1
|
Li J, Mei B, Zhu Y, Huang J, Li M, Wang D, Huang J, Zhang G. CpG hypomethylation at proximal promoter and 5'UTR along with IL6 signaling loop associates with MYD88 upregulation in epithelial ovarian cancer. Sci Rep 2024; 14:30945. [PMID: 39730678 DOI: 10.1038/s41598-024-81975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
MYD88 is an IL-6 primary response gene and, its upregulation of expression has been shown to be a poor prognostic factor in epithelial ovarian cancer (EOC). We investigated the effects of CpG methylation at the proximal promoter/5'UTR and IL-6/SP1/IRF1 signaling on upregulation of MYD88 and prognosis in EOC. We assessed CpG methylation at the proximal promoter/5'UTR of MYD88 using bisulfite sequencing/PCR in 103 EOC patients, 28 normal ovarian tissues and two EOC cell lines with differential expression of MYD88 and identified the impact of the level of CpG methylation on MYD88 upregulation by SP1/IRF1 with knockdown or blockade of IL-6. The proximal promoter/5'UTR of MYD88 was significantly hypomethylated in 75 EOC tissues compared to 28 normal ovarian tissues (P < 0.001). CpG hypomethylation was relevant to MYD88 upregulation in 75 EOC cases (R2 = 0.4376; P < 0.001). Of them, 38 cases with m5CpGlow/MYD88high/IL-6high were associated with reduced progression-free/overall survival compared to 37 cases with m5CpGhigh/MYD88low/IL-6low (P < 0.01). Knockdown of IL-6 or blockade with IL-6 receptor McAb attenuated MYD88 upregulation by SP1/IRF1 signaling in EOC cells with MYD88high (P < 0.001). In conclusion, CpG hypomethylation at the proximal promoter/5'UTR contributes to MYD88 upregulation in EOC via IL-6/SP1/IRF1 pathway.
Collapse
Affiliation(s)
- Junyang Li
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Bingjie Mei
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Yi Zhu
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
- Department of Ultrasound, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jianmei Huang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Meiying Li
- Biochemistry and Molecular Biology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Dengfeng Wang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China.
| | - Guonan Zhang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South People's Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Li Y, Qiu G, Zhou M, Chen Q, Liao X. USP5 Stabilizes IKBKG Through Deubiquitination to Suppress Ferroptosis and Promote Growth in Non-small Cell Lung Cancer. Cell Biochem Biophys 2024:10.1007/s12013-024-01574-5. [PMID: 39397222 DOI: 10.1007/s12013-024-01574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Ferroptosis, a distinctive modality of cell mortality, has emerged as a critical regulator in non-small cell lung cancer (NSCLC). The deubiquitinating enzyme USP5 has established an oncogenic role in NSCLC. However, its biological relevance in NSCLC cell ferroptosis is currently unexplored. Expression analysis was performed by quantitative PCR (qPCR), immunohistochemistry (IHC) and immunoblotting. Animal xenograft studies were used to detect USP5's role in tumor growth. Cell proliferation, colony formation and apoptotic ratio were assessed by CCK-8, colony formation and flow cytometry assays, respectively. Cell ferroptosis was evaluated by gauging ROS, MDA, GSH, SOD, and Fe2+ contents. The USP5/IKBKG relationship and the ubiquitinated IKBKG were evaluated by Co-IP experiments. USP5 expression was elevated in human NSCLC. USP5 depletion suppressed NSCLC cell in vitro and in vivo growth and enhanced cell apoptosis. Moreover, USP5 depletion induced ferroptosis in NSCLC cell lines. Mechanistically, USP5 could enhance the stability of IKBKG protein through deubiquitination. Re-expression of IKBKG partially but significantly abolished USP5 depletion-mediated anti-growth and pro-ferroptosis effects in NSCLC cells. Our study demonstrates that USP5 suppresses ferroptosis and enhances growth in NSCLC cells by stabilizing IKBKG protein through deubiquitination. Targeting USP5 expression is an encouraging strategy to block NSCLC progression.
Collapse
Affiliation(s)
- Yufu Li
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Gan Qiu
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Min Zhou
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Qianzhi Chen
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China
| | - Xiaoyong Liao
- Department of Thoracic Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing, China.
| |
Collapse
|
3
|
Li X, Li Z, Ma H, Li X, Zhai H, Li X, Cheng X, Zhao X, Zhao Z, Hao Z. Ovarian cancer: Diagnosis and treatment strategies (Review). Oncol Lett 2024; 28:441. [PMID: 39099583 PMCID: PMC11294909 DOI: 10.3892/ol.2024.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024] Open
Abstract
Ovarian cancer is a malignant tumor that seriously endangers health. Early ovarian cancer symptoms are frequently challenging to detect, resulting in a large proportion of patients reaching an advanced stage when diagnosed. Conventional diagnosis relies heavily on serum biomarkers and pathological examination, but their sensitivity and specificity require improvement. Targeted therapy inhibits tumor growth by targeting certain characteristics of tumor cells, such as signaling pathways and gene mutations. However, the effectiveness of targeted therapy varies among individuals due to differences in their unique biological characteristics and requires individualized strategies. Immunotherapy is a promising treatment for ovarian cancer due to its long-lasting antitumor effect. Nevertheless, issues such as variable efficacy, immune-associated adverse effects and drug resistance remain to be resolved. The present review discusses the diagnostic strategies, rationale, treatment strategies and prospects of targeted therapy and immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhuocheng Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huiling Ma
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xinwei Li
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Hongxiao Zhai
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xixi Li
- Department of Ultrasound, Zhengzhou First People's Hospital, Zhengzhou, Henan 450004, P.R. China
| | - Xiaofei Cheng
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaohui Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhilong Zhao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Hao
- Department of Basic Medicine Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
4
|
Liu Z, Liu F, Xie J, Zhao Z, Pan S, Liu D, Xia Z, Liu Z. Recognition of differently expressed genes and DNA methylation markers in patients with Lupus nephritis. J Transl Int Med 2024; 12:367-383. [PMID: 39360156 PMCID: PMC11444471 DOI: 10.2478/jtim-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Background and Objectives Systemic lupus erythematosus (SLE) is distinguished by dysregulated immune system activity, resulting in a spectrum of clinical manifestations, with lupus nephritis being particularly prominent. This study endeavors to discern novel targets as potential therapeutic markers for this condition. Methods Weighted correlation network analysis (WGCNA) was used to construct the network and select the key hub genes in the co-expression module based on the gene expression dataset GSE81622. Subsequently, functional enrichment and pathway analysis were performed for SLE and lupus nephritis. In addition, also identify genes and differences in SLE with lupus nephritis and methylation site. Finally, qRT-PCR and western blot were used to verify the up-regulated expression levels of the selected key genes. Results Within the co-expression modules constructed by WGCNA, the MElightcyan module exhibited the strongest positive correlation with lupus nephritis (0.4, P = 0.003), while showing a weaker correlation with the control group SLE (0.058) and a negative correlation with the control group (-0.41, P = 0.002). Additionally, the MEgreenyellow module displayed the highest positive correlation with SLE (0.25), but its P value was 0.06, which did not reach statistical significance(P > 0.05). Furthermore, it had a negative correlation with the control group was (-0.38, P = 0.004). The module associated with lupus nephritis was characterized by processes such as neutrophil activation (neutrophil_activation), neutrophil degranulation (neutrophil_degranulation), neutrophil activation involved in immune response (neutrophil_activation_involved_in_immune_response), neutrophils mediated immune (neutrophil_mediated_immunity) and white blood cells degranulation (leukocyte_degranulation) and so on the adjustment of the process. Secondly, in the analysis of SLE samples, the identification of differentially expressed genes revealed 125 genes, with 49 being up-regulated and 76 down-regulated. In the case of lupus nephritis samples, 156 differentially expressed genes were discerned, include in 70 up-regulated and 86 down-regulated genes. When examining differential methylation sites, we observed 12432 such sites in the SLE sample analysis, encompassing 2260 hypermethylation sites and 10172 hypomethylation sites. In the lupus nephritis samples analysis, 9613 differential methylation sites were identified, comprising 4542 hypermethylation sites and 5071 hypomethylation sites. Substantiating our findings, experimental validation of the up-regulated genes in lupus nephritis confirmed increased levels of gene expression and protein expression for CEACAM1 and SLC2A5. Conclusions We have identified several genes, notably CEACAM1 and SLC2A5, as potential markers for lupus nephritis. Their elevated expression levels and reduced DNA methylation in lupus nephritis contribute to a more comprehensive understanding of the aberrant epigenetic regulation of expression in this condition. These findings hold significant implications for the diagnosis and therapeutic strategies of lupus nephritis.
