1
|
Zhang Y, Yang K, Bai J, Chen J, Ou Q, Zhou W, Li X, Hu C. Single-cell transcriptomics reveals the multidimensional dynamic heterogeneity from primary to metastatic gastric cancer. iScience 2025; 28:111843. [PMID: 39967875 PMCID: PMC11834116 DOI: 10.1016/j.isci.2025.111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025] Open
Abstract
Reprogramming of the tumor microenvironment (TME) plays a critical role in gastric cancer (GC) progression and metastasis. However, the multidimensional features between primary tumors and organ-specific metastases remain poorly understood. In this study, we characterized the dynamic heterogeneity of GC from primary to metastatic stages. We identified seven major cell types and 27 immune and stromal subsets. Immune cells decreased, while immunosuppressive cells increased in ovarian and peritoneal metastases. A 30-gene signature for ovarian metastasis was validated in GC cohorts. Additionally, critical ligand-receptor interactions, including LGALS9-MET in liver metastasis and PVR-TIGIT in lymph node metastasis, were identified as potential therapeutic targets. Furthermore, CLOCK, a transcription factor, was associated with poor prognosis and influenced immune cell interactions and migration. Collectively, this study provides valuable insights into TME dynamics in GC and highlights potential avenues for targeted therapies.
Collapse
Affiliation(s)
- Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Kuan Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jing Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qi Ou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Wenzhe Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Congxue Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, Heilongjiang, China
| |
Collapse
|
2
|
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y, Li J. Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189277. [PMID: 39938663 DOI: 10.1016/j.bbcan.2025.189277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Gastric cancer (GC) is linked to high morbidity and mortality rates. Approximately two-thirds of GC patients are diagnosed at an advanced or metastatic stage. Conventional treatments for GC, including surgery, radiotherapy, and chemotherapy, offer limited prognostic improvement. Recently, immunotherapy has gained attention for its promising therapeutic effects in various tumors. Immunotherapy functions by activating and regulating the patient's immune cells to target and eliminate tumor cells, thereby reducing the tumor burden in the body. Among immunotherapies, immune checkpoint inhibitors (ICIs) are the most advanced. ICIs disrupt the inhibitory protein-small molecule (PD-L1, CTLA4, VISTA, TIM-3 and LAG3) interactions produced by immune cells, reactivating these cells to recognize and attack tumor cells. However, adverse reactions and resistance to ICIs hinder their further clinical and experimental development. Therefore, a comprehensive understanding of the advancements in ICIs for GC is crucial. This article discusses the latest developments in clinical trials of ICIs for GC and examines combination therapies involving ICIs (targeted therapy, chemotherapy, radiotherapy), alongside ongoing clinical trials. Additionally, the review investigates the tumor immune microenvironment and its role in non-responsiveness to ICIs, highlighting the function of tumor immune cells in ICI efficacy. Finally, the article explores the prospects and limitations of new immunotherapy-related technologies, such as tumor vaccines, nanotechnologies, and emerging therapeutic strategies, aiming to advance research into personalized and optimized immunotherapy for patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Jiawei Song
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China
| | - Jun Zhu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yu Jiang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yajie Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Shuai Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yihuan Qiao
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yongtao Du
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Jipeng Li
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China.
| |
Collapse
|
3
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
4
|
Wu W, Yang J, Yu T, Zou Z, Huang X. The Role and Mechanism of TRIM Proteins in Gastric Cancer. Cells 2024; 13:2107. [PMID: 39768197 PMCID: PMC11674240 DOI: 10.3390/cells13242107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Tripartite motif (TRIM) family proteins, distinguished by their N-terminal region that includes a Really Interesting New Gene (RING) domain with E3 ligase activity, two B-box domains, and a coiled-coil region, have been recognized as significant contributors in carcinogenesis, primarily via the ubiquitin-proteasome system (UPS) for degrading proteins. Mechanistically, these proteins modulate a variety of signaling pathways, including Wnt/β-catenin, PI3K/AKT, and TGF-β/Smad, contributing to cellular regulation, and also impact cellular activities through non-signaling mechanisms, including modulation of gene transcription, protein degradation, and stability via protein-protein interactions. Currently, growing evidence indicates that TRIM proteins emerge as potential regulators in gastric cancer, exhibiting both tumor-suppressive and oncogenic roles. Given their critical involvement in cellular processes and the notable challenges of gastric cancer, exploring the specific contributions of TRIM proteins to this disease is necessary. Consequently, this review elucidates the roles and mechanisms of TRIM proteins in gastric cancer, emphasizing their potential as therapeutic targets and prognostic factors.
Collapse
Affiliation(s)
- Wangxi Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (W.W.); (T.Y.)
- The Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.Z.)
| | - Jinyu Yang
- The Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.Z.)
| | - Tian Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (W.W.); (T.Y.)
| | - Zhuoling Zou
- The Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (J.Y.); (Z.Z.)
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (W.W.); (T.Y.)
- Chongqing Research Institute, Nanchang University, Chongqing 400010, China
| |
Collapse
|
5
|
Weng C, Jin R, Jin X, Yang Z, He C, Zhang Q, Xu J, Lv B. Exploring the Mechanisms, Biomarkers, and Therapeutic Targets of TRIM Family in Gastrointestinal Cancer. Drug Des Devel Ther 2024; 18:5615-5639. [PMID: 39654601 PMCID: PMC11626976 DOI: 10.2147/dddt.s482340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates. As E3 ubiquitin ligases, proteins of tripartite motif (TRIM) family play a role in cancer signaling, development, apoptosis, and formation. These proteins regulate diverse biological activities and signaling pathways. This study comprehensively outlines the functions of TRIM proteins in gastrointestinal physiology, contributing to our knowledge of the molecular pathways involved in gastrointestinal tumors. Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates.
Collapse
Affiliation(s)
- Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Rijuan Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiaoliang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zimei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chenghai He
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Qiuhua Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jingli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
6
|
Wu H, Gao W, Ma Y, Zhong X, Qian J, Huang D, Ge J. TRIM25-mediated XRCC1 ubiquitination accelerates atherosclerosis by inducing macrophage M1 polarization and programmed death. Inflamm Res 2024; 73:1445-1458. [PMID: 38896288 DOI: 10.1007/s00011-024-01906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Macrophage-mediated cleaning up of dead cells is a crucial determinant in reducing coronary artery inflammation and maintaining vascular homeostasis. However, this process also leads to programmed death of macrophages. So far, the role of macrophage death in the progression of atherosclerosis remains controversial. Also, the underlying mechanism by which transcriptional regulation and reprogramming triggered by macrophage death pathways lead to changes in vascular inflammation and remodeling are still largely unknown. TRIM25-mediated RIG-I signaling plays a key role in regulation of macrophages fate, however the role of TRIM25 in macrophage death-mediated atherosclerotic progression remains unclear. This study aims to investigate the relationship between TRIM25 and macrophage death in atherosclerosis. METHODS A total of 34 blood samples of patients with coronary stent implantation, including chronic total occlusion (CTO) leisions (n = 14) or with more than 50% stenosis of a coronary artery but without CTO leisions (n = 20), were collected, and the serum level of TRIM25 was detected by ELISA. Apoe-/- mice with or without TRIM25 gene deletion were fed with the high-fat diet (HFD) for 12 weeks and the plaque areas, necrotic core size, aortic fibrosis and inflammation were investigated. TRIM25 wild-type and deficient macrophages were isolated, cultured and stimulated with ox-LDL, RNA-seq, real-time PCR, western blot and FACS experiments were used to screen and validate signaling pathways caused by TRIM25 deletion. RESULTS Downregulation of TRIM25 was observed in circulating blood of CTO patients and also in HFD-induced mouse aortas. After HFD for 12 weeks, TRIM25-/-ApoeE-/- mice developed smaller atherosclerotic plaques, less inflammation, lower collagen content and aortic fibrosis compared with TRIM25+/+ApoeE-/- mice. By RNA-seq and KEGG enrichment analysis, we revealed that deletion of TRIM25 mainly affected pyroptosis and necroptosis pathways in ox-LDL-induced macrophages, and the expressions of PARP1 and RIPK3, were significantly decreased in TRIM25 deficient macrophages. Overexpression of TRIM25 promoted M1 polarization and necroptosis of macrophages, while inhibition of PARP1 reversed this process. Further, we observed that XRCC1, a repairer of DNA damage, was significantly upregulated in TRIM25 deficient macrophages, inhibiting PARP1 activity and PARP1-mediated pro-inflammatory change, M1 polarization and necroptosis of macrophages. By contrast, TRIM25 overexpression mediated ubiquitination of XRCC1, and the inhibition of XRCC1 released PARP1, and activated macrophage M1 polarization and necroptosis, which accelerated aortic inflammation and atherosclerotic plaque progression. CONCLUSIONS Our study has uncovered a crucial role of the TRIM25-XRCC1Ub-PARP1-RIPK3 axis in regulating macrophage death during atherosclerosis, and we highlight the potential therapeutic significance of macrophage reprogramming regulation in preventing the development of atherosclerosis.
