1
|
Wang L, Xu C, Si L, Gan G, Lin B, Yu Y. Polymyxin-containing regimens for treating of pneumonia caused by multidrug-resistant gram-negative bacteria: Mind the breakpoints and the standardization of nebulization therapy. Crit Care 2024; 28:324. [PMID: 39367437 PMCID: PMC11451103 DOI: 10.1186/s13054-024-05111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Affiliation(s)
- Lihui Wang
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Chunhui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020, China
| | - Lining Si
- Department of Critical Care Medicine, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Guifen Gan
- Department of Critical Care Medicine, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, 313100, China.
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, 313100, China.
| | - Yuetian Yu
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China.
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, 313100, China.
| |
Collapse
|
2
|
Karashima T, Mimura-Kimura Y, Mimura Y. Albuterol Delivery via In-Line Intrapulmonary Percussive Ventilation Superimposed on Invasive Ventilation in an Adult Lung Model. Respir Care 2024; 69:1092-1099. [PMID: 38538009 PMCID: PMC11349587 DOI: 10.4187/respcare.11249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
BACKGROUND Intrapulmonary percussive ventilation (IPV) is frequently used for airway clearance, together with delivery of aerosolized medications. Drug delivery via IPV alone increases with decreasing percussion frequency and correlates with tidal volume ([Formula: see text]), whereas drug delivery via IPV during invasive ventilation is not well characterized. We hypothesized that drug delivery via IPV-invasive ventilation would differ from IPV alone due to control of ventilation by invasive ventilation. METHODS An adult ventilator circuit was used for IPV-invasive ventilation. A normal or a diseased lung model was configured to airway resistance of 5 cm H2O/L/s and lung compliance of 100 mL/cm H2O or to airway resistance of 20 cm H2O/L/s and lung compliance of 50 mL/cm H2O, respectively. The ventilator settings were the following: pressure control continuous mandatory ventilation mode, 10 breaths/min; PEEP, 5 cm H2O; [Formula: see text], 0.21; inspiratory time, 1 s; no bias flow; and inspiratory pressure, 10 or 15 cm H2O for the normal or the diseased lung model, respectively, to reach [Formula: see text] 500 mL with IPV off. Albuterol nebulized from an IPV device was captured in a filter placed before the lung model and quantitated by spectrophotometry. RESULTS The maximum efficiency of albuterol delivery via IPV-invasive ventilation was not different from that via IPV alone (mean ± SD of loading dose, 3.7 ± 0.2% vs 4.2 ± 0.3%, respectively; P = .12). The mean ± SD albuterol delivery efficiency with IPV-invasive ventilation was lower for the diseased lung model versus the normal model (1.6 ± 0.3% vs 3.2 ± 0.5%; P < .001), which increased with decreasing percussion frequency. In contrast, the mean ± SD [Formula: see text] was lower for the normal lung model versus the diseased model (401 ± 14 mL vs 470 ± 11 mL; P < .001). CONCLUSIONS Albuterol delivery via IPV-invasive ventilation was modulated by percussion frequency but was not increased with increasing [Formula: see text]. The delivery efficiency was not sufficiently high for clinical use, in part due to nebulizer retention and extrapulmonary deposition.
Collapse
Affiliation(s)
- Takashi Karashima
- Department of Medical Engineering, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| |
Collapse
|
3
|
Lin HL, Fink JB, Li J. The Effects of Inspiratory Flows, Inspiratory Pause, and Suction Catheter on Aerosol Drug Delivery with Vibrating Mesh Nebulizers During Mechanical Ventilation. J Aerosol Med Pulm Drug Deliv 2024; 37:125-131. [PMID: 38563958 DOI: 10.1089/jamp.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Background: Some experts recommend specific ventilator settings during nebulization for mechanically ventilated patients, such as inspiratory pause, high inspiratory to expiratory ratio, and so on. However, it is unclear whether those settings improve aerosol delivery. Thus, we aimed to evaluate the impact of ventilator settings on aerosol delivery during mechanical ventilation (MV). Methods: Salbutamol (5.0 mg/2.5 mL) was nebulized by a vibrating mesh nebulizer (VMN) in an adult MV model. VMN was placed at the inlet of humidifier and 15 cm away from the Y-piece of the inspiratory limb. Eight scenarios with different ventilator settings were compared with endotracheal tube (ETT) connecting 15 cm from the Y-piece, including tidal volumes of 6-8 mL/kg, respiratory rates of 12-20 breaths/min, inspiratory time of 1.0-2.5 seconds, inspiratory pause of 0-0.3 seconds, and bias flow of 3.5 L/min. In-line suction catheter was utilized in two scenarios. Delivered drug distal to the ETT was collected by a filter, and drug was assayed by an ultraviolet spectrophotometry (276 nm). Results: Compared to the use of inspiratory pause, the inhaled dose without inspiratory pause was either higher or similar across all ventilation settings. Inhaled dose was negatively correlated with inspiratory flow with VMN placed at 15 cm away from the Y-piece (rs = -0.68, p < 0.001) and at the inlet of humidifier (rs = -0.83, p < 0.001). The utilization of in-line suction catheter reduced inhaled dose, regardless of the ventilator settings and nebulizer placements. Conclusions: When VMN was placed at the inlet of humidifier, directly connecting the Y-piece to ETT without a suction catheter improved aerosol delivery. In this configuration, the inhaled dose increased as the inspiratory flow decreased, inspiratory pause had either no or a negative impact on aerosol delivery. The inhaled dose was greater with VMN placed at the inlet of humidifier than 15 cm away the Y-piece.
Collapse
Affiliation(s)
- Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - James B Fink
- Respiratory Care, Department of Cardiopulmonary Sciences, Rush University, Chicago, Illinois, USA
- Aerogen Pharma Corp, San Mateo, California, USA
| | - Jie Li
- Respiratory Care, Department of Cardiopulmonary Sciences, Rush University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Feng Z, Han Z, Wang Y, Guo H, Liu J. Comparison of the Application of Vibrating Mesh Nebulizer and Jet Nebulizer in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis. Int J Chron Obstruct Pulmon Dis 2024; 19:829-839. [PMID: 38562440 PMCID: PMC10984201 DOI: 10.2147/copd.s452191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To comparison of the application of Vibrating Mesh Nebulizer and Jet Nebulizer in chronic obstructive pulmonary disease (COPD). Research Methods This systematic review and meta-analysis was conducted following the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA) statements. The primary outcome measures analyzed included: The amount of inhaler in the urine sample at 30 minutes after inhalation therapy (USAL0.5), The total amount of inhaler in urine sample within 24 hours (USAL24), Aerosol emitted, Forced expiratory volume in 1 second (FEV1), Forced vital capacity (FVC). Results Ten studies were included with a total of 314 study participants, including 157 subjects in the VMN group and 157 subjects in the JN group. The data analysis results of USAL0.5, MD (1.88 [95% CI, 0.95 to 2.81], P = 0.000), showed a statistically significant difference. USAL24, MD (1.61 [95% CI, 1.14 to 2.09], P = 0.000), showed a statistically significant difference. The results of aerosol emitted showed a statistically significant difference in MD (3.44 [95% CI, 2.84 to 4.04], P = 0.000). The results of FEV1 showed MD (0.05 [95% CI, -0.24 to 0.35], P=0.716), the results were not statistically significant. The results of FVC showed MD (0.11 [95% CI, -0.18 to 0.41], P=0.459), the results were not statistically significant. It suggests that VMN is better than JN and provides higher aerosols, but there is no difference in improving lung function between them. Conclusion VMN is significantly better than JN in terms of drug delivery and utilization in the treatment of patients with COPD. However, in the future use of nebulizers, it is important to select a matching nebulizer based on a combination of factors such as mechanism of action of the nebulizer, disease type and comorbidities, ventilation strategies and modes, drug formulations, as well as cost-effectiveness, in order to achieve the ideal treatment of COPD.
Collapse
Affiliation(s)
- Zhouzhou Feng
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
| | - Zhengcai Han
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
| | - Yaqin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
| | - Hong Guo
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
| | - Jian Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou City, People’s Republic of China
- Gansu Maternal and Child Health Hospital/Gansu Central Hospital, Lanzhou City, People’s Republic of China
| |
Collapse
|
5
|
Reilly L, Mac Giolla Eain M, Murphy S, O’Sullivan A, Joyce M, MacLoughlin R. An in vitro study of the effects of respiratory circuit setup and parameters on aerosol delivery during mechanical ventilation. Front Med (Lausanne) 2024; 10:1307301. [PMID: 38327274 PMCID: PMC10847248 DOI: 10.3389/fmed.2023.1307301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Aerosol therapy is often prescribed concurrently during invasive mechanical ventilation (IMV). This study determines the effects of nebuliser position, circuit humidification source, and most importantly, lung health on the delivery of aerosol in simulated adult and paediatric IMV patients. Furthermore, the influence of closed suction catheters on aerosol delivery is also addressed. Methods A vibrating mesh nebuliser was used to deliver Albuterol to simulated adult and paediatric IMV patients with differing states of lung health. Four different nebuliser positions and two types of humidification were analysed. Closed suction catheter mounts, a mainstay in IMV therapy, were incorporated into the circuits. The mean ± SD dose of aerosol (%) was assayed from a filter at the distal end of the endotracheal tube. Results Nebuliser placement and circuit humidification source had no effect on the delivered dose (%) in adults, yet both significantly did in the simulated paediatric patients. The use of closed suction catheter mounts significantly reduced the delivered dose (%) in adults but not in paediatric patients. A simulated healthy lung state generated the largest delivered dose (%), irrespective of nebuliser position in the adult. However, different lung health and nebuliser positions yielded higher delivered doses (%) in paediatrics. Conclusion Lung health and respiratory circuit composition significantly affect aerosol delivery in both adult and paediatric IMV patients. Nebuliser placement and respiratory circuit humidification source do not affect the delivered dose in adult but do in paediatric IMV patients.
Collapse
Affiliation(s)
- Leanne Reilly
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Sarah Murphy
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Mary Joyce
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, Galway, Ireland
- School of Pharmacy & Biomolecular Science, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinty College, Dublin, Ireland
| |
Collapse
|
6
|
Dugernier J, Le Pennec D, Maerckx G, Allimonnier L, Hesse M, Castanares-Zapatero D, Depoortere V, Vecellio L, Reychler G, Michotte JB, Goffette P, Docquier MA, Raftopoulos C, Jamar F, Laterre PF, Ehrmann S, Wittebole X. Inhaled drug delivery: a randomized study in intubated patients with healthy lungs. Ann Intensive Care 2023; 13:125. [PMID: 38072870 PMCID: PMC10710976 DOI: 10.1186/s13613-023-01220-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The administration technique for inhaled drug delivery during invasive ventilation remains debated. This study aimed to compare in vivo and in vitro the deposition of a radiolabeled aerosol generated through four configurations during invasive ventilation, including setups optimizing drug delivery. METHODS Thirty-one intubated postoperative neurosurgery patients with healthy lungs were randomly assigned to four configurations of aerosol delivery using a vibrating-mesh nebulizer and specific ventilator settings: (1) a specific circuit for aerosol therapy (SCAT) with the nebulizer placed at 30 cm of the wye, (2) a heated-humidified circuit switched off 30 min before the nebulization or (3) left on with the nebulizer at the inlet of the heated-humidifier, (4) a conventional circuit with the nebulizer placed between the heat and moisture exchanger filter and the endotracheal tube. Aerosol deposition was analyzed using planar scintigraphy. RESULTS A two to three times greater lung delivery was measured in the SCAT group, reaching 19.7% (14.0-24.5) of the nominal dose in comparison to the three other groups (p < 0.01). Around 50 to 60% of lung doses reached the outer region of both lungs in all groups. Drug doses in inner and outer lung regions were significantly increased in the SCAT group (p < 0.01), except for the outer right lung region in the fourth group due to preferential drug trickling from the endotracheal tube and the trachea to the right bronchi. Similar lung delivery was observed whether the heated humidifier was switched off or left on. Inhaled doses measured in vitro correlated with lung doses (R = 0.768, p < 0.001). CONCLUSION Optimizing the administration technique enables a significant increase in inhaled drug delivery to the lungs, including peripheral airways. Before adapting mechanical ventilation, studies are required to continue this optimization and to assess its impact on drug delivery and patient outcome in comparison to more usual settings.
Collapse
Affiliation(s)
- Jonathan Dugernier
- Soins Intensifs, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium.
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, 1200, Brussels, Belgium.
- Physiothérapie, Département des Thérapies, Hôpital Pourtales, Réseau Hospitalier Neuchâtelois, 2000, Neuchâtel, Switzerland.