Collapse
Affiliation(s)
- Zhenjie Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Key Laboratory of Henan Provincial Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou450052, Henan Province, China
| | - Junwei Xie
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Zihao Zhao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Key Laboratory of Henan Provincial Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou450052, Henan Province, China
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Key Laboratory of Henan Provincial Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou450052, Henan Province, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan Province, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou450052, Henan Province, China
- Key Laboratory of Henan Provincial Research Center for Kidney Disease, Zhengzhou450052, Henan Province, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou450052, Henan Province, China
| |
Collapse
|
5
|
Jia W, Li N, Wang J, Gong X, Ouedraogo SY, Wang Y, Zhao J, Grech G, Chen L, Zhan X. Immune-related gene methylation prognostic instrument for stratification and targeted treatment of ovarian cancer patients toward advanced 3PM approach. EPMA J 2024; 15:375-404. [PMID: 38841623 PMCID: PMC11148001 DOI: 10.1007/s13167-024-00359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/07/2024] [Indexed: 06/07/2024]
Abstract
Background DNA methylation is an important mechanism in epigenetics, which can change the transcription ability of genes and is closely related to the pathogenesis of ovarian cancer (OC). We hypothesize that DNA methylation is significantly different in OCs compared to controls. Specific DNA methylation status can be used as a biomarker of OC, and targeted drugs targeting these methylation patterns and DNA methyltransferase may have better therapeutic effects. Studying the key DNA methylation sites of immune-related genes (IRGs) in OC patients and studying the effects of these methylation sites on the immune microenvironment may provide a new method for further exploring the pathogenesis of OC, realizing early detection and effective monitoring of OC, identifying effective biomarkers of DNA methylation subtypes and drug targets, improving the efficacy of targeted drugs or overcoming drug resistance, and better applying it to predictive diagnosis, prevention, and personalized medicine (PPPM; 3PM) of OC. Method Hypermethylated subtypes (cluster 1) and hypomethylated subtypes (cluster 2) were established in OCs based on the abundance of different methylation sites in IRGs. The differences in immune score, immune checkpoints, immune cells, and overall survival were analyzed between different methylation subtypes in OC samples. The significant pathways, gene ontology (GO), and protein-protein interaction (PPI) network of the identified methylation sites in IRGs were enriched. In addition, the immune-related methylation signature was constructed with multiple regression analysis. A methylation site model based on IRGs was constructed and verified. Results A total of 120 IRGs with 142 differentially methylated sites (DMSs) were identified. The DMSs were clustered into a high-level methylation group (cluster 1) and a low-level methylation group (cluster 2). The significant pathways and GO analysis showed many immune-related and cancer-associated enrichments. A methylation site signature based on IRGs was constructed, including RORC|cg25112191, S100A13|cg14467840, TNF|cg04425624, RLN2|cg03679581, and IL1RL2|cg22797169. The methylation sites of all five genes showed hypomethylation in OC, and there were statistically significant differences among RORC|cg25112191, S100A13|cg14467840, and TNF|cg04425624 (p < 0.05). This prognostic model based on low-level methylation and high-level methylation groups was significantly linked to the immune microenvironment as well as overall survival in OC. Conclusions This study provided different methylation subtypes for OC patients according to the methylation sites of IRGs. In addition, it helps establish a relationship between methylation and the immune microenvironment, which showed specific differences in biological signaling pathways, genomic changes, and immune mechanisms within the two subgroups. These data provide ones to deeply understand the mechanism of immune-related methylation genes on the occurrence and development of OC. The methylation-site signature is also to establish new possibilities for OC therapy. These data are a precious resource for stratification and targeted treatment of OC patients toward an advanced 3PM approach. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00359-3.
Collapse
Affiliation(s)
- Wenshuang Jia
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xiaoxia Gong
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Yan Wang
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Junkai Zhao
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| | - Godfrey Grech
- Department of Pathology, University of Malta, Msida, Malta
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117 People’s Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
6
|
Preetam S, Mondal S, Priya S, Bora J, Ramniwas S, Rustagi S, Qusty NF, Alghamdi S, Babalghith AO, Siddiqi A, Malik S. Targeting tumour markers in ovarian cancer treatment. Clin Chim Acta 2024; 559:119687. [PMID: 38663473 DOI: 10.1016/j.cca.2024.119687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Ovarian cancers (OC) are the most common, lethal, and stage-dependent cancers at the global level, specifically in female patients. Targeted therapies involve the administration of drugs that specifically target the alterations in tumour cells responsible for their growth, proliferation, and metastasis, with the aim of treating particular patients. Presently, within the realm of gynaecological malignancies, specifically in breast and OCs, there exist various prospective therapeutic targets encompassing tumour-intrinsic signalling pathways, angiogenesis, homologous-recombination deficit, hormone receptors, and immunologic components. Breast cancers are often detected in advanced stages, primarily due to the lack of a reliable screening method. However, various tumour markers have been extensively researched and employed to evaluate the condition, progression, and effectiveness of medication treatments for this ailment. The emergence of recent technological advancements in the domains of bioinformatics, genomics, proteomics, and metabolomics has facilitated the exploration and identification of hitherto unknown biomarkers. The primary objective of this comprehensive review is to meticulously investigate and analyze both established and emerging methodologies employed in the identification of tumour markers associated with OC.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST) Dalseong-gun, Daegu 42988, South Korea.
| | - Sagar Mondal
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Swati Priya
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Seema Ramniwas
- University Center for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, 248007 Dehradun, Uttarakhand, India.
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Abdullah Siddiqi
- Department of Clinical Laboratory, Makkah Park Clinics, Makkah, Saudi Arabia.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| |
Collapse
|
7
|
Santagata S, Rea G, Bello AM, Capiluongo A, Napolitano M, Desicato S, Fragale A, D'Alterio C, Trotta AM, Ieranò C, Portella L, Persico F, Di Napoli M, Di Maro S, Feroce F, Azzaro R, Gabriele L, Longo N, Pignata S, Perdonà S, Scala S. Targeting CXCR4 impaired T regulatory function through PTEN in renal cancer patients. Br J Cancer 2024; 130:2016-2026. [PMID: 38704478 PMCID: PMC11183124 DOI: 10.1038/s41416-024-02702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Tregs trafficking is controlled by CXCR4. In Renal Cell Carcinoma (RCC), the effect of the new CXCR4 antagonist, R54, was explored in peripheral blood (PB)-Tregs isolated from primary RCC patients. METHODS PB-Tregs were isolated from 77 RCC patients and 38 healthy donors (HDs). CFSE-T effector-Tregs suppression assay, IL-35, IFN-γ, IL-10, TGF-β1 secretion, and Nrp-1+Tregs frequency were evaluated. Tregs were characterised for CTLA-4, PD-1, CD40L, PTEN, CD25, TGF-β1, FOXP3, DNMT1 transcriptional profile. PTEN-pAKT signalling was evaluated in the presence of R54 and/or triciribine (TCB), an AKT inhibitor. Methylation of TSDR (Treg-Specific-Demethylated-Region) was conducted. RESULTS R54 impaired PB-RCC-Tregs function, reduced Nrp-1+Tregs frequency, the release of IL-35, IL-10, and TGF-β1, while increased IFN-γ Teff-secretion. The CXCR4 ligand, CXCL12, recruited CD25+PTEN+Tregs in RCC while R54 significantly reduced it. IL-2/PMA activates Tregs reducing pAKT+Tregs while R54 increases it. The AKT inhibitor, TCB, prevented the increase in pAKT+Tregs R54-mediated. Moreover, R54 significantly reduced FOXP3-TSDR demethylation with DNMT1 and FOXP3 downregulation. CONCLUSION R54 impairs Tregs function in primary RCC patients targeting PTEN/PI3K/AKT pathway, reducing TSDR demethylation and FOXP3 and DNMT1 expression. Thus, CXCR4 targeting is a strategy to inhibit Tregs activity in the RCC tumour microenvironment.