Collapse
Affiliation(s)
- Hongxian Wu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Wei Gao
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Yuanji Ma
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Xin Zhong
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Dong Huang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Shen Y, Wu Y, Hao M, Fu M, Zhu K, Luo P, Wang J. Clinicopathological association of CD93 expression in gastric adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:400. [PMID: 39190192 PMCID: PMC11349802 DOI: 10.1007/s00432-024-05874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024]
Abstract
AIMS CD93 was recently identified as a promising therapeutic target for angiogenesis blockade in various tumors. Herein, we aimed to investigate the expression and clinicopathological significance of CD93 in gastric adenocarcinoma. METHODS The gene expression of CD93 gastric adenocarcinoma was assessed using The Cancer Genome Atlas (TCGA) dataset. We then analyzed CD93 expression in 404 cases of gastric adenocarcinoma using immunohistochemistry. Clinicopathological associations and prognostic implications of CD93 expression were further investigated. RESULTS Using the TCGA dataset, we observed a significantly elevated CD93 gene expression in gastric adenocarcinoma compared to normal gastric tissues. The immunohistochemistry assay revealed a highly variable CD93 expression among patients with gastric adenocarcinoma, consistently demonstrating higher intratumor expression than in adjacent normal tissues. Notably, CD93 was predominantly expressed on the membrane of CD31+ vascular endothelial cells. Furthermore, patients with higher CD93 expression demonstrated significantly poorer overall survival. Accordingly, higher CD93 expression was associated with deeper invasion and a higher possibility of lymph node metastasis and developing tumor thrombus. Cox proportional hazards regression suggested CD93 expression was an independent predictor for the prognosis of patients with gastric adenocarcinoma. CONCLUSIONS Our study revealed a significantly higher CD93 expression in gastric adenocarcinoma when compared with adjacent normal gastric tissues, and demonstrated its predominant expression on vascular endothelial cells. Our findings also highlighted the clinicopathological significance of CD93 in gastric adenocarcinoma, shedding light on a potential therapeutic target.
Collapse
Affiliation(s)
- Yun Shen
- Department of Pathology, People's Hospital of Tongling City, Tongling, Anhui, China
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yahui Wu
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Mengfei Hao
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China
| | - Minghan Fu
- Department of Pathology, Yueyang Central Hospital, Yueyang, Hunan, China
| | - Kai Zhu
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China
| | - Panru Luo
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China
| | - Jinsheng Wang
- Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
- Department of Pathology, the First Clinical College of Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, China.
- Key Laboratory of Esophageal Cancer Basic Research and Clinical Transformation, Shanxi Provincial Health Commission, Changzhi, Shanxi, China.
| |
Collapse
|
8
|
Sun X, Xiao C, Wang X, Wu S, Yang Z, Sui B, Song Y. Role of post-translational modifications of Sp1 in cancer: state of the art. Front Cell Dev Biol 2024; 12:1412461. [PMID: 39228402 PMCID: PMC11368732 DOI: 10.3389/fcell.2024.1412461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Specific protein 1 (Sp1) is central to regulating transcription factor activity and cell signaling pathways. Sp1 is highly associated with the poor prognosis of various cancers; it is considered a non-oncogene addiction gene. The function of Sp1 is complex and contributes to regulating extensive transcriptional activity, apart from maintaining basal transcription. Sp1 activity and stability are affected by post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, glycosylation, and SUMOylation. These modifications help to determine genetic programs that alter the Sp1 structure in different cells and increase or decrease its transcriptional activity and DNA binding stability in response to pathophysiological stimuli. Investigating the PTMs of Sp1 will contribute to a deeper understanding of the mechanism underlying the cell signaling pathway regulating Sp1 stability and the regulatory mechanism by which Sp1 affects cancer progression. Furthermore, it will facilitate the development of new drug targets and biomarkers, thereby elucidating considerable implications in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Chinese Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyang Wang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhendong Yang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bowen Sui
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Tang W, Huang C, Jiang B, Lin J, Lu Y. MBNL3 Acts as a Target of miR-302e to Facilitate Cell Proliferation, Invasion and Angiogenesis of Gastric Adenocarcinoma via AKT/VEGFA Pathway. J Microbiol Biotechnol 2024; 34:1433-1442. [PMID: 38955795 PMCID: PMC11294653 DOI: 10.4014/jmb.2401.01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
Gastric adenocarcinoma (GAC) is a common, malignant type of tumor in human, and is accompanied with higher mortality. Muscleblind-like 3 (MBNL3) was found to be a pivotal participator in aggravating this cancer's progression. However, the regulatory effects of MBNL3 on GAC development have not been investigated. We therefore sought to study the functions of MBNL3 in GAC progression. In this study, it was demonstrated that MBNL3 exhibited higher expression, and GAC patients with higher MBNL3 expression had poor prognosis. Overexpression of MBNL3 facilitated, and knockdown of MBNL3 suppressed cell proliferation, invasion, and angiogenesis in GAC. Further experiments showed that miR-302e targets MBNL3. Rescue assays then uncovered that the miR-302e/MBNL3 axis aggravated GAC progression. In addition, MBNL3 activated the AKT/VEGFA pathway, and the suppressive regulatory impacts of MBNL3 knockdown on GAC cell proliferation, invasion, and angiogenesis could be rescued after 740 Y-P treatment. Through in vivo assay, it was proved that MBNL3 accelerated tumor growth in vivo. In conclusion, MBNL3 acted as a target of miR-302e to facilitate cell proliferation, invasion, and angiogenesis of gastric adenocarcinoma through the AKT/VEGFA pathway. Our findings illustrate that MBNL3 may be an available bio-target for GAC treatment.
Collapse
Affiliation(s)
- Weiping Tang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| | - Can Huang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| | - Bing Jiang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| | - Junjun Lin
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| | - Yecai Lu
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui, P.R. China
| |
Collapse
|
10
|
Pan C, Wang Q, Wang H, Deng X, Chen L, Li Z. LncRNA CARD8-AS1 suppresses lung adenocarcinoma progression by enhancing TRIM25-mediated ubiquitination of TXNRD1. Carcinogenesis 2024; 45:311-323. [PMID: 38153696 DOI: 10.1093/carcin/bgad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in the tumorigenesis and progression of lung adenocarcinoma (LUAD). However, little was known about the role of lncRNAs in high-risk LUAD subtypes: micropapillary-predominant adenocarcinoma (MPA) and solid-predominant adenocarcinoma (SPA). In this study, we conducted a systematic screening of differentially expressed lncRNAs using RNA sequencing in 10 paired MPA/SPA tumor tissues and adjacent normal tissues. Consequently, 110 significantly up-regulated lncRNAs and 288 aberrantly down-regulated lncRNAs were identified (|Log2 Foldchange| ≥ 1 and corrected P < 0.05). The top 10 lncRNAs were further analyzed in 89 MPA/SPA tumor tissues and 59 normal tissues from The Cancer Genome Atlas database. Among them, CARD8-AS1 showed the most significant differential expression, and decreased expression of CARD8-AS1 was significantly associated with a poorer prognosis. Functionally, CARD8-AS1 overexpression remarkably suppressed the proliferation, migration and invasion of LUAD cells both in vitro and in vivo. Conversely, inhibition of CARD8-AS1 yielded opposite effects. Mechanistically, CARD8-AS1 acted as a scaffold to facilitate the interaction between TXNRD1 and E3 ubiquitin ligase TRIM25, thereby promoting the degradation of TXNRD1 through the ubiquitin-proteasome pathway. Additionally, TXNRD1 was found to promote LUAD cell proliferation, migration and invasion in vitro. Furthermore, the suppressed progression of LUAD cells resulting from CARD8-AS1 overexpression could be significantly reversed by simultaneous overexpression of TXNRD1. In conclusion, this study revealed that the lncRNA CARD8-AS1 played a suppressive role in the progression of LUAD by enhancing TRIM25-mediated ubiquitination of TXNRD1. The CARD8-AS1-TRIM25-TXNRD1 axis may represent a promising therapeutic target for LUAD.