- Haute École Arc Santé, HES-SO, University of Applied Sciences and Arts of Western Switzerland, 2000, Neuchâtel, Switzerland.
| | - Déborah Le Pennec
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Faculté de médecine, Université de Tours, Tours, France
| | - Guillaume Maerckx
- Soins Intensifs, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, 1200, Brussels, Belgium
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - Laurine Allimonnier
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Faculté de médecine, Université de Tours, Tours, France
| | - Michel Hesse
- Médecine Nucléaire, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | | | - Virginie Depoortere
- Médecine Nucléaire, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - Laurent Vecellio
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Faculté de médecine, Université de Tours, Tours, France
| | - Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, 1200, Brussels, Belgium
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
- Pneumologie, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - Jean-Bernard Michotte
- School of Health Sciences (HESAV), HES-SO, University of Applied Sciences and Arts of Western Switzerland, 1011, Lausanne, Switzerland
| | - Pierre Goffette
- Radiologie Interventionnelle, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | | | | | - François Jamar
- Médecine Nucléaire, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | | | - Stephan Ehrmann
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Faculté de médecine, Université de Tours, Tours, France
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep F-CRIN Research Network, Tours, France
- Université de Tours, Tours, France
| | - Xavier Wittebole
- Soins Intensifs, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| |
Collapse
|
7
|
Desoubeaux G, Lemaignen A, Alanio A, Ehrmann S. Re: 'Which trial do we need? Combination treatment of Pneumocystis jirovecii pneumonia in non-HIV infected patients' by Cornely et al. Clin Microbiol Infect 2023; 29:1455-1456. [PMID: 37321395 DOI: 10.1016/j.cmi.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Guillaume Desoubeaux
- CHRU de Tours, Parasitologie - Mycologie - Médecine tropicale, Tours, France; Université de Tours, INSERM U1100, Centre d'étude des pathologies respiratoires, Tours, France.
| | - Adrien Lemaignen
- CHRU de Tours, Maladies Infectieuses et tropicales, Tours, France
| | - Alexandre Alanio
- CHU Saint-Louis, Laboratoire de Parasitologie - Mycologie, Paris, France; Institut Pasteur, Centre-National de référence des mycoses et antifongiques, Paris, France
| | - Stephan Ehrmann
- Université de Tours, INSERM U1100, Centre d'étude des pathologies respiratoires, Tours, France; CHRU de Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep Network, Tours, France
| |
Collapse
|
8
|
Harris E, Easter M, Ren J, Krick S, Barnes J, Rowe SM. An ex vivo rat trachea model reveals abnormal airway physiology and a gland secretion defect in cystic fibrosis. PLoS One 2023; 18:e0293367. [PMID: 37874846 PMCID: PMC10597513 DOI: 10.1371/journal.pone.0293367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease hallmarked by aberrant ion transport that results in delayed mucus clearance, chronic infection, and progressive lung function decline. Several animal models have been developed to study the airway anatomy and mucus physiology in CF, but they are costly and difficult to maintain, making them less accessible for many applications. A more available CFTR-/- rat model has been developed and characterized to develop CF airway abnormalities, but consistent dosing of pharmacologic agents and longitudinal evaluation remain a challenge. In this study, we report the development and characterization of a novel ex vivo trachea model that utilizes both wild type (WT) and CFTR-/- rat tracheae cultured on a porcine gelatin matrix. Here we show that the ex vivo tracheae remain viable for weeks, maintain a CF disease phenotype that can be readily quantified, and respond to stimulation of mucus and fluid secretion by cholinergic stimulation. Furthermore, we show that ex vivo tracheae may be used for well-controlled pharmacological treatments, which are difficult to perform on freshly excised trachea or in vivo models with this degree of scrutiny. With improved interrogation possible with a durable trachea, we also established firm evidence of a gland secretion defect in CFTR-/- rat tracheae compared to WT controls. Finally, we demonstrate that the ex vivo tracheae can be used to generate high mucus protein yields for subsequent studies, which are currently limited by in vivo mucus collection techniques. Overall, this study suggests that the ex vivo trachea model is an effective, easy to set up culture model to study airway and mucus physiology.
Collapse
Affiliation(s)
- Elex Harris
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Molly Easter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Janna Ren
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jarrod Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, Univ. of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Departments of Pediatrics and Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
9
|
Li J, Liu K, Lyu S, Jing G, Dai B, Dhand R, Lin HL, Pelosi P, Berlinski A, Rello J, Torres A, Luyt CE, Michotte JB, Lu Q, Reychler G, Vecellio L, de Andrade AD, Rouby JJ, Fink JB, Ehrmann S. Aerosol therapy in adult critically ill patients: a consensus statement regarding aerosol administration strategies during various modes of respiratory support. Ann Intensive Care 2023; 13:63. [PMID: 37436585 DOI: 10.1186/s13613-023-01147-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Clinical practice of aerosol delivery in conjunction with respiratory support devices for critically ill adult patients remains a topic of controversy due to the complexity of the clinical scenarios and limited clinical evidence. OBJECTIVES To reach a consensus for guiding the clinical practice of aerosol delivery in patients receiving respiratory support (invasive and noninvasive) and identifying areas for future research. METHODS A modified Delphi method was adopted to achieve a consensus on technical aspects of aerosol delivery for adult critically ill patients receiving various forms of respiratory support, including mechanical ventilation, noninvasive ventilation, and high-flow nasal cannula. A thorough search and review of the literature were conducted, and 17 international participants with considerable research involvement and publications on aerosol therapy, comprised a multi-professional panel that evaluated the evidence, reviewed, revised, and voted on recommendations to establish this consensus. RESULTS We present a comprehensive document with 20 statements, reviewing the evidence, efficacy, and safety of delivering inhaled agents to adults needing respiratory support, and providing guidance for healthcare workers. Most recommendations were based on in-vitro or experimental studies (low-level evidence), emphasizing the need for randomized clinical trials. The panel reached a consensus after 3 rounds anonymous questionnaires and 2 online meetings. CONCLUSIONS We offer a multinational expert consensus that provides guidance on the optimal aerosol delivery techniques for patients receiving respiratory support in various real-world clinical scenarios.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, 600 S Paulina St, Suite 765, Chicago, IL, 60612, USA.
| | - Kai Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shan Lyu
- Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Guoqiang Jing
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Bing Dai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan, Taiwan
| | - Paolo Pelosi
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Ariel Berlinski
- Pulmonary and Sleep Medicine Division, Department of Pediatrics, University of Arkansas for Medical Sciences, and Pediatric Aerosol Research Laboratory at Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Clinical Research in the ICU, Anaesthesia Department, CHU Nimes, Université de Nimes-Montpellier, Nimes, France
| | - Antoni Torres
- Servei de Pneumologia, Hospital Clinic, University of Barcelona, IDIBAPS CIBERES, Icrea, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Charles-Edouard Luyt
- Médecine Intensive Réanimation, Institut de Cardiologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne-Université, and INSERM, UMRS_1166-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Jean-Bernard Michotte
- School of Health Sciences (HESAV), HES-SO University of Applied Sciences and Arts of Western Switzerland, Lausanne, Switzerland
| | - Qin Lu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, and Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gregory Reychler
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Service de Pneumologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL and Dermatologie, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Jean-Jacques Rouby
- Research Department DMU DREAM and Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Sorbonne University of Paris, Paris, France
| | - James B Fink
- Department of Cardiopulmonary Sciences, Division of Respiratory Care, Rush University, 600 S Paulina St, Suite 765, Chicago, IL, 60612, USA
- Chief Science Officer, Aerogen Pharma Corp, San Mateo, CA, USA
| | - Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep F-CRIN Research Network, and INSERM, Centre d'étude des Pathologies Respiratoires, U1100, Université de Tours, Tours, France
| |
Collapse
|
10
|
Montigaud Y, Georges Q, Leclerc L, Clotagatide A, Louf-Durier A, Pourchez J, Prévôt N, Périnel-Ragey S. Impact of gas humidification and nebulizer position under invasive ventilation: preclinical comparative study of regional aerosol deposition. Sci Rep 2023; 13:11056. [PMID: 37422519 PMCID: PMC10329710 DOI: 10.1038/s41598-023-38281-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Successful aerosol therapy in mechanically ventilated patients depends on multiple factors. Among these, position of nebulizer in ventilator circuit and humidification of inhaled gases can strongly influence the amount of drug deposited in airways. Indeed, the main objective was to preclinically evaluate impact of gas humidification and nebulizer position during invasive mechanical ventilation on whole lung and regional aerosol deposition and losses. Ex vivo porcine respiratory tracts were ventilated in controlled volumetric mode. Two conditions of relative humidity and temperature of inhaled gases were investigated. For each condition, four different positions of vibrating mesh nebulizer were studied: (i) next to the ventilator, (ii) right before humidifier, (iii) 15 cm to the Y-piece adapter and (iv) right after the Y-piece. Aerosol size distribution were calculated using cascade impactor. Nebulized dose, lung regional deposition and losses were assessed by scintigraphy using 99mtechnetium-labeled diethylene-triamine-penta-acetic acid. Mean nebulized dose was 95% ± 6%. For dry conditions, the mean respiratory tract deposited fractions reached 18% (± 4%) next to ventilator and 53% (± 4%) for proximal position. For humidified conditions, it reached 25% (± 3%) prior humidifier, 57% (± 8%) before Y-piece and 43% (± 11%) after this latter. Optimal nebulizer position is proximal before the Y-piece adapter showing a more than two-fold higher lung dose than positions next to the ventilator. Dry conditions are more likely to cause peripheral deposition of aerosols in the lungs. But gas humidification appears hard to interrupt efficiently and safely in clinical use. Considering the impact of optimized positioning, this study argues to maintain humidification.
Collapse
Affiliation(s)
- Yoann Montigaud
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose; Centre CIS, 42023, Saint-Etienne, France
| | - Quentin Georges
- Intensive Care Unit G, CHU Saint-Etienne, 42055, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose; Centre CIS, 42023, Saint-Etienne, France
| | | | | | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose; Centre CIS, 42023, Saint-Etienne, France
| | - Nathalie Prévôt
- Nuclear Medicine Unit, CHU Saint-Etienne, 42055, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Etienne, INSERM, U1059 Sainbiose, 42023, Saint-Etienne, France
| | - Sophie Périnel-Ragey
- Intensive Care Unit G, CHU Saint-Etienne, 42055, Saint-Etienne, France.
- Université Jean Monnet, Mines Saint-Etienne, INSERM, U1059 Sainbiose, 42023, Saint-Etienne, France.
- Intensive Care Unit G, Saint Etienne University Hospital, North Hospital, UMR INSERM U1059, Avenue Albert Raymond, 42270, Saint Priest en Jarez, France.
| |
Collapse
|
11
|
Lima CA, Campos SL, Bandeira MP, Leite WS, Brandão DC, Fernandes J, Fink JB, Dornelas de Andrade A. Influence of Mechanical Ventilation Modes on the Efficacy of Nebulized Bronchodilators in the Treatment of Intubated Adult Patients with Obstructive Pulmonary Disease. Pharmaceutics 2023; 15:pharmaceutics15051466. [PMID: 37242708 DOI: 10.3390/pharmaceutics15051466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Little has been reported in terms of clinical outcomes to confirm the benefits of nebulized bronchodilators during mechanical ventilation (MV). Electrical Impedance Tomography (EIT) could be a valuable method to elucidate this gap. OBJECTIVE The purpose of this study is to evaluate the impact of nebulized bronchodilators during invasive MV with EIT by comparing three ventilation modes on the overall and regional lung ventilation and aeration in critically ill patients with obstructive pulmonary disease. METHOD A blind clinical trial in which eligible patients underwent nebulization with salbutamol sulfate (5 mg/1 mL) and ipratropium bromide (0.5 mg/2 mL) in the ventilation mode they were receiving. EIT evaluation was performed before and after the intervention. A joint and stratified analysis into ventilation mode groups was performed, with p < 0.05. RESULTS Five of nineteen procedures occurred in controlled MV mode, seven in assisted mode and seven in spontaneous mode. In the intra-group analysis, the nebulization increased total ventilation in controlled (p = 0.04 and ⅆ = 2) and spontaneous (p = 0.01 and ⅆ = 1.5) MV modes. There was an increase in the dependent pulmonary region in assisted mode (p = 0.01 and ⅆ = 0.3) and in spontaneous mode (p = 0.02 and ⅆ = 1.6). There was no difference in the intergroup analysis. CONCLUSIONS Nebulized bronchodilators reduce the aeration of non-dependent pulmonary regions and increase overall lung ventilation but there was no difference between the ventilation modes. As a limitation, it is important to note that the muscular effort in PSV and A/C PCV modes influences the impedance variation, and consequently the aeration and ventilation values. Thus, future studies are needed to evaluate this effort as well as the time on ventilator, time in UCI and other variables.
