1
|
Jiang J, Peng W, Sun N, Zhao D, Cui W, Lai Y, Zhang C, Duan C, Zeng W. Unraveling the anoikis-cancer nexus: a bibliometric analysis of research trends and mechanisms. Future Sci OA 2025; 11:2484159. [PMID: 40160087 PMCID: PMC11959893 DOI: 10.1080/20565623.2025.2484159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Cancer, influenced by genetics and the environment, involves anoikis, a cell death mechanism upon extracellular matrix detachment crucial for metastasis. Understanding this relationship is key for therapy. We analyze cancer and anoikis trends using bibliometrics. METHODS A search was conducted from Web of Science Core, PubMed, Scopus and non-English databases such as the CNKI (inception- 21 December 2024). Data analysis employed Microsoft Excel, VOSviewer, CiteSpace, R software, and the online platform (https://bibliometric.com/). RESULTS 2510 publications were retrieved, with a significant increase in the last decade. China led, the University of Texas system was productive, and the Oncogene Journal was popular. Breast, and colorectal cancers were frequently studied. Among them, representative tumor-related mechanisms were identified, commonalities such as (EMT, ECM, autophagy) and respective specific mechanisms were summarized. CONCLUSION This bibliometric analysis highlights rapid advances in anoikis research in cancer, emphasizing EMT and FAK pathways' translational potential, guiding targeted therapies, and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Nianzhe Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- Institute of Medical Sciences, Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Liang X, Tan X, Pei L, Dong C. circDHX33 suppresses glycolysis, malignant proliferation, and metastasis in prostate cancer by interacting with RNA-binding protein IGF2BP2 to destabilize its protein. Cytotechnology 2025; 77:56. [PMID: 39927135 PMCID: PMC11802939 DOI: 10.1007/s10616-025-00718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Prostate cancer (PCa) is a malignant tumor characterized by dependence on androgens and enhanced glycolytic processes in response to the energy demands of rapid proliferation. This study delved into the role of circDHX33 interacting with IGF2BP2 in regulating the malignant behavior of PCa. circRNA expression data from PCa tissues and normal tissues were selected from the GEO database, and differentially expressed circRNAs were screened out. circDHX33 expression in clinical PCa samples was verified by RT-qPCR. Cellular experiments included cell culture, RNA interference and overexpression assays, as well as the use of Transwell migration invasion assay and EdU cell proliferation assay to assess the effect of circDHX33 on the proliferation and migration of PC-3 cells. In addition, its regulatory effect on energy metabolism in tumor cells was assessed by glycolysis assay. FISH assay, RNA pull-down, silver staining assay, and RIP were used to evaluate the interaction between circDHX33 and IGF2BP2. circDHX33 expression was significantly reduced in PCa tissues relative to normal tissues. Overexpression of circDHX33 significantly inhibited the glycolytic activity, proliferative capacity, and migratory and invasive abilities of PC-3 cells, and this effect was closely related to its reduction of IGF2BP2 protein stability. Knockdown of IGF2BP2 could reverse the malignant behavior of cells enhanced by circDHX33 knockdown. In addition, the direct intracellular interaction between circDHX33 and IGF2BP2 was verified. circDHX33 inhibits glycolysis and malignant proliferation in PCa through interaction with IGF2BP2, suggesting its potential as a potential therapeutic target.
Collapse
Affiliation(s)
- XiangDong Liang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Chang’an, Shijiazhuang, 050000 Hebei China
| | - XiaoLiang Tan
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Chang’an, Shijiazhuang, 050000 Hebei China
| | - Long Pei
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Chang’an, Shijiazhuang, 050000 Hebei China
| | - ChunHui Dong
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Chang’an, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
3
|
Wu M, Chen G, Li X, Ma W, Chen Y, Gong Y, Zheng H, Gu G, Ding Y, Dong P, Ding W, Zhang L, Gan W, Li D. Free fatty acids derived from lipophagy enhanced resistance to anoikis by activating Src in high-invasive clear cell renal cell carcinoma cells. Cell Signal 2025; 127:111622. [PMID: 39875047 DOI: 10.1016/j.cellsig.2025.111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Autophagy-mediated anoikis resistance plays a critical role in the initiation of tumor metastasis. Therefore, we investigated the role and mechanism of anoikis resistance mediated by free fatty acids (FFAs) derived from lipophagy in highly invasive clear cell renal cell carcinoma (ccRCC). Here, we found that the highly invasive ccRCC cell line Himi exhibited enhanced resistance to anoikis and elevated lipophagy levels. The increased lipophagy observed in Himi ccRCC cells contributed to their resistance to anoikis. The nonreceptor tyrosine kinase Src was significantly upregulated in Himi cells cultured under suspension conditions and in patients with poor prognoses. The underlying mechanism revealed that the FFAs released from lipophagy activated the phosphorylated Tyr419 site of Src, thereby promoting ccRCC invasion, facilitating epithelial-mesenchymal transition (EMT), enhancing angiogenesis, and conferring resistance to anoikis. Therefore, the present study revealed that FFAs generated from the degradation of lipid droplets via lipophagy enhanced resistance to anoikis by activating the phosphorylated Tyr419 site of Src in highly invasive ccRCC.
Collapse
Affiliation(s)
- Mengmeng Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Guijuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xin Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, China
| | - Yi Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yi Gong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hao Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Gongming Gu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yibing Ding
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Luqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu 210008, China..
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
4
|
He C, He J. Metabolic reprogramming and signaling adaptations in anoikis resistance: mechanisms and therapeutic targets. Mol Cell Biochem 2025:10.1007/s11010-024-05199-3. [PMID: 39821582 DOI: 10.1007/s11010-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Anoikis, a form of programmed cell death triggered by detachment from the extracellular matrix (ECM), maintains tissue homeostasis by removing mislocalized or detached cells. Cancer cells, however, have evolved multiple mechanisms to evade anoikis under conditions of ECM detachment, enabling survival and distant metastasis. Studies have identified differentially expressed proteins between suspended and adherent cancer cells, revealing that key metabolic and signaling pathways undergo significant alterations during the acquisition of anoikis resistance. This review explores the regulatory roles of epithelial-mesenchymal transition, cancer stem cell characteristics, metabolic reprogramming, and various signaling pathway alterations in promoting anoikis resistance. And the corresponding reagents and non-coding RNAs that target the aforementioned pathways are reviewed. By discussing the regulatory mechanisms that facilitate anoikis resistance in cancer cells, this review aims to shed light on potential strategies for inhibiting tumor progression and preventing metastasis.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of Nursing, Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Zhou YL, Yao WL, Chen SH, Wang P, Fu JW, Zhao JQ, Zhang JY. Global research landscape and emerging trends of non-coding RNAs in prostate cancer: a bibliometric analysis. Front Pharmacol 2025; 15:1483186. [PMID: 39845793 PMCID: PMC11753231 DOI: 10.3389/fphar.2024.1483186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Background Prostate cancer (PC) is the most frequently diagnosed cancer in men and continues to be a major cause of cancer-related mortality worldwide. In recent years, non-coding RNAs (ncRNAs) have emerged as a significant focus in molecular biology research, playing a pivotal role in the development and progression of PC. This study employed bibliometric analysis to explore the global outputs, research hotspots, and future trends in ncRNA-related PC research over the past 20 years. Methods Publications on PC-related ncRNAs from 2004 to 2023 were retrieved from Web of Science Core Collection. The co-operation network of countries, institutions, and authors on this topic was analyzed using CiteSpace (version 6.2. R6). In addition, co-occurrence analysis of keywords and co-citation analysis of references were performed using CiteSpace, and emergent detection was also performed. Results A total of 2,951 articles on PC-related ncRNAs were finally included in this study for analysis. China contributed the largest number of publications, while the United States was the most influential country in this field, with collaborative ties to 26 other countries. Fudan University was identified as the most active institution in this field. Rajvir Dahiya was the most prolific and influential author. Within the co-citation network, clusters labeled "EVs," "circRNA," and "ceRNA" represented current research directions. The cluster labeled "gene" dominated the co-occurrence keywords. "circRNA" showed the highest burst strength among keywords, with "circRNA," "EVs" and "exosome" maintaining sustained burst strength, suggesting these are the emerging research frontiers in this field. Conclusion Investigating ncRNAs as pivotal research subjects in PC is essential for addressing the public health impact of the disease and advancing innovative diagnostic and targeted therapeutic strategies. This study provides a comprehensive bibliometric analysis of research related to PC-associated ncRNAs, delivering a scientific perspective and identifying potential research directions for scholars in this field.
Collapse
Affiliation(s)
- Yu-Liang Zhou
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Department of Andrology, Affiliated Reproductive Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wen-Liang Yao
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Department of Andrology, Affiliated Reproductive Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Sheng-Hui Chen
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Department of Andrology, Affiliated Reproductive Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Peng Wang
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Department of Andrology, Affiliated Reproductive Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jing-Wen Fu
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Department of Andrology, Affiliated Reproductive Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jia-Qin Zhao
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Department of Andrology, Affiliated Reproductive Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jia-Yi Zhang
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- Department of Andrology, Affiliated Reproductive Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Tan W, Xiao C, Ma M, Cao Y, Huang Z, Wang X, Kang R, Li Z, Li E. Role of non-coding RNA in lineage plasticity of prostate cancer. Cancer Gene Ther 2025; 32:1-10. [PMID: 39496938 DOI: 10.1038/s41417-024-00834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024]
Abstract
The treatment of prostate cancer (PCa) has made great progress in recent years, but treatment resistance always develops and can even lead to fatal disease. Exploring the mechanism of drug resistance is of great significance for improving treatment outcomes and developing biomarkers with predictive value. It is increasingly recognized that mechanism of drug resistance in advanced PCa is related to lineage plasticity and tissue differentiation. Specifically, one of the mechanisms by which castration-resistant prostate cancer (CRPC) cells acquire drug resistance and transform into neuroendocrine prostate cancer (NEPC) cells is lineage plasticity. NEPC is a subtype of PCa that is highly aggressive and lethal, with a median survival of only 7 months. With the development of high-throughput RNA sequencing technology, more and more non-coding RNAs have been identified, which play important roles in different diseases through different mechanisms. Several ncRNAs have shown great potential in PCa lineage plasticity and as biomarkers. In the review, the role of ncRNA in PCa lineage plasticity and its use as biomarkers were reviewed.
Collapse
Affiliation(s)
- Wenhui Tan
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Min Ma
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Youhan Cao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhenguo Huang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaolan Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhenfa Li
- Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China.