Collapse
Affiliation(s)
- Cheng Pan
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongshun Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaheng Deng
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Liang Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhihua Li
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
11
|
Li W, Shen Y, Yang C, Ye F, Liang Y, Cheng Z, Ou Y, Chen W, Chen Z, Zou L, Liu Y, Hu Y, Yan X, Jiang H. Identification of a novel ferroptosis-inducing micropeptide in bladder cancer. Cancer Lett 2024; 582:216515. [PMID: 38056687 DOI: 10.1016/j.canlet.2023.216515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Bladder cancer (BC) is a common malignancy in males, and currently lacks ideal therapeutic approaches. Exploring emerging therapeutic targets from the perspective of endogenous peptides to improve the prognosis of bladder cancer patients holds promise. In this study, we have identified CTSGDP-13, a novel endogenous peptide, which demonstrates potential anti-cancer effects in BC. Our findings reveal that CTSGDP-13 can promote ferroptosis in BC cells, both in vitro and in vivo, leading to the inhibition of BC progression. Furthermore, we have identified TRIM25 as a downstream regulatory target of CTSGDP-13. The expression of TRIM25 is significantly upregulated in BC, and its inhibition of ferroptosis promotes BC progression. Mechanistic studies have shown that CTSGDP-13 promotes the ubiquitination and subsequent degradation of TRIM25 by disrupting its interaction with the deubiquitinase USP7. Further investigations indicate that CTSGDP-13 promotes ferroptosis in BC by regulating the USP7/TRIM25/KEAP1 axis. The elucidation of the functional mechanisms of natural CTSGDP-13 and TRIM25 holds promise in providing valuable therapeutic targets for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Shen
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wensun Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ziang Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Yan
- Department of Urology, Pediatric Urolith Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China; Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
13
|
Lu Y, Liu X, Zhao J, Bie F, Liu Y, Xie J, Wang P, Zhu J, Xiong Y, Qin S, Yang F, Chen L, Xu Y. Single-cell profiling reveals transcriptomic signatures of vascular endothelial cells in non-healing diabetic foot ulcers. Front Endocrinol (Lausanne) 2023; 14:1275612. [PMID: 38107519 PMCID: PMC10722230 DOI: 10.3389/fendo.2023.1275612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Background The treatment of diabetic foot ulcers (DFUs) poses a challenging medical problem that has long plagued individuals with diabetes. Clinically, wounds that fail to heal for more than 12 weeks after the formation of DFUs are referred to as non-healing/chronic wounds. Among various factors contributing to the non-healing of DFUs, the impairment of skin microvascular endothelial cell function caused by high glucose plays a crucial role. Our study aimed to reveal the transcriptomic signatures of non-healing DFUs endothelial cells, providing novel intervention targets for treatment strategies. Methods Based on the GEO dataset (GSE165816), we selected DFU-Healer, DFU-Non-healer, and healthy non-diabetic controls as research subjects. Single-cell RNA transcriptomic sequencing technology was employed to analyze the heterogeneity of endothelial cells in different skin tissue samples and identify healing-related endothelial cell subpopulations. Immunofluorescence was applied to validate the sequencing results on clinical specimens. Results The number of endothelial cells and vascular density showed no significant differences among the three groups of skin specimens. However, endothelial cells from non-healing DFUs exhibited apparent inhibition of angiogenesis, inflammation, and immune-related signaling pathways. The expression of CCND1, ENO1, HIF1α, and SERPINE1 was significantly downregulated at the transcriptomic and histological levels. Further analysis demonstrated that healing-related endothelial cell subpopulations in non-healing DFUs has limited connection with other cell types and weaker differentiation ability. Conclusion At the single-cell level, we uncovered the molecular and functional specificity of endothelial cells in non-healing DFUs and highlighted the importance of endothelial cell immune-mediated capability in angiogenesis and wound healing. This provides new insights for the treatment of DFUs.
Collapse
Affiliation(s)
- Yangzhou Lu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaogang Liu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingling Zhao
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fan Bie
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiling Liu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Julin Xie
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Peng Wang
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Junyou Zhu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yahui Xiong
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shitian Qin
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fan Yang
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Chen
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingbin Xu
- Department of Burn, Wound Repair & Reconstruction, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center of Burn and Wound Accurate Diagnosis and Treatment Key Technology and Series of Products, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Huang Y, Xiong C, Wang C, Deng J, Zuo Z, Wu H, Xiong J, Wu X, Lu H, Hao Q, Zhou X. p53-responsive CMBL reprograms glucose metabolism and suppresses cancer development by destabilizing phosphofructokinase PFKP. Cell Rep 2023; 42:113426. [PMID: 37967006 DOI: 10.1016/j.celrep.2023.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/25/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
Aerobic glycolysis is critical for cancer progression and can be exploited in cancer therapy. Here, we report that the human carboxymethylenebutenolidase homolog (carboxymethylenebutenolidase-like [CMBL]) acts as a tumor suppressor by reprogramming glycolysis in colorectal cancer (CRC). The anti-cancer action of CMBL is mediated through its interactions with the E3 ubiquitin ligase TRIM25 and the glycolytic enzyme phosphofructokinase-1 platelet type (PFKP). Ectopic CMBL enhances TRIM25 binding to PFKP, leading to the ubiquitination and proteasomal degradation of PFKP. Interestingly, CMBL is transcriptionally activated by p53 in response to genotoxic stress, and p53 activation represses glycolysis by promoting PFKP degradation. Remarkably, CMBL deficiency, which impairs p53's ability to inhibit glycolysis, makes tumors more sensitive to a combination therapy involving the glycolysis inhibitor 2-deoxyglucose. Taken together, our study demonstrates that CMBL suppresses CRC growth by inhibiting glycolysis and suggests a potential combination strategy for the treatment of CMBL-deficient CRC.
Collapse
Affiliation(s)
- Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Lymphoma Medicine (Breast Cancer & Soft Tissue Tumor Medicine), Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Wu
- Department of Lymphoma Medicine (Breast Cancer & Soft Tissue Tumor Medicine), Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Chang X, Tan Q, Xu J, Wu X, Wang Y, Zhang Y, Zhang H, Liu H, Yan L. Tumor-derived exosomal linc00881 induces lung fibroblast activation and promotes osteosarcoma lung migration. Cancer Cell Int 2023; 23:287. [PMID: 37990331 PMCID: PMC10664679 DOI: 10.1186/s12935-023-03121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
Osteosarcoma (OS) commonly metastasizes to the lung, yet the underlying molecular mechanisms remain poorly understood. Exosomes play a crucial role in tumor migration, including OS lung migration. However, the underlying mechanism by which exosome-derived long non-coding RNAs (lncRNAs) contribute to lung migration in osteosarcoma (OS) remains unclear. This study presents a newly discovered lncRNA, linc00881, derived from OS exosomes. Our study shows that linc00881 promotes the migration of OS cells to the lung and induces the conversion of normal lung fibroblasts into cancer-associated fibroblasts (CAFs). Subsequently, we found that exosomal linc00881 secreted by OS cells can regulate the expression of matrix metalloproteinase 2 (MMP2) in HFL-1 cells by sponging miR-29c-3p, thereby activating the NF-κB signaling in lung fibroblasts. Finally, we discovered that pro-inflammatory cytokines, namely IL-1β, IL-6, and IL-8, were secreted through the linc00881/miR-29c-3p/MMP2 axis. These results suggest that OS-derived exosomes can mediate the intercellular crosstalk between OS cells and lung fibroblasts, ultimately impacting OS lung migration. Our study provides a potential target for the treatment of OS lung migration.
