1
|
Youn JK, Lee HR, Ko D, Kim HY. Attenuation of esophageal anastomotic stricture through remote ischemic conditioning in a rat model. Sci Rep 2024; 14:18481. [PMID: 39122787 PMCID: PMC11315918 DOI: 10.1038/s41598-024-69386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Anastomotic stricture is a typical complication of esophageal atresia surgery. Remote ischemic conditioning (RIC) has demonstrated multiorgan benefits, however, its efficacy in the esophagus remains unclear. This study aimed to investigate whether applying RIC after esophageal resection and anastomosis in rats could attenuate esophageal stricture and improve inflammation. Sixty-five male Sprague-Dawley rats were categorized into the following groups: controls with no surgery, resection and anastomosis only, resection and anastomosis with RIC once, and resection and anastomosis with RIC twice. RIC included three cycles of hind-limb ischemia followed by reperfusion. Inflammatory markers associated with the interleukin 6/Janus kinase/ signal transducer and activator of transcription 3 (IL-6/JAK/STAT3) and tumor necrosis factor-alpha/nuclear factor-κB (TNF-α/NF-kB) signaling pathways were evaluated with RNA and protein works. The RIC groups showed significantly lower stricture rates, lower inflammatory markers levels than the resection and anastomosis-only group. The RIC groups had significantly lower IL-6 and TNFa levels than the resection and anastomosis-only group, confirming the inhibitory role of remote ischemic conditioning in the IL-6/JAK/STAT3 and TNF-α/NF-kB signaling pathways. RIC after esophageal resection and anastomosis can reduce the inflammatory response, improving strictures at the esophageal anastomosis site, to be a novel noninvasive intervention for reducing esophageal anastomotic strictures.
Collapse
Affiliation(s)
- Joong Kee Youn
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Pediatric Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Hye-Rim Lee
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea
| | - Dayoung Ko
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Pediatric Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea.
- Department of Pediatric Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea.
| |
Collapse
|
2
|
Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M. Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 2024; 41:182. [PMID: 38900329 DOI: 10.1007/s12032-024-02422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
Interleukin-6 (IL-6), a pro-inflammatory cytokine, plays a crucial role in host immune defense and acute stress responses. Moreover, it modulates various cellular processes, including proliferation, apoptosis, angiogenesis, and differentiation. These effects are facilitated by various signaling pathways, particularly the signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2). However, excessive IL-6 production and dysregulated signaling are associated with various cancers, promoting tumorigenesis by influencing all cancer hallmarks, such as apoptosis, survival, proliferation, angiogenesis, invasiveness, metastasis, and notably, metabolism. Emerging evidence indicates that selective inhibition of the IL-6 signaling pathway yields therapeutic benefits across diverse malignancies, such as multiple myeloma, prostate, colorectal, renal, ovarian, and lung cancers. Targeting key components of IL-6 signaling, such as IL-6Rs, gp130, STAT3, and JAK via monoclonal antibodies (mAbs) or small molecules, is a heavily researched approach in preclinical cancer studies. The purpose of this study is to offer an overview of the role of IL-6 and its signaling pathway in various cancer types. Furthermore, we discussed current preclinical and clinical studies focusing on targeting IL-6 signaling as a therapeutic strategy for various types of cancer.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Babil, Hilla, 51001, Iraq
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq.