Collapse
Affiliation(s)
- Cibelle Andrade Lima
- Physiotherapy Depatment, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Shirley Lima Campos
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | | | - Wagner Souza Leite
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | - Daniella Cunha Brandão
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | - Juliana Fernandes
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | - James B Fink
- Department of Cardiopulmonary Science, Division of Respiratory, CA Rush University Medical Center, Chicago, IL 60612, USA
- Aerogen Pharma, San Mateo, CA 94402, USA
| | | |
Collapse
|
12
|
Fei Q, Bentley I, Ghadiali SN, Englert JA. Pulmonary drug delivery for acute respiratory distress syndrome. Pulm Pharmacol Ther 2023; 79:102196. [PMID: 36682407 PMCID: PMC9851918 DOI: 10.1016/j.pupt.2023.102196] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening condition that causes respiratory failure. Despite numerous clinical trials, there are no molecularly targeted pharmacologic therapies to prevent or treat ARDS. Drug delivery during ARDS is challenging due to the heterogenous nature of lung injury and occlusion of lung units by edema fluid and inflammation. Pulmonary drug delivery during ARDS offers several potential advantages including limiting the off-target and off-organ effects and directly targeting the damaged and inflamed lung regions. In this review we summarize recent ARDS clinical trials using both systemic and pulmonary drug delivery. We then discuss the advantages of pulmonary drug delivery and potential challenges to its implementation. Finally, we discuss the use of nanoparticle drug delivery and surfactant-based drug carriers as potential strategies for delivering therapeutics to the injured lung in ARDS.
Collapse
Affiliation(s)
- Qinqin Fei
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ian Bentley
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, 140West 19th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Wang R, Leime CO, Gao W, MacLoughlin R. Aerosol delivery in models of pediatric high flow nasal oxygen and mechanical ventilation. Pediatr Pulmonol 2023; 58:878-886. [PMID: 36478520 DOI: 10.1002/ppul.26270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aerosol drug delivery during high flow nasal oxygen (HFNO) and invasive mechanical ventilation (IMV) are key respiratory care strategies available for the treatment of pediatric patients. We aimed to quantify the impact of different HFNO and IMV set-ups on tracheal drug delivery via a vibrating mesh nebuliser (VMN). METHODS Percent tracheal dose via VMN was quantified during HFNO therapy and IMV in a benchtop model of a 9-month-old infant. Under HFNO, 3 cannula sizes were used at 3 flow rate settings with the VMN placed at the dry side of the humidifier. Under IMV, tracheal dose when VMN was placed at the dry side of the humidifier, 15 cm from the wye and between the wye and endotracheal tube (ETT) was assessed. Salbutamol at 2.5 mg/2.5 ml (1 mg/ml) was used for each test (N = 5). The impact of VMN refill on circuit pressure under HFNO and IMV was also assessed. RESULTS Tracheal dose was highest during HFNO with the largest cannula size (OPT318) set to the lowest flow rate setting of 2 L/min (liter per minute) (5.80 ± 0.17%). Increasing flow rate reduced tracheal drug delivery for all cannulas. For IMV, VMN on the dry side of the humidifier and between the wye and ETT gave optimal drug delivery (4.49 ± 0.14% vs. 4.43 ± 0.26% respectively). VMN refill did not impact circuit pressure for either HFNO therapy or IMV. CONCLUSIONS Gas flow rate and cannula size during HFNO and VMN position during IMV has a significant effect on tracheal drug delivery in a pediatric setting.
Collapse
Affiliation(s)
- Ran Wang
- Research and Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, Ireland
| | - Ciaran O Leime
- Research and Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, Ireland
| | - Weiwei Gao
- Neonatology Department, Guangdong Women and Children Hospital, Guangdong Neonatal ICU Medical Quality Control Center, Guangdong, China
| | - Ronan MacLoughlin
- Research and Development, Science & Emerging Technologies, Aerogen Limited, Galway Business Park, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| |
Collapse
|
14
|
McCarthy SD, Rohde CB, Angel M, Masterson CH, MacLoughlin R, Fandiño J, González HE, Byrnes D, Laffey JG, O'Toole D. Aerosolized Pulmonary Delivery of mRNA Constructs Attenuates Severity of Escherichia coli Pneumonia in the Rat. Nucleic Acid Ther 2023; 33:148-158. [PMID: 36811461 PMCID: PMC10066785 DOI: 10.1089/nat.2022.0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), a rapid onset inflammatory lung disease with no effective specific therapy, typically has pathogenic etiology termed pneumonia. In previous studies nuclear factor-κB (NF-κB) inhibitor α super-repressor (IκBα-SR) and extracellular superoxide dismutase 3 (SOD3) reduced pneumonia severity when prophylactically delivered by viral vector. In this study, mRNA coding for green fluorescent protein, IκBα-SR, or SOD3 was complexed with cationic lipid, passed through a vibrating mesh nebulizer, and delivered to cell culture or directly to rats undergoing Escherichia coli pneumonia. Injury level was then assessed at 48 h. In vitro, expression was observed as early as 4 h in lung epithelial cells. IκBα-SR and wild-type IκBα mRNAs attenuated inflammatory markers, while SOD3 mRNA induced protective and antioxidant effects. In rat E. coli pneumonia, IκBα-SR mRNA reduced arterial carbon dioxide (pCO2) and reduced lung wet/dry ratio. SOD3 mRNA improved static lung compliance and alveolar-arterial oxygen gradient (AaDO2) and decreased bronchoalveolar lavage (BAL) bacteria load. White cell infiltration and inflammatory cytokine concentrations in BAL and serum were reduced by both mRNA treatments compared to scrambled mRNA controls. These findings indicate nebulized mRNA therapeutics are a promising approach to ARDS therapy, with rapid expression of protein and observable amelioration of pneumonia symptoms.
Collapse
Affiliation(s)
- Sean D McCarthy
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | | | - Matt Angel
- Factor Bioscience Ltd., Cambridge, Massachusetts, USA
| | - Claire H Masterson
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | | | - Juan Fandiño
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Héctor E González
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Declan Byrnes
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - John G Laffey
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Daniel O'Toole
- CÚRAM and Regenerative Medicine Institute, University of Galway, Galway, Ireland
| |
Collapse
|
15
|
MacLoughlin R, Martin-Loeches I. Not all nebulizers are created equal: Considerations in choosing a nebulizer for aerosol delivery during mechanical ventilation. Expert Rev Respir Med 2023; 17:131-142. [PMID: 36803134 DOI: 10.1080/17476348.2023.2183194] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Aerosol therapy is commonly prescribed in the mechanically ventilated patient. Jet nebulizers (JN) and vibrating mesh nebulizers (VMN) are the most common nebulizer types, however, despite VMN's well established superior performance, JN use remains the most commonly used of the two. In this review, we describe the key differentiators between nebulizer types and how considered selection of nebulizer type may enable successful therapy and the optimization of drug/device combination products. AREAS COVERED Following a review of the published literature up to February 2023, the current state of the art in relation to JN and VMN is discussed under the headings of in vitro performance of nebulizers during mechanical ventilation, respective compatibility with formulations for inhalation, clinical trials making use of VMN during mechanical ventilation, distribution of nebulized aerosol throughout the lung, measuring the respective performance of nebulizers in the patient and non-drug delivery considerations in nebulizer choice. EXPERT OPINION Whether for standard care, or the development of drug/device combination products, the choice of nebulizer type should not be made without consideration of the unique needs of the combination of each of drug, disease and patient types, as well as target site for deposition, and healthcare professional and patient safety.
Collapse
Affiliation(s)
- Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Dangan, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), Dublin, Ireland
| |
Collapse
|
16
|
Li X, Tan W, Zhao H, Wang W, Dai B, Hou H. Effects of jet nebulization on ventilator performance with different invasive ventilation modes: A bench study. Front Med (Lausanne) 2022; 9:1004551. [DOI: 10.3389/fmed.2022.1004551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe effects of jet nebulization on ventilator performance in the volume control mode (VC) and pressure control mode (PC) of ventilation have not been determined.ObjectivesThe present study investigated the impact of jet nebulization on ventilator performance in different modes in vitro.MethodsTwo types of jet nebulizer (ventilator-integrated jet nebulizers, external jet nebulizer) and six types of ventilator were connected with a simulated lung to simulate aerosol therapy during mechanical ventilation. The ventilation modes were set to VC and PC, and the driving flows of external jet nebulizer were set at 4 L/min and 8 L/min, respectively. Jet nebulizers were placed between patient airway and Y-piece or at 15 cm from the Y-piece in the inspiratory limb. The effects of jet nebulization were compared with the baseline of triggering performance, control performance, and tidal volume under different experimental conditions.ResultsVentilator-integrated jet nebulizers had no effect on ventilator performance in different modes (all P > 0.05). However, the effects of external jet nebulizers on ventilator performance varied widely: for triggering performance, all parameters were increased in different modes and nebulization positions (all P < 0.05), including the time from the beginning of the inspiratory effort to the lowest value of airway pressure needed to trigger the ventilator (TPmin), the time to trigger (Ttrig), and the magnitude of airway pressure drop needed to trigger (Ptrig); for control performance, peak inspiratory pressure (Ppeak) and peak inspiratory flow(Pflow) were increased in the VC mode (P < 0.05), but not significantly changed in the PC mode (P > 0.05);the actual tidal volume (VT) and expiratory tidal volume monitored (VTe) were significantly increased (P < 0.05), however, the inspiratory tidal volume monitored (VTi) was not affected by jet nebulization in the VC mode. In the PC mode, there were no significant changes in VT, whereas VTi decreased and VTe increased (P < 0.05). The higher the driving flow of external jet nebulizers, the stronger the impact on ventilator performance (all P < 0.05).ConclusionTriggering performance was decreased in both the VC and PC modes when using an external jet nebulizer, while the effects of nebulization on control performance and tidal volume varied significantly.