Collapse
Affiliation(s)
- Xinyu Chang
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002, Anhui, China
- Department of Orthopedics Trauma, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Qiuyu Tan
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Jinwen Xu
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Xu Wu
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Ying Wang
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Yuan Zhang
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China
| | - Hao Zhang
- Department of Orthopedics Trauma, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Haijun Liu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002, Anhui, China.
| | - Liang Yan
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002, Anhui, China.
- Provincial Key Laboratory of Biological Macro-Molecules Research, WanNan Medical College, Wuhu, 241002, Anhui, China.
| |
Collapse
|
16
|
Ren G, Li H, Hong D, Hu F, Jin R, Wu S, Sun W, Jin H, Zhao L, Zhang X, Liu D, Huang C, Huang H. LINC00955 suppresses colorectal cancer growth by acting as a molecular scaffold of TRIM25 and Sp1 to Inhibit DNMT3B-mediated methylation of the PHIP promoter. BMC Cancer 2023; 23:898. [PMID: 37742010 PMCID: PMC10518100 DOI: 10.1186/s12885-023-11403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Long non-coding RNAs play an important role in the development of colorectal cancer (CRC), while many CRC-related lncRNAs have not yet been identified. METHODS The relationship between the expression of LINC00955 (Long Intergenic Non-protein Coding RNA 955) and the prognosis of colorectal cancer patients was analyzed using the sequencing results of the TCGA database. LINC00955 expression levels were measured using qRT-PCR. The anti-proliferative activity of LINC00955 was evaluated using CRC cell lines in vitro and xenograft models in nude mice in vivo. The interaction of TRIM25-Sp1-DNMT3B-PHIP-CDK2 was analyzed by western blotting, protein degradation experiment, luciferase, RNA-IP, RNA pull-down assays and immunohistochemically analysis. The biological roles of LINC00955, tripartite motif containing 25 (TRIM25), Sp1 transcription factor (Sp1), DNA methyltransferase 3 beta (DNMT3B), pleckstrin homology domain interacting protein (PHIP), cyclin dependent kinase 2 (CDK2) in colorectal cancer cells were analyzed using ATP assays, Soft agar experiments and EdU assays. RESULTS The present study showed that LINC00955 is downregulated in CRC tissues, and such downregulation is associated with poor prognosis of CRC patients. We found that LINC00955 can inhibit CRC cell growth both in vitro and in vivo. Evaluation of its mechanism of action showed that LINC00955 acts as a scaffold molecule that directly promotes the binding of TRIM25 to Sp1, and promotes ubiquitination and degradation of Sp1, thereby attenuating transcription and expression of DNMT3B. DNMT3B inhibition results in hypomethylation of the PHIP promoter, in turn increasing PHIP transcription and promoting ubiquitination and degradation of CDK2, ultimately leading to G0/G1 growth arrest and inhibition of CRC cell growth. CONCLUSIONS These findings indicate that downregulation of LINC00955 in CRC cells promotes tumor growth through the TRIM25/Sp1/DNMT3B/PHIP/CDK2 regulatory axis, suggesting that LINC00955 may be a potential target for the therapy of CRC.
Collapse
Affiliation(s)
- Ganglin Ren
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Jiaxing Center for Disease Control and Prevention, Jiaxing, 314050, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dan Hong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Fangyu Hu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Rongjia Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Shuang Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wenhao Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaodong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Dongxiang Liu
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
17
|
Rahimi-Tesiye M, Zaersabet M, Salehiyeh S, Jafari SZ. The role of TRIM25 in the occurrence and development of cancers and inflammatory diseases. Biochim Biophys Acta Rev Cancer 2023; 1878:188954. [PMID: 37437700 DOI: 10.1016/j.bbcan.2023.188954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The tripartite motif (TRIM) family proteins are a group of proteins involved in different signaling pathways. The changes in the expression regulation, function, and signaling of this protein family are associated with the occurrence and progression of a wide range of disorders. Given the importance of these proteins in pathogenesis, they can be considered as potential therapeutic targets for many diseases. TRIM25, as an E3-ubiquitin ligase, is involved in the development of various diseases and cellular mechanisms, including antiviral innate immunity and cell proliferation. The clinical studies conducted on restricting the function of this protein have reached promising results that can be further evaluated in the future. Here, we review the regulation of TRIM25 and its function in different diseases and signaling pathways, especially the retinoic acid-inducible gene-I (RIG-I) signaling which prompts many kinds of cancers and inflammatory disorders.
Collapse
Affiliation(s)
- Maryam Rahimi-Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mona Zaersabet
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Sajad Salehiyeh
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Zahra Jafari
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
18
|
Ding K, Jiang X, Ni J, Zhang C, Li A, Zhou J. JWA inhibits nicotine-induced lung cancer stemness and progression through CHRNA5/AKT-mediated JWA/SP1/CD44 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115043. [PMID: 37224781 DOI: 10.1016/j.ecoenv.2023.115043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Cigarette smoking is an independent risk factor for lung cancer. Nicotine, as an addictive substance in tobacco and e-cigarettes, is known to promote tumor progression and metastasis despite being a non-carcinogen. As a tumor suppressor gene, JWA is widely involved in the inhibition of tumor growth and metastasis and the maintenance of cellular homeostasis, including in non-small cell lung cancer (NSCLC). However, the role of JWA in nicotine-induced tumor progression remains unclear. Here, we reported for the first time that JWA was significantly downregulated in smoking-related lung cancer and associated with overall survival. Nicotine exposure reduced JWA expression in a dose-dependent manner. Gene Set Enrichment Analysis (GSEA) analysis showed the tumor stemness pathway was enriched in smoking-related lung cancer, and JWA was negatively associated with stemness molecules CD44, SOX2, and CD133. JWA also inhibited nicotine-enhanced colony formation, spheroid formation, and EDU incorporation in lung cancer cells. Mechanically, nicotine downregulated JWA expression via the CHRNA5-mediated AKT pathway. Lower JWA expression enhanced CD44 expression through inhibition of ubiquitination-mediated degradation of Specificity Protein 1 (SP1). The in vivo data indicated that JAC4 through the JWA/SP1/CD44 axis inhibited nicotine-triggered lung cancer progression and stemness. In conclusion, JWA via down-regulating CD44 inhibited nicotine-triggered lung cancer cell stemness and progression. Our study may provide new insights to develop JAC4 for the therapy of nicotine-related cancers.
Collapse
Affiliation(s)
- Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xuqian Jiang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jie Ni
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chao Zhang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
19
|
Yang H, Ai H, Zhang J, Ma J, Liu K, Li Z. UPS: Opportunities and challenges for gastric cancer treatment. Front Oncol 2023; 13:1140452. [PMID: 37077823 PMCID: PMC10106573 DOI: 10.3389/fonc.2023.1140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer remains the fourth most frequently diagnosed malignancy and the fifth leading cause of cancer-related mortality worldwide owning to the lack of efficient drugs and targets for therapy. Accumulating evidence indicates that UPS, which consists of E1, E2, and E3 enzymes and proteasome, plays an important role in the GC tumorigenesis. The imbalance of UPS impairs the protein homeostasis network during development of GC. Therefore, modulating these enzymes and proteasome may be a promising strategy for GC target therapy. Besides, PROTAC, a strategy using UPS to degrade the target protein, is an emerging tool for drug development. Thus far, more and more PROTAC drugs enter clinical trials for cancer therapy. Here, we will analyze the abnormal expression enzymes in UPS and summarize the E3 enzymes which can be developed in PROTAC so that it can contribute to the development of UPS modulator and PROTAC technology for GC therapy.