| | - Ermao Li
- Institute of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Zhao Z, Yang Y, Sun Z, Fan L, Liu L. Autophagy Associated Genes (ARGs) -Based Predictive Model AIDPS for Prostate Cancer. J Cell Mol Med 2025; 29:e70213. [PMID: 39789383 PMCID: PMC11717666 DOI: 10.1111/jcmm.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 01/12/2025] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in men worldwide. Autophagy-related genes (ARGs) may play an important role in various biological processes of PCa. The aim of this study was to identify and evaluate autophagy-related features to predict clinical outcomes in patients with PCa. Single-cell sequencing data and RNA sequencing data was included from public GEO and TCGA databases. Cells were clustered and annotated by dimension reduction cluster analysis. Epithelial cells, T cells and fibroblasts were isolated to explore their heterogeneity. Autophagy-related genes were obtained from the HADb database. Survival analysis was conducted by K-M curve, and prognostic risk model was established using 101 machine learning algorithms. In addition, we performed gene colocalisation analysis and Mendelian randomisation analysis. Univariate Cox analysis was used to screen out prognostic genes from DEGs and ARGs in each dataset. Risk model was generated by artificial intelligence-derived prognostic signature (AIDPS), which showed better prognostic performance in every dataset than other published models for PCa. The disease-free period (DFS) of patients in the high-risk group was significantly worse than that in the low-risk group (all p < 0.05). The best model is the Ridge (C-index 0.726). We found significant differences in IC50 values of the Dactinomycin_1811, Dactolisib_1057, Luminespib_1559 and Paclitaxel_1080 between groups. In SNP sites rs2743987 and rs7768988, there was a significant correlation between prostate hyperplasia and prostate cancer. Our ARG-based predictive model AIDPS is a reliable and effective tool for prognosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhiyi Zhao
- Department of AndrologyThe First Hospital of Jilin UniversityChangchunChina
| | - Yongjin Yang
- Department of UrologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
- Department of UrologyThe Second Hospital of Lanzhou UniversityLanzhouChina
| | - Zhou Sun
- Department of UrologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - LianMing Fan
- Department of Urology, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Lingyun Liu
- Department of AndrologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
8
|
Zhu L, Xiao F, Hou Y, Huang S, Xu Y, Guo X, Dong X, Xu C, Zhang X, Gu H. Identification of anoikis-related molecular patterns and the novel risk model to predict prognosis, tumor microenvironment infiltration and immunotherapy response in bladder cancer. Front Immunol 2024; 15:1491808. [PMID: 39664392 PMCID: PMC11631915 DOI: 10.3389/fimmu.2024.1491808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Background Anoikis, a unique form of cell death, serves as a vital part of the organism's defense by preventing shedding cells from re-attaching to the incorrect positions, and plays pivotal role in cancer metastasis. Nonetheless, the specific mechanisms among anoikis, the clinical prognosis and tumor microenvironment (TME) of bladder cancer (BLCA) are insufficiently understood. Method BLCA patients were classified into different anoikis subtypes based on the expression of candidate anoikis-related genes (ARGs), and differences in the clinicopathological features, TME, immune cell infiltration, and immune checkpoints between two anoikis subtypes were analyzed. Next, patients in the TCGA cohort were randomized into the train and test groups in a 1:1 ratio. Subsequently, the anoikis-related model was constructed to predict the prognosis via utilizing the univariate Cox, LASSO and multivariate Cox analyses, and validated internally and externally. Moreover, the relationships between the risk score and clinicopathologic features, immune cell infiltration, immunotherapy response, and antitumor drug sensitivity were also analyzed. In addition, representative genes were evaluated using immunohistochemistry in clinical specimens, and in BLCA cell lines, functional experiments were performed to determine the biological behavior of hub gene PLOD1. Result Two definite anoikis subgroups were identified. Compared to ARGcluster A, patients assigned to ARGcluster B were characterized by an immunosuppressive microenvironment and worse prognosis. Then, the anoikis-related model, including PLOD1, EHBP1, and CSPG4, was constructed, and BLCA patients in the low-risk group were characterized by a better prognosis. Next, the accurate nomogram was built to improve the clinical applicability by combining the age, tumor stage and risk Score. Moreover, immune infiltration and clinical features differed significantly between high- and low-risk groups. We also found that the low-risk group exhibited a lower tumor immune dysfunction and exclusion score, a higher immunophenoscore (IPS), had more sensitivity to immunotherapy. Eventually, the expression levels of three genes were verified by our experiment, and knockdown of PLOD1 could inhibit invasion and migration abilities in BLCA cell lines. Conclusion These results demonstrated a new direction in precision therapy for BLCA, and indicated that the ARGs might be helpful to in predicting prognosis and as therapeutic targets in BLCA.
Collapse
Affiliation(s)
- Luochen Zhu
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Feng Xiao
- Department of Pathology, Affiliated Nantong Hospital 3 of Nantong University (Nantong Third People’s Hospital), Nantong, China
| | - Yi Hou
- Department of Pharmacy, People’s Hospital of Zhongjiang, Deyang, China
| | - Shenjun Huang
- Department of Oncology, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Yanyan Xu
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Xiaohong Guo
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Xinwei Dong
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| | - Chunlu Xu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haijuan Gu
- Department of Pharmacy, Nantong Tumor Hospital (Tumor Hospital Affiliated to Nantong University), Nantong, China
| |
Collapse
|
9
|
Li J, Qiu H, Dong Q, Yu H, Piao C, Li Z, Sun Y, Cui X. Androgen-targeted hsa_circ_0085121 encodes a novel protein and improves the development of prostate cancer through facilitating the activity of PI3K/Akt/mTOR pathway and enhancing AR-V7 alternative splicing. Cell Death Dis 2024; 15:848. [PMID: 39567496 PMCID: PMC11579034 DOI: 10.1038/s41419-024-07246-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Prostate cancer (PCa) is the most prevalent type of cancer and the second leading cause of mortality in males, with a marked increase in incidence observed across the globe. In the present study, whole-transcriptome analysis was conducted to identify differentially expressed circular RNAs (DE-circRNAs). The coding abilities of the DE-circRNAs were analyses, and it was found that hsa_circ_0085121 (circRNF19A) not only exhibited overexpression in PCa cells and tumor samples, but also encoded a 490 amino acid polypeptide designated circRNF19A-490aa. The knockdown of circRNF19A was observed to notably inhibit the proliferation, invasion, migration and docetaxel resistance of PCa cells. In contrast, mutation of the IRES significantly impaired the tumor-promoting function of circRNF19A, indicating that circRNF19A-490aa is the primary form that regulates the malignant behaviors of PCa cells. Mechanistically, circRNF19A-490aa was demonstrated to interact with HSP90AA1, thereby enhancing AR activity and facilitating the activation of the Akt/mTOR and PLK1 pathways. Furthermore, circRNF19A-490aa was observed to interact with HNRNPF, facilitating the recruitment of HNRNPF to the splicing site of AR-V7 and enhancing its alternative splicing. Finally, the androgen receptor (AR) was observed to bind to the promoter region of the RNF19A gene, subsequently regulating the expression of circRNF19A and circRNF19A-490aa. These data indicate that circRNF19A plays a pivotal role in AR activation and AR-V7 generation by encoding a novel protein, circRNF19A-490aa, and targeting circRNF19A may prove an effective strategy for impeding the progression of CRPC.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, 110001, Shenyang, China
| | - Hui Qiu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, #36 Sanhao Street, 110004, Shenyang, China
| | - Qingzhuo Dong
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, 110001, Shenyang, China
| | - Hongyuan Yu
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, 110001, Shenyang, China
| | - Chiyuan Piao
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, 110001, Shenyang, China
| | - Zhengxiu Li
- Department of Dermatology, First Hospital of China Medical University, #155 Nanjing North Road, 110001, Shenyang, China
| | - Yanbin Sun
- Department of Thoracic Surgery, First Hospital of China Medical University, #155 Nanjing North Road, 110001, Shenyang, China.
| | - Xiaolu Cui
- Department of Urology, First Hospital of China Medical University, #155 Nanjing North Road, 110001, Shenyang, China.
| |
Collapse
|
10
|
Yang X, Zhang Q, Wei L, Liu K. HIF1A/PCDH7 axis mediates fatty acid synthesis and metabolism to inhibit lung adenocarcinoma anoikis. J Biochem Mol Toxicol 2024; 38:e70001. [PMID: 39425457 DOI: 10.1002/jbt.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Aberrantly expressed PCDH7 participates in the malignant progression of many cancers. PCDH7 has been newly discovered as a risk factor in lung cancer, but its functional study in lung adenocarcinoma (LUAD) has not been conducted yet. This study aimed to investigate the functional role of PCDH7 in LUAD. METHODS Bioinformatics analyzed the expression of PCDH7 and HIF1A in LUAD tissues, predicted the binding sites between the two, analyzed the clinicopathological relevance of PCDH7 and examined the pathway enrichment of PCDH7. Expression of PCDH7 and HIF1A in LUAD cells was analyzed by RT-qPCR. A nude mouse transplantation tumor model was constructed to analyze the effect of PCDH7 on tumor growth in vivo. The binding relationship between PCDH7 and HIF1A was confirmed by chromatin immunoprecipitation experiments and the dual-luciferase assay. Cell viability was detected with Cell Counting Kit-8. Triglyceride content and Caspase3 activity were measured using corresponding reagent kits. FASN and ACC1 expression was determined utilizing western blot. RESULTS PCDH7 was highly expressed in LUAD and correlated with patients' overall survival time and N stage. In vitro and in vivo experiments confirmed that PCDH7 could promote LUAD growth and anoikis resistance. Moreover, overexpression of PCDH7 markedly increased the content of triglycerides in cells and promoted the expression of FASN and ACC1 proteins to inhibit LUAD cell anoikis. Cell rescue experiment confirmed that HIF1A activated PCDH7 to suppress LUAD anoikis by promoting fatty acid (FA) synthesis and metabolism. CONCLUSION Our findings demonstrated that the HIF1A/PCDH7 axis suppressed LUAD anoikis by promoting FA synthesis and metabolism. The FA synthesis pathway might be a key pathway regulated by PCDH7 in LUAD anoikis.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Thoracic and Cardiovascular Surgery, Fourth People's Hospital of Zigong City, Zigong City, Sichuan Province, China
| | - Qingfeng Zhang
- Department of Thoracic and Cardiovascular Surgery, Fourth People's Hospital of Zigong City, Zigong City, Sichuan Province, China
| | - Liyang Wei
- Department of Emergency, Fourth People's Hospital of Zigong City, Zigong City, Sichuan Province, China
| | - Kui Liu
- Department of Thoracic and Cardiovascular Surgery, Fourth People's Hospital of Zigong City, Zigong City, Sichuan Province, China
| |
Collapse
|
11
|
Dong B, Gu Y, Sun X, Wang X, Zhou Y, Rong Z, Zhang J, Shi X, Zhang Z, He X, Chen L, Xiong Q, Pang X, Cui Y. Targeting TUBB3 Suppresses Anoikis Resistance and Bone Metastasis in Prostate Cancer. Adv Healthc Mater 2024; 13:e2400673. [PMID: 38809199 DOI: 10.1002/adhm.202400673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/21/2024] [Indexed: 05/30/2024]
Abstract
Bone metastases occur in more than 70% of advanced prostate cancer (PCa) patients, leading to a poor prognosis. Resistance to detachment-induced apoptosis, also known as anoikis, plays a crucial role in the onset of tumor metastasis. Targeting anoikis resistance is of immense therapeutic significance in repression of metastatic spread. In this study, based on an anoikis-related prognostic risk model of PCa, this study identifies TUBB3 as a key anoikis-related prognostic gene that is highly expressed in bone metastatic PCa. TUBB3 expression is increased in anoikis-resistant PCa cells, and TUBB3 depletion significantly reverses anoikis resistance during extracellular matrix (ECM) detachment and inhibits anoikis-resistance-induced PCa cell invasion and migration as well as epithelial-mesenchymal transition (EMT) process. TUBB3 knockdown significantly reduces αvβ3/FAK/Src axis activation, blocking its downstream oncogenic signaling. In addition, this work develops bone-targeting lipid nanoparticles (BT-LNP) based on bisphosphonate-modified ionizable lipid for systemic delivery of siRNA targeting TUBB3 (siTUBB3). BT-LNP-delivered siTUBB3 therapy with localization in the bone microenvironment significantly attenuate PCa bone metastasis progression in vivo upon intravenous administration. These findings pinpoint that TUBB3, as a key regulator of anoikis resistance, is an effective therapeutic target in bone metastatic PCa and that BT-LNP-mediated systemic delivery of siTUBB3 can be developed as a novel therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Bingqi Dong
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yanlun Gu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
- School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Xiaojiao Sun
- School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
- Department of Urology Surgery, Peking University Third Hospital, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Ying Zhou
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhuona Rong
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Jixin Zhang
- Department of Pathology, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xuedong Shi
- Department of Orthopedics, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhuo Zhang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xu He
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing, 100191, China
- School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Lin Chen
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
- School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, P. R. China
| | - Xiaocong Pang
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing, 100191, China
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, Beijing, 100191, China
- School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, Beijing, 100191, China
| |
Collapse
|
12
|