Collapse
|
17
|
Hou H, Xu D, Dai B, Zhao H, Wang W, Kang J, Tan W. Position of different nebulizer types for aerosol delivery in an adult model of mechanical ventilation. Front Med (Lausanne) 2022; 9:950569. [PMID: 36300182 PMCID: PMC9589415 DOI: 10.3389/fmed.2022.950569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Background The optimal positions of different types of nebulizer for aerosol delivery remain unclear. Methods Three ICU ventilators employing three types of nebulizer were separately connected to a simulated lung to simulate nebulization during invasive ventilation. Assist/control-pressure control (A/C-PC) mode was utilized, with inspiratory pressure (Pi) set to 12 cmH2O and positive end expiratory pressure (PEEP) set to 5 cmH2O, and with a target Vt of 500 ml. The bias flow of all the ventilators was set to 2 L/min. The three nebulizers were the continuous jet nebulizer (c-JN), the inspiratory synchronized jet nebulizer (i-JN), and the vibrating mesh nebulizer (VMN). The five nebulizer positions were as follows: at the Y-piece (position 1) and 15 cm from the Y-piece (position 2) between the endotracheal tube and the Y-piece, at the Y-piece (position 3) and 15 cm from the Y-piece (position 4) in the inspiratory limb; and at the humidifier inlet (position 5). Aerosols were collected with a disposable filter placed at the simulated lung outlet (n = 3) and were measured by UV spectrophotometry (276 nm). The measurements were compared under different experimental conditions. Results The aerosol delivery of c-JN, i-JN, and VMN was 5.33 ± 0.49~11.12 ± 0.36%, 7.73 ± 0.76~13.75 ± 0.46% and 11.13 ± 56-30.2 ± 1.63%, respectively. The higher aerosol delivery: for c-JN~Positions 2 (10.95 ± 0.15%), fori-JN~Positions 1 or 2 (12.91 ± 0.88% or 13.45 ± 0.42%), for VMN~Positions 4(29.03 ± 1.08%); the lower aerosol delivery: for c-JN~Positions 1, 3 or 5, fori-JN~Positions 4 or 5, for VMN~Positions 5.The highest aerosol delivery:For c-JN at Position 2 (10.95 ± .15%), for i-JN at Position 1 or 2 (12.91 ± .88% or 13.45 ± .42%), for VMN at Positions 4 (29. 03 ± 1.08%); the lower aerosol delivery: for c-JN at Positions 1, 3 or 5, for i-JN at Positions 4 or 5, for VMN at Positions 5. The highest aerosol deliveryof c-JN was lower than that of i-JN while the VMN was the highest (all P < .05). However, no differences were observed between the highest aerosol delivery with c-JN and the lowest aerosol delivery with i-JN. Similar results were found between the lowest aerosol delivery with VMN and the highest aerosol delivery with c-JN /i-JN in the Avea ventilator. There were no differences in the highest aerosol delivery of each nebulizer among the different ventilators (all p > 0.05). Conclusion During adult mechanical ventilation, the type and position of nebulizer influences aerosol delivery efficiency, with no differences between ventilators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Tan
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Katiyar SK, Gaur SN, Solanki RN, Sarangdhar N, Suri JC, Kumar R, Khilnani GC, Chaudhary D, Singla R, Koul PA, Mahashur AA, Ghoshal AG, Behera D, Christopher DJ, Talwar D, Ganguly D, Paramesh H, Gupta KB, Kumar T M, Motiani PD, Shankar PS, Chawla R, Guleria R, Jindal SK, Luhadia SK, Arora VK, Vijayan VK, Faye A, Jindal A, Murar AK, Jaiswal A, M A, Janmeja AK, Prajapat B, Ravindran C, Bhattacharyya D, D'Souza G, Sehgal IS, Samaria JK, Sarma J, Singh L, Sen MK, Bainara MK, Gupta M, Awad NT, Mishra N, Shah NN, Jain N, Mohapatra PR, Mrigpuri P, Tiwari P, Narasimhan R, Kumar RV, Prasad R, Swarnakar R, Chawla RK, Kumar R, Chakrabarti S, Katiyar S, Mittal S, Spalgais S, Saha S, Kant S, Singh VK, Hadda V, Kumar V, Singh V, Chopra V, B V. Indian Guidelines on Nebulization Therapy. Indian J Tuberc 2022; 69 Suppl 1:S1-S191. [PMID: 36372542 DOI: 10.1016/j.ijtb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Inhalational therapy, today, happens to be the mainstay of treatment in obstructive airway diseases (OADs), such as asthma, chronic obstructive pulmonary disease (COPD), and is also in the present, used in a variety of other pulmonary and even non-pulmonary disorders. Hand-held inhalation devices may often be difficult to use, particularly for children, elderly, debilitated or distressed patients. Nebulization therapy emerges as a good option in these cases besides being useful in the home care, emergency room and critical care settings. With so many advancements taking place in nebulizer technology; availability of a plethora of drug formulations for its use, and the widening scope of this therapy; medical practitioners, respiratory therapists, and other health care personnel face the challenge of choosing appropriate inhalation devices and drug formulations, besides their rational application and use in different clinical situations. Adequate maintenance of nebulizer equipment including their disinfection and storage are the other relevant issues requiring guidance. Injudicious and improper use of nebulizers and their poor maintenance can sometimes lead to serious health hazards, nosocomial infections, transmission of infection, and other adverse outcomes. Thus, it is imperative to have a proper national guideline on nebulization practices to bridge the knowledge gaps amongst various health care personnel involved in this practice. It will also serve as an educational and scientific resource for healthcare professionals, as well as promote future research by identifying neglected and ignored areas in this field. Such comprehensive guidelines on this subject have not been available in the country and the only available proper international guidelines were released in 1997 which have not been updated for a noticeably long period of over two decades, though many changes and advancements have taken place in this technology in the recent past. Much of nebulization practices in the present may not be evidence-based and even some of these, the way they are currently used, may be ineffective or even harmful. Recognizing the knowledge deficit and paucity of guidelines on the usage of nebulizers in various settings such as inpatient, out-patient, emergency room, critical care, and domiciliary use in India in a wide variety of indications to standardize nebulization practices and to address many other related issues; National College of Chest Physicians (India), commissioned a National task force consisting of eminent experts in the field of Pulmonary Medicine from different backgrounds and different parts of the country to review the available evidence from the medical literature on the scientific principles and clinical practices of nebulization therapy and to formulate evidence-based guidelines on it. The guideline is based on all possible literature that could be explored with the best available evidence and incorporating expert opinions. To support the guideline with high-quality evidence, a systematic search of the electronic databases was performed to identify the relevant studies, position papers, consensus reports, and recommendations published. Rating of the level of the quality of evidence and the strength of recommendation was done using the GRADE system. Six topics were identified, each given to one group of experts comprising of advisors, chairpersons, convenor and members, and such six groups (A-F) were formed and the consensus recommendations of each group was included as a section in the guidelines (Sections I to VI). The topics included were: A. Introduction, basic principles and technical aspects of nebulization, types of equipment, their choice, use, and maintenance B. Nebulization therapy in obstructive airway diseases C. Nebulization therapy in the intensive care unit D. Use of various drugs (other than bronchodilators and inhaled corticosteroids) by nebulized route and miscellaneous uses of nebulization therapy E. Domiciliary/Home/Maintenance nebulization therapy; public & health care workers education, and F. Nebulization therapy in COVID-19 pandemic and in patients of other contagious viral respiratory infections (included later considering the crisis created due to COVID-19 pandemic). Various issues in different sections have been discussed in the form of questions, followed by point-wise evidence statements based on the existing knowledge, and recommendations have been formulated.
Collapse
Affiliation(s)
- S K Katiyar
- Department of Tuberculosis & Respiratory Diseases, G.S.V.M. Medical College & C.S.J.M. University, Kanpur, Uttar Pradesh, India.
| | - S N Gaur
- Vallabhbhai Patel Chest Institute, University of Delhi, Respiratory Medicine, School of Medical Sciences and Research, Sharda University, Greater NOIDA, Uttar Pradesh, India
| | - R N Solanki
- Department of Tuberculosis & Chest Diseases, B. J. Medical College, Ahmedabad, Gujarat, India
| | - Nikhil Sarangdhar
- Department of Pulmonary Medicine, D. Y. Patil School of Medicine, Navi Mumbai, Maharashtra, India
| | - J C Suri
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Raj Kumar
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, National Centre of Allergy, Asthma & Immunology; University of Delhi, Delhi, India
| | - G C Khilnani
- PSRI Institute of Pulmonary, Critical Care, & Sleep Medicine, PSRI Hospital, Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Dhruva Chaudhary
- Department of Pulmonary & Critical Care Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Rupak Singla
- Department of Tuberculosis & Respiratory Diseases, National Institute of Tuberculosis & Respiratory Diseases (formerly L.R.S. Institute), Delhi, India
| | - Parvaiz A Koul
- Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Ashok A Mahashur
- Department of Respiratory Medicine, P. D. Hinduja Hospital, Mumbai, Maharashtra, India
| | - A G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - D Behera
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - D J Christopher
- Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepak Talwar
- Metro Centre for Respiratory Diseases, Noida, Uttar Pradesh, India
| | | | - H Paramesh
- Paediatric Pulmonologist & Environmentalist, Lakeside Hospital & Education Trust, Bengaluru, Karnataka, India
| | - K B Gupta
- Department of Tuberculosis & Respiratory Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak, Haryana, India
| | - Mohan Kumar T
- Department of Pulmonary, Critical Care & Sleep Medicine, One Care Medical Centre, Coimbatore, Tamil Nadu, India
| | - P D Motiani
- Department of Pulmonary Diseases, Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| | - P S Shankar
- SCEO, KBN Hospital, Kalaburagi, Karnataka, India
| | - Rajesh Chawla
- Respiratory and Critical Care Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine & Sleep Disorders, AIIMS, New Delhi, India
| | - S K Jindal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S K Luhadia
- Department of Tuberculosis and Respiratory Medicine, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - V K Arora
- Indian Journal of Tuberculosis, Santosh University, NCR Delhi, National Institute of TB & Respiratory Diseases Delhi, India; JIPMER, Puducherry, India
| | - V K Vijayan
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, University of Delhi, Delhi, India
| | - Abhishek Faye
- Centre for Lung and Sleep Disorders, Nagpur, Maharashtra, India
| | | | - Amit K Murar
- Respiratory Medicine, Cronus Multi-Specialty Hospital, New Delhi, India
| | - Anand Jaiswal
- Respiratory & Sleep Medicine, Medanta Medicity, Gurugram, Haryana, India
| | - Arunachalam M
- All India Institute of Medical Sciences, New Delhi, India
| | - A K Janmeja
- Department of Respiratory Medicine, Government Medical College, Chandigarh, India
| | - Brijesh Prajapat
- Pulmonary and Critical Care Medicine, Yashoda Hospital and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - C Ravindran
- Department of TB & Chest, Government Medical College, Kozhikode, Kerala, India
| | - Debajyoti Bhattacharyya
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, Army Hospital (Research & Referral), New Delhi, India
| | | | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - J K Samaria
- Centre for Research and Treatment of Allergy, Asthma & Bronchitis, Department of Chest Diseases, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Jogesh Sarma
- Department of Pulmonary Medicine, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Lalit Singh
- Department of Respiratory Medicine, SRMS Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | - M K Sen
- Department of Respiratory Medicine, ESIC Medical College, NIT Faridabad, Haryana, India; Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mahendra K Bainara
- Department of Pulmonary Medicine, R.N.T. Medical College, Udaipur, Rajasthan, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi PostGraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nilkanth T Awad
- Department of Pulmonary Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Narayan Mishra
- Department of Pulmonary Medicine, M.K.C.G. Medical College, Berhampur, Orissa, India
| | - Naveed N Shah
- Department of Pulmonary Medicine, Chest Diseases Hospital, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Neetu Jain
- Department of Pulmonary, Critical Care & Sleep Medicine, PSRI, New Delhi, India
| | - Prasanta R Mohapatra
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pawan Tiwari
- School of Excellence in Pulmonary Medicine, NSCB Medical College, Jabalpur, Madhya Pradesh, India
| | - R Narasimhan
- Department of EBUS and Bronchial Thermoplasty Services at Apollo Hospitals, Chennai, Tamil Nadu, India
| | - R Vijai Kumar
- Department of Pulmonary Medicine, MediCiti Medical College, Hyderabad, Telangana, India
| | - Rajendra Prasad
- Vallabhbhai Patel Chest Institute, University of Delhi and U.P. Rural Institute of Medical Sciences & Research, Safai, Uttar Pradesh, India
| | - Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital & Research Institute, Nagpur, Maharashtra, India
| | - Rakesh K Chawla
- Department of, Respiratory Medicine, Critical Care, Sleep & Interventional Pulmonology, Saroj Super Speciality Hospital, Jaipur Golden Hospital, Rajiv Gandhi Cancer Hospital, Delhi, India
| | - Rohit Kumar
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - S Chakrabarti
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | | | - Saurabh Mittal
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Surya Kant
- Department of Respiratory (Pulmonary) Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - V K Singh
- Centre for Visceral Mechanisms, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Vijay Hadda
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Kumar
- All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Virendra Singh
- Mahavir Jaipuria Rajasthan Hospital, Jaipur, Rajasthan, India
| | - Vishal Chopra
- Department of Chest & Tuberculosis, Government Medical College, Patiala, Punjab, India
| | - Visweswaran B
- Interventional Pulmonology, Yashoda Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
19
|
Inhaled antibiotics in critical care: state of the art and future perspectives. Infect Dis Now 2022; 52:327-333. [DOI: 10.1016/j.idnow.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
|
20
|
Elshafei AA, Fink JB, Li J. Aerosol Delivery via Continuous High-Frequency Oscillation During Mechanical Ventilation. Respir Care 2022; 67:415-420. [PMID: 34475262 PMCID: PMC9994010 DOI: 10.4187/respcare.08914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND As the use of continuous high-frequency oscillation combined with nebulization during mechanical ventilation becomes more prevalent clinically, it is important to evaluate its aerosol delivery efficacy. METHODS A bench study was conducted that simulated 2 adult and 2 pediatric conditions. A continuous high-frequency oscillation device integrated into the inspiratory limb of a conventional critical care ventilator was attached to an endotracheal tube (ETT) with a collection filter and test lung. High-frequency oscillation with high-flow setting was used with jet nebulizers attached to the manifold, and a vibrating mesh nebulizer placed between the ETT and the ventilator circuit versus at the inlet of the humidifier. Albuterol (2.5 mg in 3 mL) was nebulized for each condition (no. = 3). The drug was eluted from the collection filter and assayed with ultraviolet spectrophotometry (276 nm). RESULTS During continuous high-frequency oscillation, the mean inhaled dose with jet nebulizers was low (<2% with the adult settings and <1% with the pediatric settings). Across both adult and pediatric conditions, when the vibrating mesh nebulizer was placed between the ETT and the Y-piece during continuous high-frequency oscillation, the inhaled dose was higher than with the placement of the vibrating mesh nebulizer at the inlet of the humidifier, median 11.1% (IQR 7.0%-13.7%) median 6.0% (IQR 3.9%-7.2%) (P = .002) respectively, but still lower than the inhaled dose with the vibrating mesh nebulizer placed at the inlet of the humidifier with continuous high-frequency oscillation off, median 22.7% (IQR 19.5%-25.4%) versus median 11.1% (IQR 7.0%-13.7%) (P < .001). The inhaled dose with the 10-year-old scenario was higher than with the 5-year-old scenario in all settings except aerosol delivery via continuous high-frequency oscillation. CONCLUSIONS During invasive mechanical ventilation with continuous high-frequency oscillation, aerosol delivery with jet nebulizers in the manifold resulted in a marginal inhaled dose. The vibrating mesh nebulizer at the ETT during continuous high-frequency oscillation delivered 6-fold more aerosol than did the jet nebulizer, while delivering only half of the inhaled dose with the vibrating mesh nebulizer placed at the inlet of the humidifier without continuous high-frequency oscillation.
Collapse
Affiliation(s)
- Ahmad A Elshafei
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, Chicago, Illinois.
| | - James B Fink
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, Chicago, Illinois
- Aerogen Pharma Corp, San Mateo, California
| | - Jie Li
- Division of Respiratory Care, Department of Cardiopulmonary Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
21
|
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 2022; 12:600-620. [PMID: 34401226 PMCID: PMC8359643 DOI: 10.1016/j.apsb.2021.08.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023] Open
Abstract
The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.