Collapse
Affiliation(s)
- Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Huihan Ai
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jialin Zhang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jie Ma
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- China-US Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| | - Zhi Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Zhi Li, ; Kangdong Liu,
| |
Collapse
|
20
|
Xie Z, Wu XJ, Cheng RW, Cui JH, Yuan ST, Zhou JW, Liu QH. JP1, a polypeptide specifically targeting integrin αVβ3, ameliorates choroidal neovascularization and diabetic retinopathy in mice. Acta Pharmacol Sin 2023; 44:897-912. [PMID: 36280689 PMCID: PMC10043287 DOI: 10.1038/s41401-022-01005-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Anti-vascular endothelial growth factor (VEGF) drugs have revolutionized the treatment of neovascular eye diseases, but responses are incomplete in some patients. Recent evidence shows that integrins are involved in the pathogenesis of neovascular age-related macular degeneration and diabetic retinopathy. JP1, derived from an optimized seven-amino-acid fragment of JWA protein, is a polypeptide specifically targeting integrin αVβ3. In this study we evaluated the efficacy of JP1 on laser-induced choroidal neovascularization (CNV) and retinal vascular leakage. CNV mice received a single intravitreal (IVT) injection of JP1 (10, 20, 40 µg) or ranibizumab (RBZ, 10 µg). We showed that JP1 injection dose-dependently inhibited laser-induced CNV; the effect of RBZ was comparable to that of 20 µg JP1; a combined IVT injection of JP1 (20 μg) and RBZ (5 μg) exerted a synergistic effect on CNV. In the 3rd month after streptozotocin injection, diabetic mice receiving IVT injection of JP1 (40 µg) or RBZ (10 µg) once a week for 4 weeks showed significantly suppressed retinal vascular leakage. In both in vivo and in vitro experiments, JP1 counteracted oxidative stress and inflammation via inhibiting ROS/NF-κB signaling in microglial cells, and angiogenesis via modulating MEK1/2-SP1-integrin αVβ3 and TRIM25-SP1-MMP2 axes in vascular endothelial cells. In addition, intraperitoneal injection of JP1 (1, 5 or 10 mg) once every other day for 3 times also dose-dependently inhibited CNV. After intraperitoneal injection of FITC-labeled JP1 (FITC-JP1) or FITC in laser-induced CNV mice, the fluorescence intensity in the CNV lesion was markedly increased in FITC-JP1 group, compared with that in FITC group, confirming that JP1 could penetrate the blood-retinal barrier to target CNV lesion. We conclude that JP1 can be used to design novel CNV-targeting therapeutic agents that may replace current invasive intraocular injections.
Collapse
Affiliation(s)
- Zhan Xie
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin-Jing Wu
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rui-Wen Cheng
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jia-Hua Cui
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Song-Tao Yuan
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jian-Wei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qing-Huai Liu
- Department of Ophthalmology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
21
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
22
|
Pu Z, Zhao Q, Chen J, Xie Y, Mou L, Zha X. Single-cell RNA analysis to identify five cytokines signaling in immune-related genes for melanoma survival prognosis. Front Immunol 2023; 14:1148130. [PMID: 37026000 PMCID: PMC10070796 DOI: 10.3389/fimmu.2023.1148130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Melanoma is one of the deadliest skin cancers. Recently, developed single-cell sequencing has revealed fresh insights into melanoma. Cytokine signaling in the immune system is crucial for tumor development in melanoma. To evaluate melanoma patient diagnosis and treatment, the prediction value of cytokine signaling in immune-related genes (CSIRGs) is needed. In this study, the machine learning method of least absolute selection and shrinkage operator (LASSO) regression was used to establish a CSIRG prognostic signature of melanoma at the single-cell level. We discovered a 5-CSIRG signature that was substantially related to the overall survival of melanoma patients. We also constructed a nomogram that combined CSIRGs and clinical features. Overall survival of melanoma patients can be consistently predicted with good performance as well as accuracy by both the 5-CSIRG signature and nomograms. We compared the melanoma patients in the CSIRG high- and low-risk groups in terms of tumor mutation burden, infiltration of the immune system, and gene enrichment. High CSIRG-risk patients had a lower tumor mutational burden than low CSIRG-risk patients. The CSIRG high-risk patients had a higher infiltration of monocytes. Signaling pathways including oxidative phosphorylation, DNA replication, and aminoacyl tRNA biosynthesis were enriched in the high-risk group. For the first time, we constructed and validated a machine-learning model by single-cell RNA-sequencing datasets that have the potential to be a novel treatment target and might serve as a prognostic biomarker panel for melanoma. The 5-CSIRG signature may assist in predicting melanoma patient prognosis, biological characteristics, and appropriate therapy.
Collapse
Affiliation(s)
- Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Qing Zhao
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiaqun Chen
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Yubin Xie
- Department of Dermatology, Shenzhen Luohu Hospital of Traditional Chinese Medicine, Shenzhen, Guangdong, China
| | - Lisha Mou
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
- *Correspondence: Lisha Mou, ; Xushan Zha,
| | - Xushan Zha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- *Correspondence: Lisha Mou, ; Xushan Zha,
| |
Collapse
|
23
|
ERR-activated GPR35 promotes immune infiltration level of macrophages in gastric cancer tissues. Cell Death Dis 2022; 8:444. [DOI: 10.1038/s41420-022-01238-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
AbstractEnhancer release and retargeting (ERR) events could activate disease-causing gene promoters for increasing the expression level of oncogenes. Meanwhile, class A orphan GPCRs (oGPCRs) are known as potential biomarkers or drug targets for various cancers, such as gastric cancer (GC). Hence, systemic investigation of ERR events for class A oGPCRs in GC could help to explore biomarkers for GC. In this study, ENCODE and GTEx eQTL data were utilized to define ERR events in GC. Only GPR35 was then detected that could be activated by ERR in GC based on these data and ChIP-seq. Then, activated GPR35 functional in GC cells were explored by flow cytometry, cell-based wound healing assay, Transwell migration assay, and M2 polarization of macrophages assay. Meanwhile, according to TCGA and GEO database, overall survival, immune-related gene expression, and immune cell infiltration level in different GPR35 expressions were calculated. Here, we found ERR event activate GPR35 results in GC cells proliferation and migration, and partly immune cells significance exhaustion (CD8 + T-cells and CD4 + memory T-cells) and/or infiltration (T-cells and macrophage). Meanwhile, high GRP35 level leads to a poor prognosis in GC patients, probably partly due to it promoting the immune infiltration level of macrophages and then inducing polarization of M2 macrophages. Notably, GPR35’s high expression in CTSB+ and CD68 + macrophage could be a genetic indicator for early warning of primary GC. Hence, our findings provide a novel activation approach for oGPCRs, and GPR35 could be determined as a new drugable receptor and early genetic indicator for GC.
Collapse
|
24
|
Targeting JWA for Cancer Therapy: Functions, Mechanisms and Drug Discovery. Cancers (Basel) 2022; 14:cancers14194655. [PMID: 36230577 PMCID: PMC9564207 DOI: 10.3390/cancers14194655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary JWA has been identified as a potential therapeutic target for several cancers. In this review, we summarize the tumor suppressive functions of the JWA gene and its role in anti-cancer drug development. The focus is on elucidating the key regulatory proteins up and downstream of JWA and their signaling networks. We also discuss current strategies for targeting JWA (JWA peptides, small molecule agonists, and JWA-targeted Pt (IV) prodrugs). Abstract Tumor heterogeneity limits the precision treatment of targeted drugs. It is important to find new tumor targets. JWA, also known as ADP ribosylation factor-like GTPase 6 interacting protein 5 (ARL6IP5, GenBank: AF070523, 1998), is a microtubule-associated protein and an environmental response gene. Substantial evidence shows that JWA is low expressed in a variety of malignancies and is correlated with overall survival. As a tumor suppressor, JWA inhibits tumor progression by suppressing multiple oncogenes or activating tumor suppressor genes. Low levels of JWA expression in tumors have been reported to be associated with multiple aspects of cancer progression, including angiogenesis, proliferation, apoptosis, metastasis, and chemotherapy resistance. In this review, we will discuss the structure and biological functions of JWA in tumors, examine the potential therapeutic strategies for targeting JWA and explore the directions for future investigation.
