1
|
Wang J, Walker RL, Hornicek FJ, Shi H, Duan Z. Inhibition of discoidin domain receptor 1 as a new therapeutic strategy for osteosarcoma. FASEB J 2024; 38:e70239. [PMID: 39641588 DOI: 10.1096/fj.202401508rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Osteosarcoma is the most common type of bone cancer. Some patients eventually develop recurrent or metastatic diseases and treatment options are extremely limited. Discoidin domain receptor 1 (DDR1) is a unique collagen-activated tyrosine kinase that participates in various human diseases, including cancer. DDR1 promotes adhesion, proliferation, differentiation, migration, and metastasis of cancer cells. The purpose of this study is to assess the expression, clinical prognostic relationship and functional roles of DDR1 in osteosarcoma. The correlation between DDR1 expression in tumor tissues and clinicopathological features, and prognosis was assessed via immunohistochemical staining of a unique tissue microarray (TMA) constructed from osteosarcoma specimens. DDR1-specific siRNA and a highly selective DDR1 inhibitor, 7rh, were applied to determine the impact of DDR1 expression on osteosarcoma cell growth and proliferation. Furthermore, the effect of DDR1 inhibition on clonogenicity was evaluated using a clonogenic assay, and a 3D cell culture model was used to mimic DDR1 effects in an in vivo environment. The results demonstrate that higher DDR1 expression significantly correlates with recurrence, metastasis, and shorter overall survival in osteosarcoma patients. The expression of DDR1 is also inversely correlated to the response to neoadjuvant chemotherapy. Therapeutically, DDR1 knockdown with siRNA or selective inhibition with 7rh decreases the proliferation and growth of osteosarcoma cells. In conclusion, our study supports DDR1 expression as an independent predictor of poor prognosis and a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Jinglu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Robert L Walker
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Huirong Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Frankenbach-Désor T, Niesner I, Ahmed P, Dürr HR, Klein A, Knösel T, Gospos J, McGovern JA, Hutmacher DW, Holzapfel BM, Mayer-Wagner S. Tissue-engineered patient-derived osteosarcoma models dissecting tumour-bone interactions. Cancer Metastasis Rev 2024; 44:8. [PMID: 39592467 PMCID: PMC11599440 DOI: 10.1007/s10555-024-10218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Osteosarcoma is the most common malignant bone tumor, primarily affecting children and young adults. For these young patients, the current treatment options for osteosarcoma impose considerable constraints on daily life with significant morbidity and a low survival rate. Despite ongoing research efforts, the 5-year survival rate of first-diagnosed patients without metastases has not changed in the past four decades. The demand for novel treatments is currently still unmet, in particular for effective second-line therapy. Therefore, there is an urgent need for advanced preclinical models and drug-testing platforms that take into account the complex disease characteristics, the high heterogeneity of the tumour and the interactions with the bone microenvironment. In this review, we provide a comprehensive overview about state-of-the-art tissue-engineered and patient-specific models for osteosarcoma. These sophisticated platforms for advanced therapy trials aim to improve treatment outcomes for future patients by modelling the patient's disease state in a more accurate and complex way, thus improving the quality of preclinical research studies.
Collapse
Affiliation(s)
- Tina Frankenbach-Désor
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Isabella Niesner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Parveen Ahmed
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Hans Roland Dürr
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexander Klein
- Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Ludwig-Maximilians-Universität (LMU) Munich, Thalkirchner Str. 36, 80337, Munich, Germany
| | - Jonathan Gospos
- Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Jacqui A McGovern
- Centre for Biomedical Technologies, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, School of Medical, Mechanical and Process Engineering, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Boris M Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
3
|
Bassi G, Rossi A, Campodoni E, Sandri M, Sarogni P, Fulle S, Voliani V, Panseri S, Montesi M. 3D Tumor-Engineered Model Replicating the Osteosarcoma Stem Cell Niche and In Vivo Tumor Complexity. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39353598 PMCID: PMC11492322 DOI: 10.1021/acsami.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 10/04/2024]
Abstract
Osteosarcoma, among all bone sarcomas, remains a challenge despite the unwavering efforts of medical professionals and scientists. To address this, the scientific community is actively pursuing the development of three-dimensional (3D) in vitro models to faithfully replicate the heterogeneity of osteosarcoma, thereby facilitating the reliable preclinical screening of potential therapies. In this study, we present the latest advancements in engineering an in vitro 3D osteosarcoma model comprising enriched Cancer Stem Cells (CSCs) and a hybrid hydroxyapatite-based scaffold (MgHA/CoII). The improvement of the model occurred through two primary steps: (1) serial passaging of sarcospheres as the CSCs enrichment system and (2) the optimization of the structural configuration of the niche in the scaffold. Two injection-mediated approaches of sarcosphere seeding were designed and extensively characterized in vitro and in vivo Chorioallantoic Membrane (CAM) models to explore their biological properties and tumorigenic potential. The combination of the selected enriched-CSCs and custom-made seeding into the scaffold resulted in the development of 3D osteosarcoma models exhibiting tumor-like features in vitro and tumorigenic properties in vivo. The outcomes of this study offer prospects for future endeavors involving more complex systems capable of replicating specific malignant tumor behaviors (metastatic process and drug resistance), pushing the discovery of new therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Giada Bassi
- Institute
of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, via Granarolo n. 64, Faenza, Ravenna (RA) 48018, Italy
- Department
of Neuroscience, Imaging and Clinical Science, University of Studies “G. D’Annunzio”, via dei Vestini n. 31, Chieti, Chieti (CH) 66100, Italy
| | - Arianna Rossi
- Institute
of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, via Granarolo n. 64, Faenza, Ravenna (RA) 48018, Italy
- Departmentof
Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Studies of Messina, Viale Ferdinando Stagno d’Alcontres n. 31, Messina, Messina (ME) 98166, Italy
| | - Elisabetta Campodoni
- Institute
of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, via Granarolo n. 64, Faenza, Ravenna (RA) 48018, Italy
| | - Monica Sandri
- Institute
of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, via Granarolo n. 64, Faenza, Ravenna (RA) 48018, Italy
| | - Patrizia Sarogni
- Center
for Nanotechnology Innovation@NEST, Istituto
Italiano Di Tecnologia, Piazza S. Silvestro n. 12, Pisa, Pisa (PI) 56127, Italy
| | - Stefania Fulle
- Department
of Neuroscience, Imaging and Clinical Science, University of Studies “G. D’Annunzio”, via dei Vestini n. 31, Chieti, Chieti (CH) 66100, Italy
| | - Valerio Voliani
- Center
for Nanotechnology Innovation@NEST, Istituto
Italiano Di Tecnologia, Piazza S. Silvestro n. 12, Pisa, Pisa (PI) 56127, Italy
- Department
of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano n. 4, Genoa, Genoa (GE) 16148, Italy
| | - Silvia Panseri
- Institute
of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, via Granarolo n. 64, Faenza, Ravenna (RA) 48018, Italy
| | - Monica Montesi
- Institute
of Science, Technology and Sustainability for Ceramics, National Research Council of Italy, via Granarolo n. 64, Faenza, Ravenna (RA) 48018, Italy
| |
Collapse
|
4
|
Sagheb IS, Coonan TP, Randall RL, Griffin KH, Leach JK. Extracellular matrix production and oxygen diffusion regulate chemotherapeutic response in osteosarcoma spheroids. Cancer Med 2024; 13:e70239. [PMID: 39300969 PMCID: PMC11413413 DOI: 10.1002/cam4.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) survival rates and outcome have not improved in 50 years since the advent of modern chemotherapeutics. Thus, there is a critical need for an improved understanding of the tumor microenvironment to identify better therapies. Extracellular matrix (ECM) deposition and hypoxia are known to abrogate the efficacy of various chemical and cell-based therapeutics. Here, we aim to mechanistically investigate the combinatorial effects of hypoxia and matrix deposition with the use of OS spheroids. METHODS We use two murine OS cell lines with differential metastatic potential to form spheroids. We form spheroids of two sizes, use ascorbate-2-phosphate supplementation to enhance ECM deposition, and study cell response under standard (21% O2) and physiologic (5% O2) oxygen tensions. Finally, we examine chemotherapeutic responses to doxorubicin treatment. RESULTS ECM production and oxygen tension are key determinants of spheroid size through cell organization based on nutrient and oxygen distribution. Interestingly, highly metastatic OS is more susceptible to chemotherapeutics compared to less metastatic OS when matrix production increases. Together, these data suggest that dynamic interactions between ECM production and oxygen diffusion may result in distinct chemotherapeutic responses despite inherent tumor aggressiveness. CONCLUSION This work establishes OS spheroids as a valuable tool for early OS tumor formation investigation and holds potential for novel therapeutic target and prognostic indicator discovery.
Collapse
Affiliation(s)
- Isabel S. Sagheb
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Thomas P. Coonan
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - R. Lor Randall
- Department of Orthopaedic SurgeryUC Davis HealthSacramentoCaliforniaUSA
| | - Katherine H. Griffin
- Department of Orthopaedic SurgeryUC Davis HealthSacramentoCaliforniaUSA
- School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - J. Kent Leach
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of Orthopaedic SurgeryUC Davis HealthSacramentoCaliforniaUSA
| |
Collapse
|
5
|
Poudel BH, Koks S. The whole transcriptome analysis using FFPE and fresh tissue samples identifies the molecular fingerprint of osteosarcoma. Exp Biol Med (Maywood) 2024; 249:10161. [PMID: 38966281 PMCID: PMC11222325 DOI: 10.3389/ebm.2024.10161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Osteosarcoma is a form of bone cancer that predominantly impacts osteoblasts, the cells responsible for creating fresh bone tissue. Typical indications include bone pain, inflammation, sensitivity, mobility constraints, and fractures. Utilising imaging techniques such as X-rays, MRI scans, and CT scans can provide insights into the size and location of the tumour. Additionally, a biopsy is employed to confirm the diagnosis. Analysing genes with distinct expression patterns unique to osteosarcoma can be valuable for early detection and the development of effective treatment approaches. In this research, we comprehensively examined the entire transcriptome and pinpointed genes with altered expression profiles specific to osteosarcoma. The study mainly aimed to identify the molecular fingerprint of osteosarcoma. In this study, we processed 90 FFPE samples from PathWest with an almost equal number of osteosarcoma and healthy tissues. RNA was extracted from Paraffin-embedded tissue; RNA was sequenced, the sequencing data was analysed, and gene expression was compared to the healthy samples of the same patients. Differentially expressed genes in osteosarcoma-derived samples were identified, and the functions of those genes were explored. This result was combined with our previous studies based on FFPE and fresh samples to perform a meta-analysis. We identified 1,500 identical differentially expressed genes in PathWest osteosarcoma samples compared to normal tissue samples of the same patients. Meta-analysis with combined fresh tissue samples identified 530 differentially expressed genes. IFITM5, MMP13, PANX3, and MAGEA6 were some of the most overexpressed genes in osteosarcoma samples, while SLC4A1, HBA1, HBB, AQP7 genes were some of the top downregulated genes. Through the meta-analysis, 530 differentially expressed genes were identified to be identical among FFPE (105 FFPE samples) and 36 fresh bone samples. Deconvolution analysis with single-cell RNAseq data confirmed the presence of specific cell clusters in FFPE samples. We propose these 530 DEGs as a molecular fingerprint of osteosarcoma.