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | | | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shahid Nazir
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mohammad Chand Jamali
- Faculty of Medical and Health Sciences, Liwa College, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mustafa Mudhafar
- Department of Medical Physics, College of Applied Medical Sciences, University of Kerbala, Karbala, 56001, Iraq
- Department of Anesthesia Techniques and Intensive Care, Al-Taff University College, Kerbala, 56001, Iraq
| |
Collapse
|
3
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
4
|
McCabe A, Zaheed O, Derlipanska M, Merrin G, Dean K. The copious capabilities of non-coding RNAs in cancer regulation, diagnosis and treatment. Cancer Treat Res Commun 2023; 37:100768. [PMID: 37852123 DOI: 10.1016/j.ctarc.2023.100768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Globally, cancer is one of the leading causes of mortality, accounting for 10 million deaths per year. Non-coding RNAs (ncRNAs) play integral and diverse roles in cancer, possessing the ability to both promote oncogenesis and impede tumor formation. This review discusses the various roles of microRNAs, transfer RNA-derived small RNAs, long non-coding RNAs and lncRNA-derived microproteins in cancer progression and prevention. We highlight the diagnostic and therapeutic potential of these ncRNAs, with a particular focus on detection in liquid biopsies and targeting of ncRNAs with small inhibitory molecules. Ultimately, the biological functions of cancer-associated ncRNAs, as well as the development of ncRNA-based technologies, are compelling areas for further research, holding the possibility of revolutionizing cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Aideen McCabe
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland; The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Oza Zaheed
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland; The SFI Centre for Research Training in Genomics Data Science, Ireland
| | - Magdalina Derlipanska
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland
| | - George Merrin
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland
| | - Kellie Dean
- School of Biochemistry and Cell Biology, College of Science, Engineering and Food Science, University College Cork, Ireland.
| |
Collapse
|
5
|
He B, Wang F, Shu J, Cheng Y, Zhou X, Huang T. Developing a non-invasive diagnostic model for pediatric Crohn's disease using RNA-seq analysis. Front Genet 2023; 14:1142326. [PMID: 36936436 PMCID: PMC10014721 DOI: 10.3389/fgene.2023.1142326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Pediatric Crohn's disease is a chronic inflammatory condition that affects the digestive system in children and adolescents. It is characterized by symptoms such as abdominal pain, diarrhea, weight loss, and malnutrition, and can also cause complications like growth delays and delayed puberty. However, diagnosing pediatric Crohn's disease can be difficult, especially when it comes to non-invasive methods. Methods: In this study, we developed a diagnostic model using RNA-seq to analyze gene expression in ileal biopsy samples from children with Crohn's disease and non-pediatric Crohn's controls. Results: Our results showed that pediatric Crohn's disease is associated with altered expression of genes involved in immune response, inflammation, and tissue repair. We validated our findings using two independent datasets from the Gene Expression Omnibus (GEO) database, as well as through one prospective independent dataset, and found that our model had a high accuracy rate. Discussion: These findings suggest the possibility of non-invasive diagnosis for pediatric Crohn's disease and may inform the development of targeted therapies for this condition.
Collapse
Affiliation(s)
- Bin He
- Department of Pediatrics, Fenghua District People’s Hospital of Ningbo, Ningbo, China
| | - Fang Wang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Shu
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Cheng
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Zhou
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Tao Huang,
| |
Collapse
|
6
|
