1
|
Bai J, Wang Z, Yang M, Xiang J, Liu Z. Disrupting CENP-N mediated SEPT9 methylation as a strategy to inhibit aerobic glycolysis and liver metastasis in colorectal cancer. Clin Exp Metastasis 2024; 41:971-988. [PMID: 39424682 DOI: 10.1007/s10585-024-10316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with a high mortality rate, primarily due to liver metastasis. This study explores the role of centromere protein N (CENP-N) in mediating the methylation of septin 9 (SEPT9) and its subsequent effects on aerobic glycolysis and liver metastasis in CRC. We employed in vitro and in vivo experiments, including single-cell RNA sequencing, methylation-specific PCR (MSP), ChIP assays, and various functional assays to assess the impact of CENP-N and SEPT9 on CRC cell proliferation, migration, invasion, and metabolic reprogramming. Our data reveal that CENP-N directly interacts with SEPT9, enhancing its methylation at specific lysine residues. This modification significantly upregulates key glycolytic enzymes, thereby promoting aerobic glycolysis, CRC cell proliferation, and migration. In vivo studies further demonstrate that the CENP-N/SEPT9 axis facilitates liver metastasis of CRC, as confirmed by fluorescence imaging and histological analysis. This study identifies a novel pathway where CENP-N-mediated methylation of SEPT9 drives metabolic reprogramming and metastasis in CRC. These findings suggest potential therapeutic targets for inhibiting CRC progression and liver metastasis, offering new insights into CRC pathogenesis.
Collapse
Affiliation(s)
- Junge Bai
- Department of Biochemistry and Molecular Biology, Harbin Medical University, 157 Health Road, Nangang District, Harbin, Heilongjiang, 150081, China
| | - Zhexue Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Jun Xiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuannanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
2
|
Yang PY, Yang Z, Lv J, Jiang PY, Quan TQ, Huang ZH, Xu XD, Guo R, Wei D, Sun Y. The noncanonical RNA-binding protein RAN stabilizes the mRNA of intranuclear stress granule assembly factor G3BP1 in nasopharyngeal carcinoma. J Biol Chem 2024; 300:107964. [PMID: 39510185 PMCID: PMC11635782 DOI: 10.1016/j.jbc.2024.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in tumor progression by participating in the posttranscriptional regulation of RNA. However, the levels and function of RBPs in nasopharyngeal carcinoma (NPC) remain elusive. Here we identified a noncanonical RBP RAN that has the most significant role in NPC progression by a small siRNA pool screening. Functionally, RAN facilitates NPC proliferation and metastasis in vitro and in vivo. High levels of RAN are associated with poor prognosis of NPC patients and can be performed as a prognostic biomarker. Mechanistically, RAN increases the nucleus import of TDP43 and enhances TDP43 nuclear distribution. On the other hand, RAN is directly bound to the coding sequence of G3BP1 mRNA and serves as an adapter to facilitate TDP43 interacting with G3BP1 mRNA 3' UTR. These contribute to increasing G3BP1 mRNA stability in the nucleus and lead to upregulation of G3BP1, which further enhances AKT and ERK signaling and ultimately promotes NPC proliferation and metastasis. These findings reveal that RAN stabilizes intranuclear G3BP1 mRNA by dual mechanisms: recruiting TDP43 into the nucleus and enhancing its interaction with G3BP1 mRNA, suggesting a critical role of RAN in NPC progression and providing a new regulation framework of RBP-RNA.
Collapse
Affiliation(s)
- Pan-Yang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Zhenyu Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jiawei Lv
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Pei-Yi Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ting-Qiu Quan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Zhuo-Hui Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Xu-Dong Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Rui Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Denghui Wei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
3
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Liu Y, Zhou H, Yu Q, Wang Q. Hypomethylation-associated ELF3 helps nasopharyngeal carcinoma to escape immune surveillance via MUC16-mediated glycolytic metabolic reprogramming. Am J Physiol Cell Physiol 2024; 327:C1125-C1142. [PMID: 39219440 PMCID: PMC11481993 DOI: 10.1152/ajpcell.00438.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Immune escape and metabolic reprogramming are two essential hallmarks of cancer. Mucin-16 (MUC16) has been linked to glycolysis and immune response in different cancers. However, its involvement in nasopharyngeal carcinoma (NPC) has not been well described. We seek to dissect the functions and detailed mechanisms of MUC16 in NPC. Bioinformatics prediction was performed to identify NPC-related molecules. MUC16 was significantly enhanced in NPC tissues, which was correlated with the advanced tumor stage of patients. Lentiviral plasmids-mediated MUC16 deletion inhibited the malignant behavior of NPC cells, and glycolysis inhibition by MUC16 deletion blocked immune escape in NPC cells. E74-like factor 3 (ELF3) bound to the MUC16 promoter promotes the transcription of MUC16. MUC16 overexpression reversed the repressive effect of ELF3 silencing on glycolysis and immune escape in NPC and accelerated tumor growth in vivo. Overexpression of ELF3 in NPC was associated with reduced DNA methylation in its promoter. Our findings revealed the role of the ELF3/MUC16 axis in the immune escape and metabolic reprogramming of NPC, providing potential therapeutic targets for NPC.NEW & NOTEWORTHY We identified the functions of E74-like factor 3 (ELF3) in glycolysis and immune escape of nasopharyngeal carcinoma cells for the first time. As a transcription factor, ELF3 promoted mucin-16 (MUC16) expression by binding to its promoter, leading to the glycolysis-mediated immune escape of nasopharyngeal carcinoma (NPC) cells. Targeting the ELF3/MUC16 axis generates a superior antitumor immune response, which will help establish a novel approach to restore protective antitumor immunity for NPC immunotherapy.
Collapse
Affiliation(s)
- Yueyang Liu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Hong Zhou
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qi Yu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Qiang Wang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
Xu J, Chen D, Wu W, Ji X, Dou X, Gao X, Li J, Zhang X, Huang WE, Xiong D. A metabolic map and artificial intelligence-aided identification of nasopharyngeal carcinoma via a single-cell Raman platform. Br J Cancer 2024; 130:1635-1646. [PMID: 38454165 DOI: 10.1038/s41416-024-02637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a complex cancer influenced by various factors. This study explores the use of single-cell Raman spectroscopy as a potential diagnostic tool for investigating biomolecular changes associated with NPC carcinogenesis. METHODS Seven NPC cell lines, one immortalised nasopharyngeal epithelial cell line, six nasopharyngeal mucosa tissues and seven NPC tissue samples were analysed by performing confocal Raman spectroscopic measurements and imaging. The single-cell Raman spectral dataset was used to quantify relevant biomolecules and build machine learning classification models. Metabolomic profiles were investigated using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). RESULTS By generating a metabolic map of seven NPC cell lines, we identified an interplay of altered metabolic processes involving nucleic acids, amino acids, lipids and sugars. The results from spatially resolved Raman maps and UPLC-MS/MS metabolomics were consistent, revealing an increase of unsaturated fatty acids in cancer cells, particularly in highly metastatic 5-8F and poorly differentiated CNE2 cells. The classification model achieved a nearly perfect classification when identifying NPC and non-NPC cells with an ROC-AUC of 0.99 and a value of 0.97 when identifying 13 tissue samples. CONCLUSION This study unveils a complex interplay of metabolic network and highlights the potential roles of unsaturated fatty acids in NPC progression and metastasis. This renders further research to provide deeper insights into NPC pathogenesis, identify new metabolic targets and improve the efficacy of targeted therapies in NPC. Artificial intelligence-aided analysis of single-cell Raman spectra has achieved high accuracies in the classification of both cancer cells and patient tissues, paving the way for a simple, less invasive and accurate diagnostic test.