Collapse
Affiliation(s)
- Bal Hari Poudel
- Center for Molecular Medicine and Innovative Therapy, Murdoch University, Perth, WA, Australia
- Perron Institute of Neurological Diseases, Perth, WA, Australia
- Central Department of Biotechnology, Tribhuvan University, Kathmandu, Nepal
| | - Sulev Koks
- Center for Molecular Medicine and Innovative Therapy, Murdoch University, Perth, WA, Australia
- Perron Institute of Neurological Diseases, Perth, WA, Australia
| |
Collapse
|
6
|
Ghosh S, Mahajan AA, Dey A, Rajendran RL, Chowdhury A, Sen S, Paul S, Majhi S, Hong CM, Gangadaran P, Ahn BC, Krishnan A. Exosomes in Bone Cancer: Unveiling their Vital Role in Diagnosis, Prognosis, and Therapeutic Advancements. J Cancer 2024; 15:4128-4142. [PMID: 38947401 PMCID: PMC11212077 DOI: 10.7150/jca.95709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024] Open
Abstract
Bone cancer among adolescents and children exhibits varying survival outcomes based on disease state. While localized bone cancer cases have a survival rate exceeding 70%, metastatic, refractory, and recurrent forms are associated with significantly poorer prognoses. Initially believed to be mere vehicles for cellular waste disposal, exosomes are now recognized as extracellular vesicles facilitating intercellular communication. These vesicles influence cellular behaviors by transporting various biomolecules, such as proteins, DNA, RNA, and lipids, among cells. The role of exosomes in regulating the progression of bone cancer is increasingly evident, impacting critical processes like tumorigenesis, proliferation, metastasis, angiogenesis, immune evasion, and drug resistance. Current research underscores the substantial potential of exosomes in promoting the progression and development of bone cancer. This review delves into the complex process of exosome biogenesis, the variety of cell-derived exosome sources, and their applications in drug delivery and therapeutics. It also examines ongoing clinical trials focused on exosome cargo levels and discusses the challenges and future directions in exosome research. Unlike costly and invasive traditional diagnostic methods, exosomal biomarkers offer a non-invasive, cost-effective, and readily accessible routine screening through simple fluid collection that aims to inspire researchers to investigate the potential of exosomes for cancer theragnostic. Through comprehensive exploration of these areas, the review seeks to enhance understanding and foster innovative solutions to cancer biology in the near future.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Atharva Anand Mahajan
- Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra 410210, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Sushmita Sen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Subhobrata Paul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Sourav Majhi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
7
|
Wang QL, Wang L, Li QY, Li HY, Lin L, Wei D, Xu JY, Luo XJ. Micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in tumor cells in an USP7/AKT/GSK-3β pathway-dependent manner. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4447-4459. [PMID: 38108838 DOI: 10.1007/s00210-023-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer and osteosarcoma are common cancers in women and children, respectively, but ideal drugs for treating patients with breast cancer or osteosarcoma remain to be found. Micafungin is an antifungal drug with antitumor activity on leukemia. Based on the notion of drug repurposing, this study aims to evaluate the antitumor effects of micafungin on breast cancer and osteosarcoma in vitro and in vivo, and to elucidate the underlying mechanisms. Five breast cancer cell lines (MDA-MB-231, BT-549, SK-BR-3, MCF-7, and 4T1) and one osteosarcoma cell line (143B) were chosen for the in vitro studies. Micafungin exerted an inhibitory effect on the viability of all cell lines, and MCF-7 cells were most sensitive to micafungin among the breast cancer cell lines. In addition, micafungin showed an inhibitory effect on the proliferation, clone formation, and migration in MCF7 and 143B cells. The inhibitory effect of micafungin on the growth of breast cancer and osteosarcoma was further confirmed with xenograft tumor mouse models. To explore the underlying mechanisms, the effect of micafungin on epithelial-mesenchymal transition (EMT) was examined. As expected, the levels of matrix metalloproteinase 9 and vimentin in MCF-7 and 143B cells were notably reduced in the presence of micafungin, concomitant with the decreased levels of ubiquitin-specific protease 7 (USP7), p-AKT, and p-GSK-3β. Based on these observations, we conclude that micafungin exerts antitumor effect on breast cancer and osteosarcoma through preventing EMT in an USP7/AKT/GSK-3β pathway-dependent manner.
Collapse
Affiliation(s)
- Qian-Lin Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Laboratory Medicine, Changsha Blood Central, Changsha, 410005, China
| | - Li Wang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qiong-Yu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hui-Yin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Ling Lin
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dan Wei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jin-Yun Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
8
|
Li S, Huang X, Zheng S, Zhang W, Liu F, Cao Q. High expression of SRSF1 facilitates osteosarcoma progression and unveils its potential mechanisms. BMC Cancer 2024; 24:580. [PMID: 38735973 PMCID: PMC11088775 DOI: 10.1186/s12885-024-12346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/06/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND SRSF1, a member of Serine/Arginine-Rich Splicing Factors (SRSFs), has been observed to significantly influence cancer progression. However, the precise role of SRSF1 in osteosarcoma (OS) remains unclear. This study aims to investigate the functions of SRSF1 and its underlying mechanism in OS. METHODS SRSF1 expression level in OS was evaluated on the TCGA dataset, TAGET-OS database. qRT-PCR and Western blotting were employed to assess SRSF1 expression in human OS cell lines as well as the interfered ectopic expression states. The effect of SRSF1 on cell migration, invasion, proliferation, and apoptosis of OS cells were measured by transwell assay and flow cytometry. RNA sequence and bioinformatic analyses were conducted to elucidate the targeted genes, relevant biological pathways, and alternative splicing (AS) events regulated by SRSF1. RESULTS SRSF1 expression was consistently upregulated in both OS samples and OS cell lines. Diminishing SRSF1 resulted in reduced proliferation, migration, and invasion and increased apoptosis in OS cells while overexpressing SRSF1 led to enhanced growth, migration, invasion, and decreased apoptosis. Mechanistically, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) revealed that the biological functions of SRSF1 were closely associated with the dysregulation of the protein targeting processes, location of the cytosolic ribosome, extracellular matrix (ECM), and proteinaceous extracellular matrix, along with the PI3K-AKT pathway, Wnt pathway, and HIPPO pathway. Transcriptome analysis identified AS events modulated by SRSF1, especially (Skipped Exon) SE events and (Mutually exclusive Exons) MXE events, revealing potential roles of targeted molecules in mRNA surveillance, RNA degradation, and RNA transport during OS development. qRT-PCR confirmed that SRSF1 knockdown resulted in the occurrence of alternative splicing of SRRM2, DMKN, and SCAT1 in OS. CONCLUSIONS Our results highlight the oncogenic role of high SRSF1 expression in promoting OS progression, and further explore the potential mechanisms of action. The significant involvement of SRSF1 in OS development suggests its potential utility as a therapeutic target in OS.
Collapse
Affiliation(s)
- Shuqi Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinyi Huang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fang Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Department of Liver Tumor Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Qinghua Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Ren J, Zhao C, Sun R, Sun J, Lu L, Wu J, Li S, Cui L. Augmented drug resistance of osteosarcoma cells within decalcified bone matrix scaffold: The role of glutamine metabolism. Int J Cancer 2024; 154:1626-1638. [PMID: 38196144 DOI: 10.1002/ijc.34841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Due to the lack of a precise in vitro model that can mimic the nature microenvironment in osteosarcoma, the understanding of its resistance to chemical drugs remains limited. Here, we report a novel three-dimensional model of osteosarcoma constructed by seeding tumor cells (MG-63 and MNNG/HOS Cl no. 5) within demineralized bone matrix scaffolds. Demineralized bone matrix scaffolds retain the original components of the natural bone matrix (hydroxyapatite and collagen type I), and possess good biocompatibility allowing osteosarcoma cells to proliferate and aggregate into clusters within the pores. Growing within the scaffold conferred elevated resistance to doxorubicin on MG-63 and MNNG/HOS Cl no. 5 cell lines as compared to two-dimensional cultures. Transcriptomic analysis showed an increased enrichment for drug resistance genes along with enhanced glutamine metabolism in osteosarcoma cells in demineralized bone matrix scaffolds. Inhibition of glutamine metabolism resulted in a decrease in drug resistance of osteosarcoma, which could be restored by α-ketoglutarate supplementation. Overall, our study suggests that microenvironmental cues in demineralized bone matrix scaffolds can enhance osteosarcoma drug responses and that targeting glutamine metabolism may be a strategy for treating osteosarcoma drug resistance.
Collapse
Affiliation(s)
- Jiaxin Ren
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Cheng Zhao
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Ruizhu Sun
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jian Sun
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Laiya Lu
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jun Wu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuaijun Li
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Lei Cui
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Wang H, Chen Y, Wei R, Zhang J, Zhu J, Wang W, Wang Z, Wupur Z, Li Y, Meng H. Synergistic Chemoimmunotherapy Augmentation via Sequential Nanocomposite Hydrogel-Mediated Reprogramming of Cancer-Associated Fibroblasts in Osteosarcoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309591. [PMID: 38113900 DOI: 10.1002/adma.202309591] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/02/2023] [Indexed: 12/21/2023]
Abstract
In osteosarcoma, immunotherapy often faces hurdles posed by cancer-associated fibroblasts (CAFs) that secrete dense extracellular matrix components and cytokines. Directly removing CAFs may prove ineffective and even promote tumor metastasis. To address this challenge, a sequential nanocomposite hydrogel that reshapes CAF behavior is developed, enhancing tumor-infiltrating T-cells in osteosarcoma. The approach utilizes an injectable blend of carboxymethyl chitosan and tetrabasic polyethylene glycol, forming a hydrogel for controlled release of a potent CAF suppressor (Nox4 inhibitor, Nox4i) and liposomal Doxorubicin (L-Dox) to induce immunogenic cell death (ICD) upon in situ administration. Nox4i effectively counters CAF activation, overcoming T-cell exclusion mechanisms, followed by programmed L-Dox release for ICD induction in stroma-rich osteosarcoma models. Combining the co-delivery gel with αPD-1 checkpoint inhibitor further enhances its effectiveness in an orthotopic osteosarcoma model. Immunophenotyping data underscore a significant boost in tumor T-cell infiltration and favorable anti-tumor immunity at the whole-animal level.
Collapse
Affiliation(s)
- Hui Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ran Wei
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jinlong Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiahui Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenbin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhenfei Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zulpikar Wupur
- Qiushi College, Beijing Institute of Technology, Beijing, 100081, China
| | - Yujing Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
11
|
Jubelin C, Muñoz-Garcia J, Ollivier E, Cochonneau D, Vallette F, Heymann MF, Oliver L, Heymann D. Identification of MCM4 and PRKDC as new regulators of osteosarcoma cell dormancy based on 3D cell cultures. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119660. [PMID: 38216092 DOI: 10.1016/j.bbamcr.2024.119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Dormancy is a potential way for tumors to develop drug resistance and escape treatment. However, the mechanisms involved in cancer dormancy remain poorly understood. This is mainly because there is no in vitro culture model making it possible to spontaneously induce dormancy. In this context, the present work proposes the use of three-dimensional (3D) spheroids developed from osteosarcoma cell lines as a relevant model for studying cancer dormancy. MNNG-HOS, SaOS-2, 143B, MG-63, U2OS and SJSA-1 cell lines were cultured in 3D using the Liquid Overlay Technique (LOT). Dormancy was studied by staining cancer cells with a lipophilic dye (DiD), and long-term DiD+ cells were considered as dormant cancer cells. The role of the extracellular matrix in inducing dormancy was investigated by embedding cells into methylcellulose or Geltrex™. Gene expression of DiD+ cells was assessed with a Nanostring™ approach and the role of the genes detected in dormancy was validated by a transient down-expression model using siRNA treatment. Proliferation was measured using fluorescence microscopy and the xCELLigence technology. We observed that MNNG-HOS, 143B and MG-G3 cell lines had a reduced proliferation rate in 3D compared to 2D. U2OS cells had an increased proliferation rate when they were cultured in Geltrex™ compared to other 3D culture methods. Using 3D cultures, a transcriptomic signature of dormancy was obtained and showed a decreased expression of 18 genes including ETV4, HELLS, ITGA6, MCM4, PRKDC, RAD21 and UBE2T. The treatment with siRNA targeting these genes showed that cancer cell proliferation was reduced when the expression of ETV4 and MCM4 were decreased, whereas proliferation was increased when the expression of RAD21 was decreased. 3D culture facilitates the maintenance of dormant cancer cells characterized by a reduced proliferation and less differential gene expression as compared to proliferative cells. Further studies of the genes involved has enabled us to envisage their role in regulating cell proliferation.