Collapse
Key Words
- AAV, adeno-associated virus
- ALI/ARDS
- ALI/ARDS, acute lung injury/acute respiratory distress syndrome
- AM, alveolar macrophage
- ATI, alveolar cell type I
- ATII, alveolar cell type II
- AV, adenovirus
- Ago-2, argonaute 2
- CFDA, China Food and Drug Administration
- COPD, chronic obstructive pulmonary disease
- CPP, cell-penetrating peptide
- CS, cigarette smoke
- CXCR4, C–X–C motif chemokine receptor type 4
- Cellular uptake
- DAMPs, danger-associated molecular patterns
- DC-Chol, 3β-(N-(N′,N′-dimethylethylenediamine)-carbamoyl) cholesterol
- DDAB, dimethyldioctadecylammonium bromide
- DODAP, 1,2-dioleyl-3-dimethylammonium-propane
- DODMA, 1,2-dioleyloxy-N,N-dimethyl-3-aminopropane
- DOGS, dioctadecyl amido glycin spermine
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DOPE, 1,2-dioleoyl-l-α-glycero-3-phosphatidylethanolamine
- DOSPA, 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium
- DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane
- DOTMA, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium
- DPI, dry powder inhaler
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- Drug delivery
- EC, endothelial cell
- EPC, egg phosphatidylcholine
- EXOs, exosomes
- Endosomal escape
- EpiC, epithelial cell
- FDA, US Food and Drug Administration
- HALI, hyperoxic acute lung injury
- HMGB1, high-mobility group box 1
- HMVEC, human primary microvascular endothelial cell
- HNPs, hybrid nanoparticles
- Hem-CLP, hemorrhagic shock followed by cecal ligation and puncture septic challenge
- ICAM-1, intercellular adhesion molecule-1
- IFN, interferons
- Inflammatory diseases
- LPS, lipopolysaccharides
- MEND, multifunctional envelope-type nano device
- MIF, macrophage migration inhibitory factor
- Myd88, myeloid differentiation primary response 88
- N/P ratio, nitrogen /phosphate ratio
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor kappa B
- NPs, nanoparticles
- Nanoparticles
- PAI-1, plasminogen activator inhibitor-1
- PAMAM, polyamidoamine
- PAMPs, pathogen-associated molecular patterns
- PD-L1, programmed death ligand-1
- PDGFRα, platelet-derived growth factor receptor-α
- PEEP, positive end-expiratory pressure
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PF, pulmonary fibrosis
- PFC, perfluorocarbon
- PLGA, poly(d,l-lactic-co-glycolic acid)
- PMs, polymeric micelles
- PRR, pattern recognition receptor
- PS, pulmonary surfactant
- Pulmonary administration
- RIP2, receptor-interacting protein 2
- RISC, RNA-induced silencing complex
- RNAi, RNA interference
- ROS, reactive oxygen species
- SLN, solid lipid nanoparticle
- SNALP, stable nucleic acid lipid particle
- TGF-β, transforming growth factor-β
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor-α
- VALI, ventilator-associated lung injury
- VILI, ventilator-induced lung injury
- dsDNA, double-stranded DNA
- dsRNA, double-stranded RNA
- eggPG, l-α-phosphatidylglycerol
- mRNA, messenger RNA
- miRNA, microRNA
- pDNA, plasmid DNA
- shRNA, short RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - George Frimpong Boafo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
22
|
Evaluation of Aerosol Drug Delivery Options during Adult Mechanical Ventilation in the COVID-19 Era. Pharmaceutics 2021; 13:pharmaceutics13101574. [PMID: 34683867 PMCID: PMC8539467 DOI: 10.3390/pharmaceutics13101574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Drug delivery devices used for aerosol therapy during mechanical ventilation to ease the symptoms of respiratory diseases provide beneficial treatment but can also pose challenges. Reflecting the significant changes in global guidance around aerosol usage and lung-protective ventilation strategies, seen in response to the COVID-19 pandemic, for the first time, we describe the drug delivery performance of commonly used devices under these conditions. Here, vibrating mesh nebuliser (VMN), jet nebuliser (JN) and pressurised metered-dose inhaler (pMDI) performance was assessed during simulated adult mechanical ventilation. Both standard test breathing patterns and those representatives of low tidal volume (LTV) ventilation with concurrent active and passive humidification were investigated. Drug delivery using a VMN was significantly greater than that with a JN and pMDI for both standard and LTV ventilation. Humidification type did not affect the delivered dose across all device types for standard ventilation. Significant variability in the pMDI dosing was evident, depending on the timing of actuation and the adapter type used. pMDI actuation synchronised with inspiration resulted in a higher delivered drug dose. The type of adapter used for pMDI actuation influenced drug delivery, with the highest dose observed using the CombiHaler.
Collapse
|
23
|
Nebulized antibiotics for ventilator-associated pneumonia: methodological framework for future multicenter randomized controlled trials. Curr Opin Infect Dis 2021; 34:156-168. [PMID: 33605620 DOI: 10.1097/qco.0000000000000720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Although experimental evidence supports the use of nebulized antibiotics in ventilator-associated pneumonia (VAP), two recent multicenter randomized controlled trials (RCTs) have failed to demonstrate any benefit in VAP caused by Gram-negative bacteria (GNB). This review examines the methodological requirements concerning future RCTs. RECENT FINDINGS High doses of nebulized antibiotics are required to reach the infected lung parenchyma. Breath-synchronized nebulizers do not allow delivery of high doses. Mesh nebulizers perform better than jet nebulizers. Epithelial lining fluid concentrations do not reflect interstitial lung concentrations in patients receiving nebulized antibiotics. Specific ventilator settings for optimizing lung deposition require sedation to avoid patient's asynchrony with the ventilator. SUMMARY Future RCTs should compare a 3-5 day nebulization of amikacin or colistimethate sodium (CMS) to a 7-day intravenous administration of a new cephalosporine/ß-lactamase inhibitor. Inclusion criteria should be a VAP or ventilator-associated tracheobronchitis caused by documented extensive-drug or pandrug resistant GNB. If the GNB remains susceptible to aminoglycosides, nebulized amikacin should be administered at a dose of 40 mg/kg/day. If resistant to aminoglycosides, nebulized CMS should be administered at a dose of 15 millions international units (IU)/day. In VAP caused by pandrug-resistant GNB, 15 millions IU/day nebulized CMS (substitution therapy) should be compared with a 9 millions IU/day intravenous CMS.
Collapse
|
24
|
Abdelkreem E, Mahmoud SM, Aboelez MO, Abd El Aal M. Nebulized Magnesium Sulfate for Treatment of Persistent Pulmonary Hypertension of Newborn: A Pilot Randomized Controlled Trial. Indian J Pediatr 2021; 88:771-777. [PMID: 33415555 PMCID: PMC7790729 DOI: 10.1007/s12098-020-03643-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the effectiveness of nebulized magnesium sulfate in treating persistent pulmonary hypertension of newborn (PPHN). METHODS Twenty-eight mechanically ventilated term neonates with severe PPHN were randomized into two groups: NebMag group (n = 14), who receiving nebulized isotonic magnesium (1024 mg/h), and IVMag group (n = 14), who received intravenous magnesium (200 mg/kg over 30 min, followed by 50 mg/kg/h). The study time frame was 24 h. Outcome measures were the changes in oxygenation index (OI), mean arterial blood pressure (MABP), vasoactive inotropic score (VIS), and serum magnesium level. RESULTS Baseline demographic, ventilatory, and hemodynamic characteristics were comparable between the two groups. At the end of the study, the OI decreased by 44.3% in the NebMag group compared with 35.3% in the IVMag group (mean difference -3.14; 95%CI -5.08, -1.19; p 0.003). The NebMag group had a higher MABP (mean difference 2.29 mmHg; 95% CI 1.80, 2.77; p 0.000) and lower VIS (mean difference -14.64; 95% CI -16.52, -12.77; p 0.000) at the 24-h study time point. The increase in serum magnesium level, measured at 12-h study time point, was lower in the NebMag group (mean difference -2.26 mmol/L; 95% CI -2.58, -1.96; p 0.000). CONCLUSION Nebulized magnesium sulfate may be an effective therapeutic modality for neonates with severe PPHN on mechanical ventilation, but this should be confirmed by larger studies. Retrospectively registered at www.clinicaltrials.gov (identifier: NCT04328636).
Collapse
Affiliation(s)
- Elsayed Abdelkreem
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Shaimaa M Mahmoud
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Moustafa O Aboelez
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Mohamed Abd El Aal
- Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
25
|
Guillon A, Pardessus J, L'Hostis G, Fevre C, Barc C, Dalloneau E, Jouan Y, Bodier-Montagutelli E, Perez Y, Thorey C, Mereghetti L, Cabrera M, Riou M, Vecellio L, Le Guellec S, Heuzé-Vourc'h N. Inhaled bacteriophage therapy in a porcine model of pneumonia caused by Pseudomonas aeruginosa during mechanical ventilation. Br J Pharmacol 2021; 178:3829-3842. [PMID: 33974271 DOI: 10.1111/bph.15526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE 255: Pseudomonas aeruginosa is a main cause of ventilator-associated pneumonia (VAP) with drug-resistant bacteria. Bacteriophage therapy has experienced resurgence to compensate for the limited development of novel antibiotics. However, phage therapy is limited to a compassionate use so far, resulting from lack of adequate studies in relevant pharmacological models. We used a pig model of pneumonia caused by P. aeruginosa that recapitulates essential features of human disease to study the antimicrobial efficacy of nebulized-phage therapy. EXPERIMENTAL APPROACH (i) Lysis kinetic assays were performed to evaluate in vitro phage antibacterial efficacy against P. aeruginosa and select relevant combinations of lytic phages. (ii) The efficacy of the phage combinations was investigated in vivo (murine model of P. aeruginosa lung infection). (iii) We determined the optimal conditions to ensure efficient phage delivery by aerosol during mechanical ventilation. (iv) Lung antimicrobial efficacy of inhaled-phage therapy was evaluated in pigs, which were anaesthetized, mechanically ventilated and infected with P. aeruginosa. KEY RESULTS By selecting an active phage cocktail and optimizing aerosol delivery conditions, we were able to deliver high phage concentrations in the lungs, which resulted in a rapid and marked reduction in P. aeruginosa density (1.5-log reduction, p < .001). No infective phage was detected in the sera and urines throughout the experiment. CONCLUSION AND IMPLICATIONS Our findings demonstrated (i) the feasibility of delivering large amounts of active phages by nebulization during mechanical ventilation and (ii) rapid control of in situ infection by inhaled bacteriophage in an experimental model of P. aeruginosa pneumonia with high translational value.
Collapse
Affiliation(s)
- Antoine Guillon
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France.,Service de Médecine Intensive Réanimation, CHRU de Tours, Tours, France
| | - Jeoffrey Pardessus
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France
| | | | - Cindy Fevre
- Research and Development, Pherecydes Pharma, Romainville, France
| | - Celine Barc
- UE-1277 Plateforme d'infectiologie Expérimentale (PFIE), Centre Val de Loire, INRAE, Nouzilly, France
| | - Emilie Dalloneau
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France
| | - Youenn Jouan
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France.,Service de Médecine Intensive Réanimation, CHRU de Tours, Tours, France
| | - Elsa Bodier-Montagutelli
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France
| | - Yonatan Perez
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France.,Service de Médecine Intensive Réanimation, CHRU de Tours, Tours, France
| | - Camille Thorey
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France
| | - Laurent Mereghetti
- CEPR-U1100, Université de Tours, Tours, France.,UMR1282 Infectiologie et Santé Publique, Centre Val de Loire, INRAE, Nouzilly, France.,Service de Bactériologie-Virologie, CHRU de Tours, Tours, France
| | - Maria Cabrera
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France
| | - Mickaël Riou
- UE-1277 Plateforme d'infectiologie Expérimentale (PFIE), Centre Val de Loire, INRAE, Nouzilly, France
| | - Laurent Vecellio
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France
| | - Sandrine Le Guellec
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France.,Faculté de Médecine, DTF-Aerodrug, Tours, France
| | - Nathalie Heuzé-Vourc'h
- Centre d'Etude des Pathologies Respiratoires, INSERM, Tours, France.,CEPR-U1100, Université de Tours, Tours, France
| |
Collapse
|
26
|
Tang R, Luo R, Wu B, Wang F, Song H, Chen X. Effectiveness and safety of adjunctive inhaled antibiotics for ventilator-associated pneumonia: A systematic review and meta-analysis of randomized controlled trials. J Crit Care 2021; 65:133-139. [PMID: 34144265 DOI: 10.1016/j.jcrc.2021.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The efficacy and safety of adjunctive inhaled antibiotic therapy for ventilator-associated pneumonia (VAP) was systematically reviewed based on updated studies. METHODS We searched four databases and four clinical trial registration platforms to identify relevant studies published prior to May 19, 2020. Randomized controlled trials (RCTs) assessing adjunctive antibiotic inhalation treatment for VAP patients were eligible for this review. Two reviewers independently screened the articles and extracted the data. Information on inhaled therapy and clinical outcomes was collected. Study quality was assessed with the Cochrane risk of bias tool. The meta-analysis was conducted with Review Manager and R software. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidelines were used to evaluate the quality of evidence for each pooled outcome. RESULTS Eleven RCTs and 1210 patients were included in this analysis after the application of the inclusion and exclusion criteria. Compared with the use of intravenous injection alone, the use of adjunctive inhaled antibiotic therapy improved the rates of clinical cure (relative risk (RR) 1.13, 95% CI [1.02,1.26]) and microbiological eradication (RR 1.45, 95% CI [1.19,1.76]) in VAP patients. However, despite these improvements, mortality was not reduced (RR 1.00, 95% CI [0.82,1.21]). Adjunctive antibiotics delivered through the respiratory tract were not associated with a higher risk of renal impairment but were associated with an increased risk of bronchospasm (RR 2.74, 95% CI [1.31,5.73] during treatment. CONCLUSIONS Adjunctive inhaled antibiotics improved the clinical outcomes in VAP patients, but the increased rates clinical cure and microbiological eradication were not associated with reduced mortality. The use of nebulized antibiotics is not supported by the currently available evidence as a routine therapeutic strategy for VAP. PROSPERO REGISTRATION NUMBER CRD42020186970.