Collapse
|
25
|
Efp/TRIM25 and Its Related Protein, TRIM47, in Hormone-Dependent Cancers. Cells 2022; 11:cells11152464. [PMID: 35954308 PMCID: PMC9368238 DOI: 10.3390/cells11152464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/24/2022] Open
Abstract
Increasing attention has been paid to the biological roles of tripartite motif-containing (TRIM) family proteins, which typically function as E3 ubiquitin ligases. Estrogen-responsive finger protein (Efp), a member of the TRIM family proteins, also known as TRIM25, was originally identified as a protein induced by estrogen and plays critical roles in promoting endocrine-related cancers, including breast cancer, endometrial cancer, and prostate cancer. The pathophysiological importance of Efp made us interested in the roles of other TRIM family proteins that share a similar structure with Efp. Based on a phylogenetic analysis of the C-terminal region of TRIM family proteins, we focused on TRIM47 as a protein belonging to the same branch as Efp. TRIM47 is a poor prognostic factor in both breast cancer and prostate cancer. Atypical lysine-27-like poly-ubiquitination was involved in the underlying mechanism causing endocrine resistance in breast cancer. We also discuss the functions of Efp and TRIM47 in other types of cancers and innate immunity by introducing substrates the are modified by poly-ubiquitination.
Collapse
|
26
|
Yu X, He S, Shen J, Huang Q, Yang P, Huang L, Pu D, Wang L, Li L, Liu J, Liu Z, Zhu L. Tumor vessel normalization and immunotherapy in gastric cancer. Ther Adv Med Oncol 2022; 14:17588359221110176. [PMID: 35872968 PMCID: PMC9297465 DOI: 10.1177/17588359221110176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is a common malignant tumor, and patients with GC have a low survival rate due to limited effective treatment methods. Angiogenesis and immune evasion are two key processes in GC progression, and they act synergistically to promote tumor progression. Tumor vascular normalization has been shown to improve the efficacy of cancer immunotherapy, which in turn may be improved through enhanced immune stimulation. Therefore, it may be interesting to identify synergies between immunomodulatory agents and anti-angiogenic therapies in GC. This strategy aims to normalize the tumor microenvironment through the action of the anti-vascular endothelial growth factor while stimulating the immune response through immunotherapy and prolonging the survival of GC patients.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Shan He
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Jian Shen
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qiushi Huang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Peng Yang
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Lin Huang
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Pu
- West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Wang
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Lu Li
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jinghua Liu
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, Shandong 276000, People's Republic of China
| | - Zelong Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Wuhou District, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
27
|
Zhang X, Meng T, Cui S, Liu D, Pang Q, Wang P. Roles of ubiquitination in the crosstalk between tumors and the tumor microenvironment (Review). Int J Oncol 2022; 61:84. [PMID: 35616129 PMCID: PMC9170352 DOI: 10.3892/ijo.2022.5374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022] Open
Abstract
The interaction between a tumor and the tumor microenvironment (TME) plays a key role in tumorigenesis and tumor progression. Ubiquitination, a crucial post-translational modification for regulating protein degradation and turnover, plays a role in regulating the crosstalk between a tumor and the TME. Thus, identifying the roles of ubiquitination in the process may assist researchers to investigate the mechanisms underlying tumorigenesis and tumor progression. In the present review article, new insights into the substrates for ubiquitination that are involved in the regulation of hypoxic environments, angiogenesis, chronic inflammation-mediated tumor formation, and the function of cancer-associated fibroblasts and infiltrating immune cells (tumor-associated macrophages, T-cells, myeloid-derived suppressor cells, dendritic cells, and natural killer cells) are summarized. In addition, the potential targets of the ubiquitination proteasome system within the TME for cancer therapy and their therapeutic effects are reviewed and discussed.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Dongwu Liu
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Qiuxiang Pang
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| |
Collapse
|
28
|
XRCC5 downregulated by TRIM25 is susceptible for lens epithelial cell apoptosis. Cell Signal 2022; 94:110314. [PMID: 35331835 DOI: 10.1016/j.cellsig.2022.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Exposure of the lens to UVB can lead to oxidative stress, which would result in age-related cataract (ARC) formation. In this study, we investigate the regulatory mechanism of tripartite motif containing 25 (TRIM25) in ARC. The protein level of TRIM25 was elevated in ARC specimens and UVB-exposed SRA01/04 cells. Bioinformatic analysis indicated that X-ray repair cross complementing 5 (XRCC5) might interact with TRIM25, and the interaction was validated via immunoprecipitation. TRIM25 interacted with XRCC5 and ubiquitinated it for degradation. Further studies showed that XRCC5 overexpression notably repressed UVB-induced apoptosis, while XRCC5 knockdown promoted apoptosis. Of note, ubiquitination of XRCC5 mediated by TRIM25 overexpression facilitated apoptosis. Attenuation of XRCC5 ubiquitination by mutant with substitution of lysine residues with arginine residues rescued its anti-apoptosis effect. Moreover, we observed that TRIM25-mediated XRCC5 degradation was reversed by proteasome inhibitor MG-132 or lysosome inhibitor 3-MA. In conclusion, TRIM25 mediates ubiquitination of XRCC5 to regulate the function and degradation of XRCC5, suggesting that interventions targeting TRIM25 might be a promising therapeutic strategy for ARC.
Collapse
|
29
|
Gan D, Cheng W, Ke L, Sun AR, Jia Q, Chen J, Xu Z, Xu J, Zhang P. Biphasic Effect of Pirfenidone on Angiogenesis. Front Pharmacol 2022; 12:804327. [PMID: 35069215 PMCID: PMC8766764 DOI: 10.3389/fphar.2021.804327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Pirfenidone (PFD), a synthetic arsenic compound, has been found to inhibit angiogenesis at high concentrations. However, the biphasic effects of different PFD concentrations on angiogenesis have not yet been elucidated, and the present study used an in vitro model to explore the mechanisms underlying this biphasic response. The effect of PFD on the initial angiogenesis of vascular endothelial cells was investigated through a Matrigel tube formation assay, and the impact of PFD on endothelial cell migration was evaluated through scratch and transwell migration experiments. Moreover, the expression of key migration cytokines, matrix metalloproteinase (MMP)-2 and MMP-9, was examined. Finally, the biphasic mechanism of PFD on angiogenesis was explored through cell signaling and apoptosis analyses. The results showed that 10–100 μM PFD has a significant and dose-dependent inhibitory effect on tube formation and migration, while 10 nM–1 μM PFD significantly promoted tube formation and migration, with 100 nM PFD having the strongest effect. Additionally, we found that a high concentration of PFD could significantly inhibit MMP-2 and MMP-9 expression, while low concentrations of PFD significantly promoted their expression. Finally, we found that high concentrations of PFD inhibited EA.hy926 cell tube formation by promoting apoptosis, while low concentrations of PFD promoted tube formation by increasing MMP-2 and MMP-9 protein expression predominantly via the EGFR/p-p38 pathway. Overall, PFD elicits a biphasic effect on angiogenesis through different mechanisms, could be used as a new potential drug for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Donghao Gan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Medicine, The Southern University of Science and Technology, Shenzhen, China
| | - Wenxiang Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liqing Ke
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Antonia RuJia Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Jianhai Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juan Xu
- Department of Stomatology, SijingHospital, Shanghai, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Modi U, Makwana P, Vasita R. Molecular insights of metastasis and cancer progression derived using 3D cancer spheroid co-culture in vitro platform. Crit Rev Oncol Hematol 2021; 168:103511. [PMID: 34740822 DOI: 10.1016/j.critrevonc.2021.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
The multistep metastasis process is carried out by the combinatorial effect of the stromal cells and the cancerous cells and plays vital role in the cancer progression. The scaffold/physical cues aided 3D cancer spheroid imitates the spatiotemporal organization and physiological properties of the tumor. Understanding the role of the key players in different stages of metastasis, the molecular cross-talk between the stromal cells and the cancer cells contributing in the advancement of the metastasis through 3D cancer spheroid co-culture in vitro platform is the center of discussion in the present review. This state-of-art in vitro platform utilized to study the cancer cell host defence and the role of exosomes in the cross talk leading to cancer progression has been critically examined here. 3D cancer spheroid co-culture technique is the promising next-generation in vitro approach for exploring potent treatments and personalized medicines to combat cancer metastasis leading to cancer progression.