Collapse
Affiliation(s)
- Camille Jubelin
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France; Atlantic Bone Screen, 44800 Saint-Herblain, France
| | - Javier Muñoz-Garcia
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France
| | - Emilie Ollivier
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France
| | - Denis Cochonneau
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France
| | - François Vallette
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France; Nantes Université, INSERM, CRCI(2)NA, UMR1307, 44000 Nantes, France
| | - Marie-Françoise Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France
| | - Lisa Oliver
- Nantes Université, INSERM, CRCI(2)NA, UMR1307, 44000 Nantes, France; CHU de Nantes, Nantes, France
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000 Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab., 44805 Saint-Herblain, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
| |
Collapse
|
12
|
Liu M, Jiang D, Zhao X, Zhang L, Zhang Y, Liu Z, Liu R, Li H, Rong X, Gao Y. Exploration in the Mechanism of Ginsenoside Rg5 for the Treatment of Osteosarcoma by Network Pharmacology and Molecular Docking. Orthop Surg 2024; 16:462-470. [PMID: 38086608 PMCID: PMC10834211 DOI: 10.1111/os.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE Osteosarcoma is a primary malignancy originating from mesenchymal tissue characterized by rapid growth, early metastasis and poor prognosis. Ginsenoside Rg5 (G-Rg5) is a minor ginsenoside extracted from Panax ginseng C.A. Meyer which has been discovered to possess anti-tumor properties. The objective of current study was to explore the mechanism of G-Rg5 in the treatment of osteosarcoma by network pharmacology and molecular docking technology. METHODS Pharmmapper, SwissTargetPrediction and similarity ensemble approach databases were used to obtain the pharmacological targets of G-Rg5. Related genes of osteosarcoma were searched for in the GeneCards, OMIM and DrugBank databases. The targets of G-Rg5 and the related genes of osteosarcoma were intersected to obtain the potential target genes of G-Rg5 in the treatment of osteosarccoma. The STRING database and Cytoscape 3.8.2 software were used to construct the protein-protein interaction (PPI) network, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) platform was used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. AutoDock vina software was used to perform molecular docking between G-Rg5 and hub targets. The hub genes were imported into the Kaplan-Meier Plotter online database for survival analysis. RESULTS A total of 61 overlapping targets were obtained. The related signaling pathways mainly included PI3K-Akt signaling pathway, Proteoglycans in cancer, Lipid and atherosclerosis and Kaposi sarcoma-associated herpesvirus infection. Six hub targets including PIK3CA, SRC, TP53, MAPK1, EGFR, and VEGFA were obtained through PPI network and targets-pathways network analyses. The results of molecular docking showed that the binding energies were all less than -7 kcal/mol. And the results of survival analysis showed TP53 and VEGFA affect the prognosis of sarcoma patients. CONCLUSION This study explored the possible mechanism of G-Rg5 in the treatment of osteosarcoma using network pharmacology method, suggesting that G-Rg5 has the characteristics of multi-targets and multi-pathways in the treatment of osteosarcoma, which lays a foundation for the follow-up experimental and clinical researches on the therapeutic effects of G-Rg5 on osteosarcoma.
Collapse
Affiliation(s)
- Ming‐yang Liu
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Dong‐xin Jiang
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Xiang Zhao
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Liang Zhang
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Yu Zhang
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Zhen‐dong Liu
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Run‐ze Liu
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Hai‐jun Li
- Department of Immunity, Institute of Translational MedicineThe First Hospital of Jilin UniversityJilinChina
| | - Xiao‐yu Rong
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| | - Yan‐zheng Gao
- Henan Province Intelligent Orthopedic Technology Innovation and Transformation International Joint Laboratory, Henan Key Laboratory for Intelligent Precision Orthopedics, Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhouChina
| |
Collapse
|
13
|
Zheng Z, Zhao X, Yuan B, Jiang S, Yan R, Dong X, Yao Q, Liang H. Soy isoflavones induces mitophagy to inhibit the progression of osteosarcoma by blocking the AKT/mTOR signaling pathway. Mol Med 2024; 30:5. [PMID: 38191316 PMCID: PMC10775635 DOI: 10.1186/s10020-024-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Soy isoflavones (SI) is a natural bioactive substance exhibiting beneficial effects on human health. This study aims to elucidate the therapeutic potential of SI in the treatment of osteosarcoma (OS) and to investigate the underlying mechanisms, particularly focusing on mitophagy. METHODS The effects of SI on the proliferation, apoptosis, migration, and invasion of U2OS cells were analyzed. Mitophagy was assessed through multiple parameters: mitochondrial autophagosomes, mitochondrial membrane potential, autophagy-related proteins, reactive oxygen species (ROS), and oxygen consumption rate (OCR). Protein levels related to apoptosis, autophagy, and the AKT/mTOR pathway were analyzed using western blot. The therapeutic efficacy of SI was further identified using a mouse tumor xenograft model. Cell apoptosis and proliferation in tumor xenografts were detected by TUNEL staining and immunohistochemistry (IHC), respectively. RESULTS SI dose-dependently suppressed the viability, colony formation, migration, and invasion of U2OS cells, and enhanced the apoptosis. SI also dose-dependently induced mitophagy in OS cells, evidenced by an increase in autophagosomes and ROS levels, a decrease in mitochondrial membrane potential and OCR, and concomitant changes in autophagy-related proteins. Mdivi-1, an inhibitor of mitophagy, reversed the anti-tumor effects of SI on U2OS cells. In addition, SI blocked the AKT/mTOR pathway in U2OS cells. SC-79, an AKT agonist, reversed the effect of SI on inducing mitophagy. Moreover, SI also promoted cell apoptosis and mitophagy in tumor xenografts in vivo. CONCLUSIONS SI induces mitophagy in OS cells by blocking the AKT/mTOR pathway, contributing to the inhibition of OS.
Collapse
Affiliation(s)
- Ziang Zheng
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Xinghan Zhao
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Bo Yuan
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Shan Jiang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Rushan Yan
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Xiaowei Dong
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Qijun Yao
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China
| | - Haidong Liang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China.
| |
Collapse
|
14
|
Luo M, Su Z, Gao H, Tan J, Liao R, Yang J, Lin L. Cirsiliol induces autophagy and mitochondrial apoptosis through the AKT/FOXO1 axis and influences methotrexate resistance in osteosarcoma. J Transl Med 2023; 21:907. [PMID: 38087310 PMCID: PMC10714637 DOI: 10.1186/s12967-023-04682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, with poor outcomes for patients with metastatic disease or chemotherapy resistance. Cirsiliol is a recently found flavonoid with anti-tumor effects in various tumors. However, the effects of cirsiliol in the regulation of aggressive behaviors of OS remain unknown. METHODS The effect of cirsiliol on the proliferation of OS cells was detected using a cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) staining, while cell apoptosis was detected using flow cytometry. Immunofluorescence was applied to visualize the expression level of the mitochondria, lysosomes and microtubule-associated protein light chain 3 (LC3). A computational molecular docking technique was used to predict the interaction between cirsiliol and the AKT protein. The impact of cirsiliol on resistance was investigated by comparing it between a methotrexate (MTX)-sensitive OS cell line, U2OS, and a MTX-resistant OS cell line, U2OS/MTX. Finally, in situ xenogeneic tumor models were used to validate the anti-tumor effect of cirsiliol in OS. RESULTS Cirsiliol inhibited cell proliferation and induced apoptosis in both U2OS and U2OS/MTX300 OS cells. In addition, treatment with cirsiliol resulted in G2 phase arrest in U2OS/MTX300 and U2OS cells. Cell fluorescence probe staining results showed impaired mitochondria and increased autophagy in OS cells after treatment with cirsiliol. Mechanistically, it was found that cirsiliol targeted AKT by reducing the phosphorylation of AKT, which further activated the transcriptional activity of forkhead Box O transcription factor 1 (FOXO1), ultimately affecting the function of OS cells. Moreover, in situ tumorigenesis experiments showed that cirsiliol inhibited the tumorigenesis and progression of OS in vivo. CONCLUSIONS Cirsiliol inhibits OS cell growth and induces cell apoptosis by reducing AKT phosphorylation and further promotes FOXO1 expression. These phenomena indicate that cirsiliol is a promising treatment option for OS.
Collapse
Affiliation(s)
- Mengliang Luo
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zexin Su
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haotian Gao
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianye Tan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rongdong Liao
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jiancheng Yang
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
15
|
Yuan C, Fan R, Zhu K, Wang Y, Xie W, Liang Y. Curcumin induces ferroptosis and apoptosis in osteosarcoma cells by regulating Nrf2/GPX4 signaling pathway. Exp Biol Med (Maywood) 2023; 248:2183-2197. [PMID: 38166505 PMCID: PMC10903231 DOI: 10.1177/15353702231220670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 01/04/2024] Open
Abstract
Curcumin, an antitumor agent, has been shown to inhibit cell growth and metastasis in osteosarcoma. However, there is no evidence of curcumin and its regulation of cell ferroptosis and nuclear factor E2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathways in osteosarcoma. This study aimed to investigate the effects of curcumin on osteosarcoma both in vitro and in vivo. To explore the effects and mechanisms of curcumin on osteosarcoma, cells (MNNG/HOS and MG-63) and xenograft mice models were established. Cell viability, cell apoptosis rate, cycle distribution, cell migration, cell invasion, reactive oxygen species, malonaldehyde and glutathione abilities, and protein levels were detected by cell counting kit-8, flow cytometry, wound healing, transwell assay, respectively. Nrf2 and GPX4 expressions were detected using an immunofluorescence assay. Nrf2/GPX4-related protein levels were detected using western blotting. The results showed that curcumin effectively decreased cell viability and increased apoptosis rate. Meanwhile, curcumin inhibited tumor volume in the xenograft model, and Nrf2/GPX4-related protein levels were also altered. Interestingly, the effects of curcumin were reversed by liproxstatin-1 (an effective inhibitor of ferroptosis) and bardoxolone-methyl (an effective activator of Nrf2). Our results indicate that curcumin has therapeutic effects on osteosarcoma cells and a xenograft model by regulating the expression of the Nrf2/GPX4 signaling pathway.
Collapse
Affiliation(s)
- Chuanjian Yuan
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Rong Fan
- Yantai Raphael Biotechnology Co., Ltd, Yantai 264000, China
| | - Kai Zhu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Department of Orthopedics, Gaoqing Traditional Chinese Medicine Hospital Co., Ltd, Zibo 256300, China
| | - Yutong Wang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Wenpeng Xie
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yanchen Liang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
16
|
Dean DC, Feng W, Walker RL, Thanindratarn P, Temple HT, Trent JC, Rosenberg AE, Hornicek FJ, Duan Z. Discoidin Domain Receptor Tyrosine Kinase 1 (DDR1) Is a Novel Therapeutic Target in Liposarcoma: A Tissue Microarray Study. Clin Orthop Relat Res 2023; 481:2140-2153. [PMID: 37768856 PMCID: PMC10567009 DOI: 10.1097/corr.0000000000002865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Liposarcoma is the most commonly diagnosed subtype of soft tissue sarcoma. As these tumors often arise near vital organs and neurovascular structures, complete resection can be challenging; consequently, recurrence rates are high. Additionally, available chemotherapeutic agents have shown limited benefit and substantial toxicities. There is, therefore, a clear and unmet need for novel therapeutics for liposarcoma. Discoidin domain receptor tyrosine kinase 1 (DDR1) is involved in adhesion, proliferation, differentiation, migration, and metastasis in several cancers. However, the expression and clinical importance of DDR1 in liposarcoma are unknown. QUESTIONS/PURPOSES The purposes of this study were to assess (1) the expression, (2) the association between DDR1 and survival, and (3) the functional roles of DDR1 in liposarcoma. METHODS The correlation between DDR1 expression in tumor tissues and clinicopathological features and survival was assessed via immunohistochemical staining of a liposarcoma tissue microarray. It contained 53 samples from 42 patients with liposarcoma and 11 patients with lipoma. The association between DDR1 and survival in liposarcoma was analyzed by Kaplan-Meier plots and log-rank tests. The DDR1 knockout liposarcoma cell lines were generated by CRISPR-Cas9 technology. The DDR1-specific and highly selective DDR1 inhibitor 7RH was applied to determine the impact of DDR1 expression on liposarcoma cell growth and proliferation. In addition, the effect of DDR1 inhibition on liposarcoma growth was further accessed in a three-dimensional cell culture model to mimic DDR1 effects in vivo. RESULTS The results demonstrate elevated expression of DDR1 in all liposarcoma subtypes relative to benign lipomas. Specifically, high DDR1 expression was seen in 55% (23 of 42) of liposarcomas and no benign lipomas. However, DDR1 expression was not found to be associated with poor survival in patients with liposarcoma. DDR1 knockout or treatment of 7RH showed decreased liposarcoma cell growth and proliferation. CONCLUSION DDR1 is aberrantly expressed in liposarcoma, and it contributes to several markers of oncogenesis in these tumors. CLINICAL RELEVANCE This work supports DDR1 as a promising therapeutic target in liposarcoma.