Fang X, Wei M, Liu X, Lu L, Liu G. Identification of anoikis-related long non-coding RNA signature as a novel prognostic model in lung adenocarcinoma. Transl Cancer Res 2024; 13:5458-5472. [PMID: 39525036 PMCID: PMC11543027 DOI: 10.21037/tcr-24-264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Background Anoikis, as a specific form of programmed cell death, involves in tumor metastasis. However, there is still lacking of anoikis-related long non-coding RNA (lncRNA) risk signature in the diagnosis and prognosis of lung adenocarcinoma (LUAD). This study constructed a prognostic risk model by comprehensively analyzing anoikis-related lncRNAs which could effectively diagnose and predict the outcomes of LUAD patients. Methods A list of anoikis-related genes (ARGs) was retrieved from literatures. Anoikis-related lncRNAs were selected using co-expression analysis from The Cancer Genome Atlas (TCGA) database. Univariate and multivariate regression analyses were used to construct a prognostic model. The performance of the risk signature in predicting the prognosis and clinical significance were determined by Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, univariate and multivariate regression analyses. Moreover, the differences of tumor immune microenvironment between the high- and low-risk groups were explored. Finally, a novel nomogram was developed by combining the signature and clinicopathological factors, and the association between lncRNAs and differential N6-methyladenosine (m6A) genes was analyzed by Spearman's analysis. Results A total of 1,694 anoikis-related lncRNAs were identified from 479 cases of LUAD. According to the univariate and multivariate Cox analyses, we established a prognostic risk model consisting of seven lncRNAs (AC026355.2, AL606489.1, AL031667.3, LINC02802, LINC01116, AC018529.1, and AP000844.2). This prognostic risk model could efficiently classify low- and high-risk patients. The area under the curve (AUC) value was 0.717, which indicated more powerful predictive capability than commonly used clinicopathological factors. The high- and low-risk groups demonstrated different immune microenvironment. Moreover, the nomogram also demonstrated good performance in predicting the prognosis. Twelve differential m6A regulators were identified, and RBM15 was found to be correlated positively with the hub lncRNA AL606489.1. Conclusions Our study constructed a prognostic risk model based on anoikis-related lncRNAs, which could provide novel perspective on the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Xisheng Fang
- Department of Medical Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Medical Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Mei Wei
- Department of Nursing, Guangzhou Health Science College, Guangzhou, China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Lin Lu
- Department of Medical Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Guolong Liu
- Department of Medical Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Medical Oncology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Ma W, Jiang X, Jia R, Li Y. Mechanisms of ferroptosis and targeted therapeutic approaches in urological malignancies. Cell Death Discov 2024; 10:432. [PMID: 39384767 PMCID: PMC11464522 DOI: 10.1038/s41420-024-02195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
The prevalence of urological malignancies remains a significant global health concern, particularly given the challenging prognosis for patients in advanced disease stages. Consequently, there is a pressing need to explore the molecular mechanisms that regulate the development of urological malignancies to discover novel breakthroughs in diagnosis and treatment. Ferroptosis, characterized by iron-ion-dependent lipid peroxidation, is a form of programmed cell death (PCD) distinct from apoptosis, autophagy, and necrosis. Notably, lipid, iron, and glutathione metabolism intricately regulate intracellular ferroptosis, playing essential roles in the progression of various neoplasms and drug resistance. In recent years, ferroptosis has been found to be closely related to urological malignancies. This paper provides an overview of the involvement of ferroptosis in the pathogenesis and progression of urological malignancies, elucidates the molecular mechanisms governing its regulation, and synthesizes recent breakthroughs in diagnosing and treating these malignancies. We aim to provide a new direction for the clinical treatment of urological malignancies.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaotian Jiang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Liang Y, Yin X, Yao Y, Wang Y. Development of biomarker signatures associated with anoikis to predict prognosis in patients with esophageal cancer: An observational study. Medicine (Baltimore) 2024; 103:e39745. [PMID: 39465737 PMCID: PMC11460930 DOI: 10.1097/md.0000000000039745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 10/29/2024] Open
Abstract
Anoikis, a form of programmed cell death linked to cancer, has garnered significant research attention. Esophageal cancer (ESCA) ranks among the most prevalent malignant tumors and represents a major global health concern. To ascertain whether anoikis-related genes (ARGs) can accurately predict ESCA prognosis, we evaluated the predictive value and molecular mechanisms of ARGs in ESCA and constructed an optimal model for prognostic prediction. Using the Cancer Genome Atlas (TCGA)-ESCA database, we identified ARGs with differences in ESCA. ARG signatures were generated using Cox regression. A predictive nomogram model was developed to forecast ARG signatures and patient outcomes in ESCA. Gene set enrichment analysis (GSEA) was employed to uncover potential biological pathways associated with ARG signatures. Estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) and cell-type identification by estimating relative subsets of RNA transcripts analyses were used to assess differences in the immune microenvironment of the ARG signature model. Based on ARGs, the patients with ESCA were divided into high and low groups, and the sensitivity of patients to drugs in the database of genomics of drug sensitivity in cancer was analyzed. Finally, the correlation between drug sensitivity and risk score was then evaluated based on the ARG signatures. Prognostic relevance was significantly linked to the ARG profiles of 5 genes: MYB binding protein 1a (MYBBP1A), plasminogen activator, urokinase (PLAU), budding uninhibited by benzimidazoles 3, HOX transcript antisense RNA, and euchromatic histone-lysine methyltransferase 2 (EHMT2). Using the risk score as an independent prognostic factor combined with clinicopathological features, the nomogram accurately predicted the overall survival (OS) of individual patients with ESCA. Gene ontology (GO) enrichment analysis indicated that the primary molecular roles included histone methyltransferase function, binding to C2H2 zinc finger domains, and histone-lysine N-methyltransferase activity. GSEA revealed that the high-risk cohort was connected to cytokine-cytokine receptor interaction, graft-versus-host disease, and hematopoietic cell lineage, whereas the low-risk cohort was related to arachidonic acid metabolism, drug metabolism via cytochrome P450 and fatty acid metabolism. Drug sensitivity tests showed that 16 drugs were positively correlated, and 3 drugs were negatively correlated with ARG characteristic scores. Our study developed 5 ARG signatures as biomarkers for patients with ESCA, providing an important reference for the individualized treatment of this disease.
Collapse
Affiliation(s)
- Yunwei Liang
- Department of Oncology, the Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xin Yin
- Chengde Academy of Agriculture and Forestry, Institute of Medicinal Animals and Plants, Chengde, China
| | - Yinhui Yao
- Department of Pharmacy, the Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ying Wang
- Department of Pharmacy, the Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
15
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
16
|
Wang D, Li Y, Chang W, Feng M, Yang Y, Zhu X, Liu Z, Fu Y. CircSEC24B activates autophagy and induces chemoresistance of colorectal cancer via OTUB1-mediated deubiquitination of SRPX2. Cell Death Dis 2024; 15:693. [PMID: 39333496 PMCID: PMC11436887 DOI: 10.1038/s41419-024-07057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Circular RNAs (circRNAs) are a type of regulatory RNA that feature covalently closed single-stranded loops. Evidence suggested that circRNAs play important roles in the progression and development of various cancers. However, the impact of circRNA on autophagy-mediated progression of colorectal cancer (CRC) remains unclear. The objective of this project was to investigate the influence of circSEC24B on autophagy and its underlying mechanisms in CRC. To validate the presence and circular structure of circSEC24B in CRC cells and tissues, PCR and Sanger sequencing techniques were employed. Drug resistance and invasive phenotype of CRC cells were evaluated using CCK8, transwell, and Edu assays. Gain- and loss-of-function experiments were conducted to assess the effects of circSEC24B and its protein partner on the growth, invasion, and metastasis of CRC cells in vitro and in vivo. Interactions between circSEC24B, OTUB1, and SRPX2 were analyzed through immunofluorescence, RNA-pulldown, and RIP assays. Mass spectrometry analysis was used to identify potential binding proteins of circRNA in CRC cells. Vectors were constructed to investigate the specific structural domain of the deubiquitinating enzyme OTUB1 that binds to circSEC24B. Results showed that circSEC24B expression was increased in CRC tissues and cell lines, and it enhanced CRC cell proliferation and autophagy levels. Mechanistically, circSEC24B promoted CRC cell proliferation by regulating the protein stability of SRPX2. Specifically, circSEC24B acted as a scaffold, facilitating the binding of OTUB1 to SRPX2 and thereby enhancing its protein stability. Additionally, evidence suggested that OTUB1 regulated SRPX2 expression through an acetylation-dependent mechanism. In conclusion, this study demonstrated that circSEC24B activated autophagy and induced chemoresistance in CRC by promoting the deubiquitination of SRPX2, mediated by the deubiquitinating enzyme OTUB1.
Collapse
Affiliation(s)
- Di Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongge Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weilong Chang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meina Feng
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, China
| | - Yiming Yang
- Department of General Surgery, Ruijin-Hainan Hospital, Shanghai Jiao Tong University School of Medicine, Hainan, China
| | - Xiuxiang Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibo Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
17
|
Tang M, Rong Y, Li X, Pan H, Tao P, Wu Z, Liu S, Tang R, Liu Z, Cai H. Anoikis-related genes in breast cancer patients: reliable biomarker of prognosis. BMC Cancer 2024; 24:1163. [PMID: 39300389 DOI: 10.1186/s12885-024-12830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women, and its progression is closely related to the phenomenon of anoikis. Anoikis, the specific programmed death resulting from a lack of contact between cells and the extracellular matrix, has recently been recognized as playing a critical role in tumor initiation, maintenance, and treatment. The ability of cancer cells to resist anoikis leads to cancer progression and metastatic colonization. However, the impact of anoikis on the prognosis of BC patients remains unclear. METHOD This study utilized data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to collect transcriptome and clinical data of BC patients. Anoikis-related genes (ARGs) were classified into subtypes A and B through consensus clustering. Subsequently, survival prognosis analysis, immune cell infiltration analysis, and functional enrichment analysis were performed for both subtypes. Using the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, a set of 10 ARGs related to prognosis was identified. Immune cell infiltration and tumor microenvironment analyses were conducted on these 10 ARGs to develop a prognostic model. Furthermore, single-cell data analysis and real-time polymerase chain reaction (RT-PCR) analysis were employed to study the expression of the 10 identified prognostic ARGs in BC cells. RESULTS One hundred thirty-five ARGs were identified as differentially expressed genes in the TCGA and GEO databases, with 42 of them associated with the survival prognosis of BC patients. Analyses involving Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP) revealed distinct expression patterns of ARGs between types A and B. Patients in type A exhibited worse survival prognosis and lower immune cell infiltration compared to type B. Subsequent analyses identified 10 key ARGs (YAP1, PIK3R1, BAK1, PHLDA2, EDA2R, LAMB3, CD24, SLC2A1, CDC25C, and SLC39A6) relevant to BC prognosis. Kaplan-Meier analysis indicated that high-risk patients based on these ARGs had a poorer BC prognosis. Additionally, Cox regression analysis established gender, age, T (tumor), N (nodes), and risk score as predictive factors in a nomogram model for BC. The model demonstrated diagnostic value for BC patients at 1, 3, and 5 years. Decision curve analysis (DCA) verified the risk score as a reliable predictor of BC patient survival rates. Moreover, RT-PCR results confirmed differential expressions of YAP1, PIK3R1, BAK1, PHLDA2, CD24, SLC2A1, and CDC25C in BC cells, with SLC39A6, EDA2R, and LAMB3 showing low expression levels. CONCLUSION ARGs markers can be used as BC biomarkers for risk stratification and survival prediction in BC patients. Besides, ARGs can be used as stratification factors for individualized and precise treatment of BC patients.
Collapse
Affiliation(s)
- Mingzheng Tang
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
| | - Yao Rong
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Department, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xiaofeng Li
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Haibang Pan
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Pengxian Tao
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Zhihang Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Songhua Liu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- General Surgery Department, General Hospital of Southern Theater Command, Guangzhou, China
| | - Renmei Tang
- Qionghai People's Hospital Breast and Thyroid Surgery, Qionghai, China.
| | - Zhilong Liu
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China.
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, China.
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China.
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China.
| |
Collapse
|
18
|
Zhang Z, Gao Z, Fang H, Zhao Y, Xing R. Therapeutic importance and diagnostic function of circRNAs in urological cancers: from metastasis to drug resistance. Cancer Metastasis Rev 2024; 43:867-888. [PMID: 38252399 DOI: 10.1007/s10555-023-10152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024]
Abstract
Circular RNAs (circRNAs) are a member of non-coding RNAs with no ability in encoding proteins and their aberrant dysregulation is observed in cancers. Their closed-loop structure has increased their stability, and they are reliable biomarkers for cancer diagnosis. Urological cancers have been responsible for high mortality and morbidity worldwide, and developing new strategies in their treatment, especially based on gene therapy, is of importance since these malignant diseases do not respond to conventional therapies. In the current review, three important aims are followed. At the first step, the role of circRNAs in increasing or decreasing the progression of urological cancers is discussed, and the double-edged sword function of them is also highlighted. At the second step, the interaction of circRNAs with molecular targets responsible for urological cancer progression is discussed, and their impact on molecular processes such as apoptosis, autophagy, EMT, and MMPs is highlighted. Finally, the use of circRNAs as biomarkers in the diagnosis and prognosis of urological cancer patients is discussed to translate current findings in the clinic for better treatment of patients. Furthermore, since circRNAs can be transferred to tumor via exosomes and the interactions in tumor microenvironment provided by exosomes such as between macrophages and cancer cells is of importance in cancer progression, a separate section has been devoted to the role of exosomal circRNAs in urological tumors.