Collapse
Affiliation(s)
- Rui Tang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.
| | - Rui Luo
- Department of Pain Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Wu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Fusheng Wang
- Department of Critical Care, The Sixth Affiliated Hospital of Kunming Medical University, Kunming Medical University, Yuxi, China
| | - Haoxin Song
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiujuan Chen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
The Clinical Practice and Best Aerosol Delivery Location in Intubated and Mechanically Ventilated Patients: A Randomized Clinical Trial. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6671671. [PMID: 33884269 PMCID: PMC8041534 DOI: 10.1155/2021/6671671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
This randomized clinical trial (RCT) is aimed at exploring the best nebulizer position for aerosol delivery within the mechanical ventilation (MV) circuitry. This study enrolled 75 intubated and MV patients with respiratory failure and randomly divided them into three groups. The nebulizer position of patients in group A was between the tracheal tube and Y-piece. For group B, the nebulizer was placed at the inspiratory limb near the ventilator water cup (80 cm away from the Y-piece). For group C, the nebulizer was placed between the ventilator inlet and the heated humidifier. An indirect competitive enzyme-linked immunosorbent assay (ELISA) was used to measure salbutamol drug concentrations in serum and urine. The serum and urine salbutamol concentrations of the three groups were the highest in group B, followed by group C, and the lowest in group A. Serum and urine salbutamol concentrations significantly differed among the three groups (P < 0.05). It was found that the drug was statistically significant between group differences for groups B and A (P = 0.001; P = 0.002, respectively) for both serum and urine salbutamol concentrations. There were no significant differences observed among the other groups. It was found that the drug concentrations were the highest when the nebulizer was placed 80 cm away from the Y-piece, while the location between the tracheal tube and the Y-piece with the higher frequency of nebulizer placement was the location with the lowest drug concentration.
Collapse
|
28
|
Desgrouas M, Ehrmann S. Inhaled antibiotics during mechanical ventilation-why it will work. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:598. [PMID: 33987296 DOI: 10.21037/atm-20-3686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inhaled antibiotics are a common therapy among patients suffering recurrent or chronic pulmonary infections. Their use is less frequent in acutely ill patients despite a strong theoretical rationale and growing evidence of their efficiency, safety and beneficial effect on reducing bacterial resistance emergence. Clinical trials of inhaled antibiotics have shown contradictory results among mechanically ventilated patients. The optimal nebulization setup, not always implemented in all trials, the difficulty to identify the population most likely to benefit and the testing of various therapeutic strategies such as adjunctive versus alternative to systemic antibiotics may explain the disparity in trial results. The present review first presents the reasons why inhaled antibiotics have to be developed and the benefits to be expected of inhaled anti-infectious therapy among mechanically ventilated patients. A second part develops the constraints of aerosolized therapies that one has to be aware of and the simple actions required during nebulization to ensure optimal delivery to the distal lung parenchyma. Positive and negative studies concerning inhaled antibiotics are compared to understand the discrepancies of their findings and conclusions. The last part presents current developments and perspective which will likely turn it into a fully successful therapeutic modality, and makes the link between inhaled antibiotics and inhaled anti-infectious therapy.
Collapse
Affiliation(s)
- Maxime Desgrouas
- CHRU Tours, Médecine Intensive Réanimation, Tours, France.,CHR Orléans, Médecine Intensive Réanimation, Orléans, France.,INSERM, Centre d'étude des pathologies respiratoires, U1100, Université de Tours, Tours, France
| | - Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, Tours, France.,INSERM, Centre d'étude des pathologies respiratoires, U1100, Université de Tours, Tours, France
| |
Collapse
|
29
|
Mac Giolla Eain M, Joyce M, O'Sullivan A, McGrath JA, MacLoughlin R. An in vitro investigation into the release of fugitive medical aerosols into the environment during manual ventilation. J Hosp Infect 2020; 108:135-141. [PMID: 33296706 DOI: 10.1016/j.jhin.2020.11.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND During manual resuscitation, nebulizer therapy may be used to deliver therapeutics to patients in respiratory distress. However, the devices used to generate and deliver these medical aerosols have the potential to release these therapeutics into the local environment and expose caregivers to unwanted medical aerosols. AIM To quantify the levels of fugitive medical aerosol released into the environment during aerosol drug delivery using a manual resuscitation bag with and without filtration. METHODS Time-varying fugitive aerosol concentrations were measured using an aerodynamic particle sizer placed at a position designed to mimic a caregiver. Two nebulizer types were assessed, a vibrating mesh nebulizer and a jet nebulizer. The aerosol dose delivered to the simulated patient lung was also quantified. FINDINGS Filtration of the exhalation port of the manual resuscitation bag was seen to reduce fugitive medical aerosols to ambient levels for both nebulizer types. The vibrating mesh nebulizer delivered the greatest quantity of aerosol to the simulated adult patient (18.44 ± 1.03% versus 3.64 ± 0.26% with a jet nebulizer). CONCLUSIONS The results highlight the potential for exposure to fugitive medical aerosols released during the delivery of aerosol therapy with a manual resuscitation bag and also the potential for significant variation in patient lung dose depending on nebulizer type.
Collapse
Affiliation(s)
| | - M Joyce
- Aerogen, IDA Business Park, Dangan, Galway, Ireland
| | - A O'Sullivan
- Aerogen, IDA Business Park, Dangan, Galway, Ireland
| | - J A McGrath
- School of Physics & Ryan Institute's Centre for Climate and Air Pollution Studies, National University of Ireland Galway, Galway, Ireland
| | - R MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland.
| |
Collapse
|
30
|
Anderson N, Schultz A, Ditcham W, von Ungern-Sternberg BS. Assessment of different techniques for the administration of inhaled salbutamol in children breathing spontaneously via tracheal tubes, supraglottic airway devices, and tracheostomies. Paediatr Anaesth 2020; 30:1363-1377. [PMID: 32997848 DOI: 10.1111/pan.14028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Perioperative respiratory adverse events account for a third of all perioperative cardiac arrests, with bronchospasm and laryngospasm being most common. Standard treatment for bronchospasm is administration of inhaled salbutamol, via pressurized metered dose inhaler. There is little evidence on the best method of attaching the pressurized metered dose inhaler to the artificial airway during general anesthesia. AIM The aim of this study is to investigate the best method to deliver aerosolized salbutamol via pressurized metered dose inhaler to the lungs of an anesthetized child. METHODS We measured salbutamol delivered by pressurized metered dose inhaler through different sized tracheal tubes, supraglottic airway devices, and tracheostomies in vitro for methods commonly employed for connecting the pressurized metered dose inhaler to the artificial airway. Breathing was simulated for patients weighing 3, 16, 50, and 75 kg. Pressurized metered dose inhaler actuation coincided with inspiration. RESULTS A pressurized metered dose inhaler combined with an in-line non-valved or valved spacer, or the direct method, when delivered via tracheal tube, was linked with improved delivered dose of salbutamol, compared to all other methods for 3 or 50 kg simulated patients weights. The delivered dose when using a non-valved spacer was greater than all methods for 16 and 75 kg patient weights. A spacer improved delivery for the flexible supraglottic airway device type, and there was no difference with or without a spacer for remaining types. CONCLUSION Via tracheal tube and non-valved spacer, the following doses should be delivered after single actuation of a 100 µg labeled-claim salbutamol dose: ~2 µg kg-1 per actuation to a 3 kg neonate, ~1 µg kg-1 per actuation to a 16 kg child, and ~ 0.5 µg kg-1 per actuation for a 50-75 kg child. The least effective methods were the syringe, and the uni- and bidirectional adaptor methods, which require replacement by the direct method if a spacer is unavailable.
Collapse
Affiliation(s)
- Natalie Anderson
- University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth, Australia.,Perth Children's Hospital, Perth, Australia
| | - André Schultz
- University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth, Australia.,Perth Children's Hospital, Perth, Australia
| | | | - Britta S von Ungern-Sternberg
- University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth, Australia.,Perth Children's Hospital, Perth, Australia
| |
Collapse
|
31
|
Doroudian M, O'Neill A, O'Reilly C, Tynan A, Mawhinney L, McElroy A, Webster SS, MacLoughlin R, Volkov Y, E Armstrong M, A O'Toole G, Prina-Mello A, C Donnelly S. Aerosolized drug-loaded nanoparticles targeting migration inhibitory factors inhibit Pseudomonas aeruginosa-induced inflammation and biofilm formation. Nanomedicine (Lond) 2020; 15:2933-2953. [PMID: 33241979 DOI: 10.2217/nnm-2020-0344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine, which has been shown to promote disease severity in cystic fibrosis. Methods: In this study, aerosolized drug-loaded nanoparticles containing SCD-19, an inhibitor of MIF's tautomerase enzymatic activity, were developed and characterized. Results: The aerosolized nanoparticles had an optimal droplet size distribution for deep lung deposition, with a high degree of biocompatibility and significant cellular uptake. Conclusion: For the first time, we have developed an aerosolized nano-formulation against MIF's enzymatic activity that achieved a significant reduction in the inflammatory response of macrophages, and inhibited Pseudomonas aeruginosa biofilm formation on airway epithelial cells. This represents a potential novel adjunctive therapy for the treatment of P. aeruginosa infection in cystic fibrosis.
Collapse
Affiliation(s)
- Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew O'Neill
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aisling Tynan
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Aoife McElroy
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Shanice S Webster
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, NH 03755, USA
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland.,School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland.,Department of Histology, Cytology & Embryology, First Moscow State Sechenov Medical University, Russian Federation
| | - Michelle E Armstrong
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - George A O'Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, NH 03755, USA
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland.,CRANN Institute & AMBER Centre, Trinity College Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland
| |
Collapse
|
32
|
Ewing P, Oag S, Lundqvist A, Stomilovic S, Stellert I, Antonsson M, Nunes SF, Andersson PU, Tehler U, Sjöberg C, Péterffy A, Gerde P. Airway Epithelial Lining Fluid and Plasma Pharmacokinetics of Inhaled Fluticasone Propionate and Salmeterol Xinafoate in Mechanically Ventilated Pigs. J Aerosol Med Pulm Drug Deliv 2020; 34:231-241. [PMID: 33216656 DOI: 10.1089/jamp.2020.1637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The lower respiratory tract of the landrace pig has close anatomical and physiological similarities with that of the human, and hence, for inhalation studies this species is well suited for biopharmaceutical research. Methods: The objective of this study was to evaluate pharmacokinetics in pigs following one dose of Diskus™ Seretide™ forte device, labeled 500/50 fluticasone propionate (FP) and salmeterol xinafoate (SX), respectively. The PreciseInhale™ (PI) instrument was used to actuate the inhaler for in vitro testing and aerosol dosing to pigs. In vitro, the aerosol was characterized with a cascade impactor with respect to mass median aerodynamic diameter, geometric standard deviation, and fine particle dose. In vivo, dry powder inhalation exposure was delivered as a short bolus dose, to anesthetized and mechanically ventilated landrace pigs. In addition to plasma PK, PK assessment of airway epithelial lining fluid (ELF) was used in this study. ELF of the depth of three to fourth airway generation of the right lung was accessed using standard bronchoscopy and a synthetic absorptive matrix. Results and Conclusions: Dry powder inhalation exposures with good consistency and well characterized aerosols to the pig lung were achieved by the use of the PreciseInhale™ instrument. Drug concentrations of ELF for both FP and SX were demonstrated to be four to five orders of magnitude higher than its corresponding systemic plasma drug concentrations. Clinical PK following inhalation of the same dose was used as benchmark, and the clinical study did demonstrate similar plasma PK profiles and drug exposures of both FP and SX as the current pig study. Two factors explain the close similarity of PK (1) similiar physiology between species and (2) the consistency of dosing to animals. To conclude, our study demonstrated the utility and translational potential of conducting PK studies in pigs in the development of inhaled pharmaceuticals.