Collapse
Affiliation(s)
- Sara Santagata
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giuseppina Rea
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Capiluongo
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Napolitano
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Sonia Desicato
- Urology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Alessandra Fragale
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Crescenzo D'Alterio
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Anna Maria Trotta
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Caterina Ieranò
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Francesco Persico
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138, Napoli, Italy
| | - Marilena Di Napoli
- Uro-gynecological Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Florinda Feroce
- Pathology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Rosa Azzaro
- Transfusion Medicine Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Lucia Gabriele
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Nicola Longo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Urology Unit, University of Naples "Federico II", 80138, Napoli, Italy
| | - Sandro Pignata
- Uro-gynecological Oncology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Sisto Perdonà
- Urology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| |
Collapse
|
8
|
Sarker B, Matiur Rahaman M, Alamin MH, Ariful Islam M, Nurul Haque Mollah M. Boosting edgeR (Robust) by dealing with missing observations and gene-specific outliers in RNA-Seq profiles and its application to explore biomarker genes for diagnosis and therapies of ovarian cancer. Genomics 2024; 116:110834. [PMID: 38527595 DOI: 10.1016/j.ygeno.2024.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
The edgeR (Robust) is a popular approach for identifying differentially expressed genes (DEGs) from RNA-Seq profiles. However, it shows weak performance against gene-specific outliers and is unable to handle missing observations. To address these issues, we proposed a pre-processing approach of RNA-Seq count data by combining the iLOO-based outlier detection and random forest-based missing imputation approach for boosting the performance of edgeR (Robust). Both simulation and real RNA-Seq count data analysis results showed that the proposed edgeR (Robust) outperformed than the conventional edgeR (Robust). To investigate the effectiveness of identified DEGs for diagnosis, and therapies of ovarian cancer (OC), we selected top-ranked 12 DEGs (IL6, XCL1, CXCL8, C1QC, C1QB, SNAI2, TYROBP, COL1A2, SNAP25, NTS, CXCL2, and AGT) and suggested hub-DEGs guided top-ranked 10 candidate drug-molecules for the treatment against OC. Hence, our proposed procedure might be an effective computational tool for exploring potential DEGs from RNA-Seq profiles for diagnosis and therapies of any disease.
Collapse
Affiliation(s)
- Bandhan Sarker
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Matiur Rahaman
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China.
| | - Muhammad Habibulla Alamin
- Department of Statistics, Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Ariful Islam
- Bioinformatics Laboratory (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Laboratory (Dry), Department of Statistics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
9
|
Wilczyński J, Paradowska E, Wilczyński M. Personalization of Therapy in High-Grade Serous Tubo-Ovarian Cancer-The Possibility or the Necessity? J Pers Med 2023; 14:49. [PMID: 38248751 PMCID: PMC10817599 DOI: 10.3390/jpm14010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
High-grade serous tubo-ovarian cancer (HGSTOC) is the most lethal tumor of the female genital tract. The foregoing therapy consists of cytoreduction followed by standard platinum/taxane chemotherapy; alternatively, for primary unresectable tumors, neo-adjuvant platinum/taxane chemotherapy followed by delayed interval cytoreduction. In patients with suboptimal surgery or advanced disease, different forms of targeted therapy have been accepted or tested in clinical trials. Studies on HGSTOC discovered its genetic and proteomic heterogeneity, epigenetic regulation, and the role of the tumor microenvironment. These findings turned attention to the fact that there are several distinct primary tumor subtypes of HGSTOC and the unique biology of primary, metastatic, and recurrent tumors may result in a differential drug response. This results in both chemo-refractoriness of some primary tumors and, what is significantly more frequent and destructive, secondary chemo-resistance of metastatic and recurrent HGSTOC tumors. Treatment possibilities for platinum-resistant disease include several chemotherapeutics with moderate activity and different targeted drugs with difficult tolerable effects. Therefore, the question appears as to why different subtypes of ovarian cancer are predominantly treated based on the same therapeutic schemes and not in an individualized way, adjusted to the biology of a specific tumor subtype and temporal moment of the disease. The paper reviews the genomic, mutational, and epigenetic signatures of HGSTOC subtypes and the tumor microenvironment. The clinical trials on personalized therapy and the overall results of a new, comprehensive approach to personalized therapy for ovarian cancer have been presented and discussed.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Street, 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Street, 90-419 Lodz, Poland
| |
Collapse
|
10
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Sahnane N, Libera L, Facchi S, Carnevali I, Ronchi S, Albeni C, Cromi A, Casarin J, Sessa F, Tibiletti MG. Similarities and differences in gene expression profiles of BRCA1 methylated and mutated epithelial ovarian cancers. Front Oncol 2023; 13:1268127. [PMID: 37854675 PMCID: PMC10579792 DOI: 10.3389/fonc.2023.1268127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction BRCA1 methylated (BRCA1met) epithelial ovarian cancer (EOC) is a recently defined and not well-investigated subset of neoplasms. To date, no studies have focused on the transcriptional profiles of BRCA1met cases, and, as a matter of fact, we still do not know if this subset of EOCs is similar, and to what extent, to BRCA1 mutated (BRCA1mut) cases. Methods We compared a group of 17 BRCA1met cases against 10 BRCA1mut cases using a subset of carefully selected 17 BRCAwt EOCs as a control group. Results First, BRCA1met cases showed a downregulation of the relative transcript, while this association was not observed for BRCA1mut EOCs. The BRCA1met group exhibited a general upregulation of homologous recombination (HR)-related genes, as well as BRCA1mut. Overall, BRCA1met had a different gene expression profile, characterized by diffuse downregulation, whereas BRCA1mut showed a general upregulation (p < 0.0001). Both BRCA1-defective groups showed a slightly activated immune response mediated by interferon (IFN) gamma pathways. Discussion In conclusion, even if the expression profile of many genes related to DNA damage and repair system is shared between BRCA1mut and BRCA1met EOCs supporting that BRCA1met EOCs may benefit from PARPi therapies, our data demonstrate that BRCA1mut and BRCA1met EOCs show different expression profiles, suggesting a different mechanism of carcinogenesis that can be reflected in different responses to therapies and disease recovery.
Collapse
Affiliation(s)
- Nora Sahnane
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Laura Libera
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Sofia Facchi
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Ileana Carnevali
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Susanna Ronchi
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Chiara Albeni
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
| | - Antonella Cromi
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Obstetrics and Gynaecology Department, Del Ponte Women’s and Children’s Hospital, Varese, Italy
| | - Jvan Casarin
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Obstetrics and Gynaecology Department, Del Ponte Women’s and Children’s Hospital, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Maria Grazia Tibiletti
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Peng S, Zhang X, Wu Y. Potential applications of DNA methylation testing technology in female tumors and screening methods. Biochim Biophys Acta Rev Cancer 2023; 1878:188941. [PMID: 37329994 DOI: 10.1016/j.bbcan.2023.188941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
DNA methylation is a common epigenetic modification, and the current commonly used methods for DNA methylation detection include methylation-specific PCR, methylation-sensitive restriction endonuclease-PCR, and methylation-specific sequencing. DNA methylation plays an important role in genomic and epigenomic studies, and combining DNA methylation with other epigenetic modifications, such as histone modifications, may lead to better DNA methylation. DNA methylation also plays an important role in the development of disease, and analyzing changes in individual DNA methylation patterns can provide individualized diagnostic and therapeutic solutions. Liquid biopsy techniques are also increasingly well established in clinical practice and may provide new methods for early cancer screening. It is important to find new screening methods that are easy to perform, minimally invasive, patient-friendly, and affordable. DNA methylation mechanisms are thought to have an important role in cancer and have potential applications in the diagnosis and treatment of female tumors. This review discussed early detection targets and screening methods for common female tumors such as breast, ovarian, and cervical cancers and discussed advances in the study of DNA methylation in these tumors. Although existing screening, diagnostic, and treatment modalities exist, the high morbidity and mortality rates of these tumors remain challenging.