Collapse
Affiliation(s)
- Dylan C. Dean
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wenlong Feng
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Robert L. Walker
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pichaya Thanindratarn
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - H. Thomas Temple
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan C. Trent
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew E. Rosenberg
- Departments of Pathology and Laboratory Medicine, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center and the University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
17
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Tan SC, Hushmandi K. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract 2023; 251:154902. [PMID: 37922723 DOI: 10.1016/j.prp.2023.154902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.
Collapse
Affiliation(s)
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bahonar
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Nakhaee
- Medical School, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
18
|
Nirala BK, Yamamichi T, Petrescu DI, Shafin TN, Yustein JT. Decoding the Impact of Tumor Microenvironment in Osteosarcoma Progression and Metastasis. Cancers (Basel) 2023; 15:5108. [PMID: 37894474 PMCID: PMC10605493 DOI: 10.3390/cancers15205108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, highly metastatic bone malignancy in children and adolescents. Despite advancements in multimodal treatment strategies, the prognosis for patients with metastatic or recurrent disease has not improved significantly in the last four decades. OS is a highly heterogeneous tumor; its genetic background and the mechanism of oncogenesis are not well defined. Unfortunately, no effective molecular targeted therapy is currently available for this disease. Understanding osteosarcoma's tumor microenvironment (TME) has recently gained much interest among scientists hoping to provide valuable insights into tumor heterogeneity, progression, metastasis, and the identification of novel therapeutic avenues. Here, we review the current understanding of the TME of OS, including different cellular and noncellular components, their crosstalk with OS tumor cells, and their involvement in tumor progression and metastasis. We also highlight past/current clinical trials targeting the TME of OS for effective therapies and potential future therapeutic strategies with negligible adverse effects.
Collapse
Affiliation(s)
| | | | | | | | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA; (B.K.N.); (T.Y.); (D.I.P.); (T.N.S.)
| |
Collapse
|
19
|
Chang YH, Huang YL, Tsai HC, Chang AC, Ko CY, Fong YC, Tang CH. Chemokine Ligand 2 Promotes Migration in Osteosarcoma by Regulating the miR-3659/MMP-3 Axis. Biomedicines 2023; 11:2768. [PMID: 37893141 PMCID: PMC10604484 DOI: 10.3390/biomedicines11102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma is a common malignant tumor in children and adolescents, known for its aggressive invasion and distant metastasis, leading to a poor prognosis. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix and basement membranes through their proteolytic activity, thereby promoting osteosarcoma metastasis. Chemokine ligand 2 (CCL2) is a well-studied chemokine that plays a significant role in the cell motility of many cancers. However, its specific involvement in osteosarcoma metastasis is not fully understood. The aim of this study is to examine the role of miRNAs in CCL2-mediated MMP expression and cell motility in human osteosarcoma. The analysis of immunohistochemistry data and databases associated a positive correlation between CCL2 or MMP-3 levels with the metastasis of osteosarcoma patients. The in vivo lung metastatic osteosarcoma model also demonstrated similar effects, showing higher levels of CCL2 and MMP-3 in lung metastatic osteosarcoma tissues. The stimulation of osteosarcoma cells with CCL2 enhanced migration and invasion abilities through the upregulation of MMP-3 synthesis. Our results also indicate that CCL2 enhances MMP-3-dependent cell motility by inhibiting miR-3659 synthesis. Therefore, CCL2 represents a promising therapeutic target for treating metastasis in osteosarcoma.
Collapse
Affiliation(s)
- Yu-Hsiang Chang
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404328, Taiwan;
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Hsiao-Chi Tsai
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651012, Taiwan;
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taichung 404327, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111045, Taiwan;
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404328, Taiwan;
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404328, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin 651012, Taiwan
| | - Chih-Hsin Tang
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404328, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu 302056, Taiwan
| |
Collapse
|
20
|
Zhang Q, An ZY, Jiang W, Jin WL, He XY. Collagen code in tumor microenvironment: Functions, molecular mechanisms, and therapeutic implications. Biomed Pharmacother 2023; 166:115390. [PMID: 37660648 DOI: 10.1016/j.biopha.2023.115390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer progression, and the extracellular matrix (ECM) is an important TME component. Collagen is a major ECM component that contributes to tumor cell infiltration, expansion, and distant metastasis during cancer progression. Recent studies reported that collagen is deposited in the TME to form a collagen wall along which tumor cells can infiltrate and prevent drugs from working on the tumor cells. Collagen-tumor cell interaction is complex and requires the activation of multiple signaling pathways for biochemical and mechanical signaling interventions. In this review, we examine the effect of collagen deposition in the TME on tumor progression and discuss the interaction between collagen and tumor cells. This review aims to illustrate the functions and mechanisms of collagen in tumor progression in the TME and its role in tumor therapy. The findings indicated collagen in the TME appears to be a better target for cancer therapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, PR China; Anhui Public Health Clinical Center, Hefei 230001, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| | - Xin-Yang He
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei 230001, PR China; Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei 230001, PR China.
| |
Collapse
|
21
|
Griffin KH, Thorpe SW, Sebastian A, Hum NR, Coonan TP, Sagheb IS, Loots GG, Randall RL, Leach JK. Engineered bone marrow as a clinically relevant ex vivo model for primary bone cancer research and drug screening. Proc Natl Acad Sci U S A 2023; 120:e2302101120. [PMID: 37729195 PMCID: PMC10523456 DOI: 10.1073/pnas.2302101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone cancer in children and adolescents. While numerous other cancers now have promising therapeutic advances, treatment options for OS have remained unchanged since the advent of standard chemotherapeutics and offer less than a 25% 5-y survival rate for those with metastatic disease. This dearth of clinical progress underscores a lack of understanding of OS progression and necessitates the study of this disease in an innovative system. Here, we adapt a previously described engineered bone marrow (eBM) construct for use as a three-dimensional platform to study how microenvironmental and immune factors affect OS tumor progression. We form eBM by implanting acellular bone-forming materials in mice and explanting the cellularized constructs after 8 wk for study. We interrogate the influence of the anatomical implantation site on eBM tissue quality, test ex vivo stability under normoxic (5% O2) and standard (21% O2) culture conditions, culture OS cells within these constructs, and compare them to human OS samples. We show that eBM stably recapitulates the composition of native bone marrow. OS cells exhibit differential behavior dependent on metastatic potential when cultured in eBM, thus mimicking in vivo conditions. Furthermore, we highlight the clinical applicability of eBM as a drug-screening platform through doxorubicin treatment and show that eBM confers a protective effect on OS cells that parallel clinical responses. Combined, this work presents eBM as a cellular construct that mimics the complex bone marrow environment that is useful for mechanistic bone cancer research and drug screening.
Collapse
Affiliation(s)
- Katherine H. Griffin
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
- School of Veterinary Medicine, University of California, Davis, CA95616
| | - Steven W. Thorpe
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
| | - Aimy Sebastian
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Nicholas R. Hum
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - Thomas P. Coonan
- Department of Biomedical Engineering, University of California, Davis, CA95616
| | - Isabel S. Sagheb
- Department of Biomedical Engineering, University of California, Davis, CA95616
| | - Gabriela G. Loots
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA94550
| | - R. Lor Randall
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
| | - J. Kent Leach
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA95817
- Department of Biomedical Engineering, University of California, Davis, CA95616
| |
Collapse
|
22
|
Zhou H, Lu D, Yu D, Luo C, Xie K, Ma H, Li S, Liang J, Wei F, Chen L, Luo D, Wang W, Wei J. Pan-cancer analysis of the oncogenic role of the core osteosarcoma gene VCAN in human tumors. Am J Transl Res 2023; 15:5556-5573. [PMID: 37854213 PMCID: PMC10579017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE Versican (VCAN), a member of the multifunctional glycoprotein family, is involved in various aspects of cancer progression. However, the role of VCAN in diverse cancers remains poorly defined. This research aimed to investigate the correlation between VCAN expression and the oncogenic role, as well as visualize its prognostic landscape in pan-cancer. METHODS Raw data in regard to VCAN expression in cancer patients were acquired from GEO GeneChip public database in NCBI. Besides, we selected microarray data GSE16088 for analysis. We retrieved the genes associated with osteosarcoma (OS) from the OMIM database and identified their intersection with the core module. VCAN was suggested to be a potential marker gene for OS. Subsequently, we conducted Gene Set Enrichment Analysis (GSEA) to explore gene functional enrichment. Moreover, we performed pan-cancer analysis on VCAN to gain a comprehensive understanding of its implications across various cancer types. RESULTS The VCAN expression in the tumor tissue was higher than that in normal tissue. Elevated expression of VCAN was associated with high the tumor stage and poor long-term survival. There was a significant positive correlation between VCAN and cancer fibroblasts in all pan cancers. Moreover, FBN1 was the intersection gene of VCAN-related genes and linker genes. ANTXR1, COL5A2, CSGALNACT2, and SPARC were the target genes of VCAN genes. GSEA analysis showed that VCAN was mainly enriched in the extracellular matrix (ECM) signaling pathway. CONCLUSION VCAN can be used as a marker molecule for the early diagnosis of OS and holds significance as a molecule in cases of OS with distant metastasis. The ECM signaling pathway may be a core pathway in OS development and distant metastasis. These findings shed new light on therapeutics of cancers.
Collapse
Affiliation(s)
- Haidong Zhou
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Dinggui Lu
- Department of Trauma Orthopedics, Baidong Hospital, Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Dianbo Yu
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Changtai Luo
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Kangqi Xie
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Huade Ma
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Shanlang Li
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| | - Jiyun Liang
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Fengxu Wei
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Luchang Chen
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Dong Luo
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Wei Wang
- Graduate School of Youjiang Medical University for NationalitiesBaise 533000, Guangxi, China
| | - Jihua Wei
- Department of Sports Medicine, Baidong Hospital Affiliated to Youjiang Medical College for NationalitiesBaise 533000, Guangxi, China
| |
Collapse
|
23
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
24
|
Ye G, Jiao Y, Deng L, Cheng M, Wang S, Zhang J, Ouyang J, Li Y, He Y, Tu Z, Wang Z, Song X, Wang C, Qi Q, Zhang D, Wang L, Huang M, Ye W, Chen M. Beauvericin suppresses the proliferation and pulmonary metastasis of osteosarcoma by selectively inhibiting TGFBR2 pathway. Int J Biol Sci 2023; 19:4376-4392. [PMID: 37781043 PMCID: PMC10535710 DOI: 10.7150/ijbs.86214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/06/2023] [Indexed: 10/03/2023] Open
Abstract
Osteosarcoma (OS) patients, particularly those with distant metastasis, experience rapid progression and derive poor survival benefits from traditional therapies. Currently, effective drugs for treating patients with metastatic OS remain scarce. Here, we found that the cyclic hexadepsipeptide beauvericin (BEA) functioned as a new selective TGFBR2 inhibitor with potent antiproliferative and antimetastatic activities against OS cells. Functionally, BEA inhibited TGF-β signaling-mediated proliferation, invasiveness, mesenchymal phenotype, and extracellular matrix remodeling of OS cells, and suppressed tumor growth and reduced pulmonary metastasis in vivo. Mechanistic investigation revealed that BEA selectively and directly bound to Asn 332 of TGFBR2 and inhibited its kinase activity, thereby suppressing the aggressive progression of OS cells. Together, our study identifies an innovative and natural selective TGFBR2 inhibitor with effective antineoplastic activity against metastatic OS and demonstrates that targeting TGFBR2 could be a potential therapeutic strategy for metastatic OS.
Collapse
Affiliation(s)
- Geni Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yubo Jiao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minjing Cheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Sheng Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Junqiu Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jie Ouyang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yong Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Yuxin He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Zhengchao Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Xiaojuan Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lei Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| |
Collapse
|
25
|
Park JA, Cheung NKV. Promise and Challenges of T Cell Immunotherapy for Osteosarcoma. Int J Mol Sci 2023; 24:12520. [PMID: 37569894 PMCID: PMC10419531 DOI: 10.3390/ijms241512520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Nai-Kong V. Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
26
|
Li C, Holman JB, Shi Z, Qiu B, Ding W. On-chip modeling of tumor evolution: Advances, challenges and opportunities. Mater Today Bio 2023; 21:100724. [PMID: 37483380 PMCID: PMC10359640 DOI: 10.1016/j.mtbio.2023.100724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor evolution is the accumulation of various tumor cell behaviors from tumorigenesis to tumor metastasis and is regulated by the tumor microenvironment (TME). However, the mechanism of solid tumor progression has not been completely elucidated, and thus, the development of tumor therapy is still limited. Recently, Tumor chips constructed by culturing tumor cells and stromal cells on microfluidic chips have demonstrated great potential in modeling solid tumors and visualizing tumor cell behaviors to exploit tumor progression. Herein, we review the methods of developing engineered solid tumors on microfluidic chips in terms of tumor types, cell resources and patterns, the extracellular matrix and the components of the TME, and summarize the recent advances of microfluidic chips in demonstrating tumor cell behaviors, including proliferation, epithelial-to-mesenchymal transition, migration, intravasation, extravasation and immune escape of tumor cells. We also outline the combination of tumor organoids and microfluidic chips to elaborate tumor organoid-on-a-chip platforms, as well as the practical limitations that must be overcome.