Collapse
Affiliation(s)
- Unnati Modi
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Pooja Makwana
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Rajesh Vasita
- Biomaterials & Biomimetics Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
31
|
Tecalco-Cruz AC, Abraham-Juárez MJ, Solleiro-Villavicencio H, Ramírez-Jarquín JO. TRIM25: A central factor in breast cancer. World J Clin Oncol 2021; 12:646-655. [PMID: 34513598 PMCID: PMC8394156 DOI: 10.5306/wjco.v12.i8.646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
TRIM25 is emerging as a central factor in breast cancer due to its regulation and function. In particular, it has been shown that: (1) Estrogens modulate TRIM25 gene expression; (2) TRIM25 has activity as an E3-ligase enzyme for ubiquitin; and (3) TRIM25 is also an E3 ligase for interferon-stimulated gene 15 protein in the ISGylation system. Consequently, the proteome of mammary tissue is affected by TRIM25-associated pathways, involved in tumor development and metastasis. Here, we discuss the findings on the mechanisms involved in regulating TRIM25 expression and its functional relevance in breast cancer progression. These studies suggest that TRIM25 may be a biomarker and a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico 03100, Mexico
| | - María Jazmin Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36821, Mexico
| | | | | |
Collapse
|
32
|
Ji W, Liu Y, Xu B, Mei J, Cheng C, Xiao Y, Yang K, Huang W, Jiao J, Liu H, Shao J. Bioinformatics Analysis of Expression Profiles and Prognostic Values of the Signal Transducer and Activator of Transcription Family Genes in Glioma. Front Genet 2021; 12:625234. [PMID: 34276757 PMCID: PMC8283826 DOI: 10.3389/fgene.2021.625234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) family genes—of which there are seven members: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6—have been associated with the progression of multiple cancers. However, their prognostic values in glioma remain unclear. In this study, we systematically investigated the expression, the prognostic value, and the potential mechanism of the STAT family genes in glioma. The expression of STAT1/2/3/5A/6 members were significantly higher and positively correlated with IDH mutations, while the expression of STAT5B was lower and negatively correlated with IDH mutations in glioma. Survival analysis indicated that the upregulation of STAT1/2/3/5A/6 and downregulation of STAT5B expression was associated with poorer overall survival in glioma. Joint effects analysis of STAT1/2/3/5A/5B/6 expression suggested that the prognostic value of the group was more significant than that of each individual gene. Thus, we constructed a risk score model to predict the prognosis of glioma. The receiver operating characteristic curve and calibration curves showed good performance as prognostic indicators in both TCGA (The Cancer Genome Atlas) and the CGGA (Chinese Glioma Genome Atlas) databases. Furthermore, we analyzed the correlation between STAT expression with immune infiltration in glioma. The Protein–protein interaction network and enrichment analysis showed that STAT members and co-expressed genes mainly participated in signal transduction activity, Hepatitis B, the Jak-STAT signaling pathway, transcription factor activity, sequence-specific DNA binding, and the cytokine-mediated signaling pathway in glioma. In summary, our study analyzed the expression, prognostic values, and biological roles of the STAT gene family members in glioma, based on which we developed a new risk score model to predict the prognosis of glioma more precisely.
Collapse
Affiliation(s)
- Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.,Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuankun Liu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jie Mei
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yong Xiao
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Weiyi Huang
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
33
|
Qi Y, Yao R, Zhang W, Cui Q. KAT1 triggers YTHDF2-mediated ITGB1 mRNA instability to alleviate the progression of diabetic retinopathy. Pharmacol Res 2021; 170:105713. [PMID: 34098071 DOI: 10.1016/j.phrs.2021.105713] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/17/2023]
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes and a leading cause of blindness and visual impairment. This study focuses on the function of lysine acetyltransferase 1 (KAT1) in the progression of DR and the epigenetic mechanism. A mouse model with DR was induced by streptozotocin (STZ). Abundantly expressed genes in STZ-induced mice were analyzed. KAT1 was found to be significantly downregulated in the retinal tissues of model mice. Retinal microvascular endothelial cells (RMECs) and retinal Müller cells (rMCs) were cultured in high-glucose medium for in vitro studies. Upregulation of KAT1 suppressed inflammation, neovascularization, and vascular leakage in mouse retinal tissues, and it reduced the activity and inflammatory responses in rMCs, as well as the proliferation and metastatic potential of RMECs. KAT1 activated the transcription activity of YTHDF2 through histone acetylation of the promoter, and YTHDF2 triggered the instability of ITGB1 mRNA to induce mRNA degradation in an m6A manner. The activities of rMCs and RMECs were increased by sh-YTHDF2 but suppressed by sh-ITGB1. The FAK/PI3K/AKT signaling pathway was suppressed upon ITGB1 silencing. Collectively, this study demonstrated that KAT1 triggers YTHDF2-mediated ITGB1 mRNA instability to alleviate the progression of DR.
Collapse
Affiliation(s)
- Ying Qi
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, the Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, PR China.
| | - Renjie Yao
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, the Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, PR China
| | - Wenjing Zhang
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, the Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, PR China
| | - Qingqing Cui
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, the Laboratory for Ophthalmology and Vision Science, Henan Eye Hospital, Zhengzhou 450052, Henan, PR China
| |
Collapse
|
34
|
Zhao G, Liu C, Wen X, Luan G, Xie L, Guo X. The translational values of TRIM family in pan-cancers: From functions and mechanisms to clinics. Pharmacol Ther 2021; 227:107881. [PMID: 33930453 DOI: 10.1016/j.pharmthera.2021.107881] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death across the world. Tripartite motif (TRIM) family, with E3 ubiquitin ligase activities in majority of its members, is reported to be involved in multiple cellular processes and signaling pathways. TRIM proteins have critical effects in the regulation of biological behaviors of cancer cells. Here, we discussed the current understanding of the molecular mechanism of TRIM proteins regulation of cancer cells. We also comprehensively reviewed published studies on TRIM family members as oncogenes or tumor suppressors in the oncogenesis, development, and progression of a variety of types of human cancers. Finally, we highlighted that certain TRIM family members are potential molecular biomarkers for cancer diagnosis and prognosis, and potential therapeutic targets.
