3390/medicina58091239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Over the last years, repurposed agents have provided growing evidence of fast implementation in oncology treatment such as certain antimalarial, anthelmintic, antibiotics, anti-inflammatory, antihypertensive, antihyperlipidemic, antidiabetic agents. In this study, the four agents of choice were present in our patients’ daily treatment for nonmalignant-associated pathology and have known, light toxicity profiles. It is quite common for a given patient’s daily administration schedule to include two or three of these drugs for the duration of their treatment. We chose to review the latest literature concerning metformin, employed as a first-line treatment for type 2 diabetes; mebendazole, as an anthelmintic; atorvastatin, as a cholesterol-lowering drug; propranolol, used in cardiovascular diseases as a nonspecific inhibitor of beta-1 and beta-2 adrenergic receptors. At the same time, certain key action mechanisms make them feasible antitumor agents such as for mitochondrial ETC inhibition, activation of the enzyme adenosine monophosphate-activated protein kinase, amelioration of endogenous hyperinsulinemia, inhibition of selective tyrosine kinases (i.e., VEGFR2, TNIK, and BRAF), and mevalonate pathway inhibition. Despite the abundance of results from in vitro and in vivo studies, the only solid data from randomized clinical trials confirm metformin-related oncological benefits for only a small subset of nondiabetic patients with HER2-positive breast cancer and early-stage colorectal cancer. At the same time, clinical studies confirm metformin-related detrimental/lack of an effect for lung, breast, prostate cancer, and glioblastoma. For atorvastatin we see a clinical oncological benefit in patients and head and neck cancer, with a trend towards radioprotection of critical structures, thus supporting the role of atorvastatin as a promising agent for concomitant association with radiotherapy. Propranolol-related increased outcomes were seen in clinical studies in patients with melanoma, breast cancer, and sarcoma.
Collapse
Affiliation(s)
- Laurentia Gales
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Oncology, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Leyla Forsea
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Diana Mitrea
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Irina Stefanica
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Irina Stanculescu
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Radu Mitrica
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
- Correspondence: ; Tel.: +40-741-964-311
| | - Mihai Georgescu
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Oana Trifanescu
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Rodica Anghel
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| | - Luiza Serbanescu
- Department of Oncology, “Carol Davila” University of Medicine & Pharmacy, 022328 Bucharest, Romania
- Department of Radiotherapy, “Prof. Dr. Alexandru Trestioreanu” Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
48
|
Asgharkhah E, Jazi MS, Asadi J, Jafari SM. Role of A1 adenosine receptor in survival of human lung cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Harlid S, Van Guelpen B, Qu C, Gylling B, Aglago EK, Amitay EL, Brenner H, Buchanan DD, Campbell PT, Cao Y, Chan AT, Chang‐Claude J, Drew DA, Figueiredo JC, French AJ, Gallinger S, Giannakis M, Giles GG, Gunter MJ, Hoffmeister M, Hsu L, Jenkins MA, Lin Y, Moreno V, Murphy N, Newcomb PA, Newton CC, Nowak JA, Obón‐Santacana M, Ogino S, Potter JD, Song M, Steinfelder RS, Sun W, Thibodeau SN, Toland AE, Ugai T, Um CY, Woods MO, Phipps AI, Harrison T, Peters U. Diabetes mellitus in relation to colorectal tumor molecular subtypes: A pooled analysis of more than 9000 cases. Int J Cancer 2022; 151:348-360. [PMID: 35383926 PMCID: PMC9251811 DOI: 10.1002/ijc.34015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 01/22/2023]
Abstract
Diabetes is an established risk factor for colorectal cancer. However, colorectal cancer is a heterogeneous disease and it is not well understood whether diabetes is more strongly associated with some tumor molecular subtypes than others. A better understanding of the association between diabetes and colorectal cancer according to molecular subtypes could provide important insights into the biology of this association. We used data on lifestyle and clinical characteristics from the Colorectal Cancer Family Registry (CCFR) and the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), including 9756 colorectal cancer cases (with tumor marker data) and 9985 controls, to evaluate associations between reported diabetes and risk of colorectal cancer according to molecular subtypes. Tumor markers included BRAF and KRAS mutations, microsatellite instability and CpG island methylator phenotype. In the multinomial logistic regression model, comparing colorectal cancer cases to cancer-free controls, diabetes was positively associated with colorectal cancer regardless of subtype. The highest OR estimate was found for BRAF-mutated colorectal cancer, n = 1086 (ORfully adj : 1.67, 95% confidence intervals [CI]: 1.36-2.05), with an attenuated association observed between diabetes and colorectal cancer without BRAF-mutations, n = 7959 (ORfully adj : 1.33, 95% CI: 1.19-1.48). In the case only analysis, BRAF-mutation was differentially associated with diabetes (Pdifference = .03). For the other markers, associations with diabetes were similar across tumor subtypes. In conclusion, our study confirms the established association between diabetes and colorectal cancer risk, and suggests that it particularly increases the risk of BRAF-mutated tumors.