Collapse
Affiliation(s)
- Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Joseph Benjamin Holman
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhengdi Shi
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
27
|
Jiang Y, Liu X, Ye J, Ma Y, Mao J, Feng D, Wang X. Migrasomes, a new mode of intercellular communication. Cell Commun Signal 2023; 21:105. [PMID: 37158915 PMCID: PMC10165304 DOI: 10.1186/s12964-023-01121-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Migrasomes are newly discovered extracellular vesicles (EVs) that are formed in migrating cells and mediate intercellular communication. However, their size, biological generation, cargo packaging, transport, and effects on recipient cells by migrasomes are different from those of other EVs. In addition to mediating organ morphogenesis during zebrafish gastrulation, discarding damaged mitochondria, and lateral transport of mRNA and proteins, growing evidence has demonstrated that migrasomes mediate a variety of pathological processes. In this review, we summarize the discovery, mechanisms of formation, isolation, identification, and mediation of cellular communication in migrasomes. We discuss migrasome-mediated disease processes, such as osteoclast differentiation, proliferative vitreoretinopathy, tumor cell metastasis by PD-L1 transport, immune cell chemotaxis to the site of infection by chemokines, angiogenesis promotion via angiogenic factors by immune cells, and leukemic cells chemotaxis to the site of mesenchymal stromal cells. Moreover, as new EVs, we propose the potential of migrasomes for disease diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Central Laboratory, Jintan Hospital, Jiangsu University, 500 Avenue Jintan, Jintan, 213200, People's Republic of China.
| | - Jiahui Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
28
|
Bareke H, Ibáñez-Navarro A, Guerra-García P, González Pérez C, Rubio-Aparicio P, Plaza López de Sabando D, Sastre-Urgelles A, Ortiz-Cruz EJ, Pérez-Martínez A. Prospects and Advances in Adoptive Natural Killer Cell Therapy for Unmet Therapeutic Needs in Pediatric Bone Sarcomas. Int J Mol Sci 2023; 24:ijms24098324. [PMID: 37176035 PMCID: PMC10178897 DOI: 10.3390/ijms24098324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant bone tumors are aggressive tumors, with a high tendency to metastasize, that are observed most frequently in adolescents during rapid growth spurts. Pediatric patients with malignant bone sarcomas, Ewing sarcoma and osteosarcoma, who present with progressive disease have dire survival rates despite aggressive therapy. These therapies can have long-term effects on bone growth, such as decreased bone mineral density and reduced longitudinal growth. New therapeutic approaches are therefore urgently needed for targeting pediatric malignant bone tumors. Harnessing the power of the immune system against cancer has improved the survival rates dramatically in certain cancer types. Natural killer (NK) cells are a heterogeneous group of innate effector cells that possess numerous antitumor effects, such as cytolysis and cytokine production. Pediatric sarcoma cells have been shown to be especially susceptible to NK-cell-mediated killing. NK-cell adoptive therapy confers numerous advantages over T-cell adoptive therapy, including a good safety profile and a lack of major histocompatibility complex restriction. NK-cell immunotherapy has the potential to be a new therapy for pediatric malignant bone tumors. In this manuscript, we review the general characteristics of osteosarcoma and Ewing sarcoma, discuss the long-term effects of sarcoma treatment on bones, and the barriers to effective immunotherapy in bone sarcomas. We then present the laboratory and clinical studies on NK-cell immunotherapy for pediatric malignant bone tumors. We discuss the various donor sources and NK-cell types, the engineering of NK cells and combinatorial treatment approaches that are being studied to overcome the current challenges in adoptive NK-cell therapy, while suggesting approaches for future studies on NK-cell immunotherapy in pediatric bone tumors.
Collapse
Affiliation(s)
- Halin Bareke
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Adrián Ibáñez-Navarro
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Pilar Guerra-García
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos González Pérez
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Pedro Rubio-Aparicio
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Ana Sastre-Urgelles
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
| | - Eduardo José Ortiz-Cruz
- Department of Orthopedic Surgery and Traumatology, La Paz University Hospital, 28046 Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research Group in Pediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Department of Pediatric Hemato-Oncology, La Paz University Hospital, 28046 Madrid, Spain
- School of Medicine, Autonomous University of Madrid, 28046 Madrid, Spain
| |
Collapse
|
29
|
Wang Z, Yu P, Zou Y, Ma J, Han H, Wei W, Yang C, Zheng S, Guo S, Wang J, Liu L, Lin S. METTL1/WDR4-mediated tRNA m 7G modification and mRNA translation control promote oncogenesis and doxorubicin resistance. Oncogene 2023:10.1038/s41388-023-02695-6. [PMID: 37185458 DOI: 10.1038/s41388-023-02695-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Osteosarcoma is the most common bone tumor that leads to high mortality in adolescents and children. The tRNA N7-methylguanosine methyltransferase METTL1 is located in chromosome 12q14.1, a region that is frequently amplified in osteosarcoma patients, while its functions and underlying mechanisms in regulation of osteosarcoma remain unknown. Herein we show that METTL1 and WDR4 are overexpressed in osteosarcoma and associated with poor patient prognosis. Knockdown of METTL1 or WDR4 causes decreased tRNA m7G modification level and impairs osteosarcoma progression in vitro and in vivo. Conversely, METTL1/WDR4 overexpression promotes osteosarcoma proliferation, migration and invasion capacities. tRNA methylation and mRNA translation profiling indicate that METTL1/WDR4 modified tRNAs enhance translation of mRNAs with more m7G tRNA-decoded codons, including extracellular matrix (ECM) remodeling effectors, which facilitates osteosarcoma progression and chemoresistance to doxorubicin. Our study demonstrates METTL1/WDR4 mediated tRNA m7G modification plays crucial oncogenic functions to enhance osteosarcoma progression and chemoresistance to doxorubicin via alteration of oncogenic mRNA translation, suggesting METTL1 inhibition combined with chemotherapy is a promising strategy for treatment of osteosarcoma patients.
Collapse
Affiliation(s)
- Zhaoyu Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Peng Yu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jieyi Ma
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Han
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Wei
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Chunlong Yang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Siyi Zheng
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Siyao Guo
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Juan Wang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lianlian Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
30
|
Alloisio G, Rodriguez DB, Luce M, Ciaccio C, Marini S, Cricenti A, Gioia M. Cyclic Stretch-Induced Mechanical Stress Applied at 1 Hz Frequency Can Alter the Metastatic Potential Properties of SAOS-2 Osteosarcoma Cells. Int J Mol Sci 2023; 24:ijms24097686. [PMID: 37175397 PMCID: PMC10178551 DOI: 10.3390/ijms24097686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, there has been an increasing focus on cellular morphology and mechanical behavior in order to gain a better understanding of the modulation of cell malignancy. This study used uniaxial-stretching technology to select a mechanical regimen able to elevate SAOS-2 cell migration, which is crucial in osteosarcoma cell pathology. Using confocal and atomic force microscopy, we demonstrated that a 24 h 0.5% cyclic elongation applied at 1 Hz induces morphological changes in cells. Following mechanical stimulation, the cell area enlarged, developing a more elongated shape, which disrupted the initial nuclear-to-cytoplasm ratio. The peripheral cell surface also increased its roughness. Cell-based biochemical assays and real-time PCR quantification showed that these morphologically induced changes are unrelated to the osteoblastic differentiative grade. Interestingly, two essential cell-motility properties in the modulation of the metastatic process changed following the 24 h 1 Hz mechanical stimulation. These were cell adhesion and cell migration, which, in fact, were dampened and enhanced, respectively. Notably, our results showed that the stretch-induced up-regulation of cell motility occurs through a mechanism that does not depend on matrix metalloproteinase (MMP) activity, while the inhibition of ion-stretch channels could counteract it. Overall, our results suggest that further research on mechanobiology could represent an alternative approach for the identification of novel molecular targets of osteosarcoma cell malignancy.
Collapse
Affiliation(s)
- Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, I-00133 Rome, Italy
| |
Collapse
|
31
|
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. ENVIRONMENTAL RESEARCH 2023; 229:115939. [PMID: 37088317 DOI: 10.1016/j.envres.2023.115939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Constructive achievements in the field of nanobiotechnology and their translation into clinical course have led to increasing attention towards evaluation of their use for treatment of diseases, especially cancer. Osteosarcoma (OS) is one of the primary bone malignancies that affects both males and females in childhood and adolescence. Like other types of cancers, genetic and epigenetic mutations account for OS progression and several conventional therapies including chemotherapy and surgery are employed. However, survival rate of OS patients remains low and new therapies in this field are limited. The purpose of the current review is to provide a summary of nanostructures used in OS treatment. Drug and gene delivery by nanoplatforms have resulted in an accumulation of therapeutic agents for tumor cell suppression. Furthermore, co-delivery of genes and drugs by nanostructures are utilized in OS suppression to boost immunotherapy. Since tumor cells have distinct features such as acidic pH, stimuli-responsive nanoparticles have been developed to appropriately target OS. Besides, nanoplatforms can be used for biosensing and providing phototherapy to suppress OS. Furthermore, surface modification of nanoparticles with ligands can increase their specificity and selectivity towards OS cells. Clinical translation of current findings suggests that nanoplatforms have been effective in retarding tumor growth and improving survival of OS patients.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
32
|
Cheng S, Liu S, Chen B, Du C, Xiao P, Luo X, Wei L, Lei Y, Zhao C, Huang W. Psoralidin inhibits osteosarcoma growth and metastasis by downregulating ITGB1 expression via the FAK and PI3K/Akt signaling pathways. Chin Med 2023; 18:34. [PMID: 37004120 PMCID: PMC10064721 DOI: 10.1186/s13020-023-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Psoralea corylifolia is a medicinal leguminous plant that has long been used to treat various diseases. Psoralidin (PSO) is the main extract compound of P. corylifolia and exhibits antibacterial, antitumor, anti-inflammatory, antioxidant, and other pharmacological activities. PSO has demonstrated inhibitory effects in several cancers; however, its inhibitory effect on osteosarcoma has not been reported. This study aimed to evaluate the inhibitory effect of PSO on osteosarcoma and elucidate the underlying molecular mechanisms. METHODS Crystal violet, cell counting kit-8 (CCK8), and 5-Ethynyl-2'-deoxyuridine (EdU) staining assays were used to assess the inhibitory effect of PSO on the proliferation of 143B and MG63 osteosarcoma cells. Wound healing and Transwell assays were conducted to evaluate the effects of PSO on osteosarcoma cell migration and invasion. The cell cycle and apoptosis were analyzed using flow cytometry. To determine the possible molecular mechanisms, RNA-sequencing was performed and protein expression was analyzed by western blotting. The inhibitory effect of PSO on osteosarcoma in vivo was analyzed using a mouse model of orthotopic osteosarcoma and immunohistochemistry. RESULTS PSO inhibited osteosarcoma cell proliferation in a concentration-dependent manner, inhibited cell migration and invasion, and induced cell-cycle arrest and apoptosis. Mechanistically, PSO treatment significantly inhibited the focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways by downregulating ITGB1 expression in both MG63 and 143B cells. Furthermore, we demonstrated that PSO restrained osteosarcoma growth in vivo. CONCLUSION PSO may suppress osteosarcoma via the FAK and PI3K/Akt signaling pathways by downregulating ITGB1 expression.