Collapse
Affiliation(s)
- Zhibin Zhang
- College of Traditional Chinese Medicine, Chengde Medical College, Chengde, 067000, Hebei, China.
| | - Zhixu Gao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Huimin Fang
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, 067000, Hebei, China
| | - Rong Xing
- Chengde Medical College, Chengde, 067000, Hebei, China
| |
Collapse
|
19
|
Zhang T, Chen S, Qu S, Wang L. Anoikis-Related Genes Impact Prognosis and Tumor Microenvironment in Bladder Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01255-x. [PMID: 39172330 DOI: 10.1007/s12033-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
Anoikis tolerance is an important biological process of tumor colonization and metastasis outside the primary tumor. Recent research has progressively elucidated the function and underlying mechanisms of anoikis in the metastasis of various solid tumors. Nevertheless, the specific mechanisms of anoikis in bladder cancer and its consequent effects on the tumor immune microenvironment remain ambiguous. In this study, we developed an anoikis score based on five genes (ETV7, NGF, SCD, LAMC1, and CASP6) and categorized subjects into high and low-risk groups using the median score from the TCGA database. Our findings indicate that SCD enhances the proliferation of bladder cancer cells in vitro. Furthermore, integrating the anoikis score with clinicopathological features to construct a prognostic nomogram demonstrated precision in assessing patient outcomes. Immune cell analysis revealed elevated infiltration levels of Treg cells and M2 macrophages in the high anoikis score group, whereas CD8+ T cell levels were reduced. This study highlights the importance of anoikis score in predicting patient prognosis, immune cell infiltration, and drug response, which may provide a treatment modality worth exploring in depth for the study of bladder cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shaojun Chen
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shanna Qu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Longsheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
20
|
Liu Y, Ding L, Chen G, Wang P, Wang X. A thermo-sensitive hydrogel with prominent hemostatic effect prevents tumor recurrence via anti-anoikis-resistance. J Nanobiotechnology 2024; 22:496. [PMID: 39164723 PMCID: PMC11334358 DOI: 10.1186/s12951-024-02739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Tumor cells can survive when detached from the extracellular matrix (ECM) or lose cell-cell connections, a phenomenon known as anoikis-resistance (AR). AR is closely associated with tumor cell metastasis and recurrence, enabling tumor cells to disseminate, migrate, and invade after detachment. To address this issue, a novel intervention method combining intraoperative hemostasis with multifunctional nanozyme driven-enhanced chemodynamic therapy (ECDT) has been proposed, which holds the potential to weaken the AR capability of tumor cells and suppress tumor recurrence. Here, a nanocomposite containing a dendritic mesoporous nanoframework with Cu2+ was developed using an anion-assisted approach after surface PEG grafting and glucose oxidase (GOx) anchoring (DMSN-Cu@GOx/PEG). DMSN-Cu@GOx/PEG was further encapsulated in a thermal-sensitive hydrogel (H@DMSN-Cu@GOx/PEG). DMSN-Cu@GOx/PEG utilizes its high peroxidase (POD) activity to elevate intracellular ROS levels, thereby weakening the AR capability of bladder cancer cells. Additionally, through its excellent catalase (CAT) activity, DMSN-Cu@GOx/PEG converts the high level of hydrogen peroxide (H2O2) catalyzed by intracellular GOx into oxygen (O2), effectively alleviating tumor hypoxia, downregulating hypoxia-inducible factor-1α (HIF-1α) expression, inhibiting epithelial-mesenchymal transition (EMT) processes, and ultimately suppressing the migration and invasion of bladder cancer cells. Interestingly, in vivo results showed that the thermosensitive hydrogel H@DMSN-Cu@GOx/PEG could rapidly gel at body temperature, forming a gel film on wounds to eliminate residual tumor tissue after tumor resection surgery. Importantly, H@DMSN-Cu@GOx/PEG exhibited excellent hemostatic capabilities, effectively enhancing tissue coagulation during post-tumor resection surgery and mitigating the risk of cancer cell dissemination and recurrence due to surgical bleeding. Such hydrogels undoubtedly possess strong surgical application. Our developed novel nanosystem and hydrogel can inhibit the AR capability of tumor cells and prevent recurrence post-surgery. This study represents the first report of using dendritic mesoporous silica-based nanoreactors for inhibiting the AR capability of bladder cancer cells and suppressing tumor recurrence post-surgery, providing a new avenue for developing strategies to impede tumor recurrence after surgery.
Collapse
Affiliation(s)
- Yang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Lei Ding
- School of Rare Earths, University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Gaojie Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
- Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research On the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
- Hubei Key Laboratory of Urological Diseases, Wuhan University, Wuhan, 430071, People's Republic of China.
- Medical Research Institute, Wuhan University, Wuhan, 430071, People's Republic of China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
21
|
Luo M, Luan X, Yang C, Chen X, Yuan S, Cao Y, Zhang J, Xie J, Luo Q, Chen L, Li S, Xiang W, Zhou J. Revisiting the potential of regulated cell death in glioma treatment: a focus on autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis, immunogenic cell death, and the crosstalk between them. Front Oncol 2024; 14:1397863. [PMID: 39184045 PMCID: PMC11341384 DOI: 10.3389/fonc.2024.1397863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas are primary tumors that originate in the central nervous system. The conventional treatment options for gliomas typically encompass surgical resection and temozolomide (TMZ) chemotherapy. However, despite aggressive interventions, the median survival for glioma patients is merely about 14.6 months. Consequently, there is an urgent necessity to explore innovative therapeutic strategies for treating glioma. The foundational study of regulated cell death (RCD) can be traced back to Karl Vogt's seminal observations of cellular demise in toads, which were documented in 1842. In the past decade, the Nomenclature Committee on Cell Death (NCCD) has systematically classified and delineated various forms and mechanisms of cell death, synthesizing morphological, biochemical, and functional characteristics. Cell death primarily manifests in two forms: accidental cell death (ACD), which is caused by external factors such as physical, chemical, or mechanical disruptions; and RCD, a gene-directed intrinsic process that coordinates an orderly cellular demise in response to both physiological and pathological cues. Advancements in our understanding of RCD have shed light on the manipulation of cell death modulation - either through induction or suppression - as a potentially groundbreaking approach in oncology, holding significant promise. However, obstacles persist at the interface of research and clinical application, with significant impediments encountered in translating to therapeutic modalities. It is increasingly apparent that an integrative examination of the molecular underpinnings of cell death is imperative for advancing the field, particularly within the framework of inter-pathway functional synergy. In this review, we provide an overview of various forms of RCD, including autophagy-dependent cell death, anoikis, ferroptosis, cuproptosis, pyroptosis and immunogenic cell death. We summarize the latest advancements in understanding the molecular mechanisms that regulate RCD in glioma and explore the interconnections between different cell death processes. By comprehending these connections and developing targeted strategies, we have the potential to enhance glioma therapy through manipulation of RCD.
Collapse
Affiliation(s)
- Maowen Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Chaoge Yang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Xiaofan Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Suxin Yuan
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Youlin Cao
- Department of Neurosurgery, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jing Zhang
- School of Clinical Medicine, the Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Jiaying Xie
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinglian Luo
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Shenjie Li
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Wei Xiang
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| | - Jie Zhou
- Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
- School of Clinical Medicine, Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Wang X, Xue X, Pang M, Yu L, Qian J, Li X, Tian M, Lyu A, Lu C, Liu Y. Epithelial-mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e659. [PMID: 39092293 PMCID: PMC11292400 DOI: 10.1002/mco2.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoxia Xue
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mingshi Pang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Liuchunyang Yu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jinxiu Qian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoyu Li
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Meng Tian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Aiping Lyu
- School of Chinese MedicineHong Kong Baptist UniversityKowloonHong KongChina
| | - Cheng Lu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanyan Liu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
23
|
Zhang Y, Xue X, Li F, Zhang B, Zheng P, Mi Y. Integrative nomogram model based on anoikis-related genes enhances prognostic evaluation in colorectal cancer. Heliyon 2024; 10:e33637. [PMID: 39040248 PMCID: PMC11261108 DOI: 10.1016/j.heliyon.2024.e33637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Background Revealing the role of anoikis resistance plays in CRC is significant for CRC diagnosis and treatment. This study integrated the CRC anoikis-related key genes (CRC-AKGs) and established a novel model for improving the efficiency and accuracy of the prognostic evaluation of CRC. Methods CRC-ARGs were screened out by performing differential expression and univariate Cox analysis. CRC-AKGs were obtained through the LASSO machine learning algorithm and the LASSO Risk-Score was constructed to build a nomogram clinical prediction model combined with the clinical predictors. In parallel, this work developed a web-based dynamic nomogram to facilitate the generalization and practical application of our model. Results We identified 10 CRC-AKGs and a risk-related prognostic Risk-Score was calculated. Multivariate COX regression analysis indicated that the Risk-Score, TNM stage, and age were independent risk factors that significantly associated with the CRC prognosis(p < 0.05). A prognostic model was built to predict the outcome with satisfied accuracy (3-year AUC = 0.815) for CRC individuals. The web interactive nomogram (https://yuexiaozhang.shinyapps.io/anoikisCRC/) showed strong generalizability of our model. In parallel, a substantial correlation between tumor microenvironment and Risk-Score was discovered in the present work. Conclusion This study reveals the potential role of anoikis in CRC and sets new insights into clinical decision-making in colorectal cancer based on both clinical and sequencing data. Also, the interactive tool provides researchers with a user-friendly interface to input relevant clinical variables and obtain personalized risk predictions or prognostic assessments based on our established model.
Collapse
Affiliation(s)
- Yuexiao Zhang
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Fazhan Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Bo Zhang
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall B. J. Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| |
Collapse
|
24
|
Nafe R, Hattingen E. Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge. Biomedicines 2024; 12:1546. [PMID: 39062119 PMCID: PMC11274595 DOI: 10.3390/biomedicines12071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to necrosis and apoptosis, the two forms of cell death that have been known for many decades, other non-apoptotic forms of cell death have been discovered, many of which also play a role in tumors. Starting with the description of autophagy more than 60 years ago, newer forms of cell death have become important for the biology of tumors, such as ferroptosis, pyroptosis, necroptosis, and paraptosis. In this review, all non-apoptotic and oncologically relevant forms of programmed cell death are presented, starting with their first descriptions, their molecular characteristics, and their role and their interactions in cell physiology and pathophysiology. Based on these descriptions, the current state of knowledge about their alterations and their role in gliomas will be presented. In addition, current efforts to therapeutically influence the molecular components of these forms of cell death will be discussed. Although research into their exact role in gliomas is still at a rather early stage, our review clarifies that all these non-apoptotic forms of cell death show significant alterations in gliomas and that important insight into understanding them has already been gained.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
25
|
Wu Y, Chen Y, Yan X, Dai X, Liao Y, Yuan J, Wang L, Liu D, Niu D, Sun L, Chen L, Zhang Y, Xiang L, Chen A, Li S, Xiang W, Ni Z, Chen M, He F, Yang M, Lian J. Lopinavir enhances anoikis by remodeling autophagy in a circRNA-dependent manner. Autophagy 2024; 20:1651-1672. [PMID: 38433354 PMCID: PMC11210930 DOI: 10.1080/15548627.2024.2325304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
Macroautophagy/autophagy-mediated anoikis resistance is crucial for tumor metastasis. As a key autophagy-related protein, ATG4B has been demonstrated to be a prospective anti-tumor target. However, the existing ATG4B inhibitors are still far from clinical application, especially for tumor metastasis. In this study, we identified a novel circRNA, circSPECC1, that interacted with ATG4B. CircSPECC1 facilitated liquid-liquid phase separation of ATG4B, which boosted the ubiquitination and degradation of ATG4B in gastric cancer (GC) cells. Thus, pharmacological addition of circSPECC1 may serve as an innovative approach to suppress autophagy by targeting ATG4B. Specifically, the circSPECC1 underwent significant m6A modification in GC cells and was subsequently recognized and suppressed by the m6A reader protein ELAVL1/HuR. The activation of the ELAVL1-circSPECC1-ATG4B pathway was demonstrated to mediate anoikis resistance in GC cells. Moreover, we also verified that the above pathway was closely related to metastasis in tissues from GC patients. Furthermore, we determined that the FDA-approved compound lopinavir efficiently enhanced anoikis and prevented metastasis by eliminating repression of ELAVL1 on circSPECC1. In summary, this study provides novel insights into ATG4B-mediated autophagy and introduces a viable clinical inhibitor of autophagy, which may be beneficial for the treatment of GC with metastasis.