Collapse
Affiliation(s)
- Pär Ewing
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven Oag
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Lundqvist
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stina Stomilovic
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ida Stellert
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Malin Antonsson
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandro Filipe Nunes
- Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Ulrika Tehler
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Carl Sjöberg
- Flexura AB, Sweden.,Inhalation Sciences AB, Sweden
| | - AnnaMaria Péterffy
- Late-stage Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per Gerde
- Inhalation Sciences AB, Sweden.,Environmental Medicine Karolinska Institutet, Sweden
| |
Collapse
|
33
|
Development and testing of a new-generation aerosol exposure system: The independent holistic air-liquid exposure system (InHALES). Toxicol In Vitro 2020; 67:104909. [PMID: 32512146 DOI: 10.1016/j.tiv.2020.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022]
Abstract
The dose of inhaled materials delivered to the respiratory tract is to a large extent a function of the kinetics of particle deposition and gas dissolution on or in the airway and lung epithelia, and therefore of the structural and functional properties of the respiratory tract. In vitro aerosol exposure systems commonly do not simulate these properties, which may result in the delivery of non-realistic, non-human-relevant doses of inhalable test substances to the in vitro biological test systems. We developed a new-generation in vitro aerosol exposure system, the InHALES, that can, like the human respiratory tract, actively breathe, operate medical inhalers, or take puffs from tobacco products. Due to its structural and functional similarity to the human respiratory tract, the system is expected to deliver human-relevant doses of inhalable materials to cell cultures representing respiratory tract epithelia. We here describe the proof of concept of the InHALES with respect to aerosol delivery and compatibility with oral, bronchial, and alveolar cell cultures. The results indicate that the system structure and function translate into complex patterns of test atmosphere delivery that, with increasing system complexity, may closely mimic the patterns observable in the human respiratory tract.
Collapse
|
34
|
McCarthy SD, González HE, Higgins BD. Future Trends in Nebulized Therapies for Pulmonary Disease. J Pers Med 2020; 10:E37. [PMID: 32397615 PMCID: PMC7354528 DOI: 10.3390/jpm10020037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Aerosol therapy is a key modality for drug delivery to the lungs of respiratory disease patients. Aerosol therapy improves therapeutic effects by directly targeting diseased lung regions for rapid onset of action, requiring smaller doses than oral or intravenous delivery and minimizing systemic side effects. In order to optimize treatment of critically ill patients, the efficacy of aerosol therapy depends on lung morphology, breathing patterns, aerosol droplet characteristics, disease, mechanical ventilation, pharmacokinetics, and the pharmacodynamics of cell-drug interactions. While aerosol characteristics are influenced by drug formulations and device mechanisms, most other factors are reliant on individual patient variables. This has led to increased efforts towards more personalized therapeutic approaches to optimize pulmonary drug delivery and improve selection of effective drug types for individual patients. Vibrating mesh nebulizers (VMN) are the dominant device in clinical trials involving mechanical ventilation and emerging drugs. In this review, we consider the use of VMN during mechanical ventilation in intensive care units. We aim to link VMN fundamentals to applications in mechanically ventilated patients and look to the future use of VMN in emerging personalized therapeutic drugs.
Collapse
Affiliation(s)
- Sean D. McCarthy
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Héctor E. González
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Brendan D. Higgins
- Physiology, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
35
|
Desoubeaux G, Lemaignen A, Ehrmann S. Reply to the reply to Scientific rationale for inhaled caspofungin to treat Pneumocystis pneumonia: A therapeutic innovation likely relevant to investigate in a near future …. Int J Infect Dis 2020; 95:469-470. [PMID: 32276043 DOI: 10.1016/j.ijid.2020.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Guillaume Desoubeaux
- Université de Tours, INSERM U1100, Centre d'étude des pathologies respiratoires, Tours, France.
| | - Adrien Lemaignen
- CHRU de Tours, Médecine interne & Maladies infectieuses, Tours, France
| | - Stephan Ehrmann
- Université de Tours, INSERM U1100, Centre d'étude des pathologies respiratoires, Tours, France; CHRU de Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep Network, Tours, France
| |
Collapse
|
36
|
Rouby JJ, Monsel A, Leone M, Mimoz O, Laterre PF, Pugin J. The IASIS, INHALE and VAPORISE trials. Reasons for a triple failure: Study design, aminoglycosides dosing and technique of nebulisation. Anaesth Crit Care Pain Med 2020; 39:179-183. [PMID: 32156643 DOI: 10.1016/j.accpm.2020.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jean-Jacques Rouby
- Multidisciplinary Intensive Care Unit, Department of Anaesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Medicine Sorbonne University, Paris, France.
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anaesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Medicine Sorbonne University, Paris, France
| | - Marc Leone
- Department of Anaesthesiology and Critical Care, North Hospital, University Aix-Marseille, Marseille, France
| | - Olivier Mimoz
- Department of Anaesthesiology and Intensive Care, University Hospital of Poitiers, University of Poitiers, Poitiers, France
| | - Pierre-François Laterre
- Saint Luc Clinical Coordinating Centre, Department of Critical Care Medicine, St Luc University Hospital, Catholic University of Louvain, Brussels, Belgium
| | - Jérôme Pugin
- Intensive Care Division, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Montigaud Y, Georges Q, Pourchez J, Leclerc L, Goy C, Clotagatide A, Prevot N, Perinel-Ragey S. Aerosol delivery during invasive mechanical ventilation: development of a preclinical ex vivo respiratory model for aerosol regional deposition. Sci Rep 2019; 9:17930. [PMID: 31784627 PMCID: PMC6884623 DOI: 10.1038/s41598-019-54480-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
In intensive care units, nebulization is a usual route for drug administration to patients under mechanical ventilation (MV). The effectiveness of inhalation devices as well as depositions sites of aerosols for ventilated patients remain poorly documented. In vivo human inhalation studies are scarce due to ethical restrictions because imaging techniques require radioaerosols to assess regional aerosol deposition. Thus, we developed an ex vivo respiratory model under invasive MV for preclinical aerosol deposition studies. The model was composed of ex vivo porcine respiratory tracts. MV was achieved thanks to a tracheal intubation and a medical ventilator under controlled conditions. Respiratory features were studied using analogical sensors. Then regional homogeneity of gas-ventilation was assessed with 81mKrypton scintigraphies. Finally, a proof of concept study for aerosol deposition was performed. Obtained respiratory features as well as gamma-imaging techniques, which demonstrated a homogenous regional ventilation and about 18% ± 4% of the nebulized dose deposited the respiratory tract, were in good agreement with human data available in the literature. This original ex vivo respiratory model provides a feasible, reproducible and cost-effective preclinical tool to achieve aerosol deposition studies under MV.
Collapse
Affiliation(s)
- Yoann Montigaud
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | | | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023, Saint-Etienne, France
| | - Clémence Goy
- CHU Saint-Etienne, Saint-Etienne, F-42055, France
| | | | - Nathalie Prevot
- CHU Saint-Etienne, Saint-Etienne, F-42055, France.,INSERM U1059 Sainbiose, Université Jean Monnet, Saint-Etienne, F-42023, France
| | - Sophie Perinel-Ragey
- CHU Saint-Etienne, Saint-Etienne, F-42055, France. .,INSERM U1059 Sainbiose, Université Jean Monnet, Saint-Etienne, F-42023, France.
| |
Collapse
|
38
|
Lee AY, Cho MH, Kim S. Recent advances in aerosol gene delivery systems using non-viral vectors for lung cancer therapy. Expert Opin Drug Deliv 2019; 16:757-772. [PMID: 31282221 DOI: 10.1080/17425247.2019.1641083] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lung cancer commonly occurs at a high incidence worldwide. Application of aerosol gene delivery systems using various kinds of vectors can improve the patient's quality of life by prolonging the survival rate. AREAS COVERED This review provides a recent update on aerosol gene delivery strategies using various kinds of vectors and gene-modification technologies. Peptide-mediated gene therapy achieves specific targeting of cells and highly improves efficacy. Promoter-operating expression and the CRISPR/Cas9 system are novel gene therapy strategies for effective lung cancer treatment. Furthermore, hybrid systems with a combination of vectors or drugs have been recently applied as new trends in gene therapy. EXPERT OPINION Although aerosol gene delivery has many advantages, physiological barriers in the lungs pose formidable challenges. Targeted gene delivery and gene-editing technology are promising strategies for lung cancer therapy. These strategies may allow the development of safety and high efficiency for clinical application. Recently, hybrid gene therapy combining novel and specific vectors has been developed as an advanced strategy. Although gene therapy for lung cancer is being actively researched, aerosol gene therapy strategies are currently lacking, and further studies on aerosol gene therapy are needed to treat lung cancer.
Collapse
Affiliation(s)
- Ah Young Lee
- a Center for Molecular Recognition Research, Materials and Life Science Research Division , Korea Institute of Science and Technology (KIST) , Seoul , Korea
| | - Myung-Haing Cho
- b Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine , Seoul National University , Seoul , Republic of Korea
| | - Sanghwa Kim
- c Cancer Biology Laboratory , Institut Pasteur Korea , Seongnam-si , Korea
| |
Collapse
|
39
|
Reychler G, Michotte JB. Development challenges and opportunities in aerosol drug delivery systems in non-invasive ventilation in adults. Expert Opin Drug Deliv 2019; 16:153-162. [DOI: 10.1080/17425247.2019.1572111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Bruxelles, Belgium
- Service de Pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Jean-Bernard Michotte
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, Université Catholique de Louvain, Bruxelles, Belgium
- Filière Physiothérapie, School of Health Sciences (HESAV), HES-SO University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland
| |
Collapse
|
40
|
Schou M, Ewing P, Cselenyi Z, Fridén M, Takano A, Halldin C, Farde L. Pulmonary PET imaging confirms preferential lung target occupancy of an inhaled bronchodilator. EJNMMI Res 2019; 9:9. [PMID: 30694407 PMCID: PMC6890867 DOI: 10.1186/s13550-019-0479-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET) is a non-invasive molecular imaging technique that traces the distribution of radiolabeled molecules in experimental animals and human subjects. We hypothesized that PET could be used to visualize the binding of the bronchodilator drug ipratropium to muscarinic receptors (MR) in the lungs of living non-human primates (NHP). The objectives of this study were two-fold: (i) to develop a methodology for quantitative imaging of muscarinic receptors in NHP lung and (ii) to estimate and compare ipratropium-induced MR occupancy following drug administration via intravenous injection and inhalation, respectively. METHODS A series of PET measurements (n = 18) was performed after intravenous injection of the selective muscarinic radioligand 11C-VC-002 in NHP (n = 5). The lungs and pituitary gland (both rich in MR) were kept in the field of view. Each PET measurement was followed by a PET measurement preceded by treatment with ipratropium (intravenous or inhaled). RESULTS Radioligand binding was quantified using the Logan graphical analysis method providing the total volume of distribution (VT). Ipratropium reduced the VT in the lung and pituitary in a dose-dependent fashion. At similar plasma ipratropium concentrations, administration by inhalation produced larger reductions in VT for the lungs. The plasma-derived apparent affinity for ipratropium binding in the lung was one order of magnitude higher after inhalation (Kiih = 1.01 nM) than after intravenous infusion (Kiiv = 10.84 nM). CONCLUSION Quantitative muscarinic receptor occupancy imaging by PET articulates and quantifies the therapeutic advantage of the inhaled route of delivery and provides a tool for future developments of improved inhaled drugs.