Collapse
Affiliation(s)
- Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Chuan Liu
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Gan Luan
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
35
|
Ren Y, Chen D, Zhai Z, Chen J, Li A, Liang Y, Zhou J. JAC1 suppresses proliferation of breast cancer through the JWA/p38/SMURF1/HER2 signaling. Cell Death Discov 2021; 7:85. [PMID: 33875644 PMCID: PMC8055679 DOI: 10.1038/s41420-021-00426-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
The overexpression of HER2 is associated with a malignant proliferation of breast cancer. In this study, we developed a non-cytotoxic JWA gene activating compound 1 (JAC1) to inhibit the proliferation of HER2-positive breast cancer cells in vitro and in vivo experimental models. JAC1 increased the ubiquitination of HER2 at the K716 site through the E3 ubiquitin ligase SMURF1 which was due to the decreased expression of NEDD4, the E3 ubiquitin ligase of SMURF1. In conclusion, JAC1 suppresses the proliferation of HER2-positive breast cancer cells through the JWA triggered HER2 ubiquitination signaling. JAC1 may serve as a potential therapeutic agent for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yanlin Ren
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, 211166, Nanjing, China.,Nantong Center for Disease Control and Prevention, 226007, Nantong, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Zurong Zhai
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Junjie Chen
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, 211166, Nanjing, China
| | - Yan Liang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, 211166, Nanjing, China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 211166, Nanjing, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
36
|
Yang KS, Xu CQ, Lv J. Identification and validation of the prognostic value of cyclic GMP-AMP synthase-stimulator of interferon (cGAS-STING) related genes in gastric cancer. Bioengineered 2021; 12:1238-1250. [PMID: 33843442 PMCID: PMC8291813 DOI: 10.1080/21655979.2021.1911557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway play a significant role in the production of inflammatory cytokines and type I interferons. This study aims to develop a cGAS-STING pathway-related genes (CSRs) prediction model to predict prognosis in gastric cancer (GC). In the present study, we used The Cancer Genome Atlas (TCGA), Gene Expression Omnibus databases (GEO), CIBERSORT and Tumor Immune Estimation Resource databases (TIMER). The risk model based on five hub genes (IFNB1, IFNA4, IL6, NFKB2, and TRIM25) was constructed to predict the overall survival (OS) of GC. Further univariate Cox regression (URC) and multivariate Cox regression (MCR) analyses revealed that this risk scoring model was an independent factor. The results were verified by GEO external validation set. Multiple immune pathways were assessed by Gene Set Enrichment Analysis (GSEA). TIMER analysis demonstrated that risk score strongly correlated with Macrophage, B cells and CD8 + T cells infiltration. In addition, through ‘CIBERSORT’ package, the higher levels of infiltration of T cell follicular assistance (P = 0.011), NK cells-activated (P = 0.034), and Dendritic cells resting (P = 0.033) exhibited in high-risk group. Kaplan–Meier (K-M) survival analysis illustrated T cells CD4 memory resting and T cells follicular helper infiltration correlated with overall survival (OS) of GC patients in TCGA and GEO databases. Altogether, the risk score model can be conveniently used to predict prognosis. The immunocyte infiltration analysis provided a novel horizon for monitoring the status of the GC immune microenvironment. Abbreviations:TCGA: The Cancer Genome Atlas databases; GEO: Gene Expression Omnibus databases; GC: Gastric cancer; CSRs: cGAS-STING pathway-related genes; DECSRs: Differential expressed cGAS-STING pathway-related genes; PCSRs: Prognosis related cGAS-STING pathway genes; URC: Univariate Cox regression analyses; MCR: Multivariate Cox regression analyses GSEA: Gene set enrichment analysis; TIIC: Tumor-infiltrating immune cell.
Collapse
Affiliation(s)
- Kui-Sheng Yang
- Department of General Surgery, People's Hospital of Jingjiang, Yangzhou University Medical Academy, Jingjiang, China
| | - Chuan-Qi Xu
- Department of General Surgery, People's Hospital of Jingjiang, Yangzhou University Medical Academy, Jingjiang, China
| | - Jian Lv
- Department of General Surgery, People's Hospital of Jingjiang, Yangzhou University Medical Academy, Jingjiang, China
| |
Collapse
|
37
|
Zhang Y, Chen J, Che Z, Shu C, Chen D, Ding K, Li A, Zhou J. JP3 enhances the toxicity of cisplatin on drug-resistant gastric cancer cells while reducing the damage to normal cells. J Cancer 2021; 12:1894-1906. [PMID: 33753987 PMCID: PMC7974513 DOI: 10.7150/jca.50306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/03/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Cisplatin (DDP) is a highly effective chemotherapeutic agent to most solid tumors including gastric cancer (GC), however, its clinical value is limited due to severe toxic side effects and secondary drug resistance. JP3, a JWA protein based MMP2-targeted polypeptide, known to inhibit the growth of GC in vivo. However, the bidirectional effects of JP3 in DDP-resistant GC and normal cells have not been demonstrated. The present study aims to investigate the actions of JP3 on protecting normal cells from the toxicity of DDP while enhancing its anti-tumor effects on GC cells. Methods: Routine laboratory experimental methods including CCK-8 assay, Western blotting, Hoechst staining, immunofluorescence (IF) and qRT-PCR were used in mechanism investigation; protein docking analysis and coimmunoprecipitation (Co-IP) were used for prediction and confirmation of interactions between JP3 and CK2. Mouse xenograft model was used for screening the treatment of JP3 plus DDP on GC growth. Results: DDP showed similar toxicities to normal cells and DDP-resistant GC cells; JP3 competitively inhibited the binding of XRCC1 to CK2, reduced the DNA repair and anti-apoptosis capacity of DDP-resistant GC cells in combination with DDP treatment; meanwhile, JP3 protected normal cells from DDP-induced oxidative stress and DNA damage through ERK/Nrf2 signaling. JP3 combined with DDP showed similar bidirectional effects in vivo. Conclusions: JP3 enhanced the inhibitory effects of DDP on tumor growth while reduced toxic side effects of DDP on normal cells. The results of this study provide a new insight for the treatment of drug-resistant GC.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Junjie Chen
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhen Che
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Kun Ding
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Aiping Li
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jianwei Zhou
- Department of Molecular Cell Biology & Toxicology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
38
|
Zhu M, Cai J, Wu Y, Wu X, Feng L, Yin Z. A Novel RNA-Binding Protein-Based Nomogram for Predicting Survival of Patients with Gastric Cancer. Med Sci Monit 2021; 27:e928195. [PMID: 33471782 PMCID: PMC7834218 DOI: 10.12659/msm.928195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background We attempted to develop a prognostic model and characterize molecular subtypes for gastric cancer on the basis of ribonucleic acid (RNA)-binding proteins (RBPs). Material/Methods RNA sequence data of gastric cancer were obtained from The Cancer Genome Atlas. Univariate Cox regression analysis was used to screen survival-related RBPs, followed by least absolute shrinkage and selection operator Cox modeling. Overall and stratified survival analysis was carried out between high and low risk score groups, followed by receiver operator characteristic curve construction. Univariate and multivariate survival analysis was applied to assess its independent prognostic potential. A nomogram was constructed by combining age and the risk score, which was verified by calibration curves and decision curve analyses for 1-, 3-, and 5-year survival. Molecular subtypes were identified using nonnegative matrix factorization method. Clinical features of the identified subtypes were characterized on prognosis, drug sensitivity, and immune infiltration. An external Gene Expression Omnibus dataset was used to verify the above findings. Results On the basis of 44 survival-related RBPs, a robust prognostic 15-RBP signature was constructed. Patients with high risk score had a poorer prognosis than those with low risk score. The risk score had good performance in predicting clinical outcomes for 1-, 3-, and 5-year survival. The signature was effectively independent of other clinical features. The nomogram model combining age and the 15-RBP prognostic model exhibited better practicality and reliability for prognosis. RBP expression data were utilized to define 2 distinct molecular subtypes obviously related to survival outcomes, chemotherapeutic drug sensitivity, and immune infiltration. Conclusions Our study provides a nomogram model that consists of age and a 15-RBP signature and identifies 2 molecular subtypes for gastric cancer that possess potential value for preclinical, clinical, and translational research on gastric cancer.
Collapse
Affiliation(s)
- Maoshu Zhu
- Department of Science and Education, The Fifth Hospital of Xiamen, Xiamen, Fujian, China (mainland)
| | - Jiading Cai
- Department of Gastroenterology, The Fifth Hospital of Xiamen, Xiamen, Fujian, China (mainland)
| | - Yulong Wu
- Department of Urology, The Fifth Hospital of Xiamen, Xiamen, Fujian, China (mainland)
| | - Xinhong Wu
- Rehabilitation Department of Traditional Chinese Medicine, The Fifth Hospital of Xiamen, Xiamen, Fujian, China (mainland)
| | - Lianghua Feng
- Department of Rheumatology and Immunology, The Fifth Hospital of Xiamen, Xiamen, Fujian, China (mainland)
| | - Zhijiang Yin
- Department of Hand and Foot Microsurgery, The Fifth Hospital of Xiamen, Xiamen, Fujian, China (mainland)
| |
Collapse
|