Collapse
Affiliation(s)
- Sophia Harlid
- Department of Radiation Sciences, Oncology UnitUmeå UniversityUmeåSweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology UnitUmeå UniversityUmeåSweden
- Wallenberg Centre for Molecular Medicine, Umeå UniversityUmeåSweden
| | - Conghui Qu
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Björn Gylling
- Department of Medical Biosciences, Pathology UnitUmeå UniversityUmeåSweden
| | - Elom K. Aglago
- Nutrition and Metabolism SectionInternational Agency for Research on Cancer, World Health OrganizationLyonFrance
| | - Efrat L. Amitay
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVictoriaAustralia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer CentreParkvilleVictoriaAustralia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne HospitalParkvilleVictoriaAustralia
| | - Peter T. Campbell
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Yin Cao
- Division of Public Health Sciences, Department of SurgeryWashington University School of MedicineSt LouisMissouriUSA
- Alvin J. Siteman Cancer Center at Barnes‐Jewish Hospital and Washington University School of MedicineSt. LouisMissouriUSA
- Division of Gastroenterology, Department of MedicineWashington University School of MedicineSt. LouisMissouriUSA
| | - Andrew T. Chan
- Division of GastroenterologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
- Department of Immunology and Infectious DiseasesHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
| | - Jenny Chang‐Claude
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- University Medical Centre Hamburg‐Eppendorf, University Cancer Centre Hamburg (UCCH)HamburgGermany
| | - David A. Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jane C. Figueiredo
- Department of MedicineSamuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Preventive MedicineKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Amy J. French
- Division of Laboratory Genetics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of TorontoTorontoOntarioCanada
| | - Marios Giannakis
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Graham G. Giles
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneVictoriaAustralia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash UniversityClaytonVictoriaAustralia
| | - Marc J. Gunter
- Nutrition and Metabolism SectionInternational Agency for Research on Cancer, World Health OrganizationLyonFrance
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Li Hsu
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Department of BiostatisticsUniversity of WashingtonSeattleWashingtonUSA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of MelbourneMelbourneVictoriaAustralia
| | - Yi Lin
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L'Hospitalet de LlobregatBarcelonaSpain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
- Department of Clinical Sciences, Faculty of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Neil Murphy
- Nutrition and Metabolism SectionInternational Agency for Research on Cancer, World Health OrganizationLyonFrance
| | - Polly A. Newcomb
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- School of Public Health, University of WashingtonSeattleWashingtonUSA
| | | | - Jonathan A. Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Mireia Obón‐Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L'Hospitalet de LlobregatBarcelonaSpain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Shuji Ogino
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Oncologic PathologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - John D. Potter
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- School of Public Health, University of WashingtonSeattleWashingtonUSA
- Research Centre for Hauora and Health, Massey UniversityWellingtonNew Zealand
| | - Mingyang Song
- Division of GastroenterologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of NutritionHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
| | - Robert S. Steinfelder
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Wei Sun
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Stephen N. Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMinnesotaUSA
| | - Amanda E. Toland
- Departments of Cancer Biology and Genetics and Internal MedicineComprehensive Cancer Center, The Ohio State UniversityColumbusOhioUSA
| | - Tomotaka Ugai
- Department of EpidemiologyHarvard T.H. Chan School of Public Health, Harvard UniversityBostonMassachusettsUSA
- Department of Oncologic PathologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | - Caroline Y. Um
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Michael O. Woods
- Memorial University of Newfoundland, Discipline of GeneticsSt. John'sCanada
| | - Amanda I. Phipps
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Tabitha Harrison
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Ulrike Peters
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
50
|
Sun Y, Fang K, Hu X, Yang J, Jiang Z, Feng L, Li R, Rao Y, Shi S, Dong C. NIR-light-controlled G-quadruplex hydrogel for synergistically enhancing photodynamic therapy via sustained delivery of metformin and catalase-like activity in breast cancer. Mater Today Bio 2022; 16:100375. [PMID: 35983175 PMCID: PMC9379686 DOI: 10.1016/j.mtbio.2022.100375] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022] Open
Abstract
Severely hypoxic condition of tumour represents a notable obstacle against the efficiency of photodynamic therapy (PDT). While mitochondria targeted therapy by metformin has been considered as a promising strategy for reducing oxygen consumption in tumours, its low treatment sensitivity, short half-life and narrow absorption window in vivo remain the intractable challenges. In this report, 5′-guanosine monophosphate (5′GMP), indocyanine green (ICG), hemin and metformin, were combined to construct a smart G-quadruplex (G4) hydrogel named HMI@GEL for breast cancer (BC) treatment. Benefiting from the photothermal (PTT) effect of ICG, HMI@GEL exhibited excellent characteristics of NIR-light-triggered and persistent drug delivery to maintain high intratumoral concentration of metformin. Furthermore, drug loading concentration of metformin reached an amazing 300 mg mL−1 in HMI@GEL. To our knowledge, it might be the highest loading efficiency in the reported literatures. With the combination of catalase-mimicking Hemin@mil88, metformin could inhibit tumour mitochondrial respiratory significantly, which sequentially permitted in situ efficient oxygen generation. Remarkable apoptosis and necrosis were achieved by the combination of PTT and synergistically enhanced PDT as well as the activated tumour immunotherapy. Collectively, the HMI@GEL in situ injectable platform showed a promising strategy for enhanced PDT by metformin, and opened new perspectives for treating BC versatilely. A NIR-light-controlled G-quadruplex hydrogel HMI@GEL loading metformin was prepared for precision breast cancer therapy. The extremely high drug loading capacity (300 mg mL−1) and persistent delivery of metformin was realized for the first time. The combination of catalase-mimicking Hemin@mil88 and metformin dual enhanced intracellular ROS generation. The tumour immune microenvironment was dramatically reshaped by synthetic photodynamic/photothermal therapy.
Collapse
Affiliation(s)
- Yanting Sun
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Kang Fang
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Xiaochun Hu
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Jingxian Yang
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Zhengyang Jiang
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Lei Feng
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Ruihao Li
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Yiming Rao
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
| | - Shuo Shi
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
- Corresponding author.
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200120, PR China
- Corresponding author.
| |
Collapse
|