Collapse
Affiliation(s)
- Jiabao Xu
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Dayang Chen
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wei Wu
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiang Ji
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaowen Dou
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaojuan Gao
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuming Zhang
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK.
| | - Dan Xiong
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Fontana F, Giannitti G, Marchesi S, Limonta P. The PI3K/Akt Pathway and Glucose Metabolism: A Dangerous Liaison in Cancer. Int J Biol Sci 2024; 20:3113-3125. [PMID: 38904014 PMCID: PMC11186371 DOI: 10.7150/ijbs.89942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/11/2024] [Indexed: 06/22/2024] Open
Abstract
Aberrant activation of the PI3K/Akt pathway commonly occurs in cancers and correlates with multiple aspects of malignant progression. In particular, recent evidence suggests that the PI3K/Akt signaling plays a fundamental role in promoting the so-called aerobic glycolysis or Warburg effect, by phosphorylating different nutrient transporters and metabolic enzymes, such as GLUT1, HK2, PFKB3/4 and PKM2, and by regulating various molecular networks and proteins, including mTORC1, GSK3, FOXO transcription factors, MYC and HIF-1α. This leads to a profound reprogramming of cancer metabolism, also impacting on pentose phosphate pathway, mitochondrial oxidative phosphorylation, de novo lipid synthesis and redox homeostasis and thereby allowing the fulfillment of both the catabolic and anabolic demands of tumor cells. The present review discusses the interactions between the PI3K/Akt cascade and its metabolic targets, focusing on their possible therapeutic implications.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | | | | | | |
Collapse
|
7
|
He K, Xie MY, Gao XJ, Wang H, Li JD. The Correlation of Centromere Protein Q with Diagnosis and Prognosis in Hepatocellular Carcinoma. Pharmgenomics Pers Med 2024; 17:271-288. [PMID: 38827182 PMCID: PMC11141762 DOI: 10.2147/pgpm.s456965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the major types of liver cancer. Previous studies have shown that the centromere protein family is associated with malignant biological behaviors such as HCC proliferation. As a member of the centromere protein family, centromere protein Q (CENPQ) is closely associated with immunotherapy and immune cell infiltration in various tumors. However, the role and mechanism of CENPQ in HCC remain unclear. Methods Multiple public databases and RT-qPCR were used to study the expression of CENPQ in HCC. Based on TCGA data, the correlation between CENPQ and clinicopathological characteristics and prognosis of HCC patients was analyzed, and its diagnostic value was evaluated. The potential biological functions of CENPQ in HCC were explored by functional enrichment analysis of differentially expressed genes. The distribution of tumor-infiltrating immune cell types was assessed using single-sample GSEA, and immune checkpoint gene expression was analyzed using Spearman correlation. Subsequently, loss-of-function experiments were performed to determine the function of CENPQ on the cell cycle and proliferation of HCC cells in vitro. Results CENPQ was found highly expressed in HCC and correlated with weight, BMI, age, AFP, T stage, pathologic stage, histologic grade, and prothrombin time (all p < 0.05). ROC and Kaplan-Meier analyses indicated that CENPQ may be potentially used as a diagnostic marker for HCC (AUC = 0.881), and its upregulation is associated with decreased OS (p = 0.002), DSS (p < 0.001), and PFI (p = 0.002). Functional enrichment analysis revealed an association of CENPQ with biological processes such as immune cell infiltration, cell cycle, and hippo-merlin signaling deregulation in HCC. Furthermore, knockdown of CENPQ manifested in HCC cells with G0/1 phase cycle arrest and decreased proliferative capacity. Conclusion CENPQ expression was higher in HCC tissues than in normal liver tissues. It was significantly associated with poor prognosis, immune cell infiltration, cell cycle, and proliferation. Therefore, CENPQ may become a promising prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Kun He
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Meng-yi Xie
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Xiao-jin Gao
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Hao Wang
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Jing-dong Li
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| |
Collapse
|
8
|
Liu S, Yan X, Guo J, An H, Li X, Yang L, Yu X, Li S. Periodontal ligament-associated protein-1 knockout mice regulate the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway. J Cell Physiol 2024; 239:e31062. [PMID: 37357387 DOI: 10.1002/jcp.31062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023]
Abstract
It has been known that periodontal ligament-associated protein-1 (PLAP-1/Asporin) not only inhibits cartilage formation in osteoarthritis, but it also influences the healing of skull defect. However, the effect and mechanism of PLAP-1/Asporin on the mutual regulation of osteoclasts and osteoblasts in periodontitis are not clear. In this study, we utilized a PLAP-1/Asporin gene knockout (KO) mouse model to research this unknown issue. We cultured mouse bone marrow mesenchymal stem cells with Porphyromonas gingivalis lipopolysaccharide (P.g. LPS) for osteogenic induction in vitro. The molecular mechanism of PLAP-1/Asporin in the regulation of osteoblasts was detected by immunoprecipitation, immunofluorescence, and inhibitors of signaling pathways. The results showed that the KO of PLAP-1/Asporin promoted osteogenic differentiation through transforming growth factor beta 1 (TGF-β1)/Smad3 in inflammatory environments. We further found the KO of PLAP-1/Asporin inhibited osteoclast differentiation and promoted osteogenic differentiation through the TGF-β1/Smad signaling pathway in an inflammatory coculture system. The experimental periodontitis model was established by silk ligation and the alveolar bone formation in PLAP-1/Asporin KO mice was promoted through TGF-β1/Smad3 signaling pathway. The subcutaneous osteogenesis model in nude mice also confirmed that the KO of PLAP-1/Asporin promoted bone formation by the histochemical staining. In conclusion, PLAP-1/Asporin regulated the differentiation of osteoclasts and osteoblasts through TGF-β1/Smad signaling pathway. The results of this study lay a theoretical foundation for the further study of the pathological mechanism underlying alveolar bone resorption, and the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xiao Yan
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
- Department of Stomatology, the Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jing Guo
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Hong An
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xingrui Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Liying Yang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xijiao Yu
- Department of Endodontics, Central Laboratory, Jinan Stamotological Hospital, Jinan Key Laboratory of oral tissue regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, Shandong, China