Huang B, Lang X, Li X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front Oncol 2022; 12:1023177. [PMID: 36591515 PMCID: PMC9800921 DOI: 10.3389/fonc.2022.1023177] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in immune regulation. It can activate janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) signaling pathway. As one of the important signal transduction pathways in cells, JAK2/STAT3 signaling pathway plays a critical role in cell proliferation and differentiation by affecting the activation state of downstream effector molecules. The activation of JAK2/STAT3 signaling pathway is involved in tumorigenesis and development. It contributes to the formation of tumor inflammatory microenvironment and is closely related to the occurrence and development of many human tumors. This article focuses on the relationship between IL-6/JAK2/STAT3 signaling pathway and liver cancer, breast cancer, colorectal cancer, gastric cancer, lung cancer, pancreatic cancer and ovarian cancer, hoping to provide references for the research of cancer treatment targeting key molecules in IL-6/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoling Lang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China,*Correspondence: Xiaoling Lang, ; Xihong Li,
| |
Collapse
|
7
|
The lncRNA THOR interacts with and stabilizes hnRNPD to promote cell proliferation and metastasis in breast cancer. Oncogene 2022; 41:5298-5314. [PMID: 36329124 DOI: 10.1038/s41388-022-02495-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Emerging evidence shows that the lncRNA THOR is deeply involved in the development of various cancers. However, the effects and underlying molecular mechanisms of THOR in breast cancer (BRCA) initiation and progression have not been fully elucidated. Here we show that THOR is critical for BRCA tumorigenesis by interacting with hnRNPD to regulate downstream signaling pathways. THOR expression was significantly higher in BRCA tissues than in normal tissues, and THOR upregulation was associated with a poor prognosis in BRCA patients. Functionally, THOR knockdown impaired cell proliferation, migration and invasion in BRCA cells in vitro and inhibited tumorigenesis and metastasis in a tumor xenograft model and THOR-deficient MMTV-PyMT model in vivo. Mechanistically, THOR bound to the hnRNPD protein and increased hnRNPD protein levels by maintaining hnRNPD protein stability through inhibition of the proteasome-dependent degradation pathway. The increased hnRNPD protein levels led to stabilization of its target mRNAs, including pyruvate dehydrogenase kinase 1 (PDK1), further activating downstream PI3K-AKT and MAPK signaling pathways to regulate BRCA cell proliferation and metastasis. Together, our findings indicate that THOR is a promising prognostic predictor for BRCA patients and that the THOR-hnRNPD-PDK1-MAPK/PI3K-AKT axis might be a potential therapeutic target for BRCA treatment.
Collapse
|
8
|
Zhang HQ, Li T, Li C, Hu HT, Zhu SM, Lu JQ, Chen XJ, Huang HF, Wu YT. LncRNA THOR promotes endometrial cancer progression through the AKT and ERK signaling pathways. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:207. [PMID: 36175594 DOI: 10.1007/s12032-022-01802-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
The long noncoding RNA (lncRNA) THOR is highly conserved and expressed in various human cancer tissues, although its potential role and underlying mechanism in endometrial cancer (EC) remain unknown. This study aims to explore THOR's biological function and molecular mechanism in EC progression. THOR expression in EC tissues and cell lines was detected by quantitative reverse transcription PCR (qRT-PCR) and in situ hybridization (ISH). THOR expression based on The Cancer Genome Atlas (TCGA) and clinical sample analyses was significantly higher in EC tissues than normal tissues, and higher THOR levels were closely associated with poor overall survival in EC. Additionally, a positive correlation between ISH-detected THOR expression and pathological grade was observed. CCK-8, colony formation, and transwell migration and invasion assays revealed that THOR significantly enhances the proliferation, migration, and invasion abilities of EC cells. Moreover, IGF2BP1 protein expression and ERK and AKT protein phosphorylation levels in EC cells increased significantly with THOR overexpression in EC cells. In conclusion, our findings suggest that THOR promotes EC cell growth and invasion, and IGF2BP1-mediated AKT and ERK signaling pathways activation might be involved. Clinically, THOR is significantly expressed in EC, and high THOR expression correlates with poor prognosis, making it a potential prognostic marker for EC.
Collapse
Affiliation(s)
- Han-Qiu Zhang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Tao Li
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hong-Tao Hu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Si-Meng Zhu
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Jia-Qi Lu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Xiao-Jun Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - He-Feng Huang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China. .,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China. .,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No.2019RU056), Shanghai, China.
