1
|
Tsai YC, Jhou HJ, Huang CW, Lee CH, Chen PH, Hsu SD. Effectiveness of Adaptive Support Ventilation in Facilitating Weaning from Mechanical Ventilation in Postoperative Patients. J Cardiothorac Vasc Anesth 2024; 38:1978-1986. [PMID: 38937174 DOI: 10.1053/j.jvca.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE This meta-analysis aims to evaluate the effectiveness of adaptive support ventilation (ASV) in facilitating postoperative weaning from mechanical ventilation in cardiac surgery patients. DESIGN A systematic review and meta-analysis to assess ASV in weaning postoperative cardiac surgery patients. Outcomes included early extubation, reintubation rates, time to extubation, and lengths of intensive care units and hospital stays. SETTING We searched electronic databases from inception to March 2023 and included randomized controlled trials that compared ASV with conventional ventilation methods in this population. PARTICIPANTS Postoperative cardiac surgery patients. MEASUREMENTS AND MAIN RESULTS A random effects model was used for meta-analysis, and trial sequential analysis (TSA) was conducted to assess result robustness. The meta-analysis included 11 randomized controlled trials with a total of 1027 randomized patients. ASV was associated with a shorter time to extubation compared to conventional ventilation (random effects, mean difference -68.30 hours; 95% confidence interval, -115.50 to -21.09) with TSA providing a conclusive finding. While ASV indicated improved early extubation rates, no significant differences were found in reintubation rates or lengths of intensive care unit and hospital stays, with these TSA results being inclusive. CONCLUSIONS ASV appears to facilitate a shorter time to extubation in postoperative cardiac surgery patients compared to conventional ventilation, suggesting benefits in accelerating the weaning process and reducing mechanical ventilation duration.
Collapse
Affiliation(s)
- Yu-Chi Tsai
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hong-Jie Jhou
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Wei Huang
- Division of Plastic Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Cho-Hao Lee
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Huang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Der Hsu
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
2
|
Bosma KJ, Martin CM, Burns KEA, Mancebo Cortes J, Suárez Montero JC, Skrobik Y, Thorpe KE, Amaral ACKB, Arabi Y, Basmaji J, Beduneau G, Beloncle F, Carteaux G, Charbonney E, Demoule A, Dres M, Fanelli V, Geagea A, Goligher E, Lellouche F, Maraffi T, Mercat A, Rodriguez PO, Shahin J, Sibley S, Spadaro S, Vaporidi K, Wilcox ME, Brochard L. Study protocol for a randomized controlled trial of Proportional Assist Ventilation for Minimizing the Duration of Mechanical Ventilation: the PROMIZING study. Trials 2023; 24:232. [PMID: 36973743 PMCID: PMC10041480 DOI: 10.1186/s13063-023-07163-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Proportional assist ventilation with load-adjustable gain factors (PAV+) is a mechanical ventilation mode that delivers assistance to breathe in proportion to the patient's effort. The proportional assistance, called the gain, can be adjusted by the clinician to maintain the patient's respiratory effort or workload within a normal range. Short-term and physiological benefits of this mode compared to pressure support ventilation (PSV) include better patient-ventilator synchrony and a more physiological response to changes in ventilatory demand. METHODS The objective of this multi-centre randomized controlled trial (RCT) is to determine if, for patients with acute respiratory failure, ventilation with PAV+ will result in a shorter time to successful extubation than with PSV. This multi-centre open-label clinical trial plans to involve approximately 20 sites in several continents. Once eligibility is determined, patients must tolerate a short-term PSV trial and either (1) not meet general weaning criteria or (2) fail a 2-min Zero Continuous Positive Airway Pressure (CPAP) Trial using the rapid shallow breathing index, or (3) fail a spontaneous breathing trial (SBT), in this sequence. Then, participants in this study will be randomized to either PSV or PAV+ in a 1:1 ratio. PAV+ will be set according to a target of muscular pressure. The weaning process will be identical in the two arms. Time to liberation will be the primary outcome; ventilator-free days and other outcomes will be measured. DISCUSSION Meta-analyses comparing PAV+ to PSV suggest PAV+ may benefit patients and decrease healthcare costs but no powered study to date has targeted the difficult to wean patient population most likely to benefit from the intervention, or used consistent timing for the implementation of PAV+. Our enrolment strategy, primary outcome measure, and liberation approaches may be useful for studying mechanical ventilation and weaning and can offer important results for patients. TRIAL REGISTRATION ClinicalTrials.gov NCT02447692 . Prospectively registered on May 19, 2015.