Collapse
Affiliation(s)
- Magnus Schou
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden. .,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.
| | - Pär Ewing
- Respiratory, Inflammation and Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Zsolt Cselenyi
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Markus Fridén
- Respiratory, Inflammation and Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.,Translational PKPD, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| | - Lars Farde
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| |
Collapse
|
41
|
King CS, Brown AW, Aryal S, Ahmad K, Donaldson S. Critical Care of the Adult Patient With Cystic Fibrosis. Chest 2019; 155:202-214. [DOI: 10.1016/j.chest.2018.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/24/2023] Open
|
42
|
Zhang Z, Xu P, Fang Q, Ma P, Lin H, Fink JB, Liang Z, Chen R, Ge H. Practice pattern of aerosol therapy among patients undergoing mechanical ventilation in mainland China: A web-based survey involving 447 hospitals. PLoS One 2019; 14:e0221577. [PMID: 31465523 PMCID: PMC6715194 DOI: 10.1371/journal.pone.0221577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Aerosol therapies are widely used for mechanically ventilated patients. However, the practice pattern of aerosol therapy in mainland China remains unknown. This study aimed to determine the current practice of aerosol therapy in mainland China. METHODS A web-based survey was conducted by the China Union of Respiratory Care (CURC) from August 2018 to January 2019. The survey was disseminated via Email or WeChat to members of CURC. A questionnaire comprising 16 questions related to hospital information and 12 questions related to the practice of aerosol therapy. Latent class analysis was employed to identify the distinct classes of aerosol therapy practice. MAIN RESULTS A total of 693 valid questionnaires were returned by respiratory care practitioners from 447 hospitals. Most of the practitioners used aerosol therapy for both invasive mechanical ventilation (90.8%) and non-invasive mechanical ventilation (91.3%). Practitioners from tertiary care centers were more likely to use aerosol therapy compared with those from non-tertiary care centers (91.9% vs. 85.4%, respectively; p = 0.035). The most commonly used drugs for aerosol therapy were bronchodilators (64.8%) followed by mucolytic agents (44.2%), topical corticosteroids (43.4%) and antibiotics (16.5%). The ultrasonic nebulizer (48.3%) was the most commonly used followed by the jet nebulizer (39.2%), the metered dose inhaler (15.4%) and the vibrating mesh nebulizer (14.6%). Six latent classes were identified via latent class analysis. Class 1 was characterized by the aggressive use of aerosol therapy without a standard protocol, while class 3 was characterized by the absence of aerosol therapy. CONCLUSIONS Substantial heterogeneity among institutions with regard to the use of aerosol therapy was noted. The implementation of aerosol therapy during mechanical ventilation was inconsistent in light of recent practice guidelines. Additional efforts by the CURC to improve the implementation of aerosol therapy in mainland China are warranted.
Collapse
Affiliation(s)
- Zhongheng Zhang
- Department of emergency medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peifeng Xu
- Department of Respiratory Care, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Fang
- Department of critical care medicine, First hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Penglin Ma
- Department of Critical Care Medicine, Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Huiling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan City, Taiwan
| | - Jim B. Fink
- Aerogen Pharma Corp., San Mateo, California, United States of America
| | - Zongan Liang
- Department of Respiratory and Critical Care Medicine, West China Medical Center, Sichuan University, China
| | - Rongchang Chen
- Guangzhou Institute of Respiratory Diseases, Guangzhou, China
| | - Huiqing Ge
- Department of Respiratory Care, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| | | |
Collapse
|
43
|
Sweeney DA, Kalil AC. Didn't inhale? Time to reconsider aerosolized antibiotics in the treatment of ventilator-associated pneumonia. Crit Care 2018; 22:333. [PMID: 30518423 PMCID: PMC6280481 DOI: 10.1186/s13054-018-2205-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/24/2018] [Indexed: 11/10/2022] Open
Affiliation(s)
- Daniel A Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, CA, USA
| | - Andre C Kalil
- Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center, 985400 Nebraska Medical Center, Omaha, NE, 68135, USA.
| |
Collapse
|
44
|
Dhanani JA, Cohen J, Parker SL, Chan HK, Tang P, Ahern BJ, Khan A, Bhatt M, Goodman S, Diab S, Chaudhary J, Lipman J, Wallis SC, Barnett A, Chew M, Fraser JF, Roberts JA. A research pathway for the study of the delivery and disposition of nebulised antibiotics: an incremental approach from in vitro to large animal models. Intensive Care Med Exp 2018; 6:17. [PMID: 29998357 PMCID: PMC6041222 DOI: 10.1186/s40635-018-0180-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 11/10/2022] Open
Abstract
Background Nebulised antibiotics are frequently used for the prevention or treatment of ventilator-associated pneumonia. Many factors may influence pulmonary drug concentrations with inaccurate dosing schedules potentially leading to therapeutic failure and/or the emergence of antibiotic resistance. We describe a research pathway for studying the pharmacokinetics of a nebulised antibiotic during mechanical ventilation using in vitro methods and ovine models, using tobramycin as the study antibiotic. Methods In vitro studies using a laser diffractometer and a bacterial-viral filter were used to measure the effect of the type and size of tracheal tubes and antibiotic concentration on the particle size distribution of the tobramycin 400 mg (4 ml; 100 mg/ml) and 160 mg (4 ml, 40 mg/ml) aerosol and nebulised mass delivered. To compare the regional drug distribution in the lung of two routes (intravenous and nebulised) of drug administration of tobramycin 400 mg, technetium-99m-labelled tobramycin 400 mg with planar nuclear medicine imaging was used in a mechanically ventilated ovine model. To measure tobramycin concentrations by intravenous and nebulised tobramycin 400 mg (4 ml, 100 mg/ml) administration in the lung interstitial space (ISF) fluid and blood of mechanically ventilated sheep, the microdialysis technique was used over an 8-h duration. Results Tobramycin 100 mg/ml achieved a higher lung dose (121.3 mg) compared to 40 mg/ml (41.3 mg) solution. The imaging study with labelled tobramycin indicated that nebulised tobramycin distributed more extensively into each lung zone of the mechanically ventilated sheep than intravenous administration. A higher lung ISF peak concentration of tobramycin was observed with nebulised tobramycin (40.8 mg/l) compared to intravenous route (19.0 mg/l). Conclusions The research methods appear promising to describe lung pharmacokinetics for formulations intended for nebulisation during mechanical ventilation. These methods need further validation in an experimental pneumonia model to be able to contribute toward optimising dosing regimens to inform clinical trials and/or clinical use.
Collapse
Affiliation(s)
- Jayesh A Dhanani
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia. .,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia. .,Critical Care Research Group, The University of Queensland, Brisbane, Australia.
| | - Jeremy Cohen
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Suzanne L Parker
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Patricia Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin J Ahern
- Faculty of Science, School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Adeel Khan
- Faculty of Science, School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Manoj Bhatt
- Department of Nuclear Medicine and Specialised PET Services Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,School of Medicine, Faculty of Health Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Steven Goodman
- Department of Nuclear Medicine and Specialised PET Services Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Sara Diab
- Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Jivesh Chaudhary
- Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Jeffrey Lipman
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Steven C Wallis
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Adrian Barnett
- Institute of Health and Biomedical Innovation and School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, Australia
| | - Michelle Chew
- Department of Anaesthesiology and Intensive Care, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - John F Fraser
- Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Jason A Roberts
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia.,Department of Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
45
|
Dhanani JA, Tang P, Wallis SC, Parker SL, Pandey P, Fraser JF, Cohen J, Barnett A, Roberts JR, Chan HK. Characterisation of 40 mg/ml and 100 mg/ml tobramycin formulations for aerosol therapy with adult mechanical ventilation. Pulm Pharmacol Ther 2018; 50:93-99. [PMID: 29679678 DOI: 10.1016/j.pupt.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/07/2018] [Accepted: 04/09/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Preservative-free tobramycin is commonly used as aerosolized therapy for ventilator associated pneumonia. The comparative delivery profile of the formulations of two different concentrations (100 mg/ml and 40 mg/ml) is unknown. This study aims to evaluate the aerosol characteristics of these tobramycin formulations in a simulated adult mechanical ventilation model. METHODS Simulated adult mechanical ventilation set up and optimal settings were used in the study. Inhaled mass study was performed using bacterial/viral filters at the tip of the tracheal tube and in the expiratory limb of circuit. Laser diffractometer was used for characterising particle size distribution. The physicochemical characteristics of the formulations were described and nebulization characteristics compared using two airways, an endotracheal tube (ET) and a tracheostomy tube (TT). For each type of tube, three internal tube diameters were studied, 7 mm, 8 mm and 9 mm. RESULTS The lung dose was significantly higher for 100 mg/ml solution (mean 121.3 mg vs 41.3 mg). Viscosity was different (2.11cp vs 1.58cp) for 100 mg/ml vs 40 mg/ml respectively but surface tension was similar. For tobramycin 100 mg/ml vs 40 mg/ml, the volume median diameter (2.02 vs 1.9 μm) was comparable. The fine particle fraction (98.5 vs 85.4%) was higher and geometric standard deviation (1.36 vs 1.62 μm) was significantly lower for 100 mg/ml concentration. Nebulization duration was longer for 100 mg/ml solution (16.9 vs 10.1 min). The inhaled dose percent was similar (30%) but the exhaled dose was higher for 100 mg/ml solution (18.9 vs 10.4%). The differences in results were non-significant for type of tube or size except for a small but statistically significant reduction in inhaled mass with TT compared to ET (0.06%). CONCLUSION Aerosolized tobramycin 100 mg/ml solution delivered higher lung dose compared to tobramycin 40 mg/ml solution. Tracheal tube type or size did not influence the aerosol characteristics and delivery parameters.
Collapse
Affiliation(s)
- Jayesh A Dhanani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia.
| | - Patrician Tang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Steven C Wallis
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Suzanne L Parker
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Preeti Pandey
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Australia
| | - John F Fraser
- Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Jeremy Cohen
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Adrian Barnett
- Institute of Health and Biomedical Innovation & School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, Australia; Critical Care Research Group, The University of Queensland, Brisbane, Australia
| | - Jason R Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia; Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia; Department of Pharmacy, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
46
|
Alves J, Alp E, Koulenti D, Zhang Z, Ehrmann S, Blot S, Bassetti M, Conway-Morris A, Reina R, Teran E, Sole-Lleonart C, Ruiz-Rodríguez M, Rello J. Nebulization of antimicrobial agents in mechanically ventilated adults in 2017: an international cross-sectional survey. Eur J Clin Microbiol Infect Dis 2018; 37:785-794. [PMID: 29318460 DOI: 10.1007/s10096-017-3175-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
2017 ESCMID practice guidelines reported safety concerns and weak evidence of benefit supporting use of aerosolized antibiotics in mechanically ventilated patients. Our primary goal was to assess current patterns of aerosolized antibiotic prescription in mechanically ventilated patients. A sequential global survey was performed prior to the release of the ESCMID guidelines, from the 1st of February to the 30th of April 2017, using an electronic platform. Responses were analyzed comparing geographical regions. A total of 410 units responded, with 261 (177 from Europe) being eligible for the full survey. 26.8% of units reported not using aerosolized antibiotics. The two major indications amongst prescribing units were ventilator-associated pneumonia and ventilator-associated tracheobronchitis (74.3% and 49.4%, respectively). 63.6% of units indicated prescription solely in response to multi-drug resistant organisms. In comparison with a survey undertaken in 2014, there was a significant reduction in use of aerosolized antibiotics for prophylaxis (50.6% vs 7.7%, p < 0.05) and colonization (52.9% vs 25.3%, p < 0.05). The large majority of units (91.7%) reported only prescribing in patients with positive pulmonary cultures. Asia appeared to be an outlier, with 53.3% of units reporting empirical use. The most commonly used device was the jet nebulizer. The most commonly prescribed drugs were colistin methanesulfonate (57.6%), colistin base (41.9%) and amikacin (31.4%), although there was considerable heterogeneity across geographical areas. A significant gap exists between ESCMID clinical practice recommendations and the use of aerosolized antibiotics in clinical practice. Our findings indicate an urgent need for high-quality education to bring practice into line with evidence-based guidelines.
Collapse
Affiliation(s)
- Joana Alves
- Infectious Diseases Department, Centro Hospitalar São João, Porto, Portugal
- Faculty of Medicine of University of Porto, Porto, Portugal
| | - Emine Alp
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Despoina Koulenti
- BTCCRC, UQCCR, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- 2nd Critical Care Department, Attikon Univesrity Hospital, Athens, Greece
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Stephan Ehrmann
- Médecine Intensive Réanimation, CHRU de Tours and CRICS-TriggerSEP Network, Tours, France
- Centre d'étude des pathologies respiratoires, INSERM U1100, Aérosolthérapie et biomédicaments à visée respiratoire, Faculté de médecine de Tours, Université François Rabelais, Tours, France
| | - Stijn Blot
- Department of Internal Medicine, Faculty of Medicine & Health Science, Ghent University, Ghent, Belgium
- Burns Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia
| | - Matteo Bassetti
- Infectious Diseases Division, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata, Udine, Italy
| | - Andrew Conway-Morris
- University Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rosa Reina
- Terapia Intensiva, Hospital Interzonal de Agudos "General San Martín", La Plata, Argentina
| | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Quito, Ecuador
| | - Candela Sole-Lleonart
- Centre Hospitalier Universitaire Vaudoise, Geneve, Switzerland
- Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Maria Ruiz-Rodríguez
- Department of Clinical Research & Innovation in Pneumonia and Sepsis, Vall d'Hebron Institut of Research, Barcelona, Spain
| | - Jordi Rello
- Critical Care Department, Vall d'Hebron Institut of Research, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red (CIBERES), Ps Vall d'Hebron 119, AMI- 14a Planta, 08035, Barcelona, Spain.
| | | |
Collapse
|