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China. .,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No.2019RU056), Shanghai, China.
| |
Collapse
|
9
|
Liu M, Li H, Zhang H, Zhou H, Jiao T, Feng M, Na F, Sun M, Zhao M, Xue L, Xu L. RBMS1 promotes gastric cancer metastasis through autocrine IL-6/JAK2/STAT3 signaling. Cell Death Dis 2022; 13:287. [PMID: 35361764 PMCID: PMC8971453 DOI: 10.1038/s41419-022-04747-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Metastasis is the most important reason for the poor prognosis of gastric cancer (GC) patients, and the mechanism urgently needs to be clarified. Here, we explored a prognostic model for the estimation of tumor-associated mortality in GC patients and revealed the RNA-binding protein RBMS1 as a candidate promoter gene for GC metastasis by analyzing GOBO and Oncomine high-throughput sequencing datasets for 408 GC patients. Additionally, RBMS1 was observed with overexpression in 85 GC patient clinical specimens by IHC staining and further be verified its role in GC metastasis via inducing EMT process both in in vitro and in vivo experiments. Moreover, we identified that IL-6 was predicted to be one of the most significant upstream cytokines in the RBMS1 overexpression gene set based on the Ingenuity Pathway Analysis (IPA) algorithm. Most importantly, we also revealed that RBMS1 could promote migration and invasion through IL6 transactivation and JAK2/STAT3 downstream signaling pathway activation by influencing histone modification in the promoter regions after binding with the transcription factor MYC in the HGC-27 and SGC-7901 GC cell lines. Hence, we shed light on the potential molecular mechanisms of RBMS1 in the promotion of GC metastasis, which suggests that RBMS1 may be a potential therapeutic target for GC patients.
Collapse
Affiliation(s)
- Mengyuan Liu
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Heming Li
- Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Huijing Zhang
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Huan Zhou
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Taiwei Jiao
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Mingliang Feng
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Fangjian Na
- Network Information Center, China Medical University, 110122, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, 110001, Shenyang, China.,Department of Endoscopy, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Lei Xue
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, 110001, Shenyang, China.
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, 110001, Shenyang, China.
| |
Collapse
|
10
|
Xu L, Yao Y, Lu T, Jiang L. miR-451a targeting IL-6R activates JAK2/STAT3 pathway, thus regulates proliferation and apoptosis of multiple myeloma cells. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2022; 22:251-260. [PMID: 35642704 PMCID: PMC9186451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES To investigate the effects of miR-451a targeting interleukin-6 (IL-6) on the proliferation and apoptosis of multiple myeloma (MM) cells and its potential mechanism via JAK2/STAT3 pathway. METHODS mRNA expression of miR-451a and IL-6R in the plasma of patients with MM and normal controls were determined by RT-qPCR. U266 cells were cultured, transfected with miR-451a mimics, the proliferative ability of U266 cells was determined by CCK-8. Potential targets of miR-451a were predicted with the biological software TargetScan, and the direct relationship between miR-451a and the target IL-6R was analyzed by a dual-luciferase reporter assay. U266 cells were stimulated with IL-6R (100 ng/ml), and the proliferative ability and apoptosis rate were determined by CCK-8 and flow cytometry after 48h. RESULTS In the plasma of patients with MM, miR-451a expression was low and IL-6R expression was high. miR-451a targeted and negatively regulated IL-6R. Overexpressing miR-451a inhibited the proliferation and promoted the apoptosis of U266 cells. IL-6R acting on U266 cells promoted the proliferation and inhibited the apoptosis of U266 cells. Overexpressing miR-451a inhibited the activation of JAK2/STAT3 pathway and down-regulating miR-451a promoted the activation of JAK2/STAT3 pathway. CONCLUSIONS miR-451a targeting IL-6R activates JAK2/STAT3 pathway, thus regulates the proliferation and apoptosis in MM cells.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, China
| | - Yuning Yao
- Department of Hematology, Daqing People’s Hospital, China
| | - Ting Lu
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, China
| | - Libo Jiang
- Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, China,Corresponding author: Libo Jiang, Department of Hematology, The Second Affiliated Hospital of Qiqihar Medical College, No.37 Zhonghua West Road, Jianhua District, Qiqihar 161000, Heilongjiang Province, China E-mail:
| |
Collapse
|
11
|
Almeida TC, Seibert JB, Amparo TR, de Souza GHB, da Silva GN, Dos Santos DH. Modulation of Long Non-Coding RNAs by Different Classes of Secondary Metabolites from Plants: A Mini-Review on Antitumor Effects. Mini Rev Med Chem 2021; 22:1232-1255. [PMID: 34720079 DOI: 10.2174/1389557521666211101161548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/07/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinical-pathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.