Collapse
Affiliation(s)
- Shixuan Peng
- Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China
| | - Xinwen Zhang
- Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China
| | - Yongjun Wu
- Department of Pathology, The First People's Hospital of Xiangtan City, 100 Shuyuan Road, 411100 Xiangtan, Hunan Province, China.
| |
Collapse
|
13
|
Matsas A, Stefanoudakis D, Troupis T, Kontzoglou K, Eleftheriades M, Christopoulos P, Panoskaltsis T, Stamoula E, Iliopoulos DC. Tumor Markers and Their Diagnostic Significance in Ovarian Cancer. Life (Basel) 2023; 13:1689. [PMID: 37629546 PMCID: PMC10455076 DOI: 10.3390/life13081689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Ovarian cancer (OC) is characterized by silent progression and late-stage diagnosis. It is critical to detect and accurately diagnose the disease early to improve survival rates. Tumor markers have emerged as valuable tools in the diagnosis and management of OC, offering non-invasive and cost-effective options for screening, monitoring, and prognosis. PURPOSE This paper explores the diagnostic importance of various tumor markers including CA-125, CA15-3, CA 19-9, HE4,hCG, inhibin, AFP, and LDH, and their impact on disease monitoring and treatment response assessment. METHODS Article searches were performed on PubMed, Scopus, and Google Scholar. Keywords used for the searching process were "Ovarian cancer", "Cancer biomarkers", "Early detection", "Cancer diagnosis", "CA-125","CA 15-3","CA 19-9", "HE4","hCG", "inhibin", "AFP", "LDH", and others. RESULTS HE4, when combined with CA-125, shows improved sensitivity and specificity, particularly in early-stage detection. Additionally, hCG holds promise as a prognostic marker, aiding treatment response prediction and outcome assessment. Novel markers like microRNAs, DNA methylation patterns, and circulating tumor cells offer potential for enhanced diagnostic accuracy and personalized management. Integrating these markers into a comprehensive panel may improve sensitivity and specificity in ovarian cancer diagnosis. However, careful interpretation of tumor marker results is necessary, considering factors such as age, menopausal status, and comorbidities. Further research is needed to validate and refine diagnostic algorithms, optimizing the clinical significance of tumor markers in ovarian cancer management. In conclusion, tumor markers such as CA-125, CA15-3, CA 19-9, HE4, and hCG provide valuable insights into ovarian cancer diagnosis, monitoring, and prognosis, with the potential to enhance early detection.
Collapse
Affiliation(s)
- Alkis Matsas
- Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Stefanoudakis
- Second Department of Obstetrics and Gynecology, Medical School, “Aretaieion” University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodore Troupis
- Department of Anatomy, Faculty of Health Sciences, Medical School, National and Kapodistrian University of Athens, MikrasAsias Str. 75, 11627 Athens, Greece
| | - Konstantinos Kontzoglou
- Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, Medical School, “Aretaieion” University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, Medical School, “Aretaieion” University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Panoskaltsis
- Second Department of Obstetrics and Gynecology, Medical School, “Aretaieion” University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Stamoula
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, University Campus Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios C. Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
15
|
Yang L, Gu Y. SPTBN2 regulates endometroid ovarian cancer cell proliferation, invasion and migration via ITGB4‑mediated focal adhesion and ECM receptor signalling pathway. Exp Ther Med 2023; 25:277. [PMID: 37206547 PMCID: PMC10189743 DOI: 10.3892/etm.2023.11977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/31/2023] [Indexed: 05/21/2023] Open
Abstract
Ovarian cancer is as a major contributor to gynaecologic death globally. The present study aimed to investigate the regulatory role of spectrin β non-erythrocytic 2 gene (SPTBN2) in endometroid ovarian cancer and its mechanism of action. According to the Gene Expression Profiling Interactive Analysis (GEPIA) database, SPTBN2 expression is elevated in ovarian cancer tissues and higher SPTBN2 expression indicated a worse prognosis. The present study assessed SPTBN2 mRNA and protein expression levels by reverse transcription-quantitative PCR and western blotting, respectively. Cell viability, proliferation, migration and invasion were assessed with Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine incorporation, wound healing and Transwell assays, respectively. SPTBN2 expression was notably enhanced in ovarian cancer cell lines, especially in A2780 cells compared with HOSEPiC cells (P<0.001). Following transfection with small interfering (si)RNA targeting SPTBN2, the viability, proliferation, migration and invasion of A2780 cells were decreased compared with those of A2780 cells transfected with siRNA-NC (P<0.001). Gene Set Enrichment Analysis database revealed that SPTBN2 was primarily enriched in 'focal adhesion' and 'extracellular matrix (ECM)-receptor interaction', whereas SPTBN2 was significantly associated with integrin β4 (ITGB4) in the GEPIA database. In addition, rescue experiments were performed to determine the mechanism of SPTBN2 in endometroid ovarian cancer. ITGB4 overexpression reversed the inhibitory effects of the SPTBN2 knockdown on viability, proliferation, migration and invasion of A2780 cells (P<0.05). The impacts of SPTBN2 on the expression of focal adhesion and downstream ECM receptor signalling-related proteins, including Src and p-FAK/FAK, were significantly reversed by ITGB4 overexpression (P<0.01). Collectively, SPTBN2 may regulate endometroid ovarian cancer cell proliferation, invasion and migration through the ITGB4-mediated focal adhesion and ECM receptor signalling pathway.
Collapse
Affiliation(s)
- La Yang
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
- Correspondence to: Dr La Yang, Department of Obstetrics and Gynaecology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi Street, Guiyang, Guizhou 550001, P.R. China
| | - Yuanyuan Gu
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
16
|
Guo C, Tang Y, Li Q, Yang Z, Guo Y, Chen C, Zhang Y. Deciphering the immune heterogeneity dominated by natural killer cells with prognostic and therapeutic implications in hepatocellular carcinoma. Comput Biol Med 2023; 158:106872. [PMID: 37030269 DOI: 10.1016/j.compbiomed.2023.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Belonging to type 1 innate lymphoid cells (ILC1), natural killer (NK) cells play an important role not only in fighting microbial infections but also in anti-tumor response. Hepatocellular carcinoma (HCC) represents an inflammation-related malignancy and NK cells are enriched in the liver, making them an essential component of the HCC immune microenvironment. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis to identify the NK cell marker genes (NKGs) and uncovered 80 prognosis-related ones by the TCGA-LIHC dataset. Based on prognostic NKGs, HCC patients were categorized into two subtypes with distinct clinical outcomes. Subsequently, we conducted LASSO-COX and stepwise regression analysis on prognostic NKGs to establish a five-gene (UBB, CIRBP, GZMH, NUDC, and NCL) prognostic signature-NKscore. Different mutation statuses of the two risk groups stratified by NKscore were comprehensively characterized. Besides, the established NKscore-integrated nomogram presented enhanced predictive performance. Single sample gene set enrichment analysis (ssGSEA) analysis was used to uncover the landscape of the tumor immune microenvironment (TIME) and the high-NKscore risk group was characterized with an immune-exhausted phenotype while the low-NKscore risk group held relatively strong anti-cancer immunity. T cell receptor (TCR) repertoire, tumor inflammation signature (TIS), and Immunophenoscore (IPS) analyses revealed differences in immunotherapy sensitivity between the two NKscore risk groups. Taken together, we developed a novel NK cell-related signature to predict the prognosis and immunotherapy efficacy for HCC patients.