| | - Shu Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| |
Collapse
|
9
|
Wang BR, Han JB, Jiang Y, Xu S, Yang R, Kong YG, Tao ZZ, Hua QQ, Zou Y, Chen SM. CENPN suppresses autophagy and increases paclitaxel resistance in nasopharyngeal carcinoma cells by inhibiting the CREB-VAMP8 signaling axis. Autophagy 2024; 20:329-348. [PMID: 37776538 PMCID: PMC10813569 DOI: 10.1080/15548627.2023.2258052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023] Open
Abstract
Chemotherapeutic resistance is one of the most common reasons for poor prognosis of patients with nasopharyngeal carcinoma (NPC). We found that CENPN can promote the growth, proliferation and apoptosis resistance of NPC cells, but its relationship with chemotherapeutic resistance in NPC is unclear. Here we verified that the CENPN expression level in NPC patients was positively correlated with the degree of paclitaxel (PTX) resistance and a poor prognosis through analysis of clinical cases. VAMP8 expression was significantly increased after knockdown of CENPN by transcriptome sequencing. We found in cell experiments that CENPN inhibited macroautophagy/autophagy and VAMP8 expression and significantly increased PTX resistance. Overexpression of CENPN reduced the inhibitory effects of PTX on survival, cell proliferation, cell cycle progression and apoptosis resistance in NPC cells by inhibiting autophagy. In turn, knockdown of CENPN can affect the phenotype of NPC cells by increasing autophagy to achieve PTX sensitization. Sequential knockdown of CENPN and VAMP8 reversed the PTX-sensitizing effect of CENPN knockdown alone. Experiments in nude mice confirmed that knockdown of CENPN can increase VAMP8 expression, enhance autophagy and increase the sensitivity of NPC cells to PTX. Mechanistic studies showed that CENPN inhibited the translocation of p-CREB into the nucleus of NPC cells, resulting in the decreased binding of p-CREB to the VAMP8 promoter, thereby inhibiting the transcription of VAMP8. These results demonstrate that CENPN may be a marker for predicting chemotherapeutic efficacy and a potential target for inducing chemosensitization to agents such as PTX.Abbreviations: 3-MA: 3-methyladenine; ATG5: autophagy related 5; CENPN: centromere protein N; CQ: chloroquine; CREB: cAMP responsive element binding protein; ChIP: chromatin immunoprecipitation assay; IC50: half-maximal inhibitory concentration; LAMP2A: lysosomal associated membrane protein 2A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPC: nasopharyngeal carcinoma; NPG: nasopharyngitis; oeCENPN: overexpressed CENPN; PTX: paclitaxel; RAPA: rapamycin; RNA-seq: transcriptome sequencing; shCENPN: small hairpin RNA expression vector targeting the human CENPN gene; shCENPN-shVAMP8: sequential knockdown targeting the human CENPN gene and VAMP8 gene; shVAMP8: small hairpin RNA expression vector targeting the human VAMP8 gene; TEM: transmission electron microscopy; TIR: tumor inhibitory rate; VAMP8: vesicle associated membrane protein 8.
Collapse
Affiliation(s)
- Bin-Ru Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ji-Bo Han
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| |
Collapse
|
10
|
He K, Xie M, Hong W, Li Y, Yin Y, Gao X, He Y, Chen Y, You C, Li J. CENPL accelerates cell proliferation, cell cycle, apoptosis, and glycolysis via the MEK1/2-ERK1/2 pathway in hepatocellular carcinoma. Int J Biochem Cell Biol 2024; 166:106481. [PMID: 37914022 DOI: 10.1016/j.biocel.2023.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Centromere protein L (CENPL) is involved in the mitotic process of eukaryotic cells and the development of various types of cancer. However, its role in hepatocellular carcinoma (HCC) remains unclear. This study aimed to investigate the expression and clinical significance of CENPL in HCC, and explore its involvement in regulating HCC cell proliferation, apoptosis, cell cycle, and glycolysis both in vivo and in vitro. CENPL expression was analyzed in HCC and normal liver tissues using The Cancer Genome Atlas, Gene Expression Omnibus mining, real-time quantitative polymerase chain reaction, and immunohistochemistry. Functional assays were used to assess the role of CENPL in HCC cell proliferation, apoptosis, cell cycle, and glycolysis. The potential pathways underlying the regulatory effects of CENPL, as well as the expression of mitogen-activated protein kinase (MAPK) signaling pathway-related molecules and markers of proliferation and glycolysis were investigated. CENPL was significantly upregulated in HCC tissue and associated with multiple clinicopathological features and poor patient prognosis. Univariate and multivariate analyses demonstrated that CENPL may serve as an independent prognostic factor for HCC. Upregulation of CENPL in HCC regulated tumor proliferation and glycolytic processes. Mechanistic studies revealed that differentially expressed genes between the CENPL-overexpressing and control groups were mainly concentrated in the MAPK signaling pathway. Pathway inhibition analysis indicated that CENPL activated the MEK1/2-ERK1/2 signaling pathway to promote proliferation and glycolysis in HCC cells. This study elucidated the role of CENPL in regulating cell proliferation, apoptosis, cell cycle, and glycolysis in HCC. CENPL may represent a therapeutic target and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Kun He
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Mengyi Xie
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Weifeng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yonghe Li
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yaolin Yin
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaojin Gao
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yi He
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yu Chen
- Department of Radiology, The People's Hospital of Yuqing County, Zunyi 564499, Guizhou, China
| | - Chuan You
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China.
| | - Jingdong Li
- Institute of Hepatobiliary, Pancreatic and Intestinal Diseases, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China.
| |
Collapse
|
11
|
Li Z, Cui J. Targeting the lactic acid metabolic pathway for antitumor therapy. Mol Ther Oncolytics 2023; 31:100740. [PMID: 38033399 PMCID: PMC10682057 DOI: 10.1016/j.omto.2023.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Lactic acid is one of the most abundant products of cellular metabolism and has historically been considered a cell-damaging metabolic product. However, as research has deepened, the beneficial effects of lactic acid on tumor cells and the tumor microenvironment have received increasing attention from the oncology community. Lactic acid can not only provide tumor cells with energy but also act as a messenger molecule that promotes tumor growth and progression and protects tumor cells from immune cells and killing by radiation and chemotherapy. Thus, the inhibition of tumor cell lactic acid metabolism has emerged as a novel antitumor treatment strategy that can also effectively enhance the efficacy of conventional antitumor therapies. In this review, we classify the currently available therapies targeting lactic acid metabolism and examine their prospects for clinical application.