Collapse
Affiliation(s)
- Tamires Cunha Almeida
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Tatiane Roquete Amparo
- Department of Pharmacy, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | | - Glenda Nicioli da Silva
- Department of Clinical Analysis, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto. Brazil
| | | |
Collapse
|
12
|
Xu T, Yu S, Zhang J, Wu S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol 2021; 14:181. [PMID: 34717710 PMCID: PMC8557603 DOI: 10.1186/s13045-021-01198-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Gynecological and breast cancers are a group of heterogeneous malignant tumors. Although existing treatment strategies have ameliorated the clinical outcomes of patients, the overall survival rate of advanced diseases remains unsatisfactory. Increasing evidence has indicated that the development and prognosis of tumors are closely related to the tumor microenvironment (TME), which restricts the immune response and provokes malignant progression. Tumor-associated macrophages (TAMs) are the main component of TME and act as a key regulator in tumor metastasis, immunosuppression and therapeutic resistance. Several preclinical trials have studied potential drugs that target TAMs to achieve potent anticancer therapy. This review focuses on the various functions of TAMs and how they influence the carcinogenesis of gynecological and breast cancers through regulating cancer cell proliferation, tumor angiogenesis and tumor-related immunosuppression. Besides, we also discuss the potential application of disabling TAMs signaling as a part of cancer therapeutic strategies, as well as CAR macrophages, TAMs-based vaccines and TAMs nanobiotechnology. These research advances support that targeting TAMs combined with conventional therapy might be used as effective therapeutics for gynecological and breast cancers in the future.
Collapse
Affiliation(s)
- Tianhan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Sihui Yu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Sufang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Qiao ZW, Jiang Y, Wang L, Wang L, Jiang J, Zhang JR, Mu P. LINC00852 promotes the proliferation and invasion of ovarian cancer cells by competitively binding with miR-140-3p to regulate AGTR1 expression. BMC Cancer 2021; 21:1004. [PMID: 34496800 PMCID: PMC8424870 DOI: 10.1186/s12885-021-08730-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Background Dysregulation of long non-coding RNAs (lncRNAs) has been identified in ovarian cancer. However, the expression and biological functions of LINC00852 in ovarian cancer are not understood. Methods The expressions of LINC00852, miR-140-3p and AGTR1 mRNA in ovarian cancer tissues and cells were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. Gain- and loss-of-function assays were performed to explore the biological functions of LINC00852 and miR-140-3p in the progression of ovarian cancer in vitro. The bindings between LINC00852 and miR-140-3p were confirmed by luciferase reporter gene assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. Results We found that LINC00852 expression was significantly up-regulated in ovarian cancer tissues and cells, whereas miR-140-3p expression was significantly down-regulated in ovarian cancer tissues. Functionally, LINC00852 knockdown inhibited the viability, proliferation and invasion of ovarian cancer cells, and promoted the apoptosis of ovarian cancer cells. Further investigation showed that LINC00852 interacted with miR-140-3p, and miR-140-3p overexpression suppressed the viability, proliferation and invasion of ovarian cancer cells. In addition, miR-140-3p interacted with AGTR1 and negatively regulated its level in ovarian cancer cells. Mechanistically, we found that LINC00852 acted as a ceRNA of miR-140-3p to promote AGTR1 expression and activate MEK/ERK/STAT3 pathway. Finally, LINC00852 knockdown inhibited the growth and invasion ovarian cancer in vivo. Conclusion LINC00852/miR-140-3p/AGTR1 is an important pathway to promote the proliferation and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Zhi-Wei Qiao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Ying Jiang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Ling Wang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Lei Wang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Jing Jiang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China
| | - Jing-Ru Zhang
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China.