Collapse
Affiliation(s)
- Karen J Bosma
- Division of Critical Care, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.
| | - Claudio M Martin
- Division of Critical Care, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Karen E A Burns
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
- Division of Critical Care, Unity Health Toronto - St. Michael's Hospital, Toronto, ON, Canada
| | | | | | - Yoanna Skrobik
- Department of Medicine, McGill University, Québec, Canada
| | - Kevin E Thorpe
- Dalla Lana School of Public Health, Biostatistics Division, University of Toronto, Toronto, ON, Canada
- Applied Health Research Centre (AHRC), Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, Canada
| | - Andre Carlos Kajdacsy-Balla Amaral
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada
| | - Yaseen Arabi
- Intensive Care Department, King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia
| | - John Basmaji
- Division of Critical Care, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Gaëtan Beduneau
- Medical Intensive Care Unit, Normandie Univ, UNIROUEN, EA 3830, Rouen University Hospital, 76000, Rouen, France
| | - Francois Beloncle
- Medical Intensive Care Department, Angers University Hospital, Angers, France
| | - Guillaume Carteaux
- Service de Médecine Intensive Réanimation, Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Creteil, France
| | - Emmanuel Charbonney
- Centre Hospitalier de l'Université de Montréal (CHUM) and Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada
| | - Alexandre Demoule
- Service de Médecine intensive - Réanimation Département, Hôpital Universitaire Pitié-Salpêtrière and Sorbonne Université Médecine, Paris, France
| | - Martin Dres
- Service de Médecine intensive - Réanimation Département, Hôpital Universitaire Pitié-Salpêtrière and Sorbonne Université Médecine, Paris, France
| | - Vito Fanelli
- Department of Surgical Sciences, University of Turin, Turin, Italy
- Department of Anaesthesia, Critical Care and Emergency - Città della Salute e della Scienza Hospital - University of Turin, Turin, Italy
| | - Anna Geagea
- Division of Critical Care Medicine, Department of Medicine, North York General Hospital, Toronto, ON, Canada
| | - Ewan Goligher
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - François Lellouche
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec City, QC, Canada
| | - Tommaso Maraffi
- Intensive Care Unit, Hôpital Intercommunal de Créteil, Créteil, France
| | - Alain Mercat
- Medical Intensive Care Department, Angers University Hospital, Angers, France
| | - Pablo O Rodriguez
- Intensive Care Unit, Instituto Universitario CEMIC (Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno"), Av. Cnel. Diaz 2423 3rd floor, Buenos Aires, Argentina
| | - Jason Shahin
- Department of Critical Care, Division of Pulmonary Medicine, McGill University, Québec, Canada
| | - Stephanie Sibley
- Department of Emergency Medicine and Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - Savino Spadaro
- Department of Translational Medicine, Faculty of Medicine and Surgery, University of Ferrara, Ferrara, Italy
| | | | - M Elizabeth Wilcox
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
- University Health Network , Toronto, ON, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre, Department of Critical Care, St Michael's Hospital, Unity Health Toronto, Toronto, Canada
| | | | | |
Collapse
|
3
|
Pinto CB, Leite D, Brandão M, Nedel W. Clinical outcomes in patients undergoing invasive mechanical ventilation using NAVA and other ventilation modes - A systematic review and meta-analysis. J Crit Care 2023; 76:154287. [PMID: 36958129 DOI: 10.1016/j.jcrc.2023.154287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE Neurally adjusted ventilatory assist mode (NAVA) benefit in mechanical ventilation (MV) patients with regard to clinically outcomes is still uncertain. Recent randomized clinical trials (RCTs) have addressed this issue, making it important to assess the real impact of NAVA in relation to these outcomes. MATERIALS AND METHODS We performed a systematic review and meta-analysis of RCTs comparing NAVA ventilation mode versus the standard ventilation mode in critically ill adult patients admitted to the ICU with invasive MV. The main outcome was 28-days ventilatory free-days (VFD). Secondary outcomes were weaning failure, mortality, ICU and hospital length of stay and need for tracheostomy. RESULTS We included 5 RCTs (643 patients). The patients in the NAVA group had increased VFDs compared to the control group: mean difference (MD) 3.42 (95% CI 1.21 to 5.62, I2 = 0%). NAVA and control groups did not differ in ICU mortality [OR 0.58 (95% CI 0.33 to 1.03), I2 = 41%]. NAVA mode was associated with a reduced incidence of weaning failure [OR 0.51 (95% CI 0.29 to 0.88), I2 = 0%]. NAVA and control groups did not differ in the number of MV days: MD -1.9 days (95% CI -4.2 to 0.3, I2 = 0%). CONCLUSIONS NAVA mode has a modest impact on MV-free days and weaning success, with no association with improvements in other relevant clinical outcomes.
Collapse
Affiliation(s)
- Clarissa Both Pinto
- Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Debora Leite
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Brandão
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Wagner Nedel
- Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Intensive Care Unit, Grupo Hospitalar Conceição, Porto Alegre, Brazil; Brazilian Research in Intensive Care Network, BRICNet, Brazil.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The last 25 years have seen considerable development in modes of closed-loop ventilation and there are now several of them commercially available. They not only offer potential benefits for the individual patient, but may also improve the organization within the intensive care unit (ICU). Clinicians are showing both greater interest and willingness to address the issues of a caregiver shortage and overload of bedside work in the ICU. This article reviews the clinical benefits of using closed-loop ventilation modes, with a focus on control of oxygenation, lung protection, and weaning. RECENT FINDINGS Closed-loop ventilation modes are able to maintain important physiological variables, such as oxygen saturation measured by pulse oximetry, tidal volume (VT), driving pressure (ΔP), and mechanical power (MP), within target ranges aimed at ensuring continuous lung protection. In addition, these modes adapt the ventilator support to the patient's needs, promoting diaphragm activity and preventing over-assistance. Some studies have shown the potential of these modes to reduce the duration of both weaning and mechanical ventilation. SUMMARY Recent studies have primarily demonstrated the safety, efficacy, and feasibility of using closed-loop ventilation modes in the ICU and postsurgery patients. Large, multicenter randomized controlled trials are needed to assess their impact on important short- and long-term clinical outcomes, the organization of the ICU, and cost-effectiveness.
Collapse
Affiliation(s)
- Jean-Michel Arnal
- Service de réanimation polyvalente, Hôpital Sainte Musse, Toulon, France
- Department of Research and New Technologies, Hamilton Medical, Bonaduz, Switzerland
| | - Shinshu Katayama
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Christopher Howard
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Pelosi P, Blanch L, Jabaudon M, Constantin JM. Automated systems to minimise asynchronies and personalise mechanical ventilation: A light at the end of the tunnel! Anaesth Crit Care Pain Med 2022; 41:101157. [PMID: 36108918 DOI: 10.1016/j.accpm.2022.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy; Anaesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Lluis Blanch
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació I Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain; Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France; iGReD, CNRS, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Michel Constantin
- Sorbonne Université, GRC 29, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Département d'Anesthésie Réanimation, F-75013 Paris, France
| |
Collapse
|
6
|
Pannu SR, Haddad T, Exline M, Christman JW, Horowitz JC, Peters J, Brock G, Diaz P, Crouser ED. Rationale and design of a randomized controlled clinical trial; Titration of Oxygen Levels (TOOL) during mechanical ventilation. Contemp Clin Trials 2022; 119:106811. [PMID: 35660485 PMCID: PMC11114599 DOI: 10.1016/j.cct.2022.106811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Both hyperoxemia and hypoxemia are deleterious in critically ill patients. Targeted oxygenation is recommended to prevent both of these extremes, however this has not translated to the bedside. Hyperoxemia likely persists more than hypoxemia due to absence of immediate discernible adverse effects, cognitive biases and delay in prioritization of titration. METHODS We present the methodology for the Titration Of Oxygen Levels (TOOL) trial, an open label, randomized controlled trial of an algorithm-based FiO2 titration with electronic medical record-based automated alerts. We hypothesize that the study intervention will achieve targeted oxygenation by curbing episodes of hyperoxemia while preventing hypoxemia. In the intervention arm, electronic alerts will be used to titrate FiO2 if SpO2 is ≥94% with FiO2 levels ≥0.4 over 45 min. FiO2 will be titrated per standard practice in the control arm. This study is being carried out with deferred consent. The sample size to determine efficacy is 316 subjects, randomized in a 1:1 ratio to the intervention vs. control arm. The primary outcome is proportion of time during mechanical ventilation spent with FiO2 ≥ 0.4 and SpO2 ≥ 94%. We will also assess proportion of time during mechanical ventilation spent with SpO2 < 88%, duration of mechanical ventilation, length of ICU and hospital stay, hospital mortality, and adherence to electronic alerts as secondary outcomes. CONCLUSION This study is designed to evaluate the efficacy of a high fidelity, bioinformatics-based, electronic medical record derived electronic alert system to improve targeted oxygenation in mechanically ventilated patients by reducing excessive FiO2 exposure.
Collapse
Affiliation(s)
- Sonal R Pannu
- The Ohio State University, Division of Pulmonary, Critical Care & Sleep Medicine, Columbus, OH, United States.
| | - Tyler Haddad
- The Ohio State University, Department of Internal Medicine, Columbus, OH, United States
| | - Matthew Exline
- The Ohio State University, Division of Pulmonary, Critical Care & Sleep Medicine, Columbus, OH, United States
| | - John W Christman
- The Ohio State University, Division of Pulmonary, Critical Care & Sleep Medicine, Columbus, OH, United States
| | - Jeffrey C Horowitz
- The Ohio State University, Division of Pulmonary, Critical Care & Sleep Medicine, Columbus, OH, United States
| | - Jonathan Peters
- The Ohio State University, Department of Respiratory Therapy, Columbus, OH, United States
| | - Guy Brock
- The Ohio State University, Center for Biostatistics and Bioinformatics, Columbus, OH, United States
| | - Philip Diaz
- The Ohio State University, Division of Pulmonary, Critical Care & Sleep Medicine, Columbus, OH, United States
| | - Elliott D Crouser
- The Ohio State University, Division of Pulmonary, Critical Care & Sleep Medicine, Columbus, OH, United States
| |
Collapse
|
7
|
Burns KEA, Agarwal A, Bosma KJ, Chaudhuri D, Girard TD. Liberation from Mechanical Ventilation: Established and New Insights. Semin Respir Crit Care Med 2022; 43:461-470. [PMID: 35760299 DOI: 10.1055/s-0042-1747929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A substantial proportion of critically ill patients require ventilator support with the majority requiring invasive mechanical ventilation. Timely and safe liberation from invasive mechanical ventilation is a critical aspect of patient care in the intensive care unit (ICU) and is a top research priority for patients and clinicians. In this article, we discuss how to (1) identify candidates for liberation from mechanical ventilation, (2) conduct spontaneous breathing trials (SBTs), and (3) optimize patients for liberation from mechanical ventilation. We also discuss the roles for (4) extubation to noninvasive ventilation and (5) newer modes of mechanical ventilation during liberation from mechanical ventilation. We conclude that, though substantial progress has been made in identifying patients who are likely to be liberated (e.g., through the use of SBTs) and management strategies that speed liberation from the ventilator (e.g., protocolized SBTs, lighter sedation, and early mobilization), many important questions regarding liberation from mechanical ventilation in clinical practice remain unanswered.
Collapse
Affiliation(s)
- Karen E A Burns
- Interdepartmental Division of Critical Care Medicine, Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Departments of Critical Care and Medicine, Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada.,Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Arnav Agarwal
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Division of General Internal Medicine, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Karen J Bosma
- Division of Critical Care Medicine, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, and London Health Sciences Centre, London, Ontario, Canada
| | - Dipayan Chaudhuri
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Departments of Critical Care Medicine and Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Timothy D Girard
- The Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Ige EO, Adetunla A, Amudipe SO, Adeoye A, Glucksberg M. An archetypal model of a breathable air-circuit in an electro-pneumatic ventilator device. Heliyon 2022; 8:e09378. [PMID: 35529703 PMCID: PMC9059433 DOI: 10.1016/j.heliyon.2022.e09378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/04/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Mechanical ventilator is a machine that is mechanically designed to deliver breathable air in and out of the lungs to provide a breathing mechanism for a patient who is physically unable to breathe, it is an indispensable life-support device in critical care medicine and medical emergencies such as scenarios during the COVID-19 pandemic. This research presents a model design of the pneumatic circuit that is electronically controlled, by using computer-aided pneumatic rig over selected 5/3, 5/2, 3/2 solenoid gating valves, the performance of these valves must be investigated to ascertain the most appropriate valve to be used for the electro-pneumatic mechanical ventilator. An elaborate parametric investigation reported for volume-controlled ventilators illustrate the influences of key parameters on the dynamics of the ventilated respiratory system. This study presents the linearity of tidal volume, peak pressure and lung compliance for the parameters considered. However, the maximum pressure of the ventilation device increases slowly when the tidal volumes exceed 600 ml. In addition, influence of evacuation time of the ventilator predicted over high throughput in time regimes of 1 s; 1.2 s; 1.4 s; 1.6 s, and 1.8 s showed that the pressure platform in the pipe might not appear if the exhaust time of the ventilator is less than 1.6 s. The 5/2 solenoid valve was considered the best with consistent flowrate. The archetypal model of the pneumatic circuit developed in this research could find vital application in the design of patient-interfacing devices particularly in ventilators and neonatal incubator.
Collapse
|
9
|
Cui N, Yan X, Zhang Y, Chen D, Zhang H, Zheng Q, Jin J. Non-Pharmacological Interventions for Minimizing Physical Restraints Use in Intensive Care Units: An Umbrella Review. Front Med (Lausanne) 2022; 9:806945. [PMID: 35573001 PMCID: PMC9091438 DOI: 10.3389/fmed.2022.806945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/29/2022] [Indexed: 01/08/2023] Open
Abstract
Background There is a relationship between the application of physical restraints and negative physiological and psychological effects on critically ill patients. Many organizations have supported and advocated minimizing the use of physical restraints. However, it is still common practice in many countries to apply physical restraints to patients in intensive care. Objective This study aimed to assess the effectiveness of various non-pharmacological interventions used to minimize physical restraints in intensive care units and provide a supplement to the evidence summary for physical restraints guideline adaptation. Methods Based on the methodology of umbrella review, electronic databases, including Cochrane Database of Systematic Reviews, Joanna Briggs Institute Database of Systematic Reviews and Implementation Reports, MEDLINE, EMBASE, CINAHL, Web of Science, PsycInfo/Psyc Articles/Psychology and Behavioral Science Collection, China National Knowledge Infrastructure, SinoMed, and Wanfang Data, were searched to identify systematic reviews published from January 2016 to December 2020. Two independent reviewers undertook screening, data extraction, and quality appraisal. The methodological quality of systematic reviews was evaluated by AMSTAR 2. Evidence quality of each intervention was assessed according to GRADE. The corrected covered area was calculated as a measure of overlap. Results A total of 47 systematic reviews were included in the umbrella review, of which six were evaluated as high quality, five were of moderate quality, and the rest were of low or critically low quality. The corrected covered area range was from 0.0 to 0.269, which indicated that there was mild overlap between systematic reviews. The included systematic reviews evaluated various types of non-pharmacological interventions for minimizing physical restraints in intensive care units, which included multicomponent interventions involving healthcare professionals' education, family engagement/support, specific consultations and communication, rehabilitation and mobilization (rehabilitation techniques, early mobilization, inspiratory muscle training), interventions related to reducing the duration of mechanical ventilation (weaning modes or protocols, ventilator bundle or cough augmentation techniques, early tracheostomy, high-flow nasal cannula), and management of specific symptoms (delirium, agitation, pain, and sleep disturbances). Conclusion The number of systematic reviews related to physical restraints was limited. Multicomponent interventions involving healthcare professionals' education may be the most direct non-pharmacological intervention for minimizing physical restraints use in intensive care units. However, the quality of evidence was very low, and conclusions should be taken with caution. Policymakers should consider incorporating non-pharmacological interventions related to family engagement/support, specific consultations and communication, rehabilitation and mobilization, interventions related to reducing the duration of mechanical ventilation, and management of specific symptoms as part of the physical restraints minimization bundle. All the evidence contained in the umbrella review provides a supplement to the evidence summary for physical restraints guideline adaptation. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=242586, identifier: CRD42021242586.
Collapse
Affiliation(s)
- Nianqi Cui
- Department of Nursing, The Second Affiliated Hospital Zhejiang University School of Medicine (SAHZU), Hangzhou, China
| | - Xiaoli Yan
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuping Zhang
- Department of Nursing, The Second Affiliated Hospital Zhejiang University School of Medicine (SAHZU), Hangzhou, China
| | - Dandan Chen
- Faculty of Nursing, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhang
- Faculty of Nursing, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiong Zheng
- Faculty of Nursing, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingfen Jin
- Department of Nursing, The Second Affiliated Hospital Zhejiang University School of Medicine (SAHZU), Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China
- Changxing Branch Hospital of SAHZU, Huzhou, China
| |
Collapse
|
10
|
Saunders R, Davis JA, Bosma KJ. Proportional-assist ventilation with load-adjustable gain factors for mechanical ventilation: a cost-utility analysis. CMAJ Open 2022; 10:E126-E135. [PMID: 35168935 PMCID: PMC9259387 DOI: 10.9778/cmajo.20210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mechanical ventilation is an important component of patient critical care, but it adds expense to an already high-cost setting. This study evaluates the cost-utility of 2 modes of ventilation: proportional-assist ventilation with load-adjustable gain factors (PAV+ mode) versus pressure-support ventilation (PSV). METHODS We adapted a published Markov model to the Canadian hospital-payer perspective with a 1-year time horizon. The patient population modelled includes all patients receiving invasive mechanical ventilation who have completed the acute phase of ventilatory support and have entered the recovery phase. Clinical and cost inputs were informed by a structured literature review, with the comparative effectiveness of PAV+ mode estimated via pragmatic meta-analysis. Primary outcomes of interest were costs, quality-adjusted life years (QALYs) and the (incremental) cost per QALY for patients receiving mechanical ventilation. Results were reported in 2017 Canadian dollars. We conducted probabilistic and scenario analyses to assess model uncertainty. RESULTS Over 1 year, PSV had costs of $50 951 and accrued 0.25 QALYs. Use of PAV+ mode was associated with care costs of $43 309 and 0.29 QALYs. Compared to PSV, PAV+ mode was considered likely to be cost-effective, having lower costs (-$7642) and increased QALYs (+0.04) after 1 year. In cost-effectiveness acceptability analysis, 100% of simulations would be cost-effective at a willingness-to-pay threshold of $50 000 per QALY gained. INTERPRETATION Use of PAV+ mode is expected to benefit patient care in the intensive care unit (ICU) and be a cost-effective alternative to PSV in the Canadian setting. Canadian hospital payers may therefore consider how best to optimally deliver mechanical ventilation in the ICU as they expand ICU capacity.
Collapse
Affiliation(s)
- Rhodri Saunders
- Coreva Scientific & Co (Saunders, Davis), KÖnigswinter, Germany; University of Western Ontario (Bosma); London Health Sciences Centre (Bosma), University Hospital, London, Ont
| | - Jason A Davis
- Coreva Scientific & Co (Saunders, Davis), KÖnigswinter, Germany; University of Western Ontario (Bosma); London Health Sciences Centre (Bosma), University Hospital, London, Ont
| | - Karen J Bosma
- Coreva Scientific & Co (Saunders, Davis), KÖnigswinter, Germany; University of Western Ontario (Bosma); London Health Sciences Centre (Bosma), University Hospital, London, Ont.
| |
Collapse
|
11
|
Kampolis CF, Mermiri M, Mavrovounis G, Koutsoukou A, Loukeri AA, Pantazopoulos I. Comparison of advanced closed-loop ventilation modes with pressure support ventilation for weaning from mechanical ventilation in adults: A systematic review and meta-analysis. J Crit Care 2021; 68:1-9. [PMID: 34839229 DOI: 10.1016/j.jcrc.2021.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE To compare neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV), adaptive support ventilation (ASV) and Smartcare pressure support (Smartcare/PS) with standard pressure support ventilation (PSV) regarding their effectiveness for weaning critically ill adults from invasive mechanical ventilation (IMV). METHODS Electronic databases were searched to identify parallel-group randomized controlled trials (RCTs) comparing NAVA, PAV, ASV, or Smartcare/PS with PSV, in adult patients under IMV through July 28, 2021. Primary outcome was weaning success. Secondary outcomes included weaning time, total MV duration, reintubation or use of non-invasive MV (NIMV) within 48 h after extubation, in-hospital and intensive care unit (ICU) mortality, in-hospital and ICU length of stay (LOS) (PROSPERO registration No:CRD42021270299). RESULTS Twenty RCTs were finally included. Compared to PSV, NAVA was associated with significantly lower risk for in-hospital and ICU death and lower requirements for post-extubation NIMV. Moreover, PAV showed significant advantage over PSV in terms of weaning rates, MV duration and ICU LOS. No significant differences were found between ASV or Smart care/PS and PSV. CONCLUSIONS Moderate certainty evidence suggest that PAV increases weaning success rates, shortens MV duration and ICU LOS compared to PSV. It is also noteworthy that NAVA seems to improve in-hospital and ICU survival.
Collapse
Affiliation(s)
- Christos F Kampolis
- Department of Emergency Medicine, "Hippokration" General Hospital of Athens, Athens, Greece.
| | - Maria Mermiri
- Department of Emergency Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, General University Hospital of Larissa, Mezourlo 41110, Larissa, Greece
| | - Georgios Mavrovounis
- Department of Emergency Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, General University Hospital of Larissa, Mezourlo 41110, Larissa, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Respiratory Medicine, "Sotiria" Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ioannis Pantazopoulos
- Department of Emergency Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, General University Hospital of Larissa, Mezourlo 41110, Larissa, Greece
| |
Collapse
|
12
|
Jhou HJ, Chen PH, Ou-Yang LJ, Lin C, Tang SE, Lee CH. Methods of Weaning From Mechanical Ventilation in Adult: A Network Meta-Analysis. Front Med (Lausanne) 2021; 8:752984. [PMID: 34671629 PMCID: PMC8521009 DOI: 10.3389/fmed.2021.752984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Background/Objective: The aim of study is to assess the efficacy of each ventilator weaning method for ventilated patients in intensive care units (ICUs). Methods: A systematic search was conducted using PubMed, Embase, and China National Knowledge Infrastructure to identify randomized control studies on ventilated patients regarding extubation associated outcomes (weaning success or failure, proportion requiring re-intubation, or mortality) from inception until April 01, 2020. Commonly used ventilation modes involved pressure support ventilation, synchronized intermittent mandatory ventilation, automatic tube compensation, continuous positive airway pressure, adaptive support ventilation, neurally adjusted ventilatory assist, proportional assisted ventilation, and SmartCare. Pooled estimates regarding extubation associated outcomes were calculated using network meta-analysis. Results: Thirty-nine randomized controlled trials including 5,953 patients met inclusion criteria. SmartCare and proportional assist ventilation were found to be effective methods in increasing weaning success (odds ratio, 2.72, 95% confidence interval (CI), 1.33–5.58, P-score: 0.84; odds ratio, 2.56, 95% CI, 1.60–4.11, P-score: 0.83; respectively). Besides, proportional assist ventilation had superior in reducing proportion requiring re-intubation rate (odds ratio, 0.48, 95% CI, 0.25–0.92, P-score: 0.89) and mortality (odds ratio, 0.48, 95% CI, 0.26–0.92, P-score: 0.91) than others. Conclusion: In general consideration, our study provided evidence that weaning with proportional assist ventilation has a high probability of being the most effective ventilation mode for patients with mechanical ventilation regarding a higher rate of weaning success, a lower proportion requiring reintubation, and a lower mortality rate than other ventilation modes.
Collapse
Affiliation(s)
- Hong-Jie Jhou
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Huang Chen
- Department of General Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Liang-Jun Ou-Yang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin Lin
- School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Department of Research and Development, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan.,National Defense Medical Center, Graduate Institute of Aerospace and Undersea Medicine, Taipei, Taiwan
| | - Cho-Hao Lee
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Rebelo T, Neutel E, Alves EC, Barros F, Oliveira H, Machado H, Mendonça J, Araújo JF, Luís J, Pêgo JM, Silva J, Oliveira M, Sousa N, Figueiredo P, Barata P, Magalhães RS, Magalhães RM, Gomes SH. ATENA-A Novel Rapidly Manufactured Medical Invasive Ventilator Designed as a Response to the COVID-19 Pandemic: Testing Protocol, Safety, and Performance Validation. Front Med (Lausanne) 2021; 8:614580. [PMID: 34490282 PMCID: PMC8418230 DOI: 10.3389/fmed.2021.614580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/19/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The urgent need for mechanical ventilators to support respiratory insufficiency due to SARS-CoV-2 led to a worldwide effort to develop low-cost, easily assembled, and locally manufactured ventilators. The ATENA ventilator project was developed in a community-based approach targeting the development, prototyping, testing, and decentralized manufacturing of a new mechanical ventilator. Objective: This article aims to demonstrate ATENA's adequate performance and safety for clinical use. Material: ATENA is a low-cost ventilator that can be rapidly manufactured, easily assembled, and locally produced anywhere in the world. It was developed following the guidelines and requirements provided by European and International Regulatory Authorities (MHRA, ISO 86201) and National Authorities (INFARMED). The device was thoroughly tested using laboratory lung simulators and animal models. Results: The device meets all the regulatory requirements for pandemic ventilators. Additionally, the pre-clinical experiences demonstrated security and adequate ventilation and oxygenation, in vivo. Conclusion: The ATENA ventilator had a good performance in required tests in laboratory scenarios and pre-clinical studies. In a pandemic context, ATENA is perfectly suited for safely treating patients in need of mechanical ventilation.
Collapse
Affiliation(s)
- Tiago Rebelo
- CEiiA-Centre of Engineering and Product Development, Matosinhos, Portugal
| | - Elizabete Neutel
- Serviço de Anestesiologia, Centro Hospitalar Universitário Do Porto, Porto, Portugal
| | - Eurico Castro Alves
- Departamento de Cirurgia, Centro Hospitalar Universitário Do Porto, Porto, Portugal
| | - Francisco Barros
- CEiiA-Centre of Engineering and Product Development, Matosinhos, Portugal
| | - Hélder Oliveira
- CEiiA-Centre of Engineering and Product Development, Matosinhos, Portugal
| | - Humberto Machado
- Serviço de Anestesiologia, Centro Hospitalar Universitário Do Porto, Porto, Portugal
- Center for Innovation, Technology and Policy Research (IN+), Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Joana Mendonça
- CEiiA-Centre of Engineering and Product Development, Matosinhos, Portugal
- Center for Innovation, Technology and Policy Research (IN+), Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | | | - João Luís
- CEiiA-Centre of Engineering and Product Development, Matosinhos, Portugal
| | - José M. Pêgo
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Instituto Ciências da Vida e da Saúde in Portuguese (ICVS)/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - José Silva
- CEiiA-Centre of Engineering and Product Development, Matosinhos, Portugal
| | - Manuel Oliveira
- CEiiA-Centre of Engineering and Product Development, Matosinhos, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Instituto Ciências da Vida e da Saúde in Portuguese (ICVS)/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Paulo Figueiredo
- CEiiA-Centre of Engineering and Product Development, Matosinhos, Portugal
| | - Pedro Barata
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Centro Hospitalar de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | | | | | - