1
|
Petrilla A, Nemeth P, Fauszt P, Szilagyi-Racz A, Mikolas M, Szilagyi-Tolnai E, David P, Stagel A, Gal F, Gal K, Sohajda R, Pham T, Stundl L, Biro S, Remenyik J, Paholcsek M. Comparative analysis of the postadmission and antemortem oropharyngeal and rectal swab microbiota of ICU patients. Sci Rep 2024; 14:27179. [PMID: 39516251 PMCID: PMC11549221 DOI: 10.1038/s41598-024-78102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Shotgun metabarcoding was conducted to examine the microbiota in a total of 48 samples from 12 critically ill patients, analyzing samples from both the oropharynx and rectum. We aimed to compare their postadmission microbiota, characterized as moderately dysbiotic, with the severely dysbiotic antemortem microbiota associated with patients' deaths. We found that, compared with postadmission samples, patient antemortem swab samples presented moderate but not significantly decreased diversity indices. The antemortem oropharyngeal samples presented an increase in biofilm-forming bacteria, including Streptococcus oralis, methicillin-resistant Staphylococcus aureus (MRSA), and Enterococcus faecalis. Although the septic shock rate was 67%, no significant differences were detected in the potential pathogen ratios when the microbiota was analyzed. A notable strain-sharing rate between the oropharynx and intestine was noted. By comparing postadmission and antemortem samples, microbial biomarkers of severe dysbiosis were pinpointed through the analysis of differentially abundant and uniquely emerging species in both oropharyngeal and rectal swabs. Demonstrating strong interconnectivity along the oral-intestinal axis, these biomarkers could serve as indicators of the progression of dysbiosis. Furthermore, the microbial networks of the oropharyngeal microbiota in deceased patients presented the lowest modularity, suggesting a vulnerable community structure. Our data also highlight the critical importance of introducing treatments aimed at enhancing the resilience of the oral cavity microbiome, thereby contributing to better patient outcomes.
Collapse
Affiliation(s)
- Annamaria Petrilla
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Nemeth
- Department of Anaesthesiology and Intensive Care, Vas County Markusovszky Teaching Hospital, Szombathely, Hungary
| | - Peter Fauszt
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Anna Szilagyi-Racz
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Maja Mikolas
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Emese Szilagyi-Tolnai
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Peter David
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Aniko Stagel
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Ferenc Gal
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Kristof Gal
- Department of Oncoradiology, University of Debrecen Clinical Centre, Debrecen, Hungary
| | - Reka Sohajda
- Hungarian National Blood Transfusion Service Nucleic Acid Testing Laboratory, Budapest, Hungary
| | - Trinh Pham
- Turku Bioscience Centre, University of Turku and Abo Akademi University, 20520, Turku, Finland
| | - Laszlo Stundl
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Sandor Biro
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Faculty of Agricultural and Food Sciences and Environmental Management, Complex Systems and Microbiome-innovations Centre, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
2
|
Piccioni A, Spagnuolo F, Candelli M, Voza A, Covino M, Gasbarrini A, Franceschi F. The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy. J Clin Med 2024; 13:6082. [PMID: 39458032 PMCID: PMC11508704 DOI: 10.3390/jcm13206082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Sepsis is a complex clinical syndrome characterized by an uncontrolled inflammatory response to an infection that may result in septic shock and death. Recent research has revealed a crucial link between sepsis and alterations in the gut microbiota, showing that the microbiome could serve an essential function in its pathogenesis and prognosis. In sepsis, the gut microbiota undergoes significant dysbiosis, transitioning from a beneficial commensal flora to a predominance of pathobionts. This transformation can lead to a dysfunction of the intestinal barrier, compromising the host's immune response, which contributes to the severity of the disease. The gut microbiota is an intricate system of protozoa, fungi, bacteria, and viruses that are essential for maintaining immunity and metabolic balance. In sepsis, there is a reduction in microbial heterogeneity and a predominance of pathogenic bacteria, such as proteobacteria, which can exacerbate inflammation and negatively influence clinical outcomes. Microbial compounds, such as short-chain fatty acids (SCFAs), perform a crucial task in modulating the inflammatory response and maintaining intestinal barrier function. However, the role of other microbiota components, such as viruses and fungi, in sepsis remains unclear. Innovative therapeutic strategies aim to modulate the gut microbiota to improve the management of sepsis. These include selective digestive decontamination (SDD), probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT), all of which have shown potential, although variable, results. The future of sepsis management could benefit greatly from personalized treatment based on the microbiota. Rapid and easy-to-implement tests to assess microbiome profiles and metabolites associated with sepsis could revolutionize the disease's diagnosis and management. These approaches could not only improve patient prognosis but also reduce dependence on antibiotic therapies and promote more targeted and sustainable treatment strategies. Nevertheless, there is still limited clarity regarding the ideal composition of the microbiota, which should be further characterized in the near future. Similarly, the benefits of therapeutic approaches should be validated through additional studies.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Fabio Spagnuolo
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Antonio Voza
- Department of Emergency Medicine, IRCCS-Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Medical and Surgical Science Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
3
|
Boscolo A, Bruni A, Giani M, Garofalo E, Sella N, Pettenuzzo T, Bombino M, Palcani M, Rezoagli E, Pozzi M, Falcioni E, Pistollato E, Biamonte E, Murgolo F, D'Arrigo G, Gori M, Tripepi GL, Gottin L, Longhini F, Grasso S, Navalesi P, Foti G. Retrospective ANalysis of multi-drug resistant Gram-nEgative bacteRia on veno-venous extracorporeal membrane oxygenation. The multicenter RANGER STUDY. Crit Care 2024; 28:279. [PMID: 39192287 PMCID: PMC11351604 DOI: 10.1186/s13054-024-05068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Veno-venous extracorporeal membrane oxygenation (V-V ECMO) is a rapidly expanding life-support technique worldwide. The most common indications are severe hypoxemia and/or hypercapnia, unresponsive to conventional treatments, primarily in cases of acute respiratory distress syndrome. Concerning potential contraindications, there is no mention of microbiological history, especially related to multi-drug resistant (MDR) bacteria isolated before V-V ECMO placement. Our study aims to investigate: (i) the prevalence and incidence of MDR Gram-negative (GN) bacteria in a cohort of V-V ECMOs; (ii) the risk of 1-year mortality, especially in the case of predetected MDR GN bacteria; and (iii) the impact of annual hospital V-V ECMO volume on the probability of acquiring MDR GN bacteria. METHODS All consecutive adults admitted to the Intensive Care Units of 5 Italian university-affiliated hospitals and requiring V-V ECMO were screened. Exclusion criteria were age < 18 years, pregnancy, veno-arterial or mixed ECMO-configuration, incomplete records, survival < 24 h after V-V ECMO. A standard protocol of microbiological surveillance was applied and MDR profiles were identified using in vitro susceptibility tests. Cox-proportional hazards models were applied for investigating mortality. RESULTS Two hundred and seventy-nine V-V ECMO patients (72% male) were enrolled. The overall MDR GN bacteria percentage was 50%: 21% (n.59) detected before and 29% (n.80) after V-V ECMO placement. The overall 1-year mortality was 42%, with a higher risk observed in predetected patients (aHR 2.14 [1.33-3.47], p value 0.002), while not in 'V-V ECMO-acquired MDR GN bacteria' group (aHR 1.51 [0.94-2.42], p value 0.090), as compared to 'non-MDR GN bacteria' group (reference). Same findings were found considering only infections. A larger annual hospital V-V ECMO volume was associated with a lower probability of acquiring MDR GN bacteria during V-V ECMO course (aOR 0.91 [0.86-0.97], p value 0.002). CONCLUSIONS 21% of MDR GN bacteria were detected before; while 29% after V-V ECMO connection. A history of MDR GN bacteria, isolated before V-V ECMO, was an independent risk factor for mortality. The annual hospital V-V ECMO volume affected the probability of acquiring MDR GN bacteria. Trial Registration ClinicalTrial.gov Registration Number NCTNCT06199141, date 12.26.2023.
Collapse
Affiliation(s)
- Annalisa Boscolo
- Department of Medicine (DIMED), University of Padua, 13 Gallucci Street, 35121, Padua, Italy
- Institute of Anesthesia and Critical Care, Padua University Hospital, Padua, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Marco Giani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Critical Care, IRCSS San Gerardo Dei Tintori, Monza, Italy
| | - Eugenio Garofalo
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Nicolò Sella
- Institute of Anesthesia and Critical Care, Padua University Hospital, Padua, Italy
| | - Tommaso Pettenuzzo
- Institute of Anesthesia and Critical Care, Padua University Hospital, Padua, Italy
| | - Michela Bombino
- Department of Emergency and Critical Care, IRCSS San Gerardo Dei Tintori, Monza, Italy
| | - Matteo Palcani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Critical Care, IRCSS San Gerardo Dei Tintori, Monza, Italy
| | - Matteo Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Critical Care, IRCSS San Gerardo Dei Tintori, Monza, Italy
| | - Elena Falcioni
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
- Cardiothoracic and Vascular Intensive Care Unit, Verona University Hospital, Verona, Italy
| | - Elisa Pistollato
- Department of Medicine (DIMED), University of Padua, 13 Gallucci Street, 35121, Padua, Italy
| | - Eugenio Biamonte
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Francesco Murgolo
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Graziella D'Arrigo
- CNR-IFC, Institute of Clinical Physiology of Reggio Calabria, Reggio Calabria, Italy
| | - Mercedes Gori
- CNR-IFC, Institute of Clinical Physiology of Rome, Rome, Italy
| | | | - Leonardo Gottin
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
- Cardiothoracic and Vascular Intensive Care Unit, Verona University Hospital, Verona, Italy
| | - Federico Longhini
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Salvatore Grasso
- Department of Precision and Regenerative Medicine and Ionian Area, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Paolo Navalesi
- Department of Medicine (DIMED), University of Padua, 13 Gallucci Street, 35121, Padua, Italy.
- Institute of Anesthesia and Critical Care, Padua University Hospital, Padua, Italy.
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Critical Care, IRCSS San Gerardo Dei Tintori, Monza, Italy
| |
Collapse
|
4
|
Wei X, Guo L, Cai H, Gu S, Tang L, Leng Y, Cheng M, He G, Han Y, Ren X, Lin B, Lv L, Shao H, Wang M, Wang H, Dang D, Wang S, Wang N, Shen P, Wang Q, Xu Y, Jiang Y, Zhang N, He X, Deng X, Dai M, Zhong L, Xiong Y, Pan Y, Tang K, Liu F, Yang B, Ren L, Wang J, Jiang C, Huang L. MASS cohort: Multicenter, longitudinal, and prospective study of the role of microbiome in severe pneumonia and host susceptibility. IMETA 2024; 3:e218. [PMID: 39135692 PMCID: PMC11316923 DOI: 10.1002/imt2.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
The MASS cohort comprises 2000 ICU patients with severe pneumonia, covering community-acquired pneumonia, hospital-acquired pneumonia, and ventilator-associated pneumonia, sourced from 19 hospitals across 10 cities in three provinces. A wide array of samples including bronchoalveolar lavage fluid, sputum, feces, and whole blood are longitudinally collected throughout patients' ICU stays. The cohort study seeks to uncover the dynamics of lung and gut microbiomes and their associations with severe pneumonia and host susceptibility, integrating deep metagenomics and transcriptomics with detailed clinical data.
Collapse
Affiliation(s)
- Xin Wei
- Life Sciences Institute and Department of Critical Care Medicine of First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Li Guo
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen BiologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Hongliu Cai
- Department of Critical Care Medicine, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lingling Tang
- Department of Infectious DiseasesShulan (Hangzhou) HospitalHangzhouChina
| | - Yuxin Leng
- Department of Intensive Care UnitPeking University Third HospitalBeijingChina
| | - Minghui Cheng
- Life Sciences Institute and Department of Critical Care Medicine of First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Guojun He
- Department of Critical Care Medicine, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yijiao Han
- Department of Critical Care Medicine, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xindie Ren
- Department of Critical Care Medicine, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baoyue Lin
- Department of Critical Care Medicine, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huanzhang Shao
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital; Zhengzhou University People's HospitalHenan University People's HospitalZhengzhouChina
| | - Mingqiang Wang
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital; Zhengzhou University People's HospitalHenan University People's HospitalZhengzhouChina
| | - Hongyu Wang
- Department of Emergency Intensive Care UnitThe Fifth Clinical Medical College of Henan University of Chinese MedicineZhengzhouChina
| | - Dan Dang
- Department of Critical Care MedicineXi'an People's Hospital (Xi'an No.4 Hospital)Xi'anChina
| | - Shengfeng Wang
- Department of Critical Care MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Nan Wang
- Department of Critical Care MedicineThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Peng Shen
- Department of Critical Care MedicineThe First Hospital of JiaxingJiaxingChina
| | - Qianqian Wang
- Department of Critical Care MedicineThe First Hospital of JiaxingJiaxingChina
| | - Yinghe Xu
- Department of Critical Care MedicineTaizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical UniversityTaizhouChina
| | - Yongpo Jiang
- Department of Critical Care MedicineTaizhou Hospital of Zhejiang Province affiliated with Wenzhou Medical UniversityTaizhouChina
| | - Ning Zhang
- Department of Critical Care MedicineLishui People's HospitalLishuiChina
| | - Xuwei He
- Department of Critical Care MedicineLishui People's HospitalLishuiChina
| | - Xuntao Deng
- Department of Critical Care MedicineLishui People's HospitalLishuiChina
| | - Muhua Dai
- Department of Critical Care MedicineTongde Hospital of Zhejiang ProvinceHangzhouChina
| | - Lin Zhong
- Department of Critical Care MedicineThe First People's Hospital of PinghuPinghuChina
| | - Yonghui Xiong
- Department of Critical Care MedicineLanxi Hospital of Traditional Chinese MedicineLanxiChina
| | - Yujie Pan
- Department of Critical Care MedicineWenzhou Central HospitalWenzhouChina
| | - Kankai Tang
- Department of Critical Care MedicineThe First People's Hospital of HuzhouHuzhouChina
| | - Fengqi Liu
- Department of Critical Care MedicineThe First People's Hospital of HuzhouHuzhouChina
| | - Bin Yang
- Center for Infectious DiseasesVision Medicals Co., Ltd.GuangzhouGuangdongChina
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen BiologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen BiologyChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chao Jiang
- Life Sciences Institute and Department of Critical Care Medicine of First Affiliated HospitalZhejiang UniversityHangzhouChina
| | - Lingtong Huang
- Life Sciences Institute and Department of Critical Care Medicine of First Affiliated HospitalZhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care 2024; 28:71. [PMID: 38454447 PMCID: PMC10918982 DOI: 10.1186/s13054-024-04855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic for Geriatric Medicine, Center for Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Magnan C, Lancry T, Salipante F, Trusson R, Dunyach-Remy C, Roger C, Lefrant JY, Massanet P, Lavigne JP. Role of gut microbiota and bacterial translocation in acute intestinal injury and mortality in patients admitted in ICU for septic shock. Front Cell Infect Microbiol 2023; 13:1330900. [PMID: 38179421 PMCID: PMC10765587 DOI: 10.3389/fcimb.2023.1330900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Sepsis is a life-threatening organ dysfunction with high mortality rate. The gut origin hypothesis of multiple organ dysfunction syndrome relates to loss of gut barrier function and the ensuing bacterial translocation. The aim of this study was to describe the evolution of gut microbiota in a cohort of septic shock patients over seven days and the potential link between gut microbiota and bacterial translocation. Methods Sixty consecutive adult patients hospitalized for septic shock in intensive care units (ICU) were prospectively enrolled. Non-inclusion criteria included patients with recent or scheduled digestive surgery, having taken laxatives, pre- or probiotic in the previous seven days, a progressive digestive neoplasia, digestive lymphoma, chronic inflammatory bowel disease, moribund patient, and pregnant and lactating patients. The primary objective was to evaluate the evolution of bacterial diversity and richness of gut microbiota during seven days in septic shock. Epidemiological, clinical and biological data were gathered over seven days. Gut microbiota was analyzed through a metagenomic approach. 100 healthy controls were selected among healthy blood donors for reference basal 16S rDNA values. Results Significantly lower bacterial diversity and richness was observed in gut microbiota of patients at Day 7 compared with Day 0 (p<0.01). SOFA score at Day 0, Acute Gastrointestinal Injury (AGI) local grade, septic shock origin and bacterial translocation had an impact on alpha diversity. A large increase in Enterococcus genus was observed at Day 7 with a decrease in Enterobacterales, Clostridiales, Bifidobacterium and other butyrate-producing bacteria. Discussion This study shows the importance of bacterial translocation during AGI in septic shock patients. This bacterial translocation decreases during hospitalization in ICUs in parallel to the decrease of microbiota diversity. This work highlights the role of gut microbiota and bacterial translocation during septic shock.
Collapse
Affiliation(s)
- Chloé Magnan
- Bacterial Virulence and Chronic Infection (VBIC), INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, Platform MICRO&BIO, University Hospital Center (CHU) Nîmes, Nîmes, France
| | - Thomas Lancry
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Florian Salipante
- Department of Biostastistics, Epidemiology, Public Health and Innovation in Methodology, Univ Montpellier, CHU Nîmes, Nîmes, France
| | - Rémi Trusson
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infection (VBIC), INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, Platform MICRO&BIO, University Hospital Center (CHU) Nîmes, Nîmes, France
| | - Claire Roger
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Jean-Yves Lefrant
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Pablo Massanet
- UR-UM103 UMAGINE, Univ Montpellier, Division of Anesthesia Critical Care, Pain and Emergency Medicine, CHU Nîmes, Nîmes, France
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infection (VBIC), INSERM U1047, Univ Montpellier, Department of Microbiology and Hospital Hygiene, Platform MICRO&BIO, University Hospital Center (CHU) Nîmes, Nîmes, France
| |
Collapse
|
7
|
He S, Lin F, Hu X, Pan P. Gut Microbiome-Based Therapeutics in Critically Ill Adult Patients-A Narrative Review. Nutrients 2023; 15:4734. [PMID: 38004128 PMCID: PMC10675331 DOI: 10.3390/nu15224734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiota plays a crucial role in the human microenvironment. Dysbiosis of the gut microbiota is a common pathophysiological phenomenon in critically ill patients. Therefore, utilizing intestinal microbiota to prevent complications and improve the prognosis of critically ill patients is a possible therapeutic direction. The gut microbiome-based therapeutics approach focuses on improving intestinal microbiota homeostasis by modulating its diversity, or treating critical illness by altering the metabolites of intestinal microbiota. There is growing evidence that fecal microbiota transplantation (FMT), selective digestive decontamination (SDD), and microbiota-derived therapies are all effective treatments for critical illness. However, different treatments are appropriate for different conditions, and more evidence is needed to support the selection of optimal gut microbiota-related treatments for different diseases. This narrative review summarizes the curative effects and limitations of microbiome-based therapeutics in different critically ill adult patients, aiming to provide possible directions for gut microbiome-based therapeutics for critically ill patients such as ventilator-associated pneumonia, sepsis, acute respiratory distress syndrome, and COVID-19, etc.
Collapse
Affiliation(s)
- Shiyue He
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
| | - Xinyue Hu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; (S.H.); (F.L.)
- FuRong Laboratory, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha 410008, China
| |
Collapse
|
8
|
Azamfirei L. The Human Microbiome in Intensive Care - A Journey Forward? J Crit Care Med (Targu Mures) 2023; 9:205-207. [PMID: 37969883 PMCID: PMC10644287 DOI: 10.2478/jccm-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Leonard Azamfirei
- Department of Anesthesia and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Târgu Mureș, Romania
| |
Collapse
|
9
|
Cotoia A, Paradiso R, Ferrara G, Borriello G, Santoro F, Spina I, Mirabella L, Mariano K, Fusco G, Cinnella G, Singer P. Modifications of lung microbiota structure in traumatic brain injury ventilated patients according to time and enteral feeding formulas: a prospective randomized study. Crit Care 2023; 27:244. [PMID: 37344845 PMCID: PMC10283314 DOI: 10.1186/s13054-023-04531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Specialized diets enriched with immune nutrients could be an important supplement in patients (pts) with acute traumatic brain injury (TBI). Omega-3 and arginine may interact with immune response and microbiota. No data are available about the role of the specialized diets in modulating the lung microbiota, and little is known about the influence of lung microbiota structure in development of ventilator-associated pneumonia (VAP) in TBI pts. The aims of this study are to evaluate the impact of specific nutrients on the lung microbiota and the variation of lung microbiota in TBI pts developing VAP. METHODS A cohort of 31 TBI pts requiring mechanical ventilation in ICU was randomized for treatment with specialized (16pts) or standard nutrition (15pts). Alpha and beta diversity of lung microbiota were analyzed from bronco Alveolar Lavage (BAL) samples collected at admission and 7 days post-ICU admission in both groups. A further analysis was carried out on the same samples retrospectively grouped in VAP or no VAP pts. RESULTS None developed VAP in the first week. Thereafter, ten out of thirty-one pts developed VAP. The BAL microbiota on VAP group showed significant differences in beta diversity and Staphylococcus and Acinetobacter Genera were high. The specialized nutrition had influence on beta diversity that reached statistical significance only in Bray-Curtis distance. CONCLUSION Our data suggest that TBI patients who developed VAP during ICU stay have different structures of BAL microbiota either at admission and at 7 days post-ICU admission, while no correlation has been observed between different enteral formulas and microbiota composition in terms of richness and evenness. These findings suggest that targeting the lung microbiota may be a promising approach for preventing infections in critically ill patients.
Collapse
Affiliation(s)
- A. Cotoia
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| | - R. Paradiso
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - G. Ferrara
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| | - G. Borriello
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - F. Santoro
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| | - I. Spina
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| | - L. Mirabella
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| | - K. Mariano
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| | - G. Fusco
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, Italy
| | - G. Cinnella
- Department of Intensive Care, University Hospital of Foggia, Foggia, Italy
| | - P. Singer
- Intensive Care Unit Herzlia Médical Center, Herzliya, Israel
| |
Collapse
|
10
|
Trøseid M, Holter JC, Holm K, Vestad B, Sazonova T, Granerud BK, Dyrhol-Riise AM, Holten AR, Tonby K, Kildal AB, Heggelund L, Tveita A, Bøe S, Müller KE, Jenum S, Hov JR, Ueland T. Gut microbiota composition during hospitalization is associated with 60-day mortality after severe COVID-19. Crit Care 2023; 27:69. [PMID: 36814280 PMCID: PMC9946863 DOI: 10.1186/s13054-023-04356-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Gut microbiota alterations have been reported in hospitalized COVID-19 patients, with reduced alpha diversity and altered microbiota composition related to respiratory failure. However, data regarding gut microbiota and mortality are scarce. METHODS Rectal swabs for gut microbiota analyses were collected within 48 h after hospital admission (baseline; n = 123) and three-month post-admission (n = 50) in a subset of patients included in the Norwegian SARS-CoV2 cohort study. Samples were analysed by sequencing the 16S rRNA gene. Gut microbiota diversity and composition at baseline were assessed in relation to need for intensive care unit (ICU) admission during hospitalization. The primary objective was to investigate whether the ICU-related gut microbiota was associated with 60-day mortality. RESULTS Gut microbiota diversity (Shannon index) at baseline was lower in COVID-19 patients requiring ICU admission during hospitalization than in those managed in general wards. A dysbiosis index representing a balance of enriched and reduced taxa in ICU compared with ward patients, including decreased abundance of butyrate-producing microbes and enrichment of a partly oral bacterial flora, was associated with need of ICU admission independent of antibiotic use, dexamethasone use, chronic pulmonary disease, PO2/FiO2 ratio, C-reactive protein, neutrophil counts or creatinine levels (adjusted p < 0.001). The ICU-related dysbiosis index at baseline correlated with systemic inflammation and was associated with 60-day mortality in univariate analyses (Hazard ratio 3.70 [2.00-8.6], p < 0.001), as well as after separate adjustment for covariates. At the three-month follow-up, the dysbiosis index remained elevated in ICU patients compared with ward patients (adjusted p = 0.007). CONCLUSIONS Although our data should be regarded as exploratory due to low number of clinical end points, they suggest that gut microbiota alterations during hospitalization could be related to poor prognosis after severe COVID-19. Larger studies of gut involvement during COVID-19 in relation to long-term clinical outcome are warranted. Trial registration NCT04381819 . Retrospectively registered May 11, 2020.
Collapse
Affiliation(s)
- Marius Trøseid
- Research Institute of Internal Medicine, Oslo University Hospital, 0424, Oslo, Norway. .,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, 0315, Oslo, Norway.
| | - Jan Cato Holter
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Holm
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway
| | - Beate Vestad
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway
| | - Taisiia Sazonova
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway
| | - Beathe K. Granerud
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Aleksander R. Holten
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Acute Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Anders Benjamin Kildal
- grid.412244.50000 0004 4689 5540Department of Anesthesiology and Intensive Care, University Hospital of North Norway, 9019 Tromsö, Norway ,grid.10919.300000000122595234Department of Clinical Medicine, Faculty of Health Sciences, UIT – The Arctic University of Norway, 9019 Tromsö, Norway
| | - Lars Heggelund
- grid.470118.b0000 0004 0627 3835Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway ,grid.7914.b0000 0004 1936 7443Department of Clinical Science, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| | - Anders Tveita
- grid.55325.340000 0004 0389 8485Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway ,grid.414168.e0000 0004 0627 3595Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, 1346 Gjettum, Norway
| | - Simen Bøe
- Department of Anesthesiology and Intensive Care, Hammerfest County Hospital, Hammerfest, Norway
| | - Karl Erik Müller
- grid.470118.b0000 0004 0627 3835Department of Internal Medicine, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway
| | - Synne Jenum
- grid.55325.340000 0004 0389 8485Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Johannes R. Hov
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Transplantation Medicine, Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway ,grid.55325.340000 0004 0389 8485Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- grid.55325.340000 0004 0389 8485Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway ,grid.10919.300000000122595234K.G. Jebsen-Thrombosis Research and Expertise Center (TREC), UIT – The Arctic University of Norway, Tromsö, Norway
| | | |
Collapse
|
11
|
Jiang M, Zhang X, Zhang Y, Liu Y, Geng R, Liu H, Sun Y, Wang B. The Effects of Perioperative Probiotics on Postoperative Gastrointestinal Function in Patients with Brain Tumors: A Randomized, Placebo-Controlled Study. Nutr Cancer 2023; 75:1132-1142. [PMID: 37139872 DOI: 10.1080/01635581.2023.2178929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The incidence of postoperative gastrointestinal dysfunction among neurosurgical patients is as high as 80%. Probiotics help to maintain gastrointestinal barrier defense, provide competitive adherence to mucus and epithelial cells, and regulate gastrointestinal motility. Therefore, the purpose of this study was to investigate whether probiotics enhance gastrointestinal health after craniotomy in patients with brain tumors. This study was a 15-day, prospective, randomized, double-blind, placebo-controlled trial for patients being treated with elective craniotomy for brain tumors. Participants were randomly divided into the probiotics group (4 g probiotics, twice daily) and placebo group. The primary outcome was the time of first stool after surgery. The secondary outcomes included assessments of the gastrointestinal function, changes in gastrointestinal permeability and clinical outcomes. We enrolled a total of 200 participants (probiotics: 100; placebo: 100) and followed the principles of intention-to-treat analysis. The time of first stool and flatus were significantly shorter in the probiotics group compared to the placebo group (P < 0.001, respectively). No significant trends were observed for any other of the secondary outcome variables. Our findings suggest that probiotics can improve the gastrointestinal mobility of patients received craniotomy, and this improvement cannot be explained by changes in gastrointestinal permeability.
Collapse
Affiliation(s)
- Mengyang Jiang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Zhang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Yiqiang Zhang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ran Geng
- Zhongke Yikang Biological Technology Company, Beijing, China
| | - Haixia Liu
- Zhongke Yikang Biological Technology Company, Beijing, China
| | - Yongxing Sun
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Baoguo Wang
- Department of Anesthesiology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Elfiky SA, Mahmoud Ahmed S, Elmenshawy AM, Sultan GM, Asser SL. Study of the gut microbiome as a novel target for prevention of hospital-associated infections in intensive care unit patients. Acute Crit Care 2023; 38:76-85. [PMID: 36935537 PMCID: PMC10030239 DOI: 10.4266/acc.2022.01116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/23/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Hospital-acquired infections (HAIs) are increasing due to the spread of multi-drugresistant organisms. Gut dysbiosis in an intensive care unit (ICU) patients at admission showed an altered abundance of some bacterial genera associated with the occurrence of HAIs and mortality. In the present study, we investigated the pattern of the gut microbiome in ICU patients at admission to correlate it with the development of HAIs during ICU stay. METHODS Twenty patients admitted to an ICU with a cross-matched control group of 30 healthy subjects of matched age and sex. Quantitative SYBR green real-time polymerase chain reaction was done for the identification and quantitation of selected bacteria. RESULTS Out of those twenty patients, 35% developed ventilator-associated pneumonia during their ICU stay. Gut microbiome analysis showed a significant decrease in Firmicutes and Firmicutes to Bacteroidetes ratio in ICU patients in comparison to the control and in patients who developed HAIs in comparison to the control group and patients who did not develop HAIs. There was a statistically significant increase in Bacteroides in comparison to the control group. There was a statistically significant decrease in Bifidobacterium and Faecalibacterium prausnitzii and an increase in Lactobacilli in comparison to the control group with a negative correlation between Acute Physiology and Chronic Health Evaluation (APACHE) II score and Firmicutes to Bacteroidetes and Prevotella to Bacteroides ratios. CONCLUSIONS Gut dysbiosis of patients at the time of admission highlights the importance of identification of the microbiome of patients admitted to the ICU as a target for preventing of HAIs.
Collapse
Affiliation(s)
- Suzan Ahmed Elfiky
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Shwikar Mahmoud Ahmed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Ahmed Mostafa Elmenshawy
- Department of Critical Care Medicine, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Gehad Mahmoud Sultan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Sara Lotfy Asser
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| |
Collapse
|
13
|
Lou X, Xue J, Shao R, Yang Y, Ning D, Mo C, Wang F, Chen G. Fecal microbiota transplantation and short-chain fatty acids reduce sepsis mortality by remodeling antibiotic-induced gut microbiota disturbances. Front Immunol 2023; 13:1063543. [PMID: 36713461 PMCID: PMC9874322 DOI: 10.3389/fimmu.2022.1063543] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Objective Sepsis is the leading cause of death in critically ill patients. The gastrointestinal tract has long been thought to play an important role in the pathophysiology of sepsis. Antibiotic therapy can reduce a patient's commensal bacterial population and raise their risk of developing subsequent illnesses, where gut microbiota dysbiosis may be a key factor. Methods In this study, we analyzed the 16S rRNA of fecal samples from both healthy people and patients with sepsis to determine if alterations in gut bacteria are associated with sepsis. Then, we developed a mouse model of sepsis using cecal ligation and puncture (CLP) in order to examine the effects of fecal microbiota transplantation (FMT) and short-chain fatty acids (SCFAs) on survival rate, systemic inflammatory response, gut microbiota, and mucosal barrier function. Results Sepsis patients' gut microbiota composition significantly differed from that of healthy people. At the phylum level, the amount of Proteobacteria in the intestinal flora of sepsis patients was much larger than that of the control group, whereas the number of Firmicutes was significantly lower. Mice with gut microbiota disorders (ANC group) were found to have an elevated risk of death, inflammation, and organ failure as compared to CLP mice. However, all of these could be reversed by FMT and SCFAs. FMT and SCFAs could regulate the abundance of bacteria such as Firmicutes, Proteobacteria, Escherichia Shigella, and Lactobacillus, restoring them to levels comparable to those of healthy mice. In addition, they increased the expression of the Occludin protein in the colon of mice with sepsis, downregulated the expression of the NLRP3 and GSDMD-N proteins, and reduced the release of the inflammatory factors IL-1β and IL-18 to inhibit cell pyroptosis, ultimately playing a protective role in sepsis. Disccusion FMT and SCFAs provide a microbe-related survival benefit in a mouse model of sepsis, suggesting that they may be a viable treatment for sepsis.
Collapse
Affiliation(s)
- Xiran Lou
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinfang Xue
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ruifei Shao
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yan Yang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Deyuan Ning
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Chunyan Mo
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Fuping Wang
- Department of Emergency Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Guobing Chen
- Department of Emergency Medicine, The First People’s Hospital of Yunnan Province, Kunming, China,*Correspondence: Guobing Chen,
| |
Collapse
|
14
|
Corriero A, Gadaleta RM, Puntillo F, Inchingolo F, Moschetta A, Brienza N. The central role of the gut in intensive care. Crit Care 2022; 26:379. [PMID: 36476497 PMCID: PMC9730662 DOI: 10.1186/s13054-022-04259-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Critically ill patients undergo early impairment of their gut microbiota (GM) due to routine antibiotic therapies and other environmental factors leading to intestinal dysbiosis. The GM establishes connections with the rest of the human body along several axes representing critical inter-organ crosstalks that, once disrupted, play a major role in the pathophysiology of numerous diseases and their complications. Key players in this communication are GM metabolites such as short-chain fatty acids and bile acids, neurotransmitters, hormones, interleukins, and toxins. Intensivists juggle at the crossroad of multiple connections between the intestine and the rest of the body. Harnessing the GM in ICU could improve the management of several challenges, such as infections, traumatic brain injury, heart failure, kidney injury, and liver dysfunction. The study of molecular pathways affected by the GM in different clinical conditions is still at an early stage, and evidence in critically ill patients is lacking. This review aims to describe dysbiosis in critical illness and provide intensivists with a perspective on the potential as adjuvant strategies (e.g., nutrition, probiotics, prebiotics and synbiotics supplementation, adsorbent charcoal, beta-lactamase, and fecal microbiota transplantation) to modulate the GM in ICU patients and attempt to restore eubiosis.
Collapse
Affiliation(s)
- Alberto Corriero
- Department of Interdisciplinary Medicine - ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Filomena Puntillo
- Department of Interdisciplinary Medicine - ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Inchingolo
- Dental Medicine Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Nicola Brienza
- Department of Interdisciplinary Medicine - ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
15
|
Wozniak H, Beckmann TS, Fröhlich L, Soccorsi T, Le Terrier C, de Watteville A, Schrenzel J, Heidegger CP. The central and biodynamic role of gut microbiota in critically ill patients. Crit Care 2022; 26:250. [PMID: 35982499 PMCID: PMC9386657 DOI: 10.1186/s13054-022-04127-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Gut microbiota plays an essential role in health and disease. It is constantly evolving and in permanent communication with its host. The gut microbiota is increasingly seen as an organ, and its failure, reflected by dysbiosis, is seen as an organ failure associated with poor outcomes. Critically ill patients may have an altered gut microbiota, namely dysbiosis, with a severe reduction in "health-promoting" commensal intestinal bacteria (such as Firmicutes or Bacteroidetes) and an increase in potentially pathogenic bacteria (e.g. Proteobacteria). Many factors that occur in critically ill patients favour dysbiosis, such as medications or changes in nutrition patterns. Dysbiosis leads to several important effects, including changes in gut integrity and in the production of metabolites such as short-chain fatty acids and trimethylamine N-oxide. There is increasing evidence that gut microbiota and its alteration interact with other organs, highlighting the concept of the gut-organ axis. Thus, dysbiosis will affect other organs and could have an impact on the progression of critical diseases. Current knowledge is only a small part of what remains to be discovered. The precise role and contribution of the gut microbiota and its interactions with various organs is an intense and challenging research area that offers exciting opportunities for disease prevention, management and therapy, particularly in critical care where multi-organ failure is often the focus. This narrative review provides an overview of the normal composition of the gut microbiota, its functions, the mechanisms leading to dysbiosis, its consequences in an intensive care setting, and highlights the concept of the gut-organ axis.
Collapse
Affiliation(s)
- Hannah Wozniak
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| | - Tal Sarah Beckmann
- Division of Anesthesiology, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Lorin Fröhlich
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Tania Soccorsi
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aude de Watteville
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Claudia-Paula Heidegger
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Ma X, Jin H, Chu X, Dai W, Tang W, Zhu J, Wang F, Yang X, Li W, Liu G, Yang X, Liang H. The Host CYP1A1-Microbiota Metabolic Axis Promotes Gut Barrier Disruption in Methicillin-Resistant Staphylococcus aureus-Induced Abdominal Sepsis. Front Microbiol 2022; 13:802409. [PMID: 35572636 PMCID: PMC9093654 DOI: 10.3389/fmicb.2022.802409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background Host-microbiota crosstalk has been implicated in multiple host metabolic pathway axes that regulate intestinal barrier function. Although constitutive cytochrome P4501A1 (CYP1A1) expression perturbs the microbiome-derived autoregulatory loop following enteric infection, little is known about the role of host CYP1A1 in modulating gut microbiome-mediated signaling during methicillin-resistant Staphylococcus aureus (MRSA)-induced abdominal sepsis and its effects on intestinal barrier integrity. Methods Abdominal sepsis was induced by the intraperitoneal injection of MRSA in mice. The effect of CYP1A1 deficiency on gut barrier integrity was investigated using RNA sequencing, microbiome analyses, and targeted metabolomics. The microbiota-produced metabolites were validated in patients with sepsis and persistent MRSA infection. Results Mice lacking CYP1A1 exhibited an altered gut microbiome, a reduced metabolic shift from lysine to cadaverine in the caecal contents and antimicrobial molecule production (Retnlb, Gbp7, and Gbp3), and they were protected against gut barrier disruption when subjected to MRSA challenge. These beneficial effects were validated in aryl hydrocarbon receptor (AHR) knockout (KO) mice by cohousing with CYP1A1 KO mice and abrogated after supplementation with cadaverine or Enterococcus faecalis, the primary microbiota genus for cadaverine synthesis. Antibiotic-driven gut dysbacteriosis impaired the survival benefit and disrupted the intestinal barrier integrity in CYP1A1 KO mice after MRSA infection. Furthermore, increased cadaverine levels in feces and serum were detected in critically ill patients with gut leakiness during persistent MRSA infection, whereas cadaverine was not detected in healthy controls. Additionally, microbiota-derived cadaverine induced enterocyte junction disruption by activating the histamine H4 receptor/nuclear factor-κB/myosin light-chain kinase signaling pathway. Conclusion This study revealed the unexpected function of host CYP1A1 in microbiota-mediated cadaverine metabolism, with crucial consequences for dysbacteriosis following MRSA-induced abdominal sepsis, indicating that inhibiting CYP1A1 or blocking cadaverine-histamine H4 receptor signaling could be a potential therapeutic target against abdominal sepsis. Clinical Trial Registration [http://www.chictr.org.cn/index.aspx], identifier [ChiCTR1800018646].
Collapse
Affiliation(s)
- Xiaoyuan Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Huaijian Jin
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.,Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Chu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Weihong Dai
- Trauma Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wanqi Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Junyu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Xue Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Guodong Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injuries, Medical Center of Trauma and War Injuries, Daping Hospital, Army Medical University, Chongqing, China
| | - Xia Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Gut microbiota alterations in critically ill older patients: a multicenter study. BMC Geriatr 2022; 22:373. [PMID: 35484500 PMCID: PMC9047279 DOI: 10.1186/s12877-022-02981-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background Aging generates changes in the gut microbiota, affecting its functionality. Little is known about gut microbiota in critically ill older adults. The objective of this study was to describe the profile of gut microbiota in a cohort of critically ill older adults. Methods This observational study was conducted in five health institutions. Over a 6-month study period, critically ill patients over 18 years old who were admitted to the intensive care unit were enrolled. Fecal microbiota profiles were determined from 155 individuals, over 60 years old (n = 72) and under 60 years old (n = 83). Gut microbiota was analyzed by sequencing the V3-V4 region of the 16S rRNA gene. Alpha and beta diversity, operational taxonomic units and the interaction of gut microbiota with variables under study were analyzed. Amplicon sequence variants (ASVs) specifically associated with age were recovered by including gender, discharge condition, BMI, ICU stay and antibiotics as covariates in a linear mixed model. Results In older adults, sepsis, malnutrition, antibiotic prescription and severity (APACHE and SOFA scores) were higher than in the group under 60 years of age. Alpha diversity showed lower gut microbiota diversity in those over 60 years of age (p < 0.05); beta diversity evidenced significant differences between the groups (PERMANOVA = 1.19, p = 0.038). The microbiota of the adults under 60 years old showed greater abundance of Murdochiella, Megasphaera, Peptoniphilus and Ezakiella, whereas those over 60 years old Escherichia-Shigella and Hungatella were more abundant. Conclusion The gut microbial community was altered by different factors; however, age significantly explained the variability in critically ill patients. A lower presence of beneficial genera and a higher abundance of pathogens was observed in adults over 60 years old. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-022-02981-0.
Collapse
|
18
|
Chen Y, Zhang F, Ye X, Hu JJ, Yang X, Yao L, Zhao BC, Deng F, Liu KX. Association Between Gut Dysbiosis and Sepsis-Induced Myocardial Dysfunction in Patients With Sepsis or Septic Shock. Front Cell Infect Microbiol 2022; 12:857035. [PMID: 35372123 PMCID: PMC8964439 DOI: 10.3389/fcimb.2022.857035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Sepsis-induced myocardial dysfunction (SIMD) seriously affects the evolution and prognosis of the sepsis patient. The gut microbiota has been confirmed to play an important role in sepsis or cardiovascular diseases, but the changes and roles of the gut microbiota in SIMD have not been reported yet. This study aims to assess the compositions of the gut microbiota in sepsis or septic patients with or without myocardial injury and to find the relationship between the gut microbiota and SIMD. Methods The prospective, observational, and 1:1 matched case–control study was conducted to observe gut microbiota profiles from patients with SIMD (n = 18) and matched non-SIMD (NSIMD) patients (n = 18) by 16S rRNA gene sequencing. Then the relationship between the relative abundance of microbial taxa and clinical indicators and clinical outcomes related to SIMD was analyzed. The receiver operating characteristic (ROC) curves were used to evaluate the predictive efficiencies of the varied gut microbiota to SIMD. Results SIMD was associated with poor outcomes in sepsis patients. The beta-diversity of the gut microbiota was significantly different between the SIMD patients and NSIMD subjects. The gut microbiota profiles in different levels significantly differed between the two groups. Additionally, the abundance of some microbes (Klebsiella variicola, Enterobacteriaceae, and Bacteroides vulgatus) was correlated with clinical indicators and clinical outcomes. Notably, ROC analysis indicated that K. variicola may be a potential biomarker of SIMD. Conclusion Our study indicates that SIMD patients may have a particular gut microbiota signature and that the gut microbiota might be a potential diagnostic marker for evaluating the risk of developing SIMD.
Collapse
Affiliation(s)
- Yu Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Anesthesiology, Jinshan Branch of Fujian Provincial Hospital, Fuzhou, China.,Department of Anesthesiology, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Fu Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Ye
- Department of Anesthesiology, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Yao
- Department of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Schuurman AR, Kullberg RFJ, Wiersinga WJ. Probiotics in the Intensive Care Unit. Antibiotics (Basel) 2022; 11:antibiotics11020217. [PMID: 35203819 PMCID: PMC8868307 DOI: 10.3390/antibiotics11020217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
The understanding of the gut microbiome in health and disease has shown tremendous progress in the last decade. Shaped and balanced throughout life, the gut microbiome is intricately related to the local and systemic immune system and a multitude of mechanisms through which the gut microbiome contributes to the host’s defense against pathogens have been revealed. Similarly, a plethora of negative consequences, such as superinfections and an increased rate of hospital re-admissions, have been identified when the gut microbiome is disturbed by disease or by the iatrogenic effects of antibiotic treatment and other interventions. In this review, we describe the role that probiotics may play in the intensive care unit (ICU). We discuss what is known about the gut microbiome of the critically ill, and the concept of probiotic intervention to positively modulate the gut microbiome. We summarize the evidence derived from randomized clinical trials in this context, with a focus on the prevention of ventilator-associated pneumonia. Finally, we consider what lessons we can learn in terms of the current challenges, efficacy and safety of probiotics in the ICU and what we may expect from the future. Throughout the review, we highlight studies that have provided conceptual advances to the field or have revealed a specific mechanism; this narrative review is not intended as a comprehensive summary of the literature.
Collapse
Affiliation(s)
- Alex R. Schuurman
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (A.R.S.); (R.F.J.K.)
| | - Robert F. J. Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (A.R.S.); (R.F.J.K.)
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (A.R.S.); (R.F.J.K.)
- Division of Infectious Diseases, Department of Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
20
|
Palmer LB, Smaldone GC. The Unfulfilled Promise of Inhaled Therapy in Ventilator-Associated Infections: Where Do We Go from Here? J Aerosol Med Pulm Drug Deliv 2022; 35:11-24. [PMID: 35099284 PMCID: PMC8867107 DOI: 10.1089/jamp.2021.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Respiratory infection is common in intubated/tracheotomized patients and systemic antibiotic therapy is often unrewarding. In 1967, the difficulty in treating Gram-negative respiratory infections led to the use of inhaled gentamicin, targeting therapy directly to the lungs. Fifty-three years later, the effects of topical therapy in the intubated patient remain undefined. Clinical failures with intravenous antibiotics persist and instrumented patients are now infected by many more multidrug-resistant Gram-negative species as well as methicillin-resistant Staphylococcus aureus. Multiple systematic reviews and meta-analyses suggest that there may be a role for inhaled delivery but “more research is needed.” Yet there is still no Food and Drug Administration (FDA) approved inhaled antibiotic for the treatment of ventilator-associated infection, the hallmark of which is the foreign body in the upper airway. Current pulmonary and infectious disease guidelines suggest using aerosols only in the setting of Gram-negative infections that are resistant to all systemic antibiotics or not to use them at all. Recently two seemingly well-designed large randomized placebo-controlled Phase 2 and Phase 3 clinical trials of adjunctive inhaled therapy for the treatment of ventilator-associated pneumonia failed to show more rapid resolution of pneumonia symptoms or effect on mortality. Despite evolving technology of delivery devices and more detailed understanding of the factors affecting delivery, treatment effects were no better than placebo. What is wrong with our approach to ventilator- associated infection? Is there a message from the large meta-analyses and these two large recent multisite trials? This review will suggest why current therapies are unpredictable and have not fulfilled the promise of better outcomes. Data suggest that future studies of inhaled therapy, in the milieu of worsening bacterial resistance, require new approaches with completely different indications and endpoints to determine whether inhaled therapy indeed has an important role in the treatment of ventilated patients.
Collapse
Affiliation(s)
- Lucy B Palmer
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gerald C Smaldone
- Pulmonary, Critical Care and Sleep Division, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
21
|
Guo Y, Xu M, Shi G, Zhang J. A new strategy of enteral nutrition intervention for ICU patients targeting intestinal flora. Medicine (Baltimore) 2021; 100:e27763. [PMID: 34964735 PMCID: PMC8615329 DOI: 10.1097/md.0000000000027763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Enteral nutrition (EN) therapy is a routine supportive method for patients in the intensive care unit (ICU). However, the incidence of EN intolerance is prevalent, because most ICU patients suffer intestinal mucosal barrier damage and gastrointestinal motility disorder. There is no definite index to predict EN intolerance, and the current treatment methods are not effective in alleviating EN intolerance. Gut microbiota is an important component of the intestinal micro-ecological environment, and alterations in its structure and composition can reflect changes in intestinal function and microenvironment. The purpose of this study is to investigate the effect of EN on the gut microbiota of ICU patients by monitoring the dynamic alterations of gut microbiota and to screen out the microbial markers that can be used to predict the incidence of EN intolerance. METHODS One hundred ICU patients with trauma or in a period of acute stress after surgery will be enrolled, and their fecal samples will be collected at different timepoints for microbial sequencing and analysis. General clinical data (demographic information, surgical data, laboratory parameters, illness severity scores, and therapeutic drugs), nutritional status data (nutritional status assessment and nutrition therapy monitoring data), as well as clinical outcomes, will be recorded. The microbial and clinical data will be combined to analyze the baseline characteristics and dynamic alterations of gut microbiota along with the incidence of EN intolerance. Data related to the gut microbiota will be statistically analyzed by R software, and other data performed by SPSS23.0 software. CONCLUSIONS The effect of EN on gut microbiota and microbial markers predicting the intolerance of EN will lead us to develop a new nutrition intervention strategy for ICU patients. Furthermore, the results of this study will provide a basis for the discovery of potential probiotics used for the prevention and treatment of EN intolerance.
Collapse
Affiliation(s)
- Yangyang Guo
- Intensive Care Unit, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Xu
- Intensive Care Unit, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guangzhi Shi
- Intensive Care Unit, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
22
|
Ruan R, Deng X, Dong X, Wang Q, Lv X, Si C. Microbiota Emergencies in the Diagnosis of Lung Diseases: A Meta-Analysis. Front Cell Infect Microbiol 2021; 11:709634. [PMID: 34621687 PMCID: PMC8490768 DOI: 10.3389/fcimb.2021.709634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Although many studies have reported that microbiota emergencies are deeply involved in the occurrence and subsequent progression of lung diseases, the present diagnosis of lung disease depends on microbiota markers, which is still poorly understood. Therefore, a meta-analysis was performed to confirm lung microbiota markers for the diagnosis of lung diseases. Literature databases were searched following the inclusion and exclusion criteria. There are 6 studies including 1347 patients and 26 comparisons to be enrolled, and then the diagnostic effect was evaluated using Stata 14.0 and Meta-disc 1.4 software. The pooled sensitivity (SEN), specificity (SPE), diagnostic likelihood ratio positive (DLR+), diagnostic likelihood ratio negative (DLR-), and diagnostic OR (DOR), as well as area under the curve (AUC) of microbiota markers in the diagnosis of lung diseases were 0.90 (95% CI: 0.83-0.94), 0.89 (95% CI: 0.76-0.95), 7.86 (95% CI: 3.39-18.21), 0.12 (95% CI: 0.06-0.21), 22.254 (95% CI: 12.83-39.59.14), and 0.95 (95% CI: 0.93-0.97), respectively. Subgroup analysis revealed that research based on Caucasian, adult, BAL fluid, PCR, pneumonia obtained higher AUC values. The microbiota markers have shown potential diagnosis value for lung diseases. But further large-scale clinical studies are still needed to verify and replicate the diagnostic value of lung microbiota markers.
Collapse
Affiliation(s)
- Renyu Ruan
- College of Undergradute, Jiangsu Food & Pharmaceutical Science College, Huaian, China
| | - Xiangmin Deng
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Xiaoyan Dong
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, China
| | - Qi Wang
- College of Pharmacy, Harbin Medical University-Daqing, Da Qing, China
| | - Xiaoling Lv
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
| | - Caijuan Si
- Department of Nutrition, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
23
|
Osada Y, Nakagawa S, Ishibe K, Takao S, Shimazaki A, Itohara K, Imai S, Yonezawa A, Nakagawa T, Matsubara K. Antibiotic-induced microbiome depletion alters renal glucose metabolism and exacerbates renal injury after ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 2021; 321:F455-F465. [PMID: 34423680 DOI: 10.1152/ajprenal.00111.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent studies have revealed the impact of antibiotic-induced microbiome depletion (AIMD) on host glucose homeostasis. The kidney has a critical role in systemic glucose homeostasis; however, information regarding the association between AIMD and renal glucose metabolism remains limited. Hence, we aimed to determine the effects of AIMD on renal glucose metabolism by inducing gut microbiome depletion using an antibiotic cocktail (ABX) composed of ampicillin, vancomycin, and levofloxacin in mice. The results showed that bacterial 16s rRNA expression, luminal concentrations of short-chain fatty acids and bile acids, and plasma glucose levels were significantly lower in ABX-treated mice than in vehicle-treated mice. In addition, ABX treatment significantly reduced renal glucose and pyruvate levels. mRNA expression levels of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the renal cortex were significantly higher in ABX-treated mice than in vehicle-treated mice. We further examined the impact of AIMD on the altered metabolic status in mice after ischemia-induced kidney injury. After exposure to ischemia for 60 min, renal pyruvate concentrations were significantly lower in ABX-treated mice than in vehicle-treated mice. ABX treatment caused a more severe tubular injury after ischemia-reperfusion. Our findings confirm that AIMD is associated with decreased pyruvate levels in the kidney, which may have been caused by the activation of renal gluconeogenesis. Thus, we hypothesized that AIMD would increase the vulnerability of the kidney to ischemia-reperfusion injury.NEW & NOTEWORTHY This study aimed to determine the impact of antibiotic-induced microbiome depletion (AIMD) on renal glucose metabolism in mice. This is the first report confirming that AIMD is associated with decreased levels of pyruvate, a key intermediate in glucose metabolism, which may have been caused by activation of renal gluconeogenesis. We hypothesized that AIMD can increase the susceptibility of the kidney to ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yuika Osada
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Kanako Ishibe
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Shota Takao
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Aimi Shimazaki
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Kotaro Itohara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
24
|
Abstract
OBJECTIVE The first 70 years of critical care can be considered a period of "industrial revolution-like" advancement in terms of progressing the understanding and care of critical illness. Unfortunately, like the industrial revolution's impact on the environment, advancing ICU care of increasingly elderly, immunosuppressed, and debilitated individuals has resulted in a greater overall burden and complexity of nosocomial infections within modern ICUs. Given the rapid evolution of nosocomial infections, the authors provide an updated review. DATA SOURCES AND STUDY SELECTION We searched PubMed and OVID for peer-reviewed literature dealing with nosocomial infections in the critically ill, as well as the websites of government agencies involved with the reporting and prevention of nosocomial infections. Search terms included nosocomial infection, antibiotic resistance, microbiome, antibiotics, and intensive care. DATA EXTRACTION AND DATA SYNTHESIS Nosocomial infections in the ICU setting are evolving in multiple domains including etiologic pathogens plus novel or emerging pathogens, prevalence, host risk factors, antimicrobial resistance, interactions of the host microbiome with nosocomial infection occurrence, and understanding of pathogenesis and prevention strategies. Increasing virulence and antimicrobial resistance of nosocomial infections mandate increasing efforts toward their prevention. CONCLUSIONS Nosocomial infections are an important determinant of outcome for patients in the ICU setting. Systematic research aimed at improving the prevention and treatment of nosocomial infections is still needed.
Collapse
|
25
|
Wolff NS, Jacobs MC, Wiersinga WJ, Hugenholtz F. Pulmonary and intestinal microbiota dynamics during Gram-negative pneumonia-derived sepsis. Intensive Care Med Exp 2021; 9:35. [PMID: 34250564 PMCID: PMC8272965 DOI: 10.1186/s40635-021-00398-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background The gut microbiome plays a protective role in the host defense against pneumonia. The composition of the lung microbiota has been shown to be predictive of clinical outcome in critically ill patients. However, the dynamics of the lung and gut microbiota composition over time during severe pneumonia remains ill defined. We used a mouse model of pneumonia-derived sepsis caused by Klebsiella pneumoniae in order to follow the pathogen burden as well as the composition of the lung, tongue and fecal microbiota from local infection towards systemic spread. Results Already at 6 h post-inoculation with K. pneumoniae, marked changes in the lung microbiota were seen. The alpha diversity of the lung microbiota did not change throughout the infection, whereas the beta diversity did. A shift between the prominent lung microbiota members of Streptococcus and Klebsiella was seen from 12 h onwards and was most pronounced at 18 h post-inoculation (PI) which was also reflected in the release of pro-inflammatory cytokines indicating severe pulmonary inflammation. Around 18 h PI, K. pneumoniae bacteremia was observed together with a systemic inflammatory response. The composition of the tongue microbiota was not affected during infection, even at 18–30 h PI when K. pneumoniae had become the dominant bacterium in the lung. Moreover, we observed differences in the gut microbiota during pulmonary infection. The gut microbiota contributed to the lung microbiota at 12 h PI, however, this decreased at a later stage of the infection. Conclusions At 18 h PI, K. pneumoniae was the dominant member in the lung microbiota. The lung microbiota profiles were significantly explained by the lung K. pneumoniae bacterial counts and Klebsiella and Streptococcus were correlating with the measured cytokine levels in the lung and/or blood. The oral microbiota in mice, however, was not influenced by the severity of murine pneumonia, whereas the gut microbiota was affected. This study is of significance for future studies investigating the role of the lung microbiota during pneumonia and sepsis. Supplementary Information The online version contains supplementary material available at 10.1186/s40635-021-00398-4.
Collapse
Affiliation(s)
- Nora S Wolff
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Max C Jacobs
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Department of Medicine, Division of Infectious Diseases, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Battaglini D, Robba C, Fedele A, Trancǎ S, Sukkar SG, Di Pilato V, Bassetti M, Giacobbe DR, Vena A, Patroniti N, Ball L, Brunetti I, Torres Martí A, Rocco PRM, Pelosi P. The Role of Dysbiosis in Critically Ill Patients With COVID-19 and Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2021; 8:671714. [PMID: 34150807 PMCID: PMC8211890 DOI: 10.3389/fmed.2021.671714] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
In late December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) quickly spread worldwide, and the syndrome it causes, coronavirus disease 2019 (COVID-19), has reached pandemic proportions. Around 30% of patients with COVID-19 experience severe respiratory distress and are admitted to the intensive care unit for comprehensive critical care. Patients with COVID-19 often present an enhanced immune response with a hyperinflammatory state characterized by a "cytokine storm," which may reflect changes in the microbiota composition. Moreover, the evolution to acute respiratory distress syndrome (ARDS) may increase the severity of COVID-19 and related dysbiosis. During critical illness, the multitude of therapies administered, including antibiotics, sedatives, analgesics, body position, invasive mechanical ventilation, and nutritional support, may enhance the inflammatory response and alter the balance of patients' microbiota. This status of dysbiosis may lead to hyper vulnerability in patients and an inappropriate response to critical circumstances. In this context, the aim of our narrative review is to provide an overview of possible interaction between patients' microbiota dysbiosis and clinical status of severe COVID-19 with ARDS, taking into consideration the characteristic hyperinflammatory state of this condition, respiratory distress, and provide an overview on possible nutritional strategies for critically ill patients with COVID-19-ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chiara Robba
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Andrea Fedele
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Sebastian Trancǎ
- Department of Anesthesia and Intensive Care II, Clinical Emergency County Hospital of Cluj, Iuliu Hatieganu, University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Anaesthesia and Intensive Care 1, Clinical Emergency County Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Matteo Bassetti
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università degli Studi di Genova, Genova, Italy
| | - Daniele Roberto Giacobbe
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Dipartimento di Scienze della Salute (DISSAL), Università degli Studi di Genova, Genova, Italy
| | - Antonio Vena
- Clinica Malattie Infettive, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Nicolò Patroniti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Lorenzo Ball
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| | - Iole Brunetti
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
| | - Antoni Torres Martí
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Division of Animal Experimentation, Department of Pulmonology, Hospital Clinic, Barcelona, Spain
- Centro de Investigacion en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Institut d'investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- COVID-19-Network, Ministry of Science, Technology, Innovation and Communication, Brasilia, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) per l'Oncologia e le Neuroscienze, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
27
|
Cutuli SL, Carelli S, Grieco DL, De Pascale G. Immune Modulation in Critically Ill Septic Patients. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:552. [PMID: 34072649 PMCID: PMC8226671 DOI: 10.3390/medicina57060552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is triggered by infection-induced immune alteration and may be theoretically improved by pharmacological and extracorporeal immune modulating therapies. Pharmacological immune modulation may have long lasting clinical effects, that may even worsen patient-related outcomes. On the other hand, extracorporeal immune modulation allows short-term removal of inflammatory mediators from the bloodstream. Although such therapies have been widely used in clinical practice, the role of immune modulation in critically ill septic patients remains unclear and little evidence supports the role of immune modulation in this clinical context. Accordingly, further research should be carried out by an evidence-based and personalized approach in order to improve the management of critically ill septic patients.
Collapse
Affiliation(s)
- Salvatore Lucio Cutuli
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
| | - Simone Carelli
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
| | - Domenico Luca Grieco
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
| | - Gennaro De Pascale
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
- Facoltà di Medicina e Chirurgia “A. Gemelli”, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Although the gut microbiome plays a crucial role in the maintenance of health, it is hypothesized to drive morbidity and mortality in critically ill patients. This review describes the relationship between the gut microbiome and the immune system in critical illness. RECENT FINDINGS The gut microbiome is converted to a pathobiome in the ICU, characterized by decreased microbial diversity and pathogen predominance. These changes are induced by a pathologic microenvironment and are further exacerbated by common medical treatments initiated in the ICU. The conversion of the microbiome to a pathobiome has direct consequences on the regulation of inflammation and immunity by loss of beneficial host responses and initiation of maladaptive changes that can further propagate critical illness. SUMMARY The gut microbiome is dramatically altered in the ICU. In light of constant crosstalk between the microbiome and the host immune system, the pathobiome may play a key mechanistic role in driving a maladaptive response in critically ill patients. The pathobiome represents a potential therapeutic target in the management of critical illness whereby restoration of a healthier microbiome may directly alter the host inflammatory response, which could lead to improved patient outcomes.
Collapse
Affiliation(s)
- Ashley A Miniet
- Division of Critical Care Medicine, Department of Pediatrics, Emory University School of Medicine
- Children's Healthcare of Atlanta at Egleston
| | - Jocelyn R Grunwell
- Division of Critical Care Medicine, Department of Pediatrics, Emory University School of Medicine
- Children's Healthcare of Atlanta at Egleston
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Third generation cephalosporins and piperacillin/tazobactam have distinct impacts on the microbiota of critically ill patients. Sci Rep 2021; 11:7252. [PMID: 33790304 PMCID: PMC8012612 DOI: 10.1038/s41598-021-85946-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
Abstract
Effective implementation of antibiotic stewardship, especially in critical care, is limited by a lack of direct comparative investigations on how different antibiotics impact the microbiota and antibiotic resistance rates. We investigated the impact of two commonly used antibiotics, third-generation cephalosporins (3GC) and piperacillin/tazobactam (TZP) on the endotracheal, perineal and faecal microbiota of intensive care patients in Australia. Patients exposed to either 3GC, TZP, or no β-lactams (control group) were sampled over time and 16S rRNA amplicon sequencing was performed to examine microbiota diversity and composition. While neither treatment significantly affected diversity, numerous changes to microbiota composition were associated with each treatment. The shifts in microbiota composition associated with 3GC exposure differed from those observed with TZP, consistent with previous reports in animal models. This included a significant increase in Enterobacteriaceae and Enterococcaceae abundance in endotracheal and perineal microbiota for those administered 3GC compared to the control group. Culture-based analyses did not identify any significant changes in the prevalence of specific pathogenic or antibiotic-resistant bacteria. Exposure to clinical antibiotics has previously been linked to reduced microbiota diversity and increased antimicrobial resistance, but our results indicate that these effects may not be immediately apparent after short-term real-world exposures.
Collapse
|
30
|
Mikaelyan KA, Krylov KY, Petrova MV, Shestopalov AE. [Intestine morphology and microbiocenosis changes in critically ill patients in neurosurgery]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:104-110. [PMID: 33560626 DOI: 10.17116/neiro202185011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, the effect of critical conditions on intestine and the role of such changes in maintenance and progression of systemic disorders are of particular attention. This issue is relevant in critically ill neurosurgical patients too. Intestine morphology and microbiome changes in these patients represent a wide field for researches in intensive care and prevention of secondary damage to other organs and systems. This review ensures a current approach to the problem of intestine morphology and microbiome changes in critically ill neurosurgical patients. We reviewed the data from clinical studies and experiments reproducing a critical condition in animals. Most publications are indexed in the PubMed, e-library, Google Scholar databases. We also analyzed the data from NEJM, JAMA, Lancet, Critical Care and other issues. The manuscript contains an overview of 44 foreign and 13 domestic references; over 50% of researches were published within the past 5 years. Searching depth was over 50 years.
Collapse
Affiliation(s)
- K A Mikaelyan
- Russian Peoples' Friendship University, Moscow, Russia
| | - K Yu Krylov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M V Petrova
- Russian Peoples' Friendship University, Moscow, Russia
| | - A E Shestopalov
- Federal Research Clinical Center of Intensive Care and Rehabilitation, Lytkino, Russia
| |
Collapse
|
31
|
Agudelo-Ochoa GM, Valdés-Duque BE, Giraldo-Giraldo NA, Jaillier-Ramírez AM, Giraldo-Villa A, Acevedo-Castaño I, Yepes-Molina MA, Barbosa-Barbosa J, Benítez-Paéz A. Gut microbiota profiles in critically ill patients, potential biomarkers and risk variables for sepsis. Gut Microbes 2020; 12:1707610. [PMID: 31924126 PMCID: PMC7524144 DOI: 10.1080/19490976.2019.1707610] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Critically ill patients are physiologically unstable and recent studies indicate that the intestinal microbiota could be involved in the health decline of such patients during ICU stays. This study aims to assess the intestinal microbiota in critically ill patients with and without sepsis and to determine its impact on outcome variables, such as medical complications, ICU stay time, and mortality. A multi-center study was conducted with a total of 250 peri-rectal swabs obtained from 155 patients upon admission and during ICU stays. Intestinal microbiota was assessed by sequencing the V3-V4 hypervariable regions of the 16S rRNA gene. Linear mixed models were used to integrate microbiota data with more than 40 clinical and demographic variables to detect covariates and minimize the effect of confounding factors. We found that the microbiota of ICU patients with sepsis has an increased abundance of microbes tightly associated with inflammation, such as Parabacteroides, Fusobacterium and Bilophila species. Female sex and aging would represent an increased risk for sepsis possibly because of some of their microbiota features. We also evidenced a remarkable loss of microbial diversity, during the ICU stay. Concomitantly, we detected that the abundance of pathogenic species, such as Enterococcus spp., was differentially increased in sepsis patients who died, indicating these species as potential biomarkers for monitoring during ICU stay. We concluded that particular intestinal microbiota signatures could predict sepsis development in ICU patients. We propose potential biomarkers for evaluation in the clinical management of ICU patients.
Collapse
Affiliation(s)
- Gloria M. Agudelo-Ochoa
- Food and Human Nutrition Research Group, Universidad de Antioquia (UdeA), Medellín, Colombia,Gloria M. Agudelo-Ochoa Carrera, 75 No. 65-87, Medellín, Colombia
| | - Beatriz E. Valdés-Duque
- Biosciences Research Group, Institución Universitaria Colegio Mayor de Antioquia, Medellín, Colombia
| | | | | | | | | | | | | | - Alfonso Benítez-Paéz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology. Spanish National Research Council (IATA-CSIC), Paterna-Valencia, Spain,CONTACT Alfonso Benítez-Paéz C/Catedràtic Agustín Escardino Benlloch, 7. 46980 Paterna, Valencia, Spain
| |
Collapse
|
32
|
Wolff NS, Jacobs MC, Haak BW, Roelofs JJTH, de Vos AF, Hugenholtz F, Wiersinga WJ. Vendor effects on murine gut microbiota and its influence on lipopolysaccharide-induced lung inflammation and Gram-negative pneumonia. Intensive Care Med Exp 2020; 8:47. [PMID: 32840685 PMCID: PMC7447702 DOI: 10.1186/s40635-020-00336-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Background The microbiome has emerged as an important player in the pathophysiology of a whole spectrum of diseases that affect the critically ill. We hypothesized that differences in microbiota composition across vendors can influence murine models of pulmonary lipopolysaccharide (LPS) inflammation and Gram-negative pneumonia. Methods A multi-vendor approach was used with genetically similar mice derived from three different vendors (Janvier, Envigo, Charles River). This model was employed to study the effect on the host response to a pulmonary LPS challenge (1 μg Klebsiella pneumoniae LPS, intranasal), as well as experimental K. pneumoniae infection (ATCC43816, 1 × 104 CFU, intranasal). Results Gut microbiota analysis revealed profound intervendor differences in bacterial composition as shown by beta diversity and at various taxonomic levels. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 release in lung and bronchoalveolar lavage fluid (BALF) were determined 6 and 24 h after intranasal treatment with LPS. No differences were found between the groups, with the exception for Envigo, showing a higher level of TNFα in lung and BALF at 6 h compared to Janvier and Charles River. In another set of experiments, mice from different vendors were subjected to a clinically relevant model of Gram-negative pneumonia (K. pneumoniae). At 12 and 36 h post-infection, no intervendor differences were found in bacterial dissemination, or TNFα and IL-6 levels in the lungs. In line, markers for organ failure did not differ between groups. Conclusions Although there was a marked variation in the gut microbiota composition of mice from different vendors, the hypothesized impact on our models of pulmonary inflammation and severe pneumonia was limited. This is of significance for experimental settings, showing that differences in gut microbiota do not have to lead to differences in outcome.
Collapse
Affiliation(s)
- Nora S Wolff
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Max C Jacobs
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Bastiaan W Haak
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands. .,Department of Medicine, Division of Infectious Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
| |
Collapse
|
33
|
Reintam Blaser A, Preiser JC, Fruhwald S, Wilmer A, Wernerman J, Benstoem C, Casaer MP, Starkopf J, van Zanten A, Rooyackers O, Jakob SM, Loudet CI, Bear DE, Elke G, Kott M, Lautenschläger I, Schäper J, Gunst J, Stoppe C, Nobile L, Fuhrmann V, Berger MM, Oudemans-van Straaten HM, Arabi YM, Deane AM. Gastrointestinal dysfunction in the critically ill: a systematic scoping review and research agenda proposed by the Section of Metabolism, Endocrinology and Nutrition of the European Society of Intensive Care Medicine. Crit Care 2020; 24:224. [PMID: 32414423 PMCID: PMC7226709 DOI: 10.1186/s13054-020-02889-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Gastrointestinal (GI) dysfunction is frequent in the critically ill but can be overlooked as a result of the lack of standardization of the diagnostic and therapeutic approaches. We aimed to develop a research agenda for GI dysfunction for future research. We systematically reviewed the current knowledge on a broad range of subtopics from a specific viewpoint of GI dysfunction, highlighting the remaining areas of uncertainty and suggesting future studies. METHODS This systematic scoping review and research agenda was conducted following successive steps: (1) identify clinically important subtopics within the field of GI function which warrant further research; (2) systematically review the literature for each subtopic using PubMed, CENTRAL and Cochrane Database of Systematic Reviews; (3) summarize evidence for each subtopic; (4) identify areas of uncertainty; (5) formulate and refine study proposals that address these subtopics; and (6) prioritize study proposals via sequential voting rounds. RESULTS Five major themes were identified: (1) monitoring, (2) associations between GI function and outcome, (3) GI function and nutrition, (4) management of GI dysfunction and (5) pathophysiological mechanisms. Searches on 17 subtopics were performed and evidence summarized. Several areas of uncertainty were identified, six of them needing consensus process. Study proposals ranked among the first ten included: prevention and management of diarrhoea; management of upper and lower feeding intolerance, including indications for post-pyloric feeding and opioid antagonists; acute gastrointestinal injury grading as a bedside tool; the role of intra-abdominal hypertension in the development and monitoring of GI dysfunction and in the development of non-occlusive mesenteric ischaemia; and the effect of proton pump inhibitors on the microbiome in critical illness. CONCLUSIONS Current evidence on GI dysfunction is scarce, partially due to the lack of precise definitions. The use of core sets of monitoring and outcomes are required to improve the consistency of future studies. We propose several areas for consensus process and outline future study projects.
Collapse
Affiliation(s)
- Annika Reintam Blaser
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia
- Department of Intensive Care Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Jean-Charles Preiser
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sonja Fruhwald
- Department of Anaesthesiology and Intensive Care Medicine, Division of Anesthesiology for Cardiovascular Surgery and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Wilmer
- Department of Medical Intensive Care, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Wernerman
- Department of Anaesthesiology and Intensive Care Medicine, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Carina Benstoem
- Department of Intensive Care Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
- Cardiovascular Critical Care & Anesthesia Research and Evaluation (3CARE), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael P. Casaer
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joel Starkopf
- Department of Anaesthesiology and Intensive Care, University of Tartu, Tartu, Estonia
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, Tartu, Estonia
| | - Arthur van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Olav Rooyackers
- Department of Anesthesiology and Intensive Care, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Stephan M. Jakob
- Department of Intensive Care Medicine, Inselspital, Bern, Switzerland
- University of Bern, Bern, Switzerland
| | - Cecilia I. Loudet
- Department of Intensive Care, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina
| | - Danielle E. Bear
- Departments of Critical Care and Nutrition and Dietetics, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for Human and Applied Physiological Sciences, King’s College London, London, UK
| | - Gunnar Elke
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Kott
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingmar Lautenschläger
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jörn Schäper
- Department of Anaesthesiology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Jan Gunst
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Christian Stoppe
- Department of Intensive Care Medicine, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Leda Nobile
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Valentin Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine B, University of Münster, Münster, Germany
| | - Mette M. Berger
- Service of Adult Intensive Care Medicine and Burns, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Yaseen M. Arabi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) and King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Adam M. Deane
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria 3050 Australia
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The present review aims to describe the relationship between nutrition and the gut microbiome in critical illness. RECENT FINDINGS Critical illness disrupts not only cells of human origin but also the intestinal microbiome, with a decrease in bacterial diversity and transformation into a pathobiome. Under basal conditions, nutrition profoundly alters microbial composition with significant salutatory effects on human health. In critical illness, enteral nutrition is recommended and has theoretical (but not proven) advantages towards improved inner microbial health and diminution of bacterial translocation. Dietary supplements such as probiotics and fiber have been shown to improve microbial derangements in health. However, their impact on the microbiome in critical illness is unclear and although they may have some beneficial effects on patient-centric outcomes, they do not alter mortality. The precise mechanisms of how nutrition and dietary supplements modulate the gut microbiome remain to be determined. SUMMARY Nutrition and supplements such as probiotics appear to play a significant role in modulating the microbiome in health, yet the relationship in critical illness is unclear. Further investigation is required to determine the mechanistic determinants of the impact of nutrition on the microbiome in critical illness and the potential clinical implications of this.
Collapse
|
35
|
Fecal Microbial Transplantation for the Treatment of Persistent Multidrug-Resistant K lebsiella pneumoniae Infection in a Critically Ill Patient. Case Rep Infect Dis 2020; 2020:8462659. [PMID: 32099702 PMCID: PMC7038171 DOI: 10.1155/2020/8462659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Dysbiosis of the microbiome is a common finding in critically ill patients, who receive broad-spectrum antibiotics and various forms of organ support. Multidrug-resistant (MDR) organisms are a growing threat in all areas of medicine, but most markedly in the critically ill, where there is both loss of host defences and widespread use of broad spectrum antibiotics. We present a case of a critically ill patient with persistent MDR Klebsiella pneumoniae infection, successfully treated with fecal microbiota transplantation (FMT), using stool of a rigorously-screened, healthy donor. FMT for Clostridium difficile colitis has been well described in the literature and is an established therapy for recurrent infections with Clostridium difficile. The use of FMT for other multidrug-resistant organisms is less frequently described, particularly in the context of critically ill patients. In our case, we have culture-documented clearance of the MDR Klebsiella pneumoniae form a patient of FMT.
Collapse
|
36
|
The Evolving Microbiome from Pregnancy to Early Infancy: A Comprehensive Review. Nutrients 2020; 12:nu12010133. [PMID: 31906588 PMCID: PMC7019214 DOI: 10.3390/nu12010133] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Pregnancy induces a number of immunological, hormonal, and metabolic changes that are necessary for the mother to adapt her body to this new physiological situation. The microbiome of the mother, the placenta and the fetus influence the fetus growth and undoubtedly plays a major role in the adequate development of the newborn infant. Hence, the microbiome modulates the inflammatory mechanisms related to physiological and pathological processes that are involved in the perinatal progress through different mechanisms. The present review summarizes the actual knowledge related to physiological changes in the microbiota occurring in the mother, the fetus, and the child, both during neonatal period and beyond. In addition, we approach some specific pathological situations during the perinatal periods, as well as the influence of the type of delivery and feeding.
Collapse
|
37
|
Grasselli G, Scaravilli V, Alagna L, Bombino M, De Falco S, Bandera A, Abbruzzese C, Patroniti N, Gori A, Pesenti A. Gastrointestinal colonization with multidrug-resistant Gram-negative bacteria during extracorporeal membrane oxygenation: effect on the risk of subsequent infections and impact on patient outcome. Ann Intensive Care 2019; 9:141. [PMID: 31853672 PMCID: PMC6920277 DOI: 10.1186/s13613-019-0615-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/05/2019] [Indexed: 01/12/2023] Open
Abstract
Background In ICU patients, digestive tract colonization by multidrug-resistant (MDR) Gram-negative (G−) bacteria is a significant risk factor for the development of infections. In patients undergoing extracorporeal membrane oxygenation (ECMO), colonization by MDR bacteria and risk of subsequent nosocomial infections (NIs) have not been studied yet. The aim of this study is to evaluate the incidence, etiology, risk factors, impact on outcome of gastrointestinal colonization by MDR G− bacteria, and risk of subsequent infections in patients undergoing ECMO. Methods This is a retrospective analysis of prospectively collected data: 105 consecutive patients, treated with ECMO, were admitted to the ICU of an Italian tertiary referral center (San Gerardo Hospital, Monza, Italy) from January 2010 to November 2015. Rectal swabs for MDR G− bacteria were cultured at admission and twice a week. Only colonization and NIs by MDR G− bacteria were analyzed. Results Ninety-one included patients [48.5 (37–56) years old, 63% male, simplified acute physiology score II 37 (32–47)] underwent peripheral ECMO (87% veno-venous) for medical indications (79% ARDS). Nineteen (21%) patients were colonized by MDR G− bacteria. Male gender (OR 4.03, p = 0.029) and duration of mechanical ventilation (MV) before ECMO > 3 days (OR 3.57, p = 0.014) were associated with increased risk of colonization. Colonized patients had increased odds of infections by the colonizing germs (84% vs. 29%, p < 0.001, OR 12.9), longer ICU length of stay (LOS) (43 vs. 24 days, p = 0.002), MV (50 vs. 22 days, p < 0.001) and ECMO (28 vs. 12 days, p < 0.001), but did not have higher risk of death (survival rate 58% vs. 67%, p = 0.480, OR 0.68). Infected patients had almost halved ICU survival (46% vs. 78%, p < 0.001, OR 4.11). Conclusions In patients undergoing ECMO for respiratory and/or circulatory failure, colonization by MDR G− bacteria is frequent and associated with more the tenfold odds for subsequent infection. Those infections are associated with an increased risk of death.
Collapse
Affiliation(s)
- Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, MI, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, MI, Italy.
| | - Vittorio Scaravilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, MI, Italy
| | - Laura Alagna
- Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Michela Bombino
- Department of Anesthesia, Critical Care and Emergency, ASST Monza San Gerardo Hospital, Monza, MB, Italy
| | - Stefano De Falco
- Department of Pathophysiology and Transplantation, University of Milan, Milan, MI, Italy
| | - Alessandra Bandera
- Department of Pathophysiology and Transplantation, University of Milan, Milan, MI, Italy.,Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Chiara Abbruzzese
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, MI, Italy
| | - Nicolò Patroniti
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Andrea Gori
- Department of Pathophysiology and Transplantation, University of Milan, Milan, MI, Italy.,Infectious Diseases Unit, IRCCS Ca' Granda Ospedale Maggiore Policlinico Foundation, Milan, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, MI, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, MI, Italy
| |
Collapse
|
38
|
Moron R, Galvez J, Colmenero M, Anderson P, Cabeza J, Rodriguez-Cabezas ME. The Importance of the Microbiome in Critically Ill Patients: Role of Nutrition. Nutrients 2019; 11:E3002. [PMID: 31817895 PMCID: PMC6950228 DOI: 10.3390/nu11123002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Critically ill patients have an alteration in the microbiome in which it becomes a disease-promoting pathobiome. It is characterized by lower bacterial diversity, loss of commensal phyla, like Firmicutes and Bacteroidetes, and a domination of pathogens belonging to the Proteobacteria phylum. Although these alterations are multicausal, many of the treatments administered to these patients, like antibiotics, play a significant role. Critically ill patients also have a hyperpermeable gut barrier and dysregulation of the inflammatory response that favor the development of the pathobiome, translocation of pathogens, and facilitate the emergence of sepsis. In order to restore the homeostasis of the microbiome, several nutritional strategies have been evaluated with the aim to improve the management of critically ill patients. Importantly, enteral nutrition has proven to be more efficient in promoting the homeostasis of the gut microbiome compared to parenteral nutrition. Several nutritional therapies, including prebiotics, probiotics, synbiotics, and fecal microbiota transplantation, are currently being used, showing variable results, possibly due to the unevenness of clinical trial conditions and the fact that the beneficial effects of probiotics are specific to particular species or even strains. Thus, it is of great importance to better understand the mechanisms by which nutrition and supplement therapies can heal the microbiome in critically ill patients in order to finally implement them in clinical practice with optimal safety and efficacy.
Collapse
Affiliation(s)
- Rocio Moron
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016-Granada, Spain; (R.M.); (J.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
| | - Julio Galvez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Department of Pharmacology, CIBER-ehd, Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| | - Manuel Colmenero
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Servicio de Medicina Intensiva, Hospital Universitaro Clinico San Cecilio, 18016 Granada, Spain
| | - Per Anderson
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Servicio de Análisis Clínicos e Inmunologia, UGC Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - José Cabeza
- Servicio Farmacia Hospitalaria, Hospital Universitario Clínico San Cecilio, 18016-Granada, Spain; (R.M.); (J.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
| | - Maria Elena Rodriguez-Cabezas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (M.C.); (P.A.); (M.E.R.-C.)
- Department of Pharmacology, CIBER-ehd, Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
| |
Collapse
|
39
|
Human Postprandial Nutrient Metabolism and Low-Grade Inflammation: A Narrative Review. Nutrients 2019; 11:nu11123000. [PMID: 31817857 PMCID: PMC6950246 DOI: 10.3390/nu11123000] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
The importance of the postprandial state has been acknowledged, since hyperglycemia and hyperlipidemia are linked with several chronic systemic low-grade inflammation conditions. Humans spend more than 16 h per day in the postprandial state and the postprandial state is acknowledged as a complex interplay between nutrients, hormones and diet-derived metabolites. The purpose of this review is to provide insight into the physiology of the postprandial inflammatory response, the role of different nutrients, the pro-inflammatory effects of metabolic endotoxemia and the anti-inflammatory effects of bile acids. Moreover, we discuss nutritional strategies that may be linked to the described pathways to modulate the inflammatory component of the postprandial response.
Collapse
|
40
|
Ravi A, Halstead FD, Bamford A, Casey A, Thomson NM, van Schaik W, Snelson C, Goulden R, Foster-Nyarko E, Savva GM, Whitehouse T, Pallen MJ, Oppenheim BA. Loss of microbial diversity and pathogen domination of the gut microbiota in critically ill patients. Microb Genom 2019; 5. [PMID: 31526447 PMCID: PMC6807385 DOI: 10.1099/mgen.0.000293] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Among long-stay critically ill patients in the adult intensive care unit (ICU), there are often marked changes in the complexity of the gut microbiota. However, it remains unclear whether such patients might benefit from enhanced surveillance or from interventions targeting the gut microbiota or the pathogens therein. We therefore undertook a prospective observational study of 24 ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Two-thirds of the patients experienced a marked drop in gut microbial diversity (to an inverse Simpson’s index of <4) at some stage during their stay in the ICU, often accompanied by the absence or loss of potentially beneficial bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but the administration of other antibiotics, including piperacillin/tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three-quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium. In some patients, we also saw an increase in the relative abundance of apparent commensal organisms in the gut microbiome, including the archaeal species Methanobrevibacter smithii. In conclusion, we have documented a dramatic absence of microbial diversity and pathogen domination of the gut microbiota in a high proportion of critically ill patients using shotgun metagenomics.
Collapse
Affiliation(s)
- Anuradha Ravi
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Fenella D Halstead
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Amy Bamford
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Anna Casey
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| | - Nicholas M Thomson
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Catherine Snelson
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | | | | | - George M Savva
- Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK
| | - Tony Whitehouse
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Mark J Pallen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK.,Quadram Institute Bioscience and University of East Anglia, Norwich, NR4 7UA, UK.,School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd, Guildford GU2 7AL, UK
| | - Beryl A Oppenheim
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, B15 2GW, UK
| |
Collapse
|
41
|
Abstract
Critically ill patients frequently present with the systemic inflammatory response syndrome, which is largely a reflection of the liver's response to injury. Underlying hepatic congestion is a major risk factor for hypoxic liver injury, the most common cause for hepatocellular injury. Cholestatic liver injury often occurs in critically ill patients due to inhibition of farnesoid X receptor (FXR), the main regulator of bile acid handling, particularly in the liver and intestines. Additional injury to the liver occurs due to alterations in the bile acid pool with increased cytotoxic forms and disturbance in the typical processing of xenobiotics in the liver.
Collapse
Affiliation(s)
- Amanda Cheung
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 750 Welch Road, Suite 210, Palo Alto, CA 94304, USA.
| | - Steven Flamm
- Division of Gastroenterology and Hepatology, Northwestern Feinberg School of Medicine, 19-046 Arkes Building, 676 North Saint Clair, Chicago, IL 60611, USA
| |
Collapse
|
42
|
Tamulyte S, Kopplin J, Brenner T, Weigand MA, Uhle F. Monocyte HLA-DR Assessment by a Novel Point-of-Care Device Is Feasible for Early Identification of ICU Patients With Complicated Courses-A Proof-of-Principle Study. Front Immunol 2019; 10:432. [PMID: 30915080 PMCID: PMC6423155 DOI: 10.3389/fimmu.2019.00432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/19/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Critically ill patients, especially following trauma or extensive surgery, experience a systemic immune response, consisting of a pro-inflammatory as well as a counterbalancing anti-inflammatory response. Pro-inflammation is necessary for the initiation of homeostatic control and wound healing of the organism. However, when the counterbalancing mechanisms dominate, a condition of secondary immunodeficiency occurs, which renders the patient susceptible for opportunistic or secondary infections. However, the incidence of this condition is yet illusive. Methods: For a period of 3 months (May to July 2017), 110 consecutive patients admitted to the surgical ICU of the Heidelberg University Hospital, a tertiary university hospital, were enrolled in the study. Monocyte HLA-DR (mHLA-DR), a long-known surrogate of monocyte function, was assessed quantitatively once on admission utilizing a novel point-of-care flow cytometer with single-use cartridges (Accelix system). Patients were followed up for further 28 days and data on ICU stay, antibiotic therapy, microbiological findings, and mechanical ventilation were recorded. Statistical analysis was performed to evaluate the incidence of immunosuppression—defined by different thresholds—as well as its consequence in terms of outcome and clinical course. Results: Depending on the HLA-DR threshold applied for stratification (≤8,000/≤5,000/≤2,000 molecules/cell), a large group of patients (85.5/68.2/40.0%) already presented with a robust decrease of HLA-DR on admission, independent of the cause for critical illness. Analyzed for survival, neither threshold was able to stratify patients with a higher mortality. However, both thresholds of 2,000 and 5,000 were able to discriminate patients with longer ICU stay, ventilation time and duration of antibiotic therapy, as well as higher count of microbiological findings. Moreover, a mHLA-DR value ≤2,000 molecules/cell was associated with higher incidence of overall antibiotic therapy. Conclusion: Single assessment of mHLA-DR using a novel point-of-care flow cytometer is able to stratify patients according to their risk of a complicated course. Therefore, this device overcomes the technical boundaries for measuring cellular biomarkers and paves the way for future studies involving personalized immunotherapy to patients with a high immunological risk profile independent of their background. Trial Registration: German Clinical Trials Register; ID: DRKS00012348.
Collapse
Affiliation(s)
- Sandra Tamulyte
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Kopplin
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|