| | - Peng Mu
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Insititute, No.44, Xiaoheyan Road, Shenyang, 110042, Liaoning Province, China.
| |
Collapse
|
14
|
Zhang L, Kuca K, You L, Zhao Y, Musilek K, Nepovimova E, Wu Q, Wu W, Adam V. Signal transducer and activator of transcription 3 signaling in tumor immune evasion. Pharmacol Ther 2021; 230:107969. [PMID: 34450232 DOI: 10.1016/j.pharmthera.2021.107969] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
The underlying mechanism of tumor immune evasion is a highly concerning subject for researchers. Increasing evidences reveal that the over-activated signal transducer and activator of transcription 3 (STAT3) is a crucial molecular hub in malignant tumors. STAT3 controls autophagy molecules that impair CTL-mediated tumor cell lysis, inhibiting natural killer cells and inducing apoptosis in T lymphocytes to create an immunosuppressive environment. STAT3 signaling regulates the expression of immune factors and recruits immunosuppressive cells to establish a tolerant tumor microenvironment (TME). STAT3 signaling regulates the expression of immune factors and recruits immunosuppressive cells to create an immunosuppressive environment. All this aid tumor cells in escaping from immune surveillance. In this review, we outlined the STAT3-mediated mechanisms involved in tumor immune evasion and their potential regulatory functions in the TME. We discussed the impact of STAT3 signaling on PD-L1, HIF-1α, exosome, lncRNA, and autophagy in the promotion of tumor immune evasion and highlighted the recent research on STAT3 signaling and tumor immune evasion that may assist in developing effective STAT3-targeted drugs for advancing immunotherapy.
Collapse
Affiliation(s)
- Luying Zhang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Li You
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic.
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové 500 03, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno 613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Brno 602 00, Czech Republic.
| |
Collapse
|
15
|
Yan M, Han M, Yang X, Shen R, Wang H, Zhang L, Xia S, Yang P, Zhai G, Shao Q. Dual inhibition of EGFR and IL-6-STAT3 signalling by miR-146b: a potential targeted therapy for epithelial ovarian cancer. J Enzyme Inhib Med Chem 2021; 36:1905-1915. [PMID: 34369236 PMCID: PMC8354159 DOI: 10.1080/14756366.2021.1963240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) signalling and the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) are aberrantly activated in ovarian cancer. However, inhibition of EGFR signalling in ovarian cancer patients resulted in a disappointing clinical benefit. In this study, we found that EGFR could activate IL-6-STAT3 pathway in ovarian cancer cells. However, we also demonstrated that EGFR knockdown could increase STAT3 phosphorylation in HO8910 and OVCAR-3 ovarian cancer cells. Interestingly, we further demonstrated that the non-coding RNA miR-146b could simultaneously block both the EGFR and IL-6-STAT3 pathways. Finally, our data demonstrated that miR-146b overexpression resulted in a greater suppression of cell migration than STAT3 pathway inhibition alone.These results suggest a complex and heterogeneous role of EGFR in ovarian cancer. Combined blockade of EGFR and IL-6-STAT3 pathways by miR-146b might be a strategy for improving the clinical benefit of targeting the EGFR pathway in ovarian cancer patients in the future.
Collapse
Affiliation(s)
- Meina Yan
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, P. R. China
| | - Mutian Han
- Center of Reproduction and Genetics, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, P. R. China
| | - Xinxin Yang
- Department of Immunology, School of Medicine, Key Laboratory of Medical Science and Laboratory Medicine, Reproductive Sciences Institute, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Rong Shen
- Department of Immunology, School of Medicine, Key Laboratory of Medical Science and Laboratory Medicine, Reproductive Sciences Institute, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Hui Wang
- Department of Immunology, School of Medicine, Key Laboratory of Medical Science and Laboratory Medicine, Reproductive Sciences Institute, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Lubin Zhang
- Department of Immunology, School of Medicine, Key Laboratory of Medical Science and Laboratory Medicine, Reproductive Sciences Institute, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Key Laboratory of Medical Science and Laboratory Medicine, Reproductive Sciences Institute, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Peifang Yang
- Department of Gynecology & Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Guanghua Zhai
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, P. R. China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Key Laboratory of Medical Science and Laboratory Medicine, Reproductive Sciences Institute, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| |
Collapse
|
16
|
Non-Coding RNAs as Biomarkers of Tumor Progression and Metastatic Spread in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13081839. [PMID: 33921525 PMCID: PMC8069230 DOI: 10.3390/cancers13081839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Despite advances in cancer research in recent years, efficient predictive biomarkers of tumor progression and metastatic spread for ovarian cancer are still missing. Therefore, we critically address recent findings in the field of non-coding RNAs (microRNAs and long non-coding RNAs) and DNA methylation in ovarian cancer patients as promising novel biomarkers of ovarian cancer progression. Abstract Ovarian cancer is one of the most common causes of death among gynecological malignancies. Molecular changes occurring in the primary tumor lead to metastatic spread into the peritoneum and the formation of distant metastases. Identification of these changes helps to reveal the nature of metastases development and decipher early biomarkers of prognosis and disease progression. Comparing differences in gene expression profiles between primary tumors and metastases, together with disclosing their epigenetic regulation, provides interesting associations with progression and metastasizing. Regulatory elements from the non-coding RNA families such as microRNAs and long non-coding RNAs seem to participate in these processes and represent potential molecular biomarkers of patient prognosis. Progress in therapy individualization and its proper targeting also rely upon a better understanding of interactions among the above-listed factors. This review aims to summarize currently available findings of microRNAs and long non-coding RNAs linked with tumor progression and metastatic process in ovarian cancer. These biomolecules provide promising tools for monitoring the patient’s response to treatment, and further they serve as potential therapeutic targets of this deadly disease.
Collapse
|
17
|
Ashrafizadeh M, Gholami MH, Mirzaei S, Zabolian A, Haddadi A, Farahani MV, Kashani SH, Hushmandi K, Najafi M, Zarrabi A, Ahn KS, Khan H. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: New insight to proliferation and metastasis. Life Sci 2021; 270:119006. [PMID: 33421521 DOI: 10.1016/j.lfs.2020.119006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Uncontrolled growth and metastasis of cancer cells is an increasing challenge for overcoming cancer, and improving survival of patients. Complicated signaling networks account for proliferation and invasion of cancer cells that need to be elucidated for providing effective cancer therapy, and minimizing their malignancy. Long non-coding RNAs (lncRNAs) are RNA molecules with a length of more than 200 nucleotides. They participate in cellular events, and their dysregulation in a common phenomenon in different cancers. Noteworthy, lncRNAs can regulate different molecular pathways, and signal transducer and activator of transcription 3 (STAT3) is one of them. STAT3 is a tumor-promoting factors in cancers due to its role in cancer proliferation (cell cycle progression and apoptosis inhibition) and metastasis (EMT induction). LncRNAs can function as upstream mediators of STAT3 pathway, reducing/enhancing its expression. This dual relationship is of importance in affecting proliferation and metastasis of cancer cells. The response of cancer cells to therapy such as chemotherapy and radiotherapy is regulated by lncRNA/STAT3 axis. Tumor-promoting lncRNAs including NEAT1, SNHG3 and H19 induces STAT3 expression, while tumor-suppressing lncRNAs such as MEG3, PTCSC3 and NKILA down-regulate STAT3 expression. Noteworthy, upstream mediators of STAT3 such as microRNAs can be regulated by lncRNAs. These complicated signaling networks are mechanistically described in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|