Collapse
Affiliation(s)
- Chengbin Guo
- Faculty of Medicine, Macau University of Science and Technology, Tapai, Macau, 999078, China
| | - Yuqin Tang
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China
| | - Qizhuo Li
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhao Yang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqi Guo
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Chuanliang Chen
- Clinical Bioinformatics Experimental Center, Henan Provincial People's Hospital, Zhengzhou University, 450003, Zhengzhou, China.
| | - Yongqiang Zhang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
17
|
Li Y, Zhang J, Cai Y, Liu H, Yang W, Xu Y, Huang M. VSTM2L contributes to anoikis resistance and acts as a novel biomarker for metastasis and clinical outcome in ovarian cancer. Biochem Biophys Res Commun 2023; 658:107-115. [PMID: 37030064 DOI: 10.1016/j.bbrc.2023.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
The majority of patients are diagnosed when ovarian cancer (OC) has metastasized, making surgery and chemotherapy less effective. Thus, there is an urgent need to elucidate the mechanisms underlying metastasis and to further explore novel diagnostic biomarkers of OC metastasis. Here, we conducted a genome-wide CRISPR-Cas9 screen for anoikis resistance to identify key genes associated with OC metastasis. Further, bioinformatic analysis was performed using TCGA and GTEx datasets to explore the genes associated with OC progression and prognosis. After integrated analysis, the V-set and transmembrane domain-containing protein 2-like (VSTM2L) was identified as a crucial gene closely associated with OC metastasis, progression, and prognosis. Further validation using a patient-based cohort suggested that VSTM2L expression was significantly higher in metastatic lesions than in primary lesions. Subsequently, an in vitro assay showed that VSTM2L silencing increased SKOV3 cell death and hampered spheroid formation. Mechanistically, GSEA highlighted that epithelial-mesenchymal transition (EMT)-related pathways was positively associated with VSTM2L expression. Consistently, the validation based on the VSTM2L silence suggested the involvement of VSTM2L in EMT-related TGF-β and NF-κB signaling. Meanwhile, the addition of VSTM2L-containing medium did not provoke those signaling, indicating VSTM2L functions as an intracellular protein to activate TGF-β and NF-κB signaling. In summary, our study revealed that VSTM2L is a novel player involved in anoikis resistance and is a promising biomarker of OC metastasis and prognosis.
Collapse
|
18
|
Wang J, Cui X, Weng Y, Wei J, Chen X, Wang P, Wang T, Qin J, Peng M. Application of an angiogenesis-related genes risk model in lung adenocarcinoma prognosis and immunotherapy. Front Genet 2023; 14:1092968. [PMID: 36816016 PMCID: PMC9929558 DOI: 10.3389/fgene.2023.1092968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is an essential pathological subtype of non-small cell lung cancer and offers a severe problem for worldwide public health. There is mounting proof that angiogenesis is a crucial player in LUAD progression. Consequently, the purpose of this research was to construct a novel LUAD risk assessment model based on genetic markers related to angiogenesis. We accessed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases for LUAD mRNA sequencing data and clinical information. Based on machine algorithms and bioinformatics, angiogenic gene-related risk scores (RS) were calculated. Patients in the high-risk category had a worse prognosis (p < 0.001) in the discovery TCGA cohort, and the results were confirmed by these three cohorts (validation TCGA cohort, total TCGA cohort, and GSE68465 cohort). Moreover, risk scores for genes involved in angiogenesis were independent risk factors for lung cancer in all four cohorts. The low-risk group was associated with better immune status and lower tumor mutational load. In addition, the somatic mutation study revealed that the low-risk group had a lower mutation frequency than the high-risk group. According to an analysis of tumor stem cell infiltration, HLA expression, and TIDE scores, the low-risk group had higher TIDE scores and HLA expression levels than the high-risk group, and the amount of tumor stem cell infiltration correlated with the risk score. In addition, high-risk groups may benefit from immune checkpoint inhibitors and targeted therapies. In conclusion, we developed an angiogenesis-related gene risk model to predict the prognosis of LUAD patients, which may aid in the classification of patients with LUAD and select medications for LUAD patients.
Collapse
Affiliation(s)
- Jinsong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Cui
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiayan Wei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiwei Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tong Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Qin
- Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China,*Correspondence: Jian Qin, ; Min Peng,
| | - Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China,*Correspondence: Jian Qin, ; Min Peng,
| |
Collapse
|
19
|
Luvhengo T, Molefi T, Demetriou D, Hull R, Dlamini Z. Use of Artificial Intelligence in Implementing Mainstream Precision Medicine to Improve Traditional Symptom-driven Practice of Medicine: Allowing Early Interventions and Tailoring better-personalised Cancer Treatments. ARTIFICIAL INTELLIGENCE AND PRECISION ONCOLOGY 2023:49-72. [DOI: 10.1007/978-3-031-21506-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Wang M, Xu Z, Cai Q, Deng Y, Shi W, Zhou H, Wang D, Li J. Isorhamnetin inhibits progression of ovarian cancer by targeting ESR1. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1216. [PMID: 36544694 PMCID: PMC9761148 DOI: 10.21037/atm-22-5064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Background Although reports suggest Chinese herbal medicine treatment of ovarian cancer (OC) has a good effect, the role of isorhamnetin (ISO), a flavonol aglycone with immune, anti-inflammatory, cardiovascular and cerebrovascular protective effects, as well as an anticancer effect, in OC remains unclear. Network pharmacology was used to explore this in vitro and in vivo, and to identify relevant targets. Methods The common targets of ISO in the treatment of OC were screened by constructing drug targets and disease gene databases for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The protein-protein interaction network was constructed by STRING. Overlapping targets were further analyzed using the online tool UALCAN to analyze the correlation between gene expression and patient survival and prognosis. The effect of ISO on OC cell proliferation, migration, and invasion was assessed in vivo and in vitro, and the function of the estrogen receptor 1 (ESR1) in the development of OC was examined by overexpressing and knocking down ESR1 expression. Results Through network pharmacology analysis, 25 target genes related to ISO-OC were screened out. The overall survival rate of OC patients only significantly correlated with high expression of ESR1 among 13 highly expressed overlapping genes. ISO significantly inhibited the proliferation, migration and invasion of OC cells in vitro and inhibited tumor growth in vivo. Overexpression of ESR1 significantly promoted the proliferation, migration and invasion of OC cells, whereas knockdown of ESR1 showed the opposite result. In addition, overexpression of ESR1 significantly reversed the inhibitory effect of ISO on the proliferation, migration and invasion of OC cells. Conclusions We confirmed that ISO inhibits OC cell proliferation, migration and invasion by targeting ESR1 expression, which provides a theoretical basis for further pharmacological research.
Collapse
Affiliation(s)
- Manman Wang
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhengtan Xu
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Qi Cai
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Yanmei Deng
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Weiqiao Shi
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Hongyu Zhou
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Dajiang Wang
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Zhang R, Siu MKY, Ngan HYS, Chan KKL. Molecular Biomarkers for the Early Detection of Ovarian Cancer. Int J Mol Sci 2022; 23:ijms231912041. [PMID: 36233339 PMCID: PMC9569881 DOI: 10.3390/ijms231912041] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer, leading to over 152,000 deaths each year. A late diagnosis is the primary factor causing a poor prognosis of ovarian cancer and often occurs due to a lack of specific symptoms and effective biomarkers for an early detection. Currently, cancer antigen 125 (CA125) is the most widely used biomarker for ovarian cancer detection, but this approach is limited by a low specificity. In recent years, multimarker panels have been developed by combining molecular biomarkers such as human epididymis secretory protein 4 (HE4), ultrasound results, or menopausal status to improve the diagnostic efficacy. The risk of ovarian malignancy algorithm (ROMA), the risk of malignancy index (RMI), and OVA1 assays have also been clinically used with improved sensitivity and specificity. Ongoing investigations into novel biomarkers such as autoantibodies, ctDNAs, miRNAs, and DNA methylation signatures continue to aim to provide earlier detection methods for ovarian cancer. This paper reviews recent advancements in molecular biomarkers for the early detection of ovarian cancer.
Collapse
|
22
|
Elbakkoush AA, Khaleel A, Mohamed ANA, Alathamneh A. Pathway analysis of sepsis-induced changes gene expression. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sepsis reaction is a response to an infection composed of genetic elements. This research aims to better understand how sepsis affects the molecular pathways in whole blood samples.
Methods
Whole blood samples from healthy controls (n = 18), sepsis nonsurvivors (n = 9), and sepsis survivors (n = 26) were retrieved from the gene expression omnibus (GEO) collection of the national center for biotechnology information (NCBI) (accession number GSE54514). The NCBI's GEO2R program was used to determine differential expression, and the ingenuity pathway analysis (IPA) software was utilized to do a pathway analysis.
Results
In sepsis patients, 2672 genes were substantially differently expressed (p value 0.05). One thousand three hundred four genes were overexpressed, and one thousand three hundred sixty-eight were under-expressed. The inhibition of ARE-mediated mRNA degradation pathway and the Pl3K/AKT signaling spliceosomal cycle were the most significant canonical pathways identified by ingenuity pathway analysis (IPA). The IPA upstream analysis predicted the ESR1, SIRT1, and PTPRR proteins, and the drugs filgrastim and fluticasone were top transcriptional regulators.