Collapse
Affiliation(s)
- Zhi Li
- Cancer Center, First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
12
|
Wu LZ, Zou Y, Wang BR, Ni HF, Kong YG, Hua QQ, Chen SM. Enhancing nasopharyngeal carcinoma cell radiosensitivity by suppressing AKT/mTOR via CENP-N knockdown. J Transl Med 2023; 21:792. [PMID: 37940975 PMCID: PMC10631041 DOI: 10.1186/s12967-023-04654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE Investigating the impact of centromere protein N (CENP-N) on radiosensitivity of nasopharyngeal carcinoma (NPC) cells. METHODS Using immunohistochemistry and immunofluorescence to detect CENP-N expression in tissues from 35 patients with radiosensitive or radioresistant NPC. Assessing the effect of combined CENP-N knockdown and radiotherapy on various cellular processes by CCK-8, colony formation, flow cytometry, and Western blotting. Establishing a NPC xenograft model. When the tumor volume reached 100 mm3, a irradiation dose of 6 Gy was given, and the effects of the combined treatment were evaluated in vivo using immunofluorescence and Western blotting techniques. RESULTS The level of CENP-N was significantly reduced in radiosensitive tissues of NPC (p < 0.05). Knockdown of CENP-N enhanced NPC radiosensitivity, resulting in sensitizing enhancement ratios (SER) of 1.44 (5-8 F) and 1.16 (CNE-2Z). The combined treatment showed significantly higher levels of proliferation suppression, apoptosis, and G2/M phase arrest (p < 0.01) compared to either CENP-N knockdown alone or radiotherapy alone. The combined treatment group showed the highest increase in Bax and γH2AX protein levels, whereas the protein Cyclin D1 exhibited the greatest decrease (p < 0.01). However, the above changes were reversed after treatment with AKT activator SC79. In vivo, the mean volume and weight of tumors in the radiotherapy group were 182 ± 54 mm3 and 0.16 ± 0.03 g. The mean tumor volume and weight in the combined treatment group were 84 ± 42 mm3 and 0.04 ± 0.01 g. CONCLUSION Knockdown of CENP-N can enhance NPC radiosensitivity by inhibiting AKT/mTOR.
Collapse
Affiliation(s)
- Li-Zhi Wu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - You Zou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Bin-Ru Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hai-Feng Ni
- Department of Otolaryngology Head and Neck surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing-Quan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Su J, Hu S, Ding S, Feng K. PSMC2 knockdown exerts an anti-tumor role in nasopharyngeal carcinoma through regulating AKT signaling pathway. Cell Cycle 2023; 22:2381-2391. [PMID: 38123344 PMCID: PMC10802197 DOI: 10.1080/15384101.2023.2293590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Nasopharyngeal carcinoma is a major public health problem in several countries, particularly in Southeast Asia and North Africa. However, the mechanism underlying the malignant biological behaviors of nasopharyngeal carcinoma is not fully clear. Our study intended to investigate the functional importance and molecular mechanism of proteasome 26 S subunit ATPase 2 (PSMC2) in the progression of nasopharyngeal carcinoma. We examined the expression of PSMC2 in both nasopharyngeal carcinoma tissues and normal healthy tissues using immunohistochemistry (IHC). Additionally, we conducted a series of cell experiments to verify the functional roles of PSMC2 and to explore the underlying pathway involved. The results revealed that PSMC2 was significantly upregulated in nasopharyngeal carcinoma tissues compared to normal tissues. Moreover, high PSMC2 was shown to closely correlate with the pathological stage and tumor infiltrate in nasopharyngeal carcinoma patients. Functionally, we observed a suppression of nasopharyngeal carcinoma progression upon knocking down PSMC2. This was evidenced by inhibited cell proliferation and migration in vitro, as well as impaired cell growth in vivo, along with increased apoptosis. Mechanistically, the inhibitory effects of PSMC2 silence on nasopharyngeal carcinoma could be reversed by the addition of AKT activator. Overall, our study sheds light on a novel mechanism underlying the development and progression of nasopharyngeal carcinoma, with PSMC2 exerting a positive regulatory role through the modulation of the AKT signaling pathway. A deeper understanding of PSMC2 may contribute to the development of improved treatment strategies for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jin Su
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, Henan, China
| | - Shousen Hu
- Department of Throat Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, Henan, China
| | - Shiping Ding
- Medical Service, Zhengzhou hospital of Traditional Chinese medicine, Zhengzhou, Henan, China
| | - Kun Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, ZhengZhou, Henan, China
| |
Collapse
|
14
|
Qiao YL, Zhu MW, Xu S, Jiao WE, Ni HF, Tao ZZ, Chen SM. Allergen-induced CD11c + dendritic cell pyroptosis aggravates allergic rhinitis. Cell Commun Signal 2023; 21:281. [PMID: 37817225 PMCID: PMC10566027 DOI: 10.1186/s12964-023-01309-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Pyroptosis is crucial for controlling various immune cells. However, the role of allergen-induced CD11c + dendritic cell (DC) pyroptosis in allergic rhinitis (AR) remains unclear. METHODS Mice were grouped into the control group, AR group and necrosulfonamide-treated AR group (AR + NSA group). The allergic symptom scores, OVA-sIgE titres, serum IL-1β/IL-18 levels, histopathological characteristics and T-helper cell-related cytokines were evaluated. CD11c/GSDMD-N-positive cells were examined by immunofluorescence analysis. Murine CD11c + bone marrow-derived DCs (BMDCs) were induced in vitro, stimulated with OVA/HDM, treated with necrosulfonamide (NSA), and further cocultured with lymphocytes to assess BMDC function. An adoptive transfer murine model was used to study the role of BMDC pyroptosis in allergic rhinitis. RESULTS Inhibiting GSDMD-N-mediated pyroptosis markedly protected against Th1/Th2/Th17 imbalance and alleviated inflammatory responses in the AR model. GSDMD-N was mainly coexpressed with CD11c (a DC marker) in AR mice. In vitro, OVA/HDM stimulation increased pyroptotic morphological abnormalities and increased the expression of pyroptosis-related proteins in a dose-dependent manner; moreover, inhibiting pyroptosis significantly decreased pyroptotic morphology and NLRP3, C-Caspase1 and GSDMD-N expression. In addition, OVA-induced BMDC pyroptosis affected CD4 + T-cell differentiation and related cytokine levels, leading to Th1/Th2/Th17 cell imbalance. However, the Th1/Th2/Th17 cell immune imbalance was significantly reversed by NSA. Adoptive transfer of OVA-loaded BMDCs promoted allergic inflammation, while the administration of NSA to OVA-loaded BMDCs significantly reduced AR inflammation. CONCLUSION Allergen-induced dendritic cell pyroptosis promotes the development of allergic rhinitis through GSDMD-N-mediated pyroptosis, which provides a clue to allergic disease interventions. Video Abstract.