Collapse
Affiliation(s)
- Shengwen Cheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bowen Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuefeng Luo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Wei
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chen Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
33
|
Lu S, Lu T, Zhang J, Gan L, Wu X, Han D, Zhang K, Xu C, Liu S, Qin W, Yang F, Wen W. CD248 promotes migration and metastasis of osteosarcoma through ITGB1-mediated FAK-paxillin pathway activation. BMC Cancer 2023; 23:290. [PMID: 36997926 PMCID: PMC10061858 DOI: 10.1186/s12885-023-10731-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/13/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common malignant bone tumor with a high incidence in children and adolescents. Frequent tumor metastasis and high postoperative recurrence are the most common challenges in OS. However, detailed mechanism is largely unknown. METHODS We examined the expression of CD248 in OS tissue microarrays by immunohistochemistry (IHC) staining. We studied the biological function of CD248 in cell proliferation, invasion and migration of OS cells by CCK8 assay, transwell and wound healing assay. We also studied its function in the metastasis of OS in vivo. At last, we explored the potential mechanism how CD248 promotes OS metastasis by using RNA-seq, western blot, immunofluorescence staining and co-immunoprecipitation using CD248 knockdown OS cells. RESULTS CD248 was highly expressed in OS tissues and its high expression was correlated with pulmonary metastasis of OS. Knockdown of CD248 in OS cells significantly inhibited cell migration, invasion and metastasis, while had no obvious effect on cell proliferation. Lung metastasis in nude mice was significantly inhibited when CD248 was knocked down. Mechanistically, we found that CD248 could promote the interaction between ITGB1 and extracellular matrix (ECM) proteins like CYR61 and FN, which activated the FAK-paxillin pathway to promote the formation of focal adhesion and metastasis of OS. CONCLUSION Our data showed that high CD248 expression is correlated with the metastatic potential of OS. CD248 may promote migration and metastasis through enhancing the interaction between ITGB1 and certain ECM proteins. Therefore, CD248 is a potential marker for diagnosis and effective target for the treatment of metastatic OS.
Collapse
Affiliation(s)
- Shiqi Lu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jiayu Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lunbiao Gan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Xinjie Wu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Fa Yang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
| |
Collapse
|
34
|
Subrahmanyam N, Yathavan B, Yu SM, Ghandehari H. Targeting Intratibial Osteosarcoma Using Water-Soluble Copolymers Conjugated to Collagen Hybridizing Peptides. Mol Pharm 2023; 20:1670-1680. [PMID: 36724294 PMCID: PMC10799843 DOI: 10.1021/acs.molpharmaceut.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteosarcoma (OS) is the most common form of primary malignant bone cancer in adolescents. Over the years, OS prognosis has greatly improved due to adjuvant and neoadjuvant (preoperative) chemotherapeutic treatment, increasing the chances of successful surgery and reducing the need for limb amputation. However, chemotherapeutic treatment to treat OS is limited by off-target toxicities and requires improved localization at the tumor site. Collagen, the main constituent of bone tissue, is extensively degraded and remodeled in OS, leading to an increased availability of denatured (monomeric) collagen. Collagen hybridizing peptides (CHPs) comprise a class of peptides rationally designed to selectively bind to denatured collagen. In this work, we have conjugated CHPs as targeting moieties to water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers to target OS tumors. We demonstrated increased accumulation of collagen-targeted HPMA copolymer-CHP conjugates compared to nontargeted HPMA copolymers, as well as increased retention compared to both nontargeted copolymers and CHPs, in a murine intratibial OS tumor model. Furthermore, we used microcomputed tomography analysis to evaluate the bone microarchitecture and correlated bone morphometric parameters (porosity, bone volume, and surface area) with maximum accumulation (Smax) and accumulation at 168 h postinjection (S168) of the copolymers at the tumor. Our results provide the foundation for the use of HPMA copolymer-CHP conjugates as targeted drug delivery systems in OS tumors.
Collapse
Affiliation(s)
- Nithya Subrahmanyam
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bhuvanesh Yathavan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - S Michael Yu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
35
|
Shen M, Pan R, Lei S, Zhang L, Zhou C, Zeng Z, Nie Y, Tian X. KCNJ2/HIF1α positive-feedback loop promotes the metastasis of osteosarcoma. Cell Commun Signal 2023; 21:46. [PMID: 36864422 PMCID: PMC9979522 DOI: 10.1186/s12964-023-01064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/04/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Early metastasis is a hallmark of osteosarcoma (OS), a highly common type of malignant tumor. Members of the potassium inwardly rectifying channel family exert oncogenic effects in various cancers. However, the role of the potassium inwardly rectifying channel subfamily J member 2 (KCNJ2) in OS is unclear. METHODS The expression of KCNJ2 in OS tissues and cell lines was measured using bioinformatic analysis, immunohistochemistry, and western blotting. Wound-healing assays, Transwell assays, and lung metastasis models were used to analyze the effects of KCNJ2 on mobility of OS cells. The molecular mechanisms linking KCNJ2 and HIF1α in OS were explored by mass spectrometry analysis, immunoprecipitation, ubiquitination detection, and chromatin-immunoprecipitation quantitative real-time polymerase chain reaction. RESULTS KCNJ2 was found to be overexpressed in advanced-stage OS tissues, as well as in cells with high metastatic potential. High expression of KCNJ2 was associated with a shorter survival rate of OS patients. KCNJ2-inhibition repressed the metastasis of OS cells, whereas KCNJ2-elevation induced the opposite effects. Mechanistically, KCNJ2 binds to HIF1α and inhibits its ubiquitination, thus increasing the expression of HIF1α. Interestingly, HIF1α binds directly to the KCNJ2 promoter and increases its transcription under hypoxic conditions. CONCLUSION Taken together, our results indicated that a KCNJ2/HIF1α positive feedback loop exists in OS tissues, which significantly promotes OS cell metastasis. This evidence may contribute to the diagnosis and treatment of OS. Video Abstract.
Collapse
Affiliation(s)
- Mao Shen
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Runsang Pan
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Shan Lei
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Lu Zhang
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Changhua Zhou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| | - Yingjie Nie
- The Central Laboratory, Guizhou Provincial Peoples Hospital, Guiyang, 550009, Guizhou, China.
| | - Xiaobin Tian
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, Guizhou, China.
| |
Collapse
|
36
|
Son J, Cha H, Lee S, Bae Y, Ryou C, Lee SY. Ursonic acid inhibits migration and invasion of human osteosarcoma cells through the suppression of mitogen-activated protein kinases and matrix metalloproteinases. Mol Biol Rep 2023; 50:4029-4038. [PMID: 36848005 DOI: 10.1007/s11033-023-08333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
INTRODUCTION Osteosarcoma (OS) is the most common form of bone malignancy. Although contemporary chemotherapy and surgery have improved the prognosis of those with OS, developing new OS therapies has proven difficult for some time. The activation of the matrix metalloproteinase (MMP) and mitogen-activated protein kinase (MAPK) signaling pathways can induce metastasis, which is an obstacle to OS treatment. Ursonic acid (UNA) is a phytochemical with the potential to cure a variety of human ailments, including cancer. METHODS AND RESULTS In this study, we investigated the anti-tumor properties of UNA in MG63 cells. We conducted colony formation assay, wound healing assay, and Boyden chamber assays to investigate the anti-OS effects of UNA. UNA was found to significantly inhibit the proliferative, migratory, and invasive abilities of MG63 cells. This bioactivity of UNA was mediated by the inhibition of extracellular signal-regulated kinase (ERK) and p38 and reduction of MMP-2 transcriptional expression as observed in western blot analysis, gelatin zymography and RT-PCR. Anti-OS activities of UNA were also observed in Saos2 and U2OS cells, indicating that its anti-cancer properties are not specific to cell types. CONCLUSION Our findings suggest that UNA has the potential for use in anti-metastatic drugs in the treatment of OS.
Collapse
Affiliation(s)
- Juhyeon Son
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Hansol Cha
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Sungeun Lee
- Department of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi, Korea
| | - Yongwoong Bae
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi, Korea
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea.
| |
Collapse
|
37
|
Wang Z, Zeng Z, Gao F, Gui Z, Du J, Shen N, Shang Y, Yang Z, Shang L, Wei R, Ma W, Wang C. Osteosarcoma transcriptome data exploration reveals STC2 as a novel risk indicator in disease progression. BMC Med Genomics 2023; 16:30. [PMID: 36803385 PMCID: PMC9942349 DOI: 10.1186/s12920-023-01456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Osteosarcoma has been the most common primary bone malignant tumor in children and adolescents. Despite the considerable improvement in the understanding of genetic events attributing to the rapid development of molecular pathology, the current information is still lacking, partly due to the comprehensive and highly heterogeneous nature of osteosarcoma. The study is to identify more potential responsible genes during the development of osteosarcoma, thus identifying promising gene indicators and aiding more precise interpretation of the disease. METHODS Firstly, from GEO database, osteosarcoma transcriptome microarrays were used to screen the differential expression genes (DEGS) in cancer comparing to normal bone samples, followed by GO/KEGG interpretation, risk score assessment and survival analysis of the genes, for the purpose of selecting a credible key gene. Further, the basic physicochemical properties, predicted cellular location, gene expression in human cancers, the association with clinical pathological features and potential signaling pathways involved in the key gene's regulation on osteosarcoma development were in succession explored. RESULTS Based on the selected GEO osteosarcoma expression profiles, we identified the differential expression genes in osteosarcoma versus normal bone samples, and the genes were classified into four groups based on the difference level, further genes interpretation indicated that the high differently level (> 8 fold) genes were mainly located extracellular and related to matrix structural constituent regulation. Meanwhile, module function analysis of the 67 high differential level (> 8 fold) DEGS revealed a 22-gene containing extracellular matrix regulation associated hub gene cluster. Further survival analysis of the 22 genes revealed that STC2 was an independent prognosis indicator in osteosarcoma. Moreover, after validating the differential expression of STC2 in cancer vs. normal tissues using local hospital osteosarcoma samples by IHC and qRT-PCR experiment, the gene's physicochemical property revealed STC2 as a cellular stable and hydrophilic protein, and the gene's association with osteosarcoma clinical pathological parameters, expression in pan-cancers and the probable biological functions and signaling pathways it involved were explored. CONCLUSION Using multiple bioinformatic analysis and local hospital samples validation, we revealed the gain of expression of STC2 in osteosarcoma, which associated statistical significantly with patients survival, and the gene's clinical features and potential biological functions were also explored. Although the results shall provide inspiring insights into further understanding of the disease, further experiments and detailed rigorous clinical trials are needed to reveal its potential drug-target role in clinical medical use.
Collapse
Affiliation(s)
- Ziyue Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zixin Zeng
- grid.263452.40000 0004 1798 4018Basic Medical school of ShanXi Medical University, Tai Yuan city, ShanXi Province China
| | - Feng Gao
- grid.263452.40000 0004 1798 4018Department of Orthopedics, The Six Clinical Medical School of ShanXi Medical University, Tai Yuan, ShanXi Province China
| | - Ziwei Gui
- grid.263452.40000 0004 1798 4018Basic Medical school of ShanXi Medical University, Tai Yuan city, ShanXi Province China
| | - Juan Du
- grid.452845.a0000 0004 1799 2077Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, 030000 Tai Yuan City, ShanXi Province China
| | - Ningning Shen
- grid.452845.a0000 0004 1799 2077Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, 030000 Tai Yuan City, ShanXi Province China
| | - Yangwei Shang
- grid.452845.a0000 0004 1799 2077Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, 030000 Tai Yuan City, ShanXi Province China
| | - Zhiqing Yang
- grid.452845.a0000 0004 1799 2077Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, 030000 Tai Yuan City, ShanXi Province China
| | - Lifang Shang
- grid.452845.a0000 0004 1799 2077Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, 030000 Tai Yuan City, ShanXi Province China
| | - Rong Wei
- grid.452845.a0000 0004 1799 2077Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, 030000 Tai Yuan City, ShanXi Province China
| | - Wenxia Ma
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, 030000, Tai Yuan City, ShanXi Province, China.
| | - Chen Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No.382 WuYi Road, 030000, Tai Yuan City, ShanXi Province, China.
| |
Collapse
|
38
|
Endogenous Extracellular Matrix Regulates the Response of Osteosarcoma 3D Spheroids to Doxorubicin. Cancers (Basel) 2023; 15:cancers15041221. [PMID: 36831562 PMCID: PMC9954237 DOI: 10.3390/cancers15041221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The extracellular matrix (ECM) modulates cell behavior, shape, and viability as well as mechanical properties. In recent years, ECM disregulation and aberrant remodeling has gained considerable attention in cancer targeting and prevention since it may stimulate tumorigenesis and metastasis. Here, we developed an in vitro model that aims at mimicking the in vivo tumor microenvironment by recapitulating the interactions between osteosarcoma (OS) cells and ECM with respect to cancer progression. We long-term cultured 3D OS spheroids made of metastatic or non-metastatic OS cells mixed with mesenchymal stromal cells (MSCs); confirmed the deposition of ECM proteins such as Type I collagen, Type III collagen, and fibronectin by the stromal component at the interface between tumor cells and MSCs; and found that ECM secretion is inhibited by a neutralizing anti-IL-6 antibody, suggesting a new role of this cytokine in OS ECM deposition. Most importantly, we showed that the cytotoxic effect of doxorubicin is reduced by the presence of Type I collagen. We thus conclude that ECM protein deposition is crucial for modelling and studying drug response. Our results also suggest that targeting ECM proteins might improve the outcome of a subset of chemoresistant tumors.