Conclusions
The inhibition of ARE-mediated mRNA degradation pathway and the Pl3K/AKT signaling spliceosomal cycle were highlighted as essential pathways of inflammation by IPA, indicating widespread cancer owing to sepsis. Our data imply that sepsis considerably influences gene pathways in whole blood samples, pointing to possible targets for sepsis treatment.
Collapse
|
23
|
Lin G, Xinhe Z, Haoyu T, Yiling L. Aberrantly methylated-differentially expressed genes and related pathways in cholangiocarcinoma. Medicine (Baltimore) 2022; 101:e29379. [PMID: 35758372 PMCID: PMC9276268 DOI: 10.1097/md.0000000000029379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
This study aimed to explore aberrantly methylated-differentially expressed genes and related pathways in cholangiocarcinoma (CCA).The mRNA expression data (GSE26566) and methylation profiling data (GSE44965) were collected from the Gene Expression Omnibus (GEO) Datasets. Differentially expressed genes and differentially methylated genes were identified using GEO2R. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using clusterprofiler in R. MCODE clustering tool was used to screen modules of the protein-protein interaction network in Cytoscape. Related pathways of hub gene by using gene set enrichment analysis.Eighty-one hypermethylated, lowly expressed genes (Hyper-LGs) and 76 hypomethylated, highly expressed genes (Hypo-HGs) were identified in this study. Hyper-LGs were enriched in ion channel binding and transcription factor activity, which was associated with Mineral absorption and Cell adhesion molecules. Hypo-HGs were enriched in cysteine-type endopeptidase activity, which was associated with Sphingolipid signaling pathway and T cell receptor signaling pathway. Based on protein-protein interaction networks, MYC and VWF were identified as hub genes for Hyper-LGs, and no hub genes for Hypo-HGs.This study found methylated-differentially expressed genes and signaling pathways that are connected with the CCA by using a series of bioinformatics databases and tools. MYC and VWF act as hub genes of CCA, which can be used as biomarkers based on aberrant methylation for the accurate diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Guan Lin
- Gastroenterology Department, the First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, China
| | - Zhang Xinhe
- Gastroenterology Department, the First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, China
| | - Tian Haoyu
- The 3rd Clinical Department of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, China
| | - Li Yiling
- Gastroenterology Department, the First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, China
| |
Collapse
|
24
|
A Clinical Diagnostic Value Analysis of Serum CA125, CA199, and HE4 in Women with Early Ovarian Cancer: Systematic Review and Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9339325. [PMID: 35664644 PMCID: PMC9159879 DOI: 10.1155/2022/9339325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 05/06/2022] [Indexed: 12/31/2022]
Abstract
Objective To evaluate the value of combined detection of serum CA125, CA199, and HE4 in the diagnosis of ovarian cancer. Methods Relevant articles retrieved from PubMed, Elsevier Science, Springer, China National Knowledge Infrastructure (CNKI), Wanfang, and VIP databases were screened strictly according to inclusion and exclusion criteria. Included literature published from January 2005 to December 2021. (2) Serum HE4, CA125, CA199, and their combination for ovarian cancer diagnostic tests were studied, and healthy subjects or patients with the benign disease were taken as a control group. (3) Pathological tissue diagnosis as the gold standard. (4) Complete original data can be obtained. (5) The sample size was ≥20. (6) Language is limited to Chinese and English. Data features and QUADAS table were extracted from the included literature, and QUADAS evaluation tool detail table was used for the included study. Conduct quality evaluation. Statistical analysis was carried out using meta-disc software version 1.4. Appropriate effect model was selected to merge the effect size, and the forest maps of merge sensitivity, merge specificity, and merge likelihood ratio were obtained. Results The results of meta-analysis showed that there was a statistical difference in diagnostic specificity analysis of CA125 (OR = 1.91, 95% CI (1.58, 2.32), P < 0.00001, I2 = 67%, Z = 6.58); diagnostic sensitivity analysis of CA125 (OR = 2.50, 95% CI (1.73, 3.62), P < 0.00001, I2 = 0%, Z = 4.90); diagnostic specificity analysis of CA199 (OR = 1.98, 95% CI (1.60, 2.44), P < 0.00001, I2 = 89%, Z = 6.35); diagnostic sensitivity analysis of CA199 (OR = 1.92, 95% CI (1.46, 2.52), P < 0.00001, I2 = 73%, Z = 4.70); diagnostic specificity analysis of HE4 (OR = 2.08, 95% CI (1.65, 2.63), P < 0.00001, I2 = 73%, Z = 6.19); diagnostic sensitivity analysis of HE4 (OR = 2.37, 95% CI (1.87, 3.00), P < 0.00001, I2 = 83%, Z = 7.19). Conclusion In the clinical assisted diagnosis of ovarian cancer, combined detection of CA125, CA199, and HE4 has the stronger discriminant ability and higher accuracy than single detection of CA125, which can improve the diagnostic efficiency.
Collapse
|
25
|
Rezaei-Tazangi F, Roghani-Shahraki H, Khorsand Ghaffari M, Abolhasani Zadeh F, Boostan A, ArefNezhad R, Motedayyen H. The Therapeutic Potential of Common Herbal and Nano-Based Herbal Formulations against Ovarian Cancer: New Insight into the Current Evidence. Pharmaceuticals (Basel) 2021; 14:1315. [PMID: 34959716 PMCID: PMC8705681 DOI: 10.3390/ph14121315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OCa) is characterized as one of the common reasons for cancer-associated death in women globally. This gynecological disorder is chiefly named the "silent killer" due to lacking an association between disease manifestations in the early stages and OCa. Because of the disease recurrence and resistance to common therapies, discovering an effective therapeutic way against the disease is a challenge. According to documents, some popular herbal formulations, such as curcumin, quercetin, and resveratrol, can serve as an anti-cancer agent through different mechanisms. However, these herbal products may be accompanied by some pharmacological limitations, such as poor bioavailability, instability, and weak water solubility. On the contrary, using nano-based material, e.g., nanoparticles (NPs), micelles, liposomes, can significantly solve these limitations. Therefore, in the present study, we will summarize the anti-cancer aspects of these herbal and-nano-based herbal formulations with a focus on their mechanisms against OCa.
Collapse
Affiliation(s)
- Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa 7345149573, Iran;
| | | | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran;
| | - Firoozeh Abolhasani Zadeh
- Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Aynaz Boostan
- Department of Obstetrics & Gynecology, Saveh Chamran Hospital, Saveh 3919676651, Iran;
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan 8715973474, Iran
| |
Collapse
|
26
|
Das D, Karthik N, Taneja R. Crosstalk Between Inflammatory Signaling and Methylation in Cancer. Front Cell Dev Biol 2021; 9:756458. [PMID: 34901003 PMCID: PMC8652226 DOI: 10.3389/fcell.2021.756458] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation is an intricate immune response against infection and tissue damage. While the initial immune response is important for preventing tumorigenesis, chronic inflammation is implicated in cancer pathogenesis. It has been linked to various stages of tumor development including transformation, proliferation, angiogenesis, and metastasis. Immune cells, through the production of inflammatory mediators such as cytokines, chemokines, transforming growth factors, and adhesion molecules contribute to the survival, growth, and progression of the tumor in its microenvironment. The aberrant expression and secretion of pro-inflammatory and growth factors by the tumor cells result in the recruitment of immune cells, thus creating a mutual crosstalk. The reciprocal signaling between the tumor cells and the immune cells creates and maintains a successful tumor niche. Many inflammatory factors are regulated by epigenetic mechanisms including DNA methylation and histone modifications. In particular, DNA and histone methylation are crucial forms of transcriptional regulation and aberrant methylation has been associated with deregulated gene expression in oncogenesis. Such deregulations have been reported in both solid tumors and hematological malignancies. With technological advancements to study genome-wide epigenetic landscapes, it is now possible to identify molecular mechanisms underlying altered inflammatory profiles in cancer. In this review, we discuss the role of DNA and histone methylation in regulation of inflammatory pathways in human cancers and review the merits and challenges of targeting inflammatory mediators as well as epigenetic regulators in cancer.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Wang W, Zhang W, Hu Y. Identification of keygenes, miRNAs and miRNA-mRNA regulatory pathways for chemotherapy resistance in ovarian cancer. PeerJ 2021; 9:e12353. [PMID: 34820170 PMCID: PMC8582303 DOI: 10.7717/peerj.12353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background Chemotherapy resistance, especially platinum resistance, is the main cause of poor prognosis of ovarian cancer. It is of great urgency to find molecular markers and mechanism related to platinum resistance in ovarian cancer. Methods One mRNA dataset (GSE28739) and one miRNA dataset (GSE25202) were acquired from Gene Expression Omnibus (GEO) database. The GEO2R tool was used to screen out differentially expressed genes (DEGs) and differentially expressed miRNAs (DE-miRNAs) between platinum-resistant and platinum-sensitive ovarian cancer patients. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for DEGs were performed using the DAVID to present the most visibly enriched pathways. Protein–protein interaction (PPI) of these DEGs was constructed based on the information of the STRING database. Hub genes related to platinum resistance were visualized by Cytoscape software. Then, we chose seven interested hub genes to further validate using qRT-PCR in A2780 ovarian cancer cell lines. And, at last, the TF-miRNA-target genes regulatory network was predicted and constructed using miRNet software. Results A total of 63 upregulated DEGs, 124 downregulated DEGs, four upregulated miRNAs and six downregulated miRNAs were identified. From the PPI network, the top 10 hub genes were identified, which were associated with platinum resistance. Our further qRT-PCR showed that seven hub genes (BUB1, KIF2C, NUP43, NDC80, NUF2, CCNB2 and CENPN) were differentially expressed in platinum-resistant ovarian cancer cells. Furthermore, the upstream transcription factors (TF) for upregulated DE-miRNAs were SMAD4, NFKB1, SMAD3, TP53 and HNF4A. Three overlapping downstream target genes (KIF2C, STAT3 and BUB1) were identified by miRNet, which was regulated by hsa-miR-494. Conclusions The TF-miRNA–mRNA regulatory pairs, that is TF (SMAD4, NFKB1 and SMAD3)-miR-494-target genes (KIF2C, STAT3 and BUB1), were established. In conclusion, the present study is of great significance to find the key genes of platinum resistance in ovarian cancer. Further study is needed to identify the mechanism of these genes in ovarian cancer.
Collapse
Affiliation(s)
- Wenwen Wang
- Tianjin Medical University, Tianjin, China.,Department of Obstetrics and Gynecology, Beijing Tongren Hospital affiliated Capital Medical University, Beijing, China
| | - Wenwen Zhang
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.,Department of Gynecological Oncology, Obstetrics and Gynecology Hospital affiliated Nankai University, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.,Department of Gynecological Oncology, Obstetrics and Gynecology Hospital affiliated Nankai University, Tianjin, China
| |
Collapse
|
28
|
Balasubramanian S, Perumal E. Integrated in silico analysis for the identification of key genes and signaling pathways in copper oxide nanoparticles toxicity. Toxicology 2021; 463:152984. [PMID: 34627989 DOI: 10.1016/j.tox.2021.152984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Copper oxide nanoparticles (CuO-NPs) are used in various industrial and commercial products due to their enhanced physicochemical properties. The vast consumption increases their exposure in the environment, thereby affecting the ecosystem. Even with the rise in research towards understanding their toxicity, the major signaling cascades and key genes involved in CuO-NPs remain elusive due to the various attributes involved (size, shape, charge, coating in terms of nanoparticles, and dose, duration, and species used in the experiment). The focus of the study is to identify the key signaling cascades and genes involved in CuO-NPs toxicity irrespective of these attributes. CuO-NPs related microarray expression profiles were screened from GEO database and were subjected to toxicogenomic analysis to elucidate the toxicity mechanism. In silico tools were used to obtain the DEGs, followed by GO and KEGG functional enrichment analysis. The identified DEGs were then analyzed to determine major signaling pathways and key genes. Module and centrality parameter analysis was performed to identify the key genes. Further, the miRNAs and transcription factors involved in regulating the genes were predicted, and their interactive pathways were constructed. A total of 44 DEGs were commonly present in all the analysed datasets and all of them were downregulated. GO analysis reveals that most of the genes were enriched in functions related to cell division and chemotaxis. Cell-cycle, chemokine, cytokine-cytokine receptor interaction, and p53 signaling pathways were the key pathways with Cdk1 as the major biomarker altered irrespective of the variables (dosage, duration, species used, and surface coating). Overall, our integrated toxicogenomic analysis reveal that Cdk1 regulated cell cycle and cytokine-cytokine signaling cascades might be responsible for CuO-NPs toxicity. These findings will help us in understanding the mechanisms involved in NPs toxicity.
Collapse
Affiliation(s)
- Satheeswaran Balasubramanian
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
29
|
Wang Z, Huang Y, Chu F, Liao K, Cui Z, Chen J, Tang S. Integrated Analysis of DNA methylation and transcriptome profile to identify key features of age-related macular degeneration. Bioengineered 2021; 12:7061-7078. [PMID: 34569899 PMCID: PMC8806579 DOI: 10.1080/21655979.2021.1976502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common vision-threatening disease. The current study sought to integrate DNA methylation with transcriptome profile to explore key features in AMD. Gene expression data were obtained from the Gene Expression Omnibus (GEO, accession ID: GSE135092) and DNA methylation data were obtained from the ArrayExpress repository (E-MTAB-7183). A total of 456 differentially expressed genes (DEGs) and 4827 intragenic differentially methylated CpGs (DMCs) were identified between AMD and controls. DEGs and DMCs were intersected and 19 epigenetically induced (EI) genes and 15 epigenetically suppressed (ES) genes were identified. Immune cell infiltration analysis was performed to estimate the abundance of different types of immune cell in each sample. Enrichment scores of inflammatory response and tumor necrosis factor-alpha (TNFα) signaling via nuclear factor kappa B (NF-κb) were positively correlated with abundance of activated memory CD4 T cells and M1 macrophages. Subsequently, two significant random forest classifiers were constructed based on DNA methylation and transcriptome data. SMAD2 and NGFR were selected as key genes through functional epigenetic modules (FEM) analysis. Expression level of SMAD2, NGFR and their integrating proteins was validated in hydrogen peroxide (H2O2) and TNFα co-treated retinal pigment epithelium (RPE) in vitro. The findings of the current study showed that local inflammation and systemic inflammatory host response play key roles in pathogenesis of AMD. SMAD2 and NGFR provide new insight in understanding the molecular mechanism and are potential therapeutic targets for development of AMD therapy.
Collapse
Affiliation(s)
- Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Yinhua Huang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Feixue Chu
- Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, China
| | - Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | | | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Cas Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Gatti G, Vilardo L, Musa C, Di Pietro C, Bonaventura F, Scavizzi F, Torcinaro A, Bucci B, Saporito R, Arisi I, De Santa F, Raspa M, Guglielmi L, D’Agnano I. Role of Lamin A/C as Candidate Biomarker of Aggressiveness and Tumorigenicity in Glioblastoma Multiforme. Biomedicines 2021; 9:biomedicines9101343. [PMID: 34680461 PMCID: PMC8533312 DOI: 10.3390/biomedicines9101343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear lamina components have long been regarded as scaffolding proteins, forming a dense fibrillar structure necessary for the maintenance of the nucleus shape in all the animal kingdom. More recently, mutations, aberrant localisation and deregulation of these proteins have been linked to several diseases, including cancer. Using publicly available data we found that the increased expression levels of the nuclear protein Lamin A/C correlate with a reduced overall survival in The Cancer Genome Atlas Research Network (TCGA) patients affected by glioblastoma multiforme (GBM). We show that the expression of the LMNA gene is linked to the enrichment of cancer-related pathways, particularly pathways related to cell adhesion and cell migration. Mimicking the modulation of LMNA in a GBM preclinical cancer model, we confirmed both in vitro and in vivo that the increased expression of LMNA is associated with an increased aggressiveness and tumorigenicity. In addition, delving into the possible mechanism behind LMNA-induced GBM aggressiveness and tumorigenicity, we found that the mTORC2 component, Rictor, plays a central role in mediating these effects.