Collapse
Affiliation(s)
- Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Yang Chen
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaojing Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Xufang Dai
- College of Education and Science, Chongqing Normal University, Chongqing, China
| | - Yaling Liao
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Jing Yuan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Dong Liu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Dun Niu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Liangbo Sun
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Lingxi Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yang Zhang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Li Xiang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - An Chen
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Shuhui Li
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Wang Y, Cheng S, Fleishman JS, Chen J, Tang H, Chen ZS, Chen W, Ding M. Targeting anoikis resistance as a strategy for cancer therapy. Drug Resist Updat 2024; 75:101099. [PMID: 38850692 DOI: 10.1016/j.drup.2024.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Anoikis, known as matrix detachment-induced apoptosis or detachment-induced cell death, is crucial for tissue development and homeostasis. Cancer cells develop means to evade anoikis, e.g. anoikis resistance, thereby allowing for cells to survive under anchorage-independent conditions. Uncovering the mechanisms of anoikis resistance will provide details about cancer metastasis, and potential strategies against cancer cell dissemination and metastasis. Here, we summarize the principal elements and core molecular mechanisms of anoikis and anoikis resistance. We discuss the latest progress of how anoikis and anoikis resistance are regulated in cancers. Furthermore, we summarize emerging data on selective compounds and nanomedicines, explaining how inhibiting anoikis resistance can serve as a meaningful treatment modality against cancers. Finally, we discuss the key limitations of this therapeutic paradigm and possible strategies to overcome them. In this review, we suggest that pharmacological modulation of anoikis and anoikis resistance by bioactive compounds could surmount anoikis resistance, highlighting a promising therapeutic regimen that could be used to overcome anoikis resistance in cancers.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
27
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
28
|
Sui P, Liu X, Zhong C, Sha Z. Integrated single-cell and bulk RNA-Seq analysis enhances prognostic accuracy of PD-1/PD-L1 immunotherapy response in lung adenocarcinoma through necroptotic anoikis gene signatures. Sci Rep 2024; 14:10873. [PMID: 38740918 DOI: 10.1038/s41598-024-61629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
In addition to presenting significant diagnostic and treatment challenges, lung adenocarcinoma (LUAD) is the most common form of lung cancer. Using scRNA-Seq and bulk RNA-Seq data, we identify three genes referred to as HMR, FAM83A, and KRT6A these genes are related to necroptotic anoikis-related gene expression. Initial validation, conducted on the GSE50081 dataset, demonstrated the model's ability to categorize LUAD patients into high-risk and low-risk groups with significant survival differences. This model was further applied to predict responses to PD-1/PD-L1 blockade therapies, utilizing the IMvigor210 and GSE78220 cohorts, and showed strong correlation with patient outcomes, highlighting its potential in personalized immunotherapy. Further, LUAD cell lines were analyzed using quantitative PCR (qPCR) and Western blot analysis to confirm their expression levels, further corroborating the model's relevance in LUAD pathophysiology. The mutation landscape of these genes was also explored, revealing their broad implication in various cancer types through a pan-cancer analysis. The study also delved into molecular subclustering, revealing distinct expression profiles and associations with different survival outcomes, emphasizing the model's utility in precision oncology. Moreover, the diversity of immune cell infiltration, analyzed in relation to the necroptotic anoikis signature, suggested significant implications for immune evasion mechanisms in LUAD. While the findings present a promising stride towards personalized LUAD treatment, especially in immunotherapy, limitations such as the retrospective nature of the datasets and the need for larger sample sizes are acknowledged. Prospective clinical trials and further experimental research are essential to validate these findings and enhance the clinical applicability of our prognostic model.
Collapse
Affiliation(s)
- Ping Sui
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
- Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Xueping Liu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Cheng Zhong
- Jiangmen Hospital of Traditional Chinese Medicine Affiliated to Jinan University, Jiangmen, 52900, China.
| | - Zhanming Sha
- Department of Anesthesiology, Shandong Provincial Third Hospital, Jinan, 250031, China.
| |
Collapse
|
29
|
Chen K, Zhang Y, Li C, Liu Y, Cao Q, Zhang X. Clinical value of molecular subtypes identification based on anoikis-related lncRNAs in castration-resistant prostate cancer. Cell Signal 2024; 117:111104. [PMID: 38373667 DOI: 10.1016/j.cellsig.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Anoikis is a distinctive type of apoptosis. It is involved in tumor progression and metastasis. But its function in castration-resistant prostate cancer (CRPC) remains veiled. We aimed to develop a prognostic indicator based on anoikis-related long non-coding RNAs (arlncRNAs) and to investigate their biological function in CRPC. MATERIAL AND METHOD Differentially expressed anoikis-related genes were extracted from two CRPC datasets, GSE51873, and GSE78201. Four lncRNAs associated with the anoikis-related genes were selected. A risk model based on these lncRNAs was developed and validated in The Cancer Genome Atlas (TCGA) and the Memorial Sloan-Kettering Cancer Center (MSKCC) prostate cancer cohorts. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, immune infiltration, immune checkpoints expression, and drug susceptibility were performed based on the model. To identify the biofunction of anoikis-related lncRNA, CCK-8 assays, colony formation assays, and flow cytometry were used. RESULT Twenty-nine anoikis-related genes were differentially expressed in the CRPC datasets. And 36 prognostic arlncRNAs were selected for the LASSO Cox analysis. Patients were subsequently classified into two subtypes by constructing an anoikis-related lncRNA based prognostic index (ARPI). The accuracy of this index was validated. KEGG enrichment analysis revealed that the high-ARPI group was enriched in cancer-related and immune-related pathways. Immune infiltration analysis has indicated a positive association between high-ARPI groups and increased immune infiltration. Fulvestrant, OSI-027, Lapatinib, Dabrafenib, and Palbociclib were identified as potential sensitive drugs for high-ARPI patients. In vitro experiments exhibited that silencing LINC01138 dampened the proliferation, migration and enzalutamide resistance in CRPC. Furthermore, it stimulated apoptosis and inhibited the eithelial-mesenchymal transition process. CONCLUSION Four arlncRNAs were identified and a risk model was established to predict the prognosis of patients with prostate cancer. Immune infiltration and drug susceptibility analysis revealed a potential therapeutic strategy for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Kailei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunxuan Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengyong Li
- Department of Urology, the Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China..
| |
Collapse
|
30
|
Zhai X, Chen B, Hu H, Deng Y, Chen Y, Hong Y, Ren X, Jiang C. Identification of the molecular subtypes and signatures to predict the prognosis, biological functions, and therapeutic response based on the anoikis-related genes in colorectal cancer. Cancer Med 2024; 13:e7315. [PMID: 38785271 PMCID: PMC11117457 DOI: 10.1002/cam4.7315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Tumors that resist anoikis, a programmed cell death triggered by detachment from the extracellular matrix, promote metastasis; however, the role of anoikis-related genes (ARGs) in colorectal cancer (CRC) stratification, prognosis, and biological functions remains unclear. METHODS We obtained transcriptomic profiles of CRC and 27 ARGs from The Cancer Genome Atlas, the Gene Expression Omnibus, and MSigDB databases, respectively. CRC tissue samples were classified into two clusters based on the expression pattern of ARGs, and their functional differences were explored. Hub genes were screened using weighted gene co-expression network analysis, univariate analysis, and least absolute selection and shrinkage operator analysis, and validated in cell lines, tissues, or the Human Protein Atlas database. We constructed an ARG-risk model and nomogram to predict prognosis in patients with CRC, which was validated using an external cohort. Multifaceted landscapes, including stemness, tumor microenvironment (TME), immune landscape, and drug sensitivity, between high- and low-risk groups were examined. RESULTS Patients with CRC were divided into C1 and C2 clusters. Cluster C1 exhibited higher TME scores, whereas cluster C2 had favorable outcomes and a higher stemness index. Eight upregulated hub ARGs (TIMP1, P3H1, SPP1, HAMP, IFI30, ADAM8, ITGAX, and APOC1) were utilized to construct the risk model. The qRT-PCR, Western blotting, and immunohistochemistry results were consistent with those of the bioinformatics analysis. Patients with high risk exhibited worse overall survival (p < 0.01), increased stemness, TME, immune checkpoint expression, immune infiltration, tumor mutation burden, and drug susceptibility compared with the patients with low risk. CONCLUSION Our results offer a novel CRC stratification based on ARGs and a risk-scoring system that could predict the prognosis, stemness, TME, immunophenotypes, and drug susceptibility of patients with CRC, thereby improving their prognosis. This stratification may facilitate personalized therapies.
Collapse
Affiliation(s)
- Xiang Zhai
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Baoxiang Chen
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Heng Hu
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Yanrong Deng
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Yazhu Chen
- West China Hospital of Sichuan universityChengduChina
| | - Yuntian Hong
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Xianghai Ren
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| | - Congqing Jiang
- Department of Colorectal and Anal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province (Zhongnan Hospital of Wuhan University)WuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal Diseases (Zhongnan Hospital of Wuhan University)WuhanChina
| |
Collapse
|
31
|
Liu X, Li X, Yu S. CFLAR: A novel diagnostic and prognostic biomarker in soft tissue sarcoma, which positively modulates the immune response in the tumor microenvironment. Oncol Lett 2024; 27:151. [PMID: 38406597 PMCID: PMC10885000 DOI: 10.3892/ol.2024.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Anoikis is highly associated with tumor cell apoptosis and tumor prognosis; however, the specific role of anoikis-related genes (ARGs) in soft tissue sarcoma (STS) remains to be fully elucidated. The present study aimed to use a variety of bioinformatics methods to determine differentially expressed anoikis-related genes in STS and healthy tissues. Subsequently, three machine learning algorithms, Least Absolute Shrinkage and Selection Operator, Support Vector Machine and Random Forest, were used to screen genes with the highest importance score. The results of the bioinformatics analyses demonstrated that CASP8 and FADD-like apoptosis regulator (CFLAR) exhibited the highest importance score. Subsequently, the diagnostic and prognostic value of CFLAR in STS development was determined using multiple public and in-house cohorts. The results of the present study demonstrated that CFLAR may be considered a diagnostic and prognostic marker of STS, which acts as an independent prognostic factor of STS development. The present study also aimed to explore the potential role of CFLAR in the STS tumor microenvironment, and the results demonstrated that CFLAR significantly enhanced the immune response of STS, and exerted a positive effect on the infiltration of CD8+ T cells and M1 macrophages in the STS immune microenvironment. Notably, the aforementioned results were verified using multiplex immunofluorescence analysis. Collectively, the results of the present study demonstrated that CFLAR may act as a novel diagnostic and prognostic marker for STS, and may positively regulate the immune response of STS. Thus, the present study provided a novel theoretical basis for the use of CFLAR in STS diagnosis, in predicting clinical outcomes and in tailoring individualized treatment options.
Collapse
Affiliation(s)
- Xu Liu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
32
|
Liu X, Zhang HY, Deng HA. Transcriptome and single-cell transcriptomics reveal prognostic value and potential mechanism of anoikis in skin cutaneous melanoma. Discov Oncol 2024; 15:70. [PMID: 38460046 PMCID: PMC10924820 DOI: 10.1007/s12672-024-00926-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is a highly lethal cancer, ranking among the top four deadliest cancers. This underscores the urgent need for novel biomarkers for SKCM diagnosis and prognosis. Anoikis plays a vital role in cancer growth and metastasis, and this study aims to investigate its prognostic value and mechanism of action in SKCM. METHODS Utilizing consensus clustering, the SKCM samples were categorized into two distinct clusters A and B based on anoikis-related genes (ANRGs), with the B group exhibiting lower disease-specific survival (DSS). Gene set enrichment between distinct clusters was examined using Gene Set Variation Analysis (GSVA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS We created a predictive model based on three anoikis-related differently expressed genes (DEGs), specifically, FASLG, IGF1, and PIK3R2. Moreover, the mechanism of these prognostic genes within the model was investigated at the cellular level using the single-cell sequencing dataset GSE115978. This analysis revealed that the FASLG gene was highly expressed on cluster 1 of Exhausted CD8( +) T (Tex) cells. CONCLUSIONS In conclusion, we have established a novel classification system for SKCM based on anoikis, which carries substantial clinical implications for SKCM patients. Notably, the elevated expression of the FASLG gene on cluster 1 of Tex cells could significantly impact SKCM prognosis through anoikis, thus offering a promising target for the development of immunotherapy for SKCM.
Collapse
Affiliation(s)
- Xing Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Yan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Hong-Ao Deng
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
33
|
Zhang Y, Ji X, Wang Y. ENO2 promotes anoikis resistance in anaplastic thyroid cancer by maintaining redox homeostasis. Gland Surg 2024; 13:209-224. [PMID: 38455357 PMCID: PMC10915417 DOI: 10.21037/gs-24-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Background Anoikis presents a significant barrier in the metastasis of cancer. As the most aggressive type of thyroid cancer, anaplastic thyroid cancer (ATC) exhibits a high risk of metastasis and is characterized by high mortality. Therefore, investigating the molecular mechanisms of anoikis resistance in ATC is important for devising therapeutic targets in clinical research. Methods Differentially Expressed Genes were screened in ATC cells under attached and detached culture conditions with RNA-seq. Investigate the impact of enolase 2 (ENO2) on apoptosis and spheroid formation by gain and loss of function. Changes of reactive oxygen species (ROS), glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) were detected to assess redox balance. The transcriptional regulatory role of signal transducer and activator of transcription 1 (STAT1) on ENO2 was validated through Dual-Luciferase Reporter Gene Assay. Explore the impact of ENO2 expression on the formation of lung metastases in nude mice. Results We found that the glycolysis process was activated in detached ATC cells. Several genes in the glycolysis process, particularly ENO2, a member of the enolase superfamily was upregulated in ATC cells cultured in suspension. The upregulation of ENO2 enabled the maintenance of redox balance by supplying GSH and NADPH, thereby preventing cells from undergoing anoikis. In terms of mechanism, the expression of STAT1 was enhanced in anoikis resistance cells, which in turn positively regulated the expression of ENO2. In vivo, ENO2-suppressed ATC cells resulted in a significantly lower rate of lung colonization compared to control ATC cells. Conclusions Stable expression of ENO2 and the maintenance of redox balance played a pivotal role in facilitating anoikis resistance of ATC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyu Ji
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Wu Y, Zhou Z, Qi Q, Xu S, Chen L, Wang F. Anoikis-related gene signature is associated with immune infiltration and predicts the prognosis of non-small cell lung cancer. Aging (Albany NY) 2024; 16:2908-2933. [PMID: 38329444 PMCID: PMC10911374 DOI: 10.18632/aging.205522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. With the in-depth exploration of cell death manners, numerous studies found that anoikis is an important mechanism that associated with treatment. Therefore, we aimed to explore the prognostic value and treatment guidance of anoikis in NSCLC patients. In the current study, we first constructed a prognostic model based on the anoikis-related genes based on bulk RNA-sequencing and single-cell RNA-sequencing (scRNA-seq) dataset. Then, immuno-correlations of anoikis-related risk scores (ARGRS) were analyzed. In addition, HMGA1, a risky gene in ARGRS, was further explored to define its expression and immuno-correlation. Results showed that patients with higher ARGRS had worse clinical outcomes. Moreover, the five genes in the prognostic model were all highly expressed on tumor cells. Moreover, further analysis found that the ARGRS was negatively correlated with ImmuneScore, but positively with tumor purity. Besides, patients in the ARGRS-high group had lower levels of immunological characteristics, such as the immune-related signaling pathways and subpopulations. Additionally, in the immunotherapy cohorts, patients with the ARGRS-high phenotype were more resistant to immunotherapy and tended to not achieve remission after treatment. Last, HMGA1 was chosen as the representative biomarker, and analysis of the in-house cohort showed that HMGA1 was highly expressed in tumor tissues and correlated with decreased T cell infiltration. To sum up, ARGRS was correlated with a desert tumor microenvironment and identified immune-cold tumors, which can be a novel biomarker for the recognition of immunological characteristics and an immunotherapeutic response in NSCLC.
Collapse
Affiliation(s)
- Yixuan Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zhou Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Qianyi Qi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Shirong Xu
- Department of Laboratory Medicine, Taizhou Second People’s Hospital, Taizhou 225511, China
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People’s Hospital Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, China
| | - Feng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
35
|
Yang J, Zhang Y, Cheng S, Xu Y, Wu M, Gu S, Xu S, Wu Y, Wang C, Wang Y. Anoikis-related signature predicts prognosis and characterizes immune landscape of ovarian cancer. Cancer Cell Int 2024; 24:53. [PMID: 38310291 PMCID: PMC10837903 DOI: 10.1186/s12935-023-03170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/30/2023] [Indexed: 02/05/2024] Open
Abstract
Ovarian cancer (OV) is the most lethal gynecological malignancy worldwide, with high recurrence rates. Anoikis, a newly-acknowledged form of programmed cell death, plays an essential role in cancer progression, though studies focused on prognostic patterns of anoikis in OV are still lacking. We filtered 32 potential anoikis-related genes (ARGs) among the 6406 differentially expressed genes (DEGs) between the 180 normal controls and 376 TCGA-OV samples. Through the LASSO-Cox analysis, a 2-gene prognostic signature, namely AKT2, and DAPK1, was finally distinguished. We then demonstrated the promising prognostic value of the signature through the K-M survival analysis and time-dependent ROC curves (p-value < 0.05). Moreover, based on the signature and clinical features, we constructed and validated a nomogram model for 1-year, 3-year, and 5-year overall survival, with reliable prognostic values in both TCGA-OV training cohort (p-value < 0.001) and ICGC-OV validation cohort (p-value = 0.030). We evaluated the tumor immune landscape through the CIBERSORT algorithm, which indicated the upregulation of resting Myeloid Dendritic Cells (DCs), memory B cells, and naïve B cells and high expression of key immune checkpoint molecules (CD274 and PDCD1LG2) in the high-risk group. Interestingly, the high-risk group exhibited better sensitivity toward immunotherapy and less sensitivity toward chemotherapies, including Cisplatin and Bleomycin. Especially, based on the IHC of tissue microarrays among 125 OV patients at our institution, we reported that aberrant upregulation of DAPK1 was related to poor prognosis. Conclusively, the anoikis-related signature was a promising tool to evaluate prognosis and predict therapy responses, thus assisting decision-making in the realm of OV precision medicine.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yue Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanna Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Meixuan Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sijia Gu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shilin Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongsong Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Chao Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
36
|
Zhao P, Han P, Ma Y, Tian P, Li J. Circ_0082878 contributes to prostate cancer progression via the miR-455-3p/WTAP axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:979-990. [PMID: 37987500 DOI: 10.1002/tox.24031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Circ_0082878 has been found to be strongly expressed in prostate cancer (PCa). However, its roles and potential mechanism in PCa have not been investigated. This study aims to clarify it. RNase R digestion method was adopted for verifying the circular structure of circ_0082878. RT-qPCR assay is aimed to detect the expressions of circ_0082878, miR-455-3p and WTAP in PCa tissues and cells. For identifying cell proliferation, migration and invasion abilities, CCK-8 and transwell assay were used. To show the correlation between miR-455-3p and WTAP or circ_0082878, the luciferase reporter gene, RNA RIP and RNA pull-down experiments were employed. We employed western blot to detect protein level of WTAP. In addition, the impact of circ_0082878 on PCa cells in vivo was also studied. It was found that circ_0082878 and WTAP were highly expressed in PCa tissues and cells, whereas miR-455-3p was lowly expressed. Inhibition of circ_0082878 restrained the growth of PCa in vitro and in vivo. Regarding mechanism, miR-455-3p was the target of circ_0082878, and WTAP was the target of miR-455-3p. Circ_0082878 could downregulate the level of miR-455-3p, and inhibiting of miR-455-3p expression could partially eliminate the inhibitory impact of low expression of circ_0082878 on the proliferation and migration of PCa cells. Additionally, over-expression of miR-455-3p resulted in the reduced level of WTAP, and WTAP over-expression counteracted the tumor suppressive impact of miR-455-3p in PCa cells. Moreover, the obtained findings indicated that circ_0082878 may exert tumor-promoting activity in PCa via sponging miR-455-3p and then upregulating WTAP. This indicates that the circ_0082878/miR-455-3p/WTAP axis can probably become the possible therapeutic target for PCa.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Pengli Han
- Department of translational Medical Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Ma
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Pei Tian
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jing Li
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Ren C, Yang Z, Xu E, Kang X, Wang X, Sun Q, Wang C, Zhang L, Miao J, Luo B, Chen K, Liu S, Shen X, Lu X, Yin K, Wang M, Xia X, Guan W. Cross-talk between gastric cancer and hepatic stellate cells promotes invadopodia formation during liver metastasis. Cancer Sci 2024; 115:369-384. [PMID: 38050654 PMCID: PMC10859620 DOI: 10.1111/cas.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
In gastric cancer (GC), the liver is a common organ for distant metastasis, and patients with gastric cancer with liver metastasis (GCLM) generally have poor prognosis. The mechanism of GCLM is unclear. Invadopodia are special membrane protrusions formed by tumor cells that can degrade the basement membrane and ECM. Herein, we investigated the role of invadopodia in GCLM. We found that the levels of invadopodia-associated proteins were significantly higher in liver metastasis than in the primary tumors of patients with GCLM. Furthermore, GC cells could activate hepatic stellate cells (HSCs) within the tumor microenvironment of liver metastases through the secretion of platelet-derived growth factor subunit B (PDGFB). Activated HSCs secreted hepatocyte growth factor (HGF), which activated the MET proto-oncogene, MET receptor of GC cells, thereby promoting invadopodia formation through the PI3K/AKT pathway and subsequently enhancing the invasion and metastasis of GC cells. Therefore, cross-talk between GC cells and HSCs by PDGFB/platelet derived growth factor receptor beta (PDGFRβ) and the HGF/MET axis might represent potential therapeutic targets to treat GCLM.
Collapse
Affiliation(s)
- Chuanfu Ren
- Department of General SurgeryNanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical UniversityNanjingChina
| | - Zhi Yang
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - En Xu
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xing Kang
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xingzhou Wang
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Qi Sun
- Department of PathologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Chao Wang
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Liang Zhang
- Department of General SurgeryNanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical UniversityNanjingChina
| | - Ji Miao
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Banxin Luo
- Department of General SurgeryNanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing University of Chinese MedicineNanjingChina
| | - Kai Chen
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Song Liu
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xiaofei Shen
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xiaofeng Lu
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Kai Yin
- Department of General SurgeryTaikang Xianlin Drum Tower HospitalNanjingChina
- Department of General SurgeryTaixing Hospital Affiliated to Yangzhou UniversityTaixingChina
| | - Meng Wang
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xuefeng Xia
- Department of General SurgeryNanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical UniversityNanjingChina
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Department of General SurgeryTaikang Xianlin Drum Tower HospitalNanjingChina
| | - Wenxian Guan
- Department of General SurgeryNanjing Drum Tower Hospital, Drum Tower Clinical Medical College, Nanjing Medical UniversityNanjingChina
- Department of General SurgeryNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Department of General SurgeryTaikang Xianlin Drum Tower HospitalNanjingChina
| |
Collapse
|
38
|
Shen K, Xia W, Wang K, Li J, Xu W, Liu H, Yang K, Zhu J, Wang J, Xi Q, Shi T, Li R. ITGBL1 promotes anoikis resistance and metastasis in human gastric cancer via the AKT/FBLN2 axis. J Cell Mol Med 2024; 28:e18113. [PMID: 38332530 PMCID: PMC10853594 DOI: 10.1111/jcmm.18113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
The resistance to anoikis plays a critical role in the metastatic progression of various types of malignancies, including gastric cancer (GC). Nevertheless, the precise mechanism behind anoikis resistance is not fully understood. Here, our primary focus was to examine the function and underlying molecular mechanism of Integrin beta-like 1 (ITGBL1) in the modulation of anoikis resistance and metastasis in GC. The findings of our investigation have demonstrated that the overexpression of ITGBL1 significantly augmented the resistance of GC cells to anoikis and promoted their metastatic potential, while knockdown of ITGBL1 had a suppressive effect on both cellular processes in vitro and in vivo. Mechanistically, we proved that ITGBL1 has a role in enhancing the resistance of GC cells to anoikis and promoting metastasis through the AKT/Fibulin-2 (FBLN2) axis. The inhibition of AKT/FBLN2 signalling was able to reverse the impact of ITGBL1 on the resistance of GC cells to anoikis and their metastatic capability. Moreover, the expression levels of ITGBL1 were found to be significantly elevated in the cancerous tissues of patients diagnosed with GC, and there was a strong correlation observed between high expression levels of ITGBL1 and worse prognosis among individuals diagnosed with GC. Significantly, it was revealed that within our cohort of GC patients, individuals exhibiting elevated ITGBL1 expression and diminished FBLN2 expression experienced the worst prognosis. In conclusion, the findings of our study indicate that ITGBL1 may serve as a possible modulator of resistance to anoikis and the metastatic process in GC.
Collapse
Affiliation(s)
- Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei Xia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei Xu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haoran Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qinhua Xi
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Rui Li
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
39
|
Bi X, Liu S, Liu D, Li C. Elucidating the role of Brain-Derived Neurotrophic Factor (BDNF) and its receptor Tyrosine Receptor Kinase B (TrkB) in the development and symptoms of endometriosis. Int J Neurosci 2024:1-7. [PMID: 38287513 DOI: 10.1080/00207454.2023.2285709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 01/31/2024]
Abstract
Endometriosis (EMs) is a common disease among women of reproductive age, and as of now, the clinical understanding of the etiology of this disease remains unclear. The occurrence of EMs has a profound impact on the reproductive health of women, making early diagnosis and treatment of this disease a pressing challenge in clinical practice. Recent studies have found that Brain-Derived Neurotrophic Factor (BDNF), in combination with its high-affinity receptor Tyrosine Receptor Kinase B (TrkB), participates in the development of EMs and the appearance of clinically relevant symptoms by activating the Mitogen-Activated Protein Kinase (MAPK) pathway, the Phosphatidylinositol 3-Kinase/Protein Kinase B (PI3K/AKT) pathway, and the Phospholipase C-gamma (PLCγ) signaling pathway, or by interacting with other factors. In order to gain a deeper understanding of the pathogenesis related to EMs, this article reviews the roles of BDNF and TrkB in EMs, particularly in terms of aberrant apoptosis and autophagy, cell invasion, proliferation, angiogenesis, oxidative stress, and inflammatory reactions, as well as their relationship with the symptoms associated with EMs.
Collapse
Affiliation(s)
- Xinyi Bi
- Department of Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Shulan Liu
- Department of Gynaecology, Gaomi Traditional Chinese Medicine Hospital, Gaomi, P.R. China
| | - Degao Liu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, P.R. China
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, P.R. China
- Department of Gynaecology, Shandong provincial hospital affiliated to Shandong first medical university, Jinan, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, P.R. China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, P.R. China
| |
Collapse
|
40
|
Cao L, Zhang S, Peng H, Lin Y, Xi Z, Lin W, Guo J, Wu G, Yu F, Zhang H, Ye H. Identification and validation of anoikis-related lncRNAs for prognostic significance and immune microenvironment characterization in ovarian cancer. Aging (Albany NY) 2024; 16:1463-1483. [PMID: 38226979 PMCID: PMC10866438 DOI: 10.18632/aging.205439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Anoikis, a form of apoptotic cell death resulting from inadequate cell-matrix interactions, has been implicated in tumor progression by regulating tumor angiogenesis and metastasis. However, the potential roles of anoikis-related long non-coding RNAs (arlncRNAs) in the tumor microenvironment are not well understood. In this study, five candidate lncRNAs were screened through least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis based on differentially expressed lncRNAs associated with anoikis-related genes (ARGs) from TCGA and GSE40595 datasets. The prognostic accuracy of the risk model was evaluated using Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) analyses revealed significant differences in immune-related hallmarks and signal transduction pathways between the high-risk and low-risk groups. Additionally, immune infiltrate analysis showed significant differences in the distribution of macrophages M2, follicular T helper cells, plasma cells, and neutrophils between the two risk groups. Lastly, silencing the expression of PRR34_AS1 and SPAG5_AS1 significantly increased anoikis-induced cell death in ovarian cancer cells. In conclusion, our study constructed a risk model that can predict clinicopathological features, tumor microenvironment characteristics, and prognosis of ovarian cancer patients. The immune-related pathways identified in this study may offer new treatment strategies for ovarian cancer.
Collapse
Affiliation(s)
- Lixue Cao
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shaofen Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongqing Lin
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihui Xi
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Wumei Lin
- Department of Gynecology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jialing Guo
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Geyan Wu
- Biomedicine Research Centre, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyan Ye
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Xu W, Zhong Z, Gu L, Xiao Y, Chen B, Hu W. circCPA4 induces malignant behaviors of prostate cancer via miR-491-5p/SHOC2 feedback loop. Clinics (Sao Paulo) 2024; 79:100314. [PMID: 38219533 PMCID: PMC10826157 DOI: 10.1016/j.clinsp.2023.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/19/2023] [Indexed: 01/16/2024] Open
Abstract
OBJECTIVE circCPA4 has been defined to be an oncogenic gene. This study examined whether circCPA4 regulates Prostate Cancer (PC) development and revealed its molecular mechanism. METHODS PC tissues and PC cell lines were collected, in which circCPA4/miR-491-5p/SHOC2 levels were evaluated by RT-qPCR and immunoblot. Colony formation assay and EdU assay assessed cell proliferation, flow cytometry measured apoptosis, and Transwell assessed invasion and migration. Ki-67, cleaved caspase-3, E-cadherin, and N-cadherin were evaluated by immunoblot. Based on the luciferase reporter assay and RIP assay the authors investigated the targeting relationship between circCPA4/miR-491-5p/SHOC2. The effect of circCPA4 on tumor growth was evaluated by xenotransplantation in nude mice. RESULTS circCPA4 and SHOC2 levels were abundant while miR-491-5p expression was low in PC. Loss of circCPA4 decreased the proliferation and EdU-positive rate of PC cells, enhanced apoptosis, and inhibited invasion, migration, and EMT. Upregulation of circCPA4 forced the malignant behaviors of PC cells, and this promotion could be abolished when miR-491-5p was overexpressed or SHOC2 was silenced. CircCAP4 competitively decoyed miR-491-5p mediating SHOC2 expression. circCAP4 suppression inhibited PC tumor growth. CONCLUSION circCAP4 acts as a novel oncogenic factor in PC, accelerating the malignant behavior of PC cells via miR-491-5p/SHOC2 interaction. This novel ceRNA axis may be a potential target for PC drug development and targeted therapy in the future.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Urology, The First School of Clinical Medicine of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Zhihong Zhong
- Department of Urology, Guangzhou Development District Hospital, Guangzhou City, Guangdong Province, China
| | - Long Gu
- Department of Urology, Guangzhou Development District Hospital, Guangzhou City, Guangdong Province, China
| | - Yiming Xiao
- Department of Urology, Guangzhou Development District Hospital, Guangzhou City, Guangdong Province, China
| | - BinShen Chen
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Weilie Hu
- Department of Urology, The First School of Clinical Medicine of Southern Medical University, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
42
|
Wang H, Liu J, Tang R, Hu J, Liu M, Wang J, Zhang J, Hou H. Deciphering the significance of anoikis in bladder cancer and systematic analysis of S100A7 as a potential therapeutic target. Eur J Med Res 2024; 29:52. [PMID: 38217031 PMCID: PMC10785515 DOI: 10.1186/s40001-024-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Bladder cancer is an epidemic and life-threating urologic carcinoma. Anoikis is a unusual type of programmed cell death which plays a vital role in tumor survival, invasion and metastasis. Nevertheless, the relationship between anoikis and bladder cancer has not been understood thoroughly. METHODS We downloaded the transcriptome and clinical information of BLCA patients from TCGA and GEO databases. Then, we analyzed different expression of anoikis-related genes and established a prognostic model based on TCGA database by univariate Cox regression, lasso regression, and multivariate Cox regression. Then the Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves were performed. GEO database was used for external validation. BLCA patients in TCGA database were divided into two subgroups by non-negative matrix factorization (NMF) classification. Survival analysis, different gene expression, immune cell infiltration and drug sensitivity were calculated. Finally, we verified the function of S100A7 in two BLCA cell lines. RESULTS We developed a prognostic risk model based on three anoikis-related genes including TPM1, RAC3 and S100A7. The overall survival of BLCA patients in low-risk groups was significantly better than high-risk groups in training sets, test sets and external validation sets. Subsequently, the checkpoint and immune cell infiltration had significant difference between two groups. Then we identified two subtypes (CA and CB) through NMF analysis and found CA had better OS and PFS than CB. Besides, the accuracy of risk model was verified by ROC analysis. Finally, we identified that knocking down S100A7 gene expression restrained the proliferation and invasion of bladder cancer cells. CONCLUSION We established and validated a bladder cancer prognostic model consisting of three genes, which can effectively evaluate the prognosis of bladder cancer patients. Additionally, through cellular experiments, we demonstrated the significant role of S100A7 in the metastasis and invasion of bladder cancer, suggesting its potential as a novel target for future treatments.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
| | - Jianyong Liu
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
| | - Runhua Tang
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Jie Hu
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Ming Liu
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
- Fifth School of Clinical Medicine, Peking University, Beijing, China
| | - Jianye Wang
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China
| | - Jingwen Zhang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Huimin Hou
- Department of Urology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 DongDan SANTIAO, Beijing, 100730, China.
| |
Collapse
|
43
|
Luo L, Li P, Xie Q, Wu Y, Qin F, Liao D, Zeng K, Wang K. n6-methyladenosine-modified circular RNA family with sequence similarity 126, member A affects cholesterol synthesis and malignant progression of prostate cancer cells by targeting microRNA-505-3p to mediate calnexin. J Cancer 2024; 15:966-980. [PMID: 38230215 PMCID: PMC10788727 DOI: 10.7150/jca.89135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in men. In tumor biology, n6-methyladenosine (m6A) can mediate the production of circular RNAs (circRNAs). This study focused on the mechanism of m6A-modified circRNA family with sequence similarity 126, member A (FAM126A) in PCa. Cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine assay, transwell assay, and xenograft mouse models were applied to study the role of circFAM126A in PCa cell growth and tumor metastasis, and cellular triglyceride and cholesterol levels were measured to assess cholesterol synthesis. RNA immunoprecipitation, RNA pull-down, luciferase reporter gene assay, and western blot were adopted to explore the underlying molecular mechanism. Data showed that circFAM126A was upregulated in PCa and promoted PCa progression in vitro. m6A modification of circFAM126A enhanced transcriptional stability. CircFAM126A targeted microRNA (miR)-505-3p to mediate calnexin (CANX). Up-regulating miR-505-3p or inhibiting CANX suppressed cholesterol synthesis and malignant progression in PCa cells. Overexpressing CANX suppressed the inhibitory effect of circFAM126A silencing or miR-505-3p upregulation on PCa cells. Our current findings provide a new therapeutic strategy for the treatment of PCa.
Collapse
Affiliation(s)
- Lin Luo
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - Ping Li
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - QingZhi Xie
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - YunChou Wu
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - FuQiang Qin
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - DunMing Liao
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - Ke Zeng
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
| | - KangNing Wang
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang City, Hunan Province, 422000, China
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410083, China
| |
Collapse
|
44
|
Yue Z, Wang D, Li X. A promising anoikis-related prognostic signature predicts prognosis of skin cutaneous melanoma. J Cancer Res Clin Oncol 2023; 149:17757-17770. [PMID: 37930439 DOI: 10.1007/s00432-023-05468-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is a highly aggressive disease with a poor prognosis for advanced tumors. Anoikis is a caspase-dependent cell death process triggered by extracellular matrix (ECM) detachment, rectifies detachment-induced metabolic defects that compromise cell survival, recent study revealed the crucial role of anoikis for cancer cells to survive during metastasis. However, limited research focused on the role of anoikis in SKCM. METHODS Our study utilized the 27 anoikis-related genes (ARGs) to divide SKCM patients into two clusters, and obtain differentially expressed genes (DEGs) for each cluster. These DEGs were used in stepwise Cox regression analysis to develop a prediction model for SKCM patients consisting of nine ARGs, called the anoikis-related signature (ARS). Subsequently, we used the risk scores calculated from the ARS to divide SKCM patients into two groups and explored differences in immune microenvironment, immune checkpoint reactivity, and drug sensitivity between the groups. RESULTS Nine ARGs were identified to stratify SKCM patients into two risk groups, patients in the high-risk group had a poor prognosis and suppressed immune cell infiltration. Moreover, higher expression of immune checkpoint molecules and a greater sensitivity to immunotherapy and chemotherapy drugs were observed in the low-risk group. Finally, all of the ARS hub genes were found to be upregulated in SKCM tissues and cell lines. CONCLUSION A novel ARGs signature was identified for predicting the prognosis of SKCM. Based on the immune landscape associated with ARS discovered in our study, targeting ARS hub genes may be a promising treatment for SKCM.
Collapse
Affiliation(s)
- Zhanghui Yue
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan Province, People's Republic of China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan Province, People's Republic of China.
| | - Xuemei Li
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan Province, People's Republic of China
| |
Collapse
|
45
|
Meng L, Gao J, Mo W, Wang B, Shen H, Cao W, Ding M, Diao W, Chen W, Zhang Q, Shu J, Dai H, Guo H. MIOX inhibits autophagy to regulate the ROS -driven inhibition of STAT3/c-Myc-mediated epithelial-mesenchymal transition in clear cell renal cell carcinoma. Redox Biol 2023; 68:102956. [PMID: 37977044 PMCID: PMC10692917 DOI: 10.1016/j.redox.2023.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
The specific mechanism of clear cell renal cell carcinoma (ccRCC) progression, a pathological type that accounts for the highest proportion of RCC, remains unclear. In this study, bioinformatics analysis of scRNA-seq dataset in ccRCC revealed that MIOX was a gene specifically down-regulated in tumor epithelial cells of ccRCC. Analysis of the TCGA database further validated the association between decreased MIOX mRNA levels and ccRCC malignant phenotype and poor prognosis. Immunohistochemistry indicated the down-regulation of MIOX in ccRCC tissues compared to paired adjacent renal tissues, with further down-regulation of MIOX in the primary tumors of patients with primary metastasis compared to those without metastasis. Also, patients with low expression of MIOX showed shorter metastasis-free survival (MFS) compared to those with high MIOX expression. In vitro results showed that overexpression of MIOX in ccRCC cells inhibited the proliferation, migration and invasion and promoted apoptosis. Mechanistically, up-regulation of MIOX inhibited autophagy to elevate the levels of ROS, and thus suppressed STAT3/c-Myc-mediated epithelial-mesenchymal transition in ccRCC cells. In vivo data further confirmed that increased MIOX expression suppressed the growth and proliferation of RCC cells and reduced the ability of RCC cells to form metastases in the lung. This study demonstrates that MIOX is an important regulatory molecule of ccRCC, which is conducive to understanding the potential molecular mechanism of ccRCC progression.
Collapse
Affiliation(s)
- Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Baojun Wang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Hongwei Shen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Qing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiaxin Shu
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Huiqi Dai
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
46
|
Xiong C, Pan G, Wang H, Meng G, Yan L, Li R, Yan Y, Yang Y, Zhang X, Yang C, Dong Z, Li T. Construction of an anoikis‒related prognostic signature to predict immunotherapeutic response and prognosis in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:16869-16884. [PMID: 37736789 DOI: 10.1007/s00432-023-05428-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Anoikis resistance is an important inducer of tumor metastasis. The role of anoikis-related genes (ARGs) in hepatocellular carcinoma (HCC) remains unclear. METHODS A list of ARGs was obtained and regression analysis was employed to assemble an anoikis-related prognostic signature and risk score formula from mRNA data and clinical prognostic data downloaded from The Cancer Genome Atlas database. Quantitative real-time PCR (qRT-PCR) was performed on clinical samples to validate the selected ARGs expressions. Kaplan‒Meier curves, ROC curves, and Cox regression analyses were used to demonstrated the prognostic value of this signature. Biological functional enrichment analysis and immune infiltration analysis were utilized to analyze the differences in potential biological functions, immune cell infiltration, immune functions, and immunotherapeutic responses. RESULTS A prognostic signature based on 6 ARGs and corresponding prognostic nomogram were established. Our qRT-PCR results showed a higher expression of 6 ARGs in HCC tissues (p value < 0.05). Kaplan‒Meier curves, ROC curves, and Cox regression analyses demonstrated good prognostic value of the signature in HCC (p value < 0.05). Significant differences between the enriched biological functions and immune landscapes of patients in different risk groups were discovered (p value < 0.05). In addition, patients with higher risk scores possibly had poor therapeutic response to transhepatic arterial chemotherapy and embolization or sorafenib, but their responses to immunotherapy might be more effective. CONCLUSION A successful anoikis-related prognostic signature and corresponding clinical nomogram were established, which might facilitate better predictions of prognosis and therapeutic responses for HCC patients.
Collapse
Affiliation(s)
- Chen Xiong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China
| | - Guoqiang Pan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China
| | - Hanchao Wang
- Institute for Financial Studies, Shandong University, Jinan, 250100, China
| | - Guangxiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China
| | - Lunjie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China
| | - Ruizhe Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China
| | - Yuchuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China
| | - Yafei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China
| | - Xiao Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China
| | - Chuncheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China
| | - Zhaoru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China.
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250100, China.
| |
Collapse
|
47
|
Tan K, Zhang C, He Z, Zeng P. Construction of an anoikis-associated lncRNA-miRNA-mRNA network reveals the prognostic role of β-elemene in non-small cell lung cancer. Sci Rep 2023; 13:20185. [PMID: 37980372 PMCID: PMC10657389 DOI: 10.1038/s41598-023-46480-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023] Open
Abstract
β-Elemene is the main active ingredient in Curcumae Rhizoma that exerts antitumour effects. Anoikis affects tumour development through various biological pathways in non-small cell lung cancer (NSCLC), but the regulation between β-elemene and anoikis remains to be explored. First, we explored the molecular expression patterns of anoikis-associated genes (AAGs) using consensus clustering and characterized the impact of AAGs on patient prognosis, clinical characteristics, and genomic instability. In addition, we revealed that AAG regulatory genes have rich interactions with β-elemene targets, and established a lncRNA-miRNA-mRNA network to explain the effect of β-elemene on anoikis. Finally, to reveal the prognostic effect of their correlation, the prognostic scoring model and clinical nomogram of β-elemene and anoikis were successfully established by least absolute shrinkage and selection operator (LASSO) and random forest algorithms. This prognostic scoring model containing noncoding RNA (ncRNA) can indicate the immunotherapy and mutational landscape, providing a novel theoretical basis and direction for the study of the antitumour mechanism of β-elemene in NSCLC patients.
Collapse
Affiliation(s)
- Kai Tan
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Changhui Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Zuomei He
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, 410006, Hunan, People's Republic of China
- Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, 410006, Hunan, People's Republic of China
| | - Puhua Zeng
- Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Changsha, 410006, Hunan, People's Republic of China.
- Hunan Academy of Traditional Chinese Medicine Affiliated Hospital, Changsha, 410006, Hunan, People's Republic of China.
| |
Collapse
|
48
|
Jiang X, Gao YL, Li JY, Tong YY, Meng ZY, Yang SG, Zhu CT. An anoikis-related lncRNA signature is a useful tool for predicting the prognosis of patients with lung adenocarcinoma. Heliyon 2023; 9:e22200. [PMID: 38053861 PMCID: PMC10694177 DOI: 10.1016/j.heliyon.2023.e22200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Background Anoikis-related long non-coding RNAs (ARLs) play a critical role in tumor metastasis and progression, suggesting that they may serve as risk markers for cancer. This study aimed to investigate the prognostic value of ARLs in patients with lung adenocarcinoma (LUAD). Methods Clinical data, RNA sequencing (RNA-seq) data, and mutation data from the LUAD project were obtained from The Cancer Genome Atlas (TCGA) database. The Molecular Signatures Database (MSigDB) and the GeneCard database were used to collect an anoikis-related gene (ARG) set. Pearson correlation analysis was performed to identify ARLs. LASSO and Cox regression were then used to establish a prognostic risk signature for ARLs. The median risk score served as the basis for categorizing patients into high and low-risk groups. Kaplan-Meier analysis was utilized to compare the prognosis between these two groups. The study also examined the associations between risk scores and prognosis, clinicopathological characteristics, immune status, tumor mutation burden (TMB), and chemotherapeutic agents. LncRNA expression was assessed using quantitative real-time PCR (qRT-PCR). Results A total of 480 RNA expression profiles, 501 ARGs, and 2698 ARLs were obtained from the database. A prognostic ARL signature for LUAD was established, consisting of 9 lncRNAs. Patients in the low-risk group exhibited significantly better prognosis compared to those in the high-risk group (P < 0.001). The 9 lncRNAs from the ARL signature were identified as independent prognostic factors (P < 0.001). The signature demonstrated high accuracy in predicting LUAD prognosis, with area under the curve values exceeding 0.7. The risk scores for ARLs showed strong negative correlations with stroma score (P = 5.9E-07, R = -0.23), immune score (P = 9.7E-09, R = -0.26), and microenvironment score (P = 8E-11, R = -0.29). Additionally, the low-risk group exhibited significantly higher TMB compared to the high-risk group (P = 4.6E-05). High-risk status was significantly associated with lower half-maximal inhibitory concentrations for most chemotherapeutic drugs. Conclusion This newly constructed signature based on nine ARLs is a useful instrument for the risk stratification of LUAD patients. The signature has potential clinical significance for predicting the prognosis of LUAD patients and guiding personalized immunotherapy.
Collapse
Affiliation(s)
- Xin Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Department of Transfusion Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yu-lu Gao
- Department of Laboratory Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, China
| | - Jia-yan Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- Department of Transfusion Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying-ying Tong
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao-yang Meng
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shi-gui Yang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Chang-tai Zhu
- Department of Transfusion Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
49
|
Zhang Z, Zhu Y. ANRGs impact on gastric cancer progression and drug efficacy: A comprehensive study. Medicine (Baltimore) 2023; 102:e34861. [PMID: 37904473 PMCID: PMC10615463 DOI: 10.1097/md.0000000000034861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/31/2023] [Indexed: 11/01/2023] Open
Abstract
Gastric cancer (GC) is a significant contributor to cancer-related mortality globally, with the heterogeneity of metastasis and treatment impacting patient prognosis. Currently, the treatment of GC still relies on early surgical resection, and comprehensive treatment is needed for patients with metastatic GC. Anikis-related genes (ANRGs) have been shown to affect tumor metastasis. Exploring the role of ANRGs in GC will help us understand the mechanism of tumor metastasis; screening precise targets and selecting appropriate chemotherapeutics will help individualize the treatment of GC patients. In this study, we established a prognostic scoring model based on ANRGs and explored their association with GC patient prognosis, immune microenvironment, chemotherapeutic drug sensitivity, and small molecule compounds. Our findings revealed that a gene signature composed of ANXA5, CCN1, EGF, VTN, and ZBTB7A accurately predicted GC patient prognosis. Patients in the low-risk group had better outcomes, higher macrophage M1 infiltration, and higher tumor mutation burden. The half maximal inhibitory concentration (IC50) values of Ponatinib (ap.24534), Motesanib (amg.706), and Navitoclax (abt.263) were lower in the high-risk group, indicating that patients in the high-risk group were more sensitive to these chemotherapy drugs, meaning with better clinical outcomes. In addition, we screened the small molecule compound SGC-CBP30 that can inhibit ANXA5 and CCN1, and these results help individualized treatment of GC patients. Our study identified key genes based on ANRGs and developed a novel gene signature for predicting the prognosis of GC patients and understanding the relationship between immunity and tumor mutation burden. Additionally, we identified chemotherapeutic drugs that can guide GC treatment and elucidated the binding affinity between specific targeted drugs and distinct protein sites, providing novel insights for the precise treatment of GC patients.
Collapse
Affiliation(s)
- Zhijing Zhang
- Pharmacy, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Yeqing Zhu
- Pharmacy, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| |
Collapse
|
50
|
Yao M, Mao X, Zhang Z, Xi Y, Gan H, Cui F, Shao S. Tumor-derived CircRNA_102191 promotes gastric cancer and facilitates M2 macrophage polarization. Cell Cycle 2023; 22:2003-2017. [PMID: 37872772 PMCID: PMC10761078 DOI: 10.1080/15384101.2023.2271341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/24/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract and the fourth leading cause of death from cancer-related diseases. In recent years, many studies have found that circular RNAs play an important role in cancer. Tumor-associated macrophages (TAMs) are also critical for tumor progression. OBJECTIVE This study examined the role of circRNA_102191 in gastric cancer progression. METHODS The relative mRNA levels were determined by qRT-PCR. Western blotting and ELISA were used to detect the protein levels. In vitro proliferation was assessed using CCK8 and clonogenic assays. The migration and invasion of cell lines were assessed by transwell-based assays. The interactions between molecules were detected using a luciferase reporter assay. M0 macrophages were induced with PMA. M1 macrophages were induced with LPS and IFN-γ, and M2 macrophages were induced with IL-4. RESULTS The expression of circRNA_102191 was enhanced significantly in gastric cancer cell lines and clinical tumor tissues. CircRNA_102191 promotes gastric cancer cell progression by regulating miR-493-3p and its downstream target gene XPR1. CircRNA_102191 can enhance the EMT process of gastric cancer cells by promoting the M2 polarization of macrophages. CONCLUSION CircRNA_102191 promotes the biological function of gastric cancer cells by regulating the miR-493-3p/XPR1 axis and M2 macrophage polarization.
Collapse
Affiliation(s)
- Min Yao
- Department of Urology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Urology, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, Jiangsu, China
| | - Xuhua Mao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, Jiangsu, China
| | - Zherui Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yue Xi
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haining Gan
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feilun Cui
- Department of Urology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Urology, The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|