Collapse
|
39
|
Mitophagy Effects of Protodioscin on Human Osteosarcoma Cells by Inhibition of p38MAPK Targeting NIX/LC3 Axis. Cells 2023; 12:cells12030395. [PMID: 36766737 PMCID: PMC9913878 DOI: 10.3390/cells12030395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Protodioscin (PD) is a steroidal saponin with various pharmacological activities, including neuro-protective, anti-inflammatory, and anti-tumor activities. However, the effect of PD on human osteosarcoma (OS) cells is unclear. In this study, we found that PD significantly inhibits the growth of human HOS and 143B OS cells through the upregulation of apoptotic-related proteins (cleaved caspase-3, cleaved caspase-9, and cleaved PARP) and mitophagy-related proteins (LC3B and NIX), which contribute to the induction of apoptosis, and MMP (mitochondrial membrane potential) dysfunction and mitophagy. The inhibition of LC3 or NIX was shown to decrease apoptosis and mitophagy in PD-treated OS cells. The knockdown of p38MAPK by siRNA decreased mitochondrial dysfunction, autophagy, mitophagy, and the NIX/LC3B expression in the PD-treated OS cells. A binding affinity analysis revealed that the smaller the KD value (-7.6 Kcal/mol and -8.9 Kcal/mol, respectively), the greater the binding affinity in the PD-NIX and PD-LC3 complexes. These findings show the inhibitory effects of PD-induced mitophagy in human OS cells and may represent a novel therapeutic strategy for human OS, by targeting the NIX/LC3 pathways.
Collapse
|
40
|
Wu C, Sun W, Shen D, Li H, Tong X, Guo Y. TEM1 up-regulates MMP-2 and promotes ECM remodeling for facilitating invasion and migration of uterine sarcoma. Discov Oncol 2023; 14:5. [PMID: 36639546 PMCID: PMC9839929 DOI: 10.1007/s12672-023-00613-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 04/17/2023] Open
Abstract
OBJECTIVES To explore the correlation between tumor endothelial marker 1 (TEM1) and matrix metalloproteinase 2 (MMP-2) in uterine sarcoma and their roles in the progression of uterine sarcoma. METHODS Uterine leiomyosarcoma (uLMS, n = 25) and uterine leiomyoma (n = 25) specimens were collected from a total of 50 patients. Immunohistochemistry assay was conducted to determine the expression of TEM1, MMP-2 and MMP-9. TEM1 over expression (hTEM1) and low expression (shRNA-TEM1) MES-SA cell lines were established as in vitro uterine sarcoma models. MMP-2 mRNA, protein expression and enzymatic activity were verified using qPCR, Western blot and gelatin zymography respectively. MMP-2 expression was downregulated using MMP-2 siRNA in hTEM1 MES-SA cells to better study the role of MMP-2. The invasive and migratory capacities of hTEM1, shRNA-TEM1, and hTEM1 treated with MMP-2 siRNA MES-SA cells were determined using transwell assays. Extracellular matrix (ECM) remodeling mediated by TEM1 was examined using cell-ECM adhesion and fluorescent gelatin-ECM degradation assays. The immunofluorescence of F-actin was examined to analyze the formation of invadopodia. Subcutaneous and intraperitoneal xenografts were established to validate the role of TEM1 in promoting uterine sarcoma metastasis. RESULTS TEM1 and MMP-2 were expressed in 92% (n = 23) and 88% (n = 22) of uterine leiomyosarcoma specimens, respectively. Both TEM1 and MMP-2 were highly expressed in 100% (n = 17) of high stage (III-IV) uterine leiomyosarcoma specimens. In addition, TEM1 expression was positively correlated with MMP-2 expression in uterine leiomyosarcoma. The successful establishment of in vitro uterine sarcoma models was confirmed with qPCR and Western blotting tests. TEM1 promoted the invasion and metastasis of uterine sarcoma in vivo and in vitro. MMP-2 expression and activity were up-regulated in hTEM1 cells but down-regulated in shRNA-TEM1 cells. Importantly, MMP-2 knockdown impaired the invasive and migratory capacity of hTEM1 cells. TEM1 promoted ECM remodeling by increasing cell-ECM adhesion and ECM degradation. TEM1 overexpression also induced the formation of invadopodia. CONCLUSION TEM1 was co-expressed and positively correlated with MMP-2 in uterine leiomyosarcoma specimens. In addition, both TEM1 and MMP-2 were associated with tumor development. TEM1 promoted uterine sarcoma progression by regulating MMP-2 activity and ECM remodeling.
Collapse
Affiliation(s)
- Chenghao Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Wenhuizi Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Huaifang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China
| | - Yi Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, No.389 Xincun Road, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
41
|
Trang NTN, Lai CY, Tsai HC, Huang YL, Liu SC, Tsai CH, Fong YC, Tzeng HE, Tang CH. Apelin promotes osteosarcoma metastasis by upregulating PLOD2 expression via the Hippo signaling pathway and hsa_circ_0000004/miR-1303 axis. Int J Biol Sci 2023; 19:412-425. [PMID: 36632453 PMCID: PMC9830518 DOI: 10.7150/ijbs.77688] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is a highly mortal bone tumor, with a high metastatic potential, promoted in part by the enzyme procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2). Increasing level of PLOD2 in osteosarcoma tissue correlates with lymphatic and distant metastasis. The adipokine apelin (APLN) is also found in different cancers and APLN upregulation promotes angiogenesis and metastasis, but its effects on osteosarcoma metastasis are uncertain. We explored APLN functioning in metastatic osteosarcoma. An analysis of records from the Gene Expression Omnibus (GEO) database showed higher levels of APLN expression in osteosarcoma tissue than in normal tissue. Similarly, levels of APLN and PLOD2 mRNA synthesis were upregulated in osteosarcoma tissue. Levels of APLN and PLOD2 protein correlated positively with osteosarcoma clinical stages. APLN increased PLOD2 expression in human osteosarcoma cell lines and cell migration via the mammalian Sterile 20-like kinase 1 (MST1), monopolar spindle-one-binder protein (MOB)1, and YAP cascades, and through hsa_circ_0000004 functioning as a sponge of miR-1303. We also found that knockdown of APLN antagonized lung metastasis in mice with osteosarcoma. APLN may be a therapeutic target in osteosarcoma metastasis.
Collapse
Affiliation(s)
- Nguyen Thi Nha Trang
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Hsiao-Chi Tsai
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Huey-En Tzeng
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, and Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,✉ Corresponding authors: Chih-Hsin Tang, PhD, Department of Pharmacology, School of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan. Tel: (886) 4-22052121 Ext. 7726; Fax: (886) 4-22333641; E-mail: . Huey-En Tzeng, MD, PhD, Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan. Tel: (886) 4-2359-2525; E-mail:
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,✉ Corresponding authors: Chih-Hsin Tang, PhD, Department of Pharmacology, School of Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan. Tel: (886) 4-22052121 Ext. 7726; Fax: (886) 4-22333641; E-mail: . Huey-En Tzeng, MD, PhD, Department of Medical Research, Taichung Veterans General Hospital, Taichung 407219, Taiwan. Tel: (886) 4-2359-2525; E-mail:
| |
Collapse
|
42
|
Han J, Zhao Z, Wang Y, Yu T, Wan D. Screening for MicroRNA combination with engineered exosomes as a new tool against osteosarcoma in elderly patients. Front Bioeng Biotechnol 2022; 10:1052252. [PMID: 36545680 PMCID: PMC9760984 DOI: 10.3389/fbioe.2022.1052252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The most common primary malignant bone sarcoma is Osteogenic sarcoma (OS) which has a bimodal age distribution. Unfortunately, the treatment of OS was less effective for elderly patients than for younger ones. The study aimed to explore a new microRNA (miRNA) which can bind to combining engineered exosomes for treatment of older OS patients. Based on GSE65071 and miRNet 2.0, two up-regulated miRNAs (miR-328, miR-107) and seven down-regulated miRNAs (miR-133b, miR-206, miR-1-3p, miR-133a, miR-449a, miR-181daysay, miR-134) were selected. Next, we used FunRich software to predict the up-stream transcription factors (TFs) of differentially expressed miRNAs (DE-miRNAs). By comparing target genes predicted from DE-miRNAs with differentially expressed genes, we identified 12 down-regulated and 310 up-regulated mRNAs. For KEGG analysis, the most enriched KEGG pathway was Cell cycle, Spliceosome, and Protein digestion and absorption. By using protein-protein interactions network, topological analysis algorithm and GEPIA database, miR-449a /CCNB1 axis was identified. Experiments in vitro were conducted to confirm the results too. MiRNA-449a is down-regulated in osteosarcoma and suppresses cell proliferation by targeting CCNB1. Our findings not only reveal a novel mechanism of miR-449a /CCNB1 in OS but also had laid the groundwork for further investigation and analysis in the field of exosome engineering.
Collapse
Affiliation(s)
- Jiyu Han
- School of Medicine, Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai, China
| | - Zitong Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai, China
| | - Yanhong Wang
- School of Medicine, Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai, China
| | - Tao Yu
- Department of Orthopaedic, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Tao Yu, ; Daqian Wan,
| | - Daqian Wan
- School of Medicine, Department of Orthopedics, Tongji Hospital, Tongji University, Shanghai, China,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Shanghai, China,*Correspondence: Tao Yu, ; Daqian Wan,
| |
Collapse
|
43
|
Multi-omics analysis based on 3D-bioprinted models innovates therapeutic target discovery of osteosarcoma. Bioact Mater 2022; 18:459-470. [PMID: 35415297 PMCID: PMC8971536 DOI: 10.1016/j.bioactmat.2022.03.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Current in vitro models for osteosarcoma investigation and drug screening, including two-dimensional (2D) cell culture and tumour spheroids (i.e. cancer stem-like cells), lack extracellular matrix (ECM). Therefore, results from traditional models may not reflect real pathological processes in genuine osteosarcoma histological structures. Here, we report a three-dimensional (3D) bioprinted osteosarcoma model (3DBPO) that contains osteosarcoma cells and shrouding ECM analogue in a 3D frame. Photo-crosslinkable bioinks composed of gelatine methacrylamide and hyaluronic acid methacrylate mimicked tumour ECM. We performed multi-omics analysis, including transcriptomics and DNA methylomics, to determine differences between the 3DBPO model and traditional models. Compared with 2D models and tumour spheroids, our 3DBPO model showed significant changes in cell cycle, metabolism, adherens junctions, and other pathways associated with epigenetic regulation. The 3DBPO model was more sensitive to therapies targeted to the autophagy pathway. We showed that simulating ECM yielded different osteosarcoma cell metabolic characteristics and drug sensitivity in the 3DBPO model compared with classical models. We suggest 3D printed osteosarcoma models can be used in osteosarcoma fundamental and translational research, which may contribute to novel therapeutic strategy discovery. 3DBPO model behaved better than traditional 2D and CSC models in simulating in vivo osteosarcoma microenvironment. 3DBPO model showed significant changes in many signaling pathways associated with epigenetic regulation. 3DBPO model was particularly sensitive to autophagy-related drugs.
Collapse
|
44
|
Giatagana EM, Berdiaki A, Gaardløs M, Tsatsakis AM, Samsonov SA, Nikitovic D. Rapamycin-induced autophagy in osteosarcoma cells is mediated via the biglycan/Wnt/β-catenin signaling axis. Am J Physiol Cell Physiol 2022; 323:C1740-C1756. [PMID: 36280393 DOI: 10.1152/ajpcell.00368.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biglycan is a class I secreted small leucine-rich proteoglycan (SLRP), which regulates signaling pathways connected to bone pathologies. Autophagy is a vital catabolic process with a dual role in cancer progression. Here, we show that biglycan inhibits autophagy in two osteosarcoma cell lines (P ≤ 0.001), while rapamycin-induced autophagy decreases biglycan expression in MG63 osteosarcoma cells and abrogates the biglycan-induced cell growth increase (P ≤ 0.001). Rapamycin also inhibits β-catenin translocation to the nucleus, inhibiting the Wnt pathway (P ≤ 0.001) and reducing biglycan's colocalization with the Wnt coreceptor LRP6 (P ≤ 0.05). Furthermore, biglycan exhibits protective effects against the chemotherapeutic drug doxorubicin in MG63 OS cells through an autophagy-dependent manner (P ≤ 0.05). Cotreatment of these cells with rapamycin and doxorubicin enhances cells response to doxorubicin by decreasing biglycan (P ≤ 0.001) and β-catenin (P ≤ 0.05) expression. Biglycan deficiency leads to increased caspase-3 activation (P ≤ 0.05), suggesting increased apoptosis of biglycan-deficient cells treated with doxorubicin. Computational models of LRP6 and biglycan complexes suggest that biglycan changes the receptor's ability to interact with other signaling molecules by affecting the interdomain bending angles in the receptor structure. Biglycan binding to LRP6 activates the Wnt pathway and β-catenin nuclear translocation by disrupting β-catenin degradation complex (P ≤ 0.01 and P ≤ 0.05). Interestingly, this mechanism is not followed in moderately differentiated, biglycan-nonexpressing U-2OS OS cells. To sum up, biglycan exhibits protective effects against the doxorubicin in MG63 OS cells by activating the Wnt signaling pathway and inhibiting autophagy.
Collapse
Affiliation(s)
- Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| | - Margrethe Gaardløs
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, Heraklion Greece
| |
Collapse
|
45
|
Celik B, Cicek K, Leal AF, Tomatsu S. Regulation of Molecular Targets in Osteosarcoma Treatment. Int J Mol Sci 2022; 23:12583. [PMID: 36293439 PMCID: PMC9604206 DOI: 10.3390/ijms232012583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The most prevalent malignant bone tumor, osteosarcoma, affects the growth plates of long bones in adolescents and young adults. Standard chemotherapeutic methods showed poor response rates in patients with recurrent and metastatic phases. Therefore, it is critical to develop novel and efficient targeted therapies to address relapse cases. In this regard, RNA interference technologies are encouraging options in cancer treatment, in which small interfering RNAs regulate the gene expression following RNA interference pathways. The determination of target tissue is as important as the selection of tissue-specific promoters. Moreover, small interfering RNAs should be delivered effectively into the cytoplasm. Lentiviral vectors could encapsulate and deliver the desired gene into the cell and integrate it into the genome, providing long-term regulation of targeted genes. Silencing overexpressed genes promote the tumor cells to lose invasiveness, prevents their proliferation, and triggers their apoptosis. The uniqueness of cancer cells among patients requires novel therapeutic methods that treat patients based on their unique mutations. Several studies showed the effectiveness of different approaches such as microRNA, drug- or chemotherapy-related methods in treating the disease; however, identifying various targets was challenging to understanding disease progression. In this regard, the patient-specific abnormal gene might be targeted using genomics and molecular advancements such as RNA interference approaches. Here, we review potential therapeutic targets for the RNA interference approach, which is applicable as a therapeutic option for osteosarcoma patients, and we point out how the small interfering RNA method becomes a promising approach for the unmet challenge.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kader Cicek
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Andrés Felipe Leal
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
46
|
Gao X, Gao B, Li S. Extracellular vesicles: A new diagnostic biomarker and targeted drug in osteosarcoma. Front Immunol 2022; 13:1002742. [PMID: 36211364 PMCID: PMC9539319 DOI: 10.3389/fimmu.2022.1002742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone cancer that is highly prevalent among adolescents and adults below the age of 20 years. The prognostic outcome of metastatic OS or relapse is extremely poor; thus, developing new diagnostic and therapeutic strategies for treating OS is necessary. Extracellular vesicles (EVs) ranging from 30–150 nm in diameter are commonly produced in different cells and are found in various types of body fluids. EVs are rich in biologically active components like proteins, lipids, and nucleic acids. They also strongly affect pathophysiological processes by modulating the intercellular signaling pathways and the exchange of biomolecules. Many studies have found that EVs influence the occurrence, development, and metastasis of osteosarcoma. The regulation of inflammatory communication pathways by EVs affects OS and other bone-related pathological conditions, such as osteoarthritis and rheumatoid arthritis. In this study, we reviewed the latest findings related to diagnosis, prognosis prediction, and the development of treatment strategies for OS from the perspective of EVs.
Collapse
Affiliation(s)
- Xiaozhuo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Bo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
47
|
Villapun Puzas VM, Carter LN, Schröder C, Colavita PE, Hoey DA, Webber MA, Addison O, Shepherd DET, Attallah MM, Grover LM, Cox SC. Surface Free Energy Dominates the Biological Interactions of Postprocessed Additively Manufactured Ti-6Al-4V. ACS Biomater Sci Eng 2022; 8:4311-4326. [PMID: 36127820 PMCID: PMC9554875 DOI: 10.1021/acsbiomaterials.2c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Additive manufacturing (AM) has emerged as a disruptive
technique
within healthcare because of its ability to provide personalized devices;
however, printed metal parts still present surface and microstructural
defects, which may compromise mechanical and biological interactions.
This has made physical and/or chemical postprocessing techniques essential
for metal AM devices, although limited fundamental knowledge is available
on how alterations in physicochemical properties influence AM biological
outcomes. For this purpose, herein, powder bed fusion Ti-6Al-4V samples
were postprocessed with three industrially relevant techniques: polishing,
passivation, and vibratory finishing. These surfaces were thoroughly
characterized in terms of roughness, chemistry, wettability, surface
free energy, and surface ζ-potential. A significant increase
in Staphylococcus epidermidis colonization
was observed on both polished and passivated samples, which was linked
to high surface free energy donor γ– values
in the acid–base, γAB component. Early osteoblast
attachment and proliferation (24 h) were not influenced by these properties,
although increased mineralization was observed for both these samples.
In contrast, osteoblast differentiation on stainless steel was driven
by a combination of roughness and chemistry. Collectively, this study
highlights that surface free energy is a key driver between AM surfaces
and cell interactions. In particular, while low acid–base components
resulted in a desired reduction in S. epidermidis colonization, this was followed by reduced mineralization. Thus,
while surface free energy can be used as a guide to AM device development,
optimization of bacterial and mammalian cell interactions should be
attained through a combination of different postprocessing techniques.
Collapse
Affiliation(s)
| | - Luke N Carter
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Christian Schröder
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN4, Ireland
| | - Paula E Colavita
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN4, Ireland
| | - David A Hoey
- Trinity Biomedical Sciences Institute, Trinity College, Trinity Centre for Biomedical Engineering, Dublin D02 R590, Ireland.,Department of Mechanical Manufacturing and Biomedical Engineering, School of Engineering, Trinity College, Dublin D02 DK07, Ireland
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, U.K.,Norwich Medical School, University of East Anglia, Norwich Research Park, Colney NR4 7TJ, U.K
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | | | - Moataz M Attallah
- School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, U.K
| |
Collapse
|
48
|
Wen Y, Tang F, Tu C, Hornicek F, Duan Z, Min L. Immune checkpoints in osteosarcoma: Recent advances and therapeutic potential. Cancer Lett 2022; 547:215887. [PMID: 35995141 DOI: 10.1016/j.canlet.2022.215887] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor and is associated with a high risk of recurrence and distant metastasis. Effective treatment for osteosarcoma, especially advanced osteosarcoma, has stagnated over the past four decades. The advent of immune checkpoint inhibitor (ICI) has transformed the treatment paradigm for multiple malignant tumor types and indicated a potential therapeutic strategy for osteosarcoma. In this review, we discuss recent advances in immune checkpoints, including programmed cell death protein-1 (PD-1), programmed cell death protein ligand-1 (PD-L1), and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), and their related ICIs for osteosarcoma treatment. We present the main existing mechanisms of resistance to ICIs therapy in osteosarcoma. Moreover, we summarize the current strategies for improving the efficacy of ICIs in osteosarcoma and address the potential predictive biomarkers of ICIs treatment in osteosarcoma.
Collapse
Affiliation(s)
- Yang Wen
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fan Tang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, the University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
49
|
Qin Q, Gomez-Salazar M, Tower RJ, Chang L, Morris CD, McCarthy EF, Ting K, Zhang X, James AW. NELL1 Regulates the Matrisome to Promote Osteosarcoma Progression. Cancer Res 2022; 82:2734-2747. [PMID: 35700263 PMCID: PMC9357190 DOI: 10.1158/0008-5472.can-22-0732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Sarcomas produce an abnormal extracellular matrix (ECM), which in turn provides instructive cues for cell growth and invasion. Neural EGF like-like molecule 1 (NELL1) is a secreted glycoprotein characterized by its nonneoplastic osteoinductive effects, yet it is highly expressed in skeletal sarcomas. Here, we show that genetic deletion of NELL1 markedly reduces invasive behavior across human osteosarcoma (OS) cell lines. NELL1 deletion resulted in reduced OS disease progression, inhibiting metastasis and improving survival in a xenograft mouse model. These observations were recapitulated with Nell1 conditional knockout in mouse models of p53/Rb-driven sarcomagenesis, which reduced tumor frequency and extended tumor-free survival. Transcriptomic and phosphoproteomic analyses demonstrated that NELL1 loss skews the expression of matricellular proteins associated with reduced FAK signaling. Culturing NELL1 knockout sarcoma cells on wild-type OS-enriched matricellular proteins reversed the phenotypic and signaling changes induced by NELL1 deficiency. In sarcoma patients, high expression of NELL1 correlated with decreased overall survival. These findings in mouse and human models suggest that NELL1 expression alters the sarcoma ECM, thereby modulating cellular invasive potential and prognosis. Disruption of NELL1 signaling may represent a novel therapeutic approach to short-circuit sarcoma disease progression. SIGNIFICANCE NELL1 modulates the sarcoma matrisome to promote tumor growth, invasion, and metastasis, identifying the matrix-associated protein as an orchestrator of cell-ECM interactions in sarcomagenesis and disease progression.
Collapse
Affiliation(s)
- Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205
| | | | - Robert J. Tower
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205
| | - Carol D. Morris
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205
| | | | - Kang Ting
- Forsyth Institute, Cambridge, MA 02142
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,Corresponding Author: Aaron W. James, M.D., Ph.D., 720 Rutland Avenue, Room 524A, Baltimore, MD 21205, Phone: (410) 502-4143,
| |
Collapse
|
50
|
Cheng Y, Ren J, Fan S, Wu P, Cong W, Lin Y, Lan S, Song S, Shao B, Dai W, Wang X, Zhang H, Xu B, Li W, Yuan X, He B, Zhang Q. Nanoparticulates reduce tumor cell migration through affinity interactions with extracellular migrasomes and retraction fibers. NANOSCALE HORIZONS 2022; 7:779-789. [PMID: 35703339 DOI: 10.1039/d2nh00067a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nano-tumor interactions are fundamental for cancer nanotherapy, and the cross-talk of nanomedicines with the extracellular matrix (ECM) is increasingly considered essential. Here, we specifically investigate the nano-ECM interactivity using drug-free nanoparticulates (NPs) and highly metastatic cancer cells as models. We discover with surprise that NPs closely bind to specific types of ECM components, namely, retraction fibers (RFs) and migrasomes, which are located at the rear of tumor cells during their migration. This interaction is observed to alter cell morphology, limit cell motion range and change cell adhesion. Importantly, NPs are demonstrated to inhibit tumor cell removal in vitro, and their anti-metastasis potential is preliminarily confirmed in vivo. Mechanically, the NPs are found to coat and form a rigid shell on the surface of migrasomes and retraction fibers via interaction with lipid raft/caveolae substructures. In this way, NPs block the recognition, endocytosis and elimination of migrasomes by their surrounding tumor cells. Thereby, NPs interfere with the cell-ECM interaction and reduce the promotion effect of migrasomes on cell movement. Additionally, NPs trigger alteration of the expression of proteins related to cell-cell adhesion and cytoskeleton organization, which also restricts cell migration. In summary, all the findings here provide a potential target for anti-tumor metastasis nanomedicines.
Collapse
Affiliation(s)
- Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junji Ren
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shumin Fan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peiyao Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenshu Cong
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxing Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shaojie Lan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Siyang Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bin Shao
- Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing 100142, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|