Collapse
Affiliation(s)
- Giuliana Gatti
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy;
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
| | - Carla Musa
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Alessio Torcinaro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Barbara Bucci
- UOC Clinical Pathology, San Pietro Hospital FBF, 00189 Rome, Italy; (B.B.); (R.S.)
| | - Raffaele Saporito
- UOC Clinical Pathology, San Pietro Hospital FBF, 00189 Rome, Italy; (B.B.); (R.S.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi Montalcini”, 00161 Rome, Italy;
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Loredana Guglielmi
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
- Correspondence: (L.G.); (I.D.)
| | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
- Correspondence: (L.G.); (I.D.)
| |
Collapse
|
31
|
Cao S, Wang Y, Li J, Ling X, Zhang Y, Zhou Y, Zhong H. Prognostic Implication of the Expression Level of PECAM-1 in Non-small Cell Lung Cancer. Front Oncol 2021; 11:587744. [PMID: 33828969 PMCID: PMC8019905 DOI: 10.3389/fonc.2021.587744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Lung cancer is a malignant disease that threatens human health. Hence, it is crucial to identify effective prognostic factors and treatment targets. Single-cell RNA sequencing can quantify the expression profiles of transcripts in individual cells. Methods: GSE117570 profiles were downloaded from the Gene Expression Omnibus database. Key ligand-receptor genes in the tumor and the normal groups were screened to identify integrated differentially expressed genes (DEGs) from the GSE118370 and The Cancer Genome Atlas Lung Adenocarcinoma databases. DEGs associated with more ligand-receptor pairs were selected as candidate DEGs for Gene Ontology (GO) functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and survival analysis. In addition, we conducted validation immunohistochemical experiments on postoperative specimens of 30 patients with lung cancer. Results: A total of 18 candidate DEGs were identified from the tumor and the normal groups. The analysis of the GO biological process revealed that these DEGs were mainly enriched in wound healing, in response to wounding, cell migration, cell motility, and regulation of cell motility, while the KEGG pathway analysis found that these DEGs were mainly enriched in proteoglycans in cancer, bladder cancer, malaria, tyrosine kinase inhibitor resistance in Epidermal Growth Factor Receptor (EGFR), and the ERBB signaling pathway. Survival analysis showed that a high, rather than a low, expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) was associated with improved survival. Similarly, in postoperative patients with lung cancer, we found that the overall survival of the PECAM-1 high-expression group shows a better trend than the PECAM-1 low-expression group (p = 0.172). Conclusions: The candidate DEGs identified in this study may play some important roles in the occurrence and development of lung cancer, especially PECAM-1, which may present potential prognostic biomarkers for the outcome.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhou
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hua Zhong
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
32
|
Genomic profiling of platinum-resistant ovarian cancer: The road into druggable targets. Semin Cancer Biol 2020; 77:29-41. [PMID: 33161141 DOI: 10.1016/j.semcancer.2020.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is the most lethal gynecologic cancer. High-grade serous carcinoma (HGSC) is the most frequent histologic subtype and while it is a highly platinum-sensitive cancer at initial treatment, nearly 90 % of stage IIIC patients recur in 5 years and eventually become resistant to platinum treatment. Historically, the definition of platinum-resistant disease is based on the time interval between last platinum therapy and recurrence shorter than 6 months. Nowadays the use of sophisticated imaging techniques and serum markers to detect recurrence makes the accuracy of this clinical definition less clear and even more debatable as we begin to better understand the molecular landscape of HGSC and markers of platinum resistance and sensitivity. HGSC is characterized by a low frequency of recurrent mutations, great genomic instability with widespread copy number variations, universal TP53 mutations, and homologous recombination deficiency in more than 50 % of cases. Platinum agents form DNA adducts and intra- and inter-strand cross-links in the DNA. Most of DNA repair pathways are involved at some point in the repair of platinum induced DNA damaging, most notably homologous recombination, Fanconi Anemia, and nucleotide excision repair pathways. Mechanisms of platinum resistance are related mostly to the limitation of platinum-DNA adduct formation by changing cellular pharmacology, and to the prevention of cell death after DNA damage due to alterations in DNA repair pathways and cell cycle regulation. Understanding these mechanisms of sensitivity and resistance may help to define the utility of platinum re-challenge in each situation and guide new therapeutic opportunities. Moreover, the discovery of mechanisms of synthetic lethality related to alterations in DNA repair and cell cycle regulation pathways has opened up a new avenue for drug therapy in the last decade. In the present article, we review pathways involved in platinum-induced DNA damage repair and their relationship with genomic alterations present in HGSC. Moreover, we report new treatment strategies that are underway to target these alterations.
Collapse
|
33
|
Guo Y, Wang YL, Su WH, Yang PT, Chen J, Luo H. Three Genes Predict Prognosis in Microenvironment of Ovarian Cancer. Front Genet 2020; 11:990. [PMID: 32983229 PMCID: PMC7492617 DOI: 10.3389/fgene.2020.00990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer (OC) is the deadliest gynecological cancer in women. Immune cell infiltration has a critical role in regulating carcinogenesis and prognosis in OC. To identify prognostic genes relevant to the tumor microenvironment in OC, we investigated the association between OC and gene expression profiles. Results obtained with the ESTIMATE R tool showed that immune score and stromal score were correlated with lymphatic invasion, and high immune score predicted a favorable prognosis. A total of 342 common differentially expressed genes were identified according to the two scores; these genes were mainly involved in immune response, extracellular region, and serine-type endopeptidase activity. Three immune-related prognostic genes were selected by univariate and multivariate Cox regression analysis. We further established a prognostic model and validated the prognostic value of three hub genes in different databases; our results showed that this model could accurately predict survival and evaluate prognosis independent of clinical characteristics. Three hub genes have prognostic value in OC. TIMER analysis revealed that the three genes were correlated with different immune cells. Low levels of macrophage infiltration and high levels of CD4+ T cell infiltration were associated with favorable survival outcomes. Arm-level gain of GYPC was correlated with neutrophils and dendritic cells. These findings indicate that CXCR4, GYPC, and MMP12 modulate prognosis via effects on the infiltration of immune cells. Thus, these genes represent potential targets for immune therapy in OC.
Collapse
Affiliation(s)
- Ya Guo
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Ya Li Wang
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Wang Hui Su
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Peng Tao Yang
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Jing Chen
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| | - Heng Luo
- Department of Radiation Oncology, The Second Affiliated Hospital, Xi'anjiao Tong University, Xi'an, China
| |
Collapse
|
34
|
Wahab NA, Othman Z, Nasri NWM, Mokhtar MH, Ibrahim SF, Hamid AA, Raja Ali RA, Mokhtar NM. Inhibition of miR-141 and miR-200a Increase DLC-1 and ZEB2 Expression, Enhance Migration and Invasion in Metastatic Serous Ovarian Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082766. [PMID: 32316405 PMCID: PMC7215320 DOI: 10.3390/ijerph17082766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
The role of microRNA (miRNA) in ovarian cancer has been extensively studied as a regulator for its targeted genes. However, its specific role in metastatic serous ovarian cancer (SOC) is yet to be explored. This paper aims to investigate the differentially expressed miRNAs in metastatic SOC compared to normal. Locked nucleic acid PCR was performed to profile miRNA expression in 11 snap frozen metastatic SOC and 13 normal ovarian tissues. Functional analysis and regulation of their targeted genes were assessed in vitro. Forty-eight miRNAs were significantly differentially expressed in metastatic SOC as compared to normal. MiR-19a is a novel miRNA to be upregulated in metastatic SOC compared to normal. DLC1 is possibly regulated by miR-141 in SOC. MiR-141 inhibition led to significantly reduced cell viability. Cell migration and invasion were significantly increased following miRNA inhibition. This study showed the aberrantly expressed miRNAs in metastatic SOC and the roles of miRNAs in the regulation of their targeted genes and ovarian carcinogenesis.
Collapse
Affiliation(s)
- Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Zahreena Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Noor Wahidah Mohd Nasri
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Raja Affendi Raja Ali
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
- Correspondence: ; Tel.: +60-3-9145-8610
| |
Collapse
|