Collapse
Affiliation(s)
- Yue-Long Qiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Ming-Wan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Shan Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Wo-Er Jiao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China
| | - Hai-Feng Ni
- Department of Otolaryngology-Head and Neck surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, P.R. China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, 430060, Hubei, P.R. China.
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
15
|
Alkhathami AG, Sahib AS, Al Fayi MS, Fadhil AA, Jawad MA, Shafik SA, Sultan SJ, Almulla AF, Shen M. Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy. ENVIRONMENTAL RESEARCH 2023; 234:116007. [PMID: 37119844 DOI: 10.1016/j.envres.2023.116007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/19/2023]
Abstract
The metabolism of cancer has been an interesting hallmark and metabolic reprogramming, especially the change from oxidative phosphorylation in mitochondria to glucose metabolism known as glycolysis occurs in cancer. The molecular profile of glycolysis, related molecular pathways and enzymes involved in this mechanism such as hexokinase have been fully understood. The glycolysis inhibition can significantly decrease tumorigenesis. On the other hand, circRNAs are new emerging non-coding RNA (ncRNA) molecules with potential biological functions and aberrant expression in cancer cells which have received high attention in recent years. CircRNAs have a unique covalently closed loop structure which makes them highly stable and reliable biomarkers in cancer. CircRNAs are regulators of molecular mechanisms including glycolysis. The enzymes involved in the glycolysis mechanism such as hexokinase are regulated by circRNAs to modulate tumor progression. Induction of glycolysis by circRNAs can significantly increase proliferation rate of cancer cells given access to energy and enhance metastasis. CircRNAs regulating glycolysis can influence drug resistance in cancers because of theirimpact on malignancy of tumor cells upon glycolysis induction. TRIM44, CDCA3, SKA2 and ROCK1 are among the downstream targets of circRNAs in regulating glycolysis in cancer. Additionally, microRNAs are key regulators of glycolysis mechanism in cancer cells and can affect related molecular pathways and enzymes. CircRNAs sponge miRNAs to regulate glycolysis as a main upstream mediator. Moreover, nanoparticles have been emerged as new tools in tumorigenesis suppression and in addition to drug and gene delivery, then mediate cancer immunotherapy and can be used for vaccine development. The nanoparticles can delivery circRNAs in cancer therapy and they are promising candidates in regulation of glycolysis, its suppression and inhibition of related pathways such as HIF-1α. The stimuli-responsive nanoparticles and ligand-functionalized ones have been developed for selective targeting of glycolysis and cancer cells, and mediating carcinogenesis inhibition.
Collapse
Affiliation(s)
- Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Majed Saad Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Iraq
| | - Sahar Ahmad Shafik
- Professor of Community Health Nursing, Faculty of Nursing, Fayum University, Egypt; College of Nursing, National University of Science and Technology, Iraq
| | | | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Min Shen
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, China.
| |
Collapse
|
16
|
Gui Z, Tian Y, Yu T, Liu S, Liu C, Zhang L. Clinical implications and immune features of CENPN in breast cancer. BMC Cancer 2023; 23:851. [PMID: 37697245 PMCID: PMC10496242 DOI: 10.1186/s12885-023-11376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND A number of human diseases have been associated with Centromere protein N (CENPN), but its role in breast cancer is unclear. METHODS A pan-cancer database of Genotype Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA) were used to examine the expression of CENPN. Using TCGA clinical survival data and breast cancer specimens from our center for validation, the relationship between CENPN expression, breast cancer prognosis, and clinicopathological characteristics of patients was examined. Bioinformatics was utilized to conduct an enrichment study of CENPN. Additionally, the potential of CENPN as a predictive biomarker for immunotherapy success was confirmed by analyzing the co-expression of CENPN with immune-checkpoint related genes, reviewing the TCGA database, and evaluating the correlation between CENPN expression and immune cell infiltration. Using the CCK8 test and colony formation assay, CENPN was evaluated for its ability to inhibit breast cancer cell proliferation. Transwell assays and scratch tests were used to assess the impact of CENPN on breast cancer cell migration. RESULTS CENPN is found in a wide range of tumors, including breast cancer. Additional investigation revealed that CENPN was co-expressed with the majority of immune checkpoint-related genes, had the potential to serve as a predictive biomarker for immunotherapy effectiveness, and that high CENPN expression was linked to high Tregs and low CD8 + T cells and NK cells. Breast cancer cells' malignant characteristics, such as migration and cell proliferation, were inhibited by CENPN knockdown. CONCLUSIONS According to our findings, CENPN may be an oncogene in breast cancer, as well as a new therapeutic target for immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Zhengwei Gui
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong, University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, 430030, Hubei Province, China
| | - Yao Tian
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong, University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, 430030, Hubei Province, China
| | - Tianyao Yu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong, University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, 430030, Hubei Province, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong, University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, 430030, Hubei Province, China
| | - Chenguang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong, University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, 430030, Hubei Province, China
| | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College of Huazhong, University of Science and Technology, 1095 Jiefang Avenue, Wuhan City, 430030, Hubei Province, China.
| |
Collapse
|
17
|
Yuan Y, Tan S, Wang H, Zhu J, Li J, Zhang P, Wang M, Zhang F. Mesenchymal Stem Cell-Derived Exosomal miRNA-222-3p Increases Th1/Th2 Ratio and Promotes Apoptosis of Acute Myeloid Leukemia Cells. Anal Cell Pathol (Amst) 2023; 2023:4024887. [PMID: 37621743 PMCID: PMC10447000 DOI: 10.1155/2023/4024887] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 01/25/2023] [Indexed: 08/26/2023] Open
Abstract
Interferon regulatory factor 2 (IRF2) participates in the differentiation of immune T cells. Bone marrow mesenchymal stem cell (BM-MSC)-derived exosomes can secret mRNA, miRNAs, and proteins to regulate tumor microenvironment. The present study focused on the miRNA/IRF2 axis in regulating Th1/Th2 ratio and cell apoptosis in acute myeloid leukemia (AML). The flow cytometry analysis was performed to examine the Th1/Th2 ratio and AML apoptosis in vivo and in vitro. The contents of Interferon γ (IFN-γ) and Interleukin-4 (IL-4) were measured using enzyme-linked immunosorbent assay. StarBase was used to predict the potential binding site between miR-222-3p and the 3' untranslated region of IRF2. Luciferase reporter assay was applied for validating the combination of miR-222-3p and IRF2. BM-MSC exosomes were successfully isolated. BM-MSC exosomes increased Th1/Th2 ratio and promoted apoptosis of AML cells. Further analysis showed that IRF2 was targeted by miR-222-3p. Overexpression of miR-222-3p promoted Th1/Th2 ratio and AML cell apoptosis. IRF2 partially reversed the effect that is exerted by miR-222-3p on Th1/Th2 ratio and AML cell apoptosis. Overexpression of miR-222-3p promoted Th1/Th2 ratio and caspase 3 expression in vivo. To sum up, miR-222-3p promotes Th1/Th2 ratio and AML cell apoptosis by regulating IRF2 expression, which provided crucial targets for the treatment of AML.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Shengfen Tan
- Department of Hematology, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Huanhuan Wang
- Department of Hematology, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Junfeng Zhu
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Jiajia Li
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Pingping Zhang
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Meng Wang
- Department of Hematology, Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Feng Zhang
- Department of Hematology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| |
Collapse
|
18
|
Cui Y, Chen W, Du L, He Z. OIP5 Interacts with NCK2 to Mediate Human Spermatogonial Stem Cell Self-Renewal and Apoptosis through Cell Cyclins and Cycle Progression and Its Abnormality Is Correlated with Male Infertility. RESEARCH (WASHINGTON, D.C.) 2023; 6:0162. [PMID: 37292517 PMCID: PMC10246317 DOI: 10.34133/research.0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/14/2023] [Indexed: 06/10/2023]
Abstract
Spermatogonial stem cells (SSCs) have important applications in both reproduction and regenerative medicine. Nevertheless, specific genes and signaling transduction pathways in mediating fate decisions of human SSCs remain elusive. Here, we have demonstrated for the first time that OIP5 (Opa interacting protein 5) controlled the self-renewal and apoptosis of human SSCs. RNA sequencing identified that NCK2 was a target for OIP5 in human SSCs, and interestingly, OIP5 could interact with NCK2 as shown by Co-IP (co-immunoprecipitation), IP-MS (mass spectrometry), and GST pulldown assays. NCK2 silencing decreased human SSC proliferation and DNA synthesis but enhanced their apoptosis. Notably, NCK2 knockdown reversed the influence of OIP5 overexpression on human SSCs. Moreover, OIP5 inhibition decreased the numbers of human SSCs at S and G2/M phases, while the levels of numerous cell cycle proteins, including cyclins A2, B1, D1, E1 and H, especially cyclin D1, were remarkably reduced. Significantly, whole-exome sequencing of 777 patients with nonobstructive azoospermia (NOA) revealed 54 single-nucleotide polymorphism mutations of the OIP5 gene (6.95%), while the level of OIP5 protein was obviously lower in testes of NOA patients compared to fertile men. Collectively, these results implicate that OIP5 interacts with NCK2 to modulate human SSC self-renewal and apoptosis via cell cyclins and cell cycle progression and that its mutation and/or lower expression is correlated with azoospermia. As such, this study offers novel insights into molecular mechanisms underlying the fate determinations of human SSCs and the pathogenesis of NOA, and it provides new targets for treating male infertility.
Collapse
|
19
|
Chen S, Tao Y, Wang Q, Ren J, Jing Y, Huang J, Zhang L, Li R. Glucose induced-AKT/mTOR activation accelerates glycolysis and promotes cell survival in acute myeloid leukemia. Leuk Res 2023; 128:107059. [PMID: 36989577 DOI: 10.1016/j.leukres.2023.107059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Multiple studies have demonstrated that excessive glucose utilization is a common feature of cancer cells to support malignant phenotype. Acute myeloid leukemia (AML) is recognized as a heterogeneous disorder of hematopoietic stem cells characterized by altered glucose metabolism. However, the role of glucose metabolic dysfunction in AML development remains obscure. In this study, glucose and 2-Deoxy-D-glucose (2-DG) treatment were applied to analyze the relationship between glucose metabolism and cell survival. Cell Counting Kit-8 (CCK-8) and flow cytometry (FCM) assays were used to examine the cell viability and apoptosis rate. Glucose consumption and lactate production were measured to assess the glucose metabolism pathway. The results demonstrated that abnormally increased glucose effectively promoted proliferation of leukemic cells and inhibited cell apoptosis, while 2-DG ameliorated leukemic phenotypes. Importantly, glucose exposure induced active glycolysis by increasing glucose consumption and lactate production. Furthermore, the levels of key glycolysis-related genes glucose transporter 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) were upregulated. Mechanistic investigations revealed that AKT/mTOR signaling pathway was activated in glucose condition. In conclusion, our findings indicate that glucose induced-AKT/mTOR activation plays a growth-promoting role in AML, highlighting that inhibition of glycolysis would be a vital adjuvant therapy strategy for AML.
Collapse
|
20
|
Han C, Qi Y, She Y, Zhang M, Xie H, Zhang J, Zhao Z, Peng C, Liu Y, Lin Y, Wang J, Zeng D. Long noncoding RNA SENCR facilitates the progression of acute myeloid leukemia through the miR-4731-5p/IRF2 pathway. Pathol Res Pract 2023; 245:154483. [PMID: 37120908 DOI: 10.1016/j.prp.2023.154483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a type of hematological tumor caused by malignant clone hematopoietic stem cells. The relationship between lncRNAs and tumor occurrence and progression has been gaining attention. Research has shown that Smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) is abnormally expressed in various diseases, whereas its role in AML is still poorly understood. METHODS The expression of SENCR, microRNA-4731-5p (miR-4731-5p) and Interferon regulatory factor 2 (IRF2) were measured using qRT-PCR. The proliferation, cycle and apoptosis of AML cells with or without knockdown of SENCR were detected by CCK-8 assay, EdU assay, flow cytometry, western blotting and TUNEL assay, respectively. Consistently, SENCR knockdown was impaired the AML progression in immunodeficient mice. In addition, the binding of miR-4731-5p to SENCR or IRF2 was confirmed by luciferase reporter genes assay. Finally, rescue experiments were conducted to confirm the role of SENCR/miR-4731-5p/IRF2 axis in AML. RESULTS SENCR is highly expressed in AML patients and cell lines. The patients with high SENCR expression had poorer prognosis compared with those with low SENCR expression. Interestingly, knockdown of SENCR inhibits the growth of AML cells. Further results demonstrated that the reduction of SENCR slows the progression of AML in vivo. SENCR could function as a competing endogenous RNA (ceRNA) to negatively regulate miR-4731-5p in AML cells. Furthermore, IRF2 was validated as a direct target gene of miR-4731-5p in AML cells. CONCLUSIONS Our findings underscore the important role of SENCR in regulating the malignant phenotype of AML cells by targeting the miR-4731-5p/IRF2 axis.
Collapse
Affiliation(s)
- Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yuanting She
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Meijuan Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Huan Xie
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jing Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Zhongyue Zhao
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Cuicui Peng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yu Liu
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yizhang Lin
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jin Wang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
21
|
Gui Z, Tian Y, Liu S, Yu T, Liu C, Zhang L. Highly expressed CENPL is correlated with breast cancer cell proliferation and immune infiltration. Front Oncol 2023; 13:1046774. [PMID: 36816951 PMCID: PMC9932532 DOI: 10.3389/fonc.2023.1046774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Centromere protein L (CENPL) is associated with a variety of human diseases. However, its function in breast cancer remains uncertain. Methods The Cancer Genome Atlas (TCGA) and genotype-tissue expression across cancer data were used to investigate CENPL expression. Using TCGA clinical survival data, the relationship between CENPL expression and patient prognosis was assessed. Using the cluster profiler R software tool, enrichment analysis of CENPL was carried out. Additionally, by studying the TCGA database, the relationship between CENPL expression and immune cell infiltration was assessed. To evaluate CENPL's impact on breast cancer cell proliferation, the CCK8 test and colony-formation assay were carried out. Scratch testing and the transwell assay were used to evaluate the effects of CENPL on breast cancer cell migration. Results Breast cancer was one of numerous tumor forms with high CENPL expression. Significant relationships between high CENPL expression and the cell cycle, nuclear division, organelle fission, and chromosome segregation were found. Further investigation revealed that minimal infiltration of CD8-positive T cells and natural killer (NK) cells and high levels of Tregs and macrophages were correlated with high levels of CENPL expression. CENPL expression was linked to more than half of the ICP genes. Breast cancer cells' ability to proliferate and migrate was decreased by CENPL knockdown. Conclusions Our findings suggest that CENPL may be an oncogene in breast cancer and a predictor of efficacy of immunotherapy for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
22
|
Wen S, Li F, Tang Y, Dong L, He Y, Deng Y, Tao Z. MIR222HG attenuates macrophage M2 polarization and allergic inflammation in allergic rhinitis by targeting the miR146a-5p/TRAF6/NF-κB axis. Front Immunol 2023; 14:1168920. [PMID: 37205104 PMCID: PMC10185836 DOI: 10.3389/fimmu.2023.1168920] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Although M2 macrophages are involved in the orchestration of type 2 inflammation in allergic diseases, the mechanisms underlying non-coding RNA (ncRNA)-mediated macrophage polarization in allergic rhinitis (AR) have not been systematically understood. Here, we identified long non-coding RNA (lncRNA) MIR222HG as a key regulator of macrophage polarization and revealed its role in AR. Consistent with our bioinformatic analysis of GSE165934 dataset derived from the Gene Expression Omnibus (GEO) database, lncRNA-MIR222HG and murine mir222hg were downregulated in our clinical samples and animal models of AR, respectively. Mir222hg was upregulated in M1 macrophages and downregulated in M2 macrophages. The allergen-ovalbumin facilitated polarization of RAW264.7 cells to the M2 phenotype, accompanied by the downregulation of mir222hg expression in a dose-dependent manner. Mir222hg facilitates macrophage M1 polarization and reverses M2 polarization caused by ovalbumin. Furthermore, mir222hg attenuates macrophage M2 polarization and allergic inflammation in the AR mouse model. Mechanistically, a series of gain- and loss-of-function experiments and rescue experiments were performed to verify the role of mir222hg as a ceRNA sponge that adsorbed miR146a-5p, upregulated Traf6, and activated the IKK/IκB/P65 pathway. Collectively, the data highlight the remarkable role of MIR222HG in the modulation of macrophage polarization and allergic inflammation, as well as its potential role as a novel AR biomarker or therapeutic target.
Collapse
Affiliation(s)
- Silu Wen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulei Tang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Lin Dong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Yan He
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Otolaryngology, First College of Clinical Medical Science, Wuhan University, Wuhan, Hubei, China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Zezhang Tao, ; Yuqin Deng,
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Zezhang Tao, ; Yuqin Deng,
| |
Collapse
|
23
|
Yang H, Zou X, Yang S, Zhang A, Li N, Ma Z. Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer. Front Immunol 2023; 14:1149989. [PMID: 36936929 PMCID: PMC10020516 DOI: 10.3389/fimmu.2023.1149989] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Background The epigenetic regulatory chemical lactate is a product of glycolysis. It can regulate gene expression through histone lactylation, thereby promoting tumor proliferation, metastasis, and immunosuppression. Methods In this study, a lactylation-related model for gastric cancer (GC) was constructed, and its relationships to prognosis, immune cell infiltration, and immunotherapy were investigated. By contrasting normal tissues and tumor tissues, four lactylation-related pathways that were substantially expressed in GC tissues were found in the GSEA database. Six lactylation-related genes were screened for bioinformatic analysis. The GC data sets from the TCGA and GEO databases were downloaded and integrated to perform cluster analysis, and the lactylation related model was constructed by secondary clustering. Results The fingding demonstrated that the lactylation score has a strong correlation with the overall survival rate from GC and the progression of GC. Mechanistic experiments showed that abundant immune cell infiltration (macrophages showed the highest degree of infiltration) and increased genetic instability are traits of high lactylation scores. Immune checkpoint inhibitors (ICIs) demonstrated a reduced response rate in GC with high lactylation scores. At the same time, tumors with high lactylation scores had high Tumor Immune Dysfunction and Exclusion scores, which means that they had a higher risk of immune evasion and dysfunction. Discussion These findings indicate that the lactylation score can be used to predict the malignant progression and immune evasion of GC. This model also can guide the treatment response to ICIs of GC. The constructed model of the lactate gene is also expected to become a potential therapeutic target for GC and diagnostic marker.
Collapse
|
24
|
Zhou D, Duan Z, Li Z, Ge F, Wei R, Kong L. The significance of glycolysis in tumor progression and its relationship with the tumor microenvironment. Front Pharmacol 2022; 13:1091779. [PMID: 36588722 PMCID: PMC9795015 DOI: 10.3389/fphar.2022.1091779] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
It is well known that tumor cells rely mainly on aerobic glycolysis for energy production even in the presence of oxygen, and glycolysis is a known modulator of tumorigenesis and tumor development. The tumor microenvironment (TME) is composed of tumor cells, various immune cells, cytokines, and extracellular matrix, among other factors, and is a complex niche supporting the survival and development of tumor cells and through which they interact and co-evolve with other tumor cells. In recent years, there has been a renewed interest in glycolysis and the TME. Many studies have found that glycolysis promotes tumor growth, metastasis, and chemoresistance, as well as inhibiting the apoptosis of tumor cells. In addition, lactic acid, a metabolite of glycolysis, can also accumulate in the TME, leading to reduced extracellular pH and immunosuppression, and affecting the TME. This review discusses the significance of glycolysis in tumor development, its association with the TME, and potential glycolysis-targeted therapies, to provide new ideas for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Daoying Zhou
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Zhen Duan
- Function Examination Center, Anhui Chest Hospital, Hefei, China
| | - Zhenyu Li
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Fangfang Ge
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,Department of Provincial Clinical College, Wannan Medical College, Wuhu, China
| | - Ran Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingsuo Kong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Lingsuo Kong,
| |
Collapse
|
25
|
Wang D, Zhang P, Liu Z, Xing Y, Xiao Y. NXPH4 Promotes Gemcitabine Resistance in Bladder Cancer by Enhancing Reactive Oxygen Species and Glycolysis Activation through Modulating NDUFA4L2. Cancers (Basel) 2022; 14:3782. [PMID: 35954445 PMCID: PMC9367313 DOI: 10.3390/cancers14153782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Bladder cancer is one of the most prevalent kinds of cancer worldwide, and resistance to gemcitabine is a major problem for patients. The pathogenesis of bladder cancer and mechanism of resistance to chemotherapy remain to be explored. Through bioinformatics analysis, we first found that NXPH4 was independently related to the prognosis of patients with bladder cancer. Through wound healing assays, transwell invasion assays, and plate clone formation assays, we found that NXPH4 promoted the proliferation, migration, and invasion of bladder cancer cells. The induced gemcitabine resistance cell line also showed a higher expression of NXPH4. A glycolytic activity assay demonstrated that the expression of NXPH4 was positively related to glycolysis. A higher level of reactive oxygen species caused by enhanced levels of NXPH4 was found in gemcitabine-resistant cell lines. NDUFA4L2, glycolysis, and reactive oxygen species were shown to be essential for NXPH4-regulated functions through rescue assays in cell lines. The roles of NXPH4-regulated glycolysis, gemcitabine resistance, and NDUFA4L2 were validated in vivo as well. Our results imply that NXPH4 contributes to the proliferation, migration, and invasion of bladder cancer by maintaining the stability of NDUFA4L2 and consequently activating reactive oxygen species and glycolysis.
Collapse
Affiliation(s)
- Decai Wang
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; (D.W.); (P.Z.)
| | - Pu Zhang
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; (D.W.); (P.Z.)
| | - Zijian Liu
- Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yifei Xing
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; (D.W.); (P.Z.)
| | - Yajun Xiao
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; (D.W.); (P.Z.)
| |
Collapse
|
26
|
He YQ, Qiao YL, Xu S, Jiao WE, Yang R, Kong YG, Tao ZZ, Chen SM. Allergen induces CD11c+ dendritic cell autophagy to aggravate allergic rhinitis through promoting immune imbalance. Int Immunopharmacol 2022; 106:108611. [DOI: 10.1016/j.intimp.2022.108611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022]
|
27
|
Liu W, Wen D, Liu Z, Wang K, Wang J. Erythropoiesis signature and ubiquitin‐mediated proteolysis are enriched in systematic juvenile idiopathic arthritis. Int J Immunogenet 2022; 49:193-201. [PMID: 35253998 DOI: 10.1111/iji.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Wenping Liu
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| | - Dawei Wen
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| | - Ziyi Liu
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| | - Kunyu Wang
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| | - Jibo Wang
- Department of Rheumatology & Clinical Immunology Affiliated Hospital of Qingdao University Qingdao China
| |
Collapse
|
28
|
Chen YJ, Luo SN, Wu H, Zhang NP, Dong L, Liu TT, Liang L, Shen XZ. IRF-2 inhibits cancer proliferation by promoting AMER-1 transcription in human gastric cancer. J Transl Med 2022; 20:68. [PMID: 35115027 PMCID: PMC8812234 DOI: 10.1186/s12967-022-03275-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Interferon regulatory factor 2 (IRF-2) acts as an anti-oncogene in gastric cancer (GC); however, the underlying mechanism remains unknown. METHODS This study determined the expression of IRF-2 in GC tissues and adjacent non-tumor tissues using immunohistochemistry (IHC) and explored the predictive value of IRF-2 for the prognoses of GC patients. Cell function and xenograft tumor growth experiments in nude mice were performed to test tumor proliferation ability, both in vitro and in vivo. Chromatin immunoprecipitation sequencing (ChIP-Seq) assay was used to verify the direct target of IRF-2. RESULTS We found that IRF-2 expression was downregulated in GC tissues and was negatively correlated with the prognoses of GC patients. IRF-2 negatively affected GC cell proliferation both in vitro and in vivo. ChIP-Seq assay showed that IRF-2 could directly activate AMER-1 transcription and regulate the Wnt/β-catenin signaling pathway, which was validated using IHC, in both tissue microarray and xenografted tumor tissues, western blot analysis, and cell function experiments. CONCLUSIONS Increased expression of IRF-2 can inhibit tumor growth and affect the prognoses of patients by directly regulating AMER-1 transcription in GC and inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Shu-Neng Luo
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Hao Wu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Ning-Ping Zhang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Center of Evidence-Based Medicine, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
29
|
Wang P, Hu Y, Qu P, Zhao Y, Liu J, Zhao J, Kong B. Protein tyrosine phosphatase receptor type Z1 inhibits the cisplatin resistance of ovarian cancer by regulating PI3K/AKT/mTOR signal pathway. Bioengineered 2022; 13:1931-1941. [PMID: 35001804 PMCID: PMC8805848 DOI: 10.1080/21655979.2021.2022268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Most patients with ovarian cancer (OC) get remission after undergoing cytoreductive surgery and platinum-based standard chemotherapy, but more than 50% of patients with advanced OC relapse within the first 5 years after treatment and develop resistance to standard chemotherapy. The production of medicinal properties is the main reason for the poor prognosis and high mortality of OC patients. Cisplatin (DDP) resistance is a major cause for poor prognosis of OC patients. PTPRZ1 can regulate the growth and apoptosis of ovarian cancer cells, while the molecular mechanism remains unknown. This study was designed to investigate the roles of PTPRZ1 in DDP-resistant OC cells and possible mechanism. PTPRZ1 expression in OC tissues and normal tissues was analyzed by GEPIA database and verified by Real-time Quantitative Reverse Transcription PCR (RT-PCR) assay. PTPRZ1 expression in normal ovarian cancer cells and DDP-resistant OC cells was also analyzed. Subsequently, RT-PCR, Western blot, MTT experiment and flow cytometry were used to assess the effects of PTPRZ1-PI3K/AKT/mTOR regulating axis on DDP resistance of OC. PTPRZ1 expression was abnormally low in OC tissues, and notably reduced in DDP-resistant OC cells. MTT experiment and flow cytometer indicated that overexpression of PTPRZ1 enhanced the DDP sensitivity of OC cells and promoted the cell apoptosis. Moreover, the results of our research showed that PTPRZ1 might exert its biological effects through blocking PI3K/AKT/mTOR pathway. PTPRZ1 overexpression inhibitied OC tumor growth and resistance to DDP in vivo. Overall, PTPRZ1 might suppress the DDP resistance of OC and induce the cytotoxicity by blocking PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Ying Zhao
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Liu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Jianguo Zhao
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Beihua Kong
- Department of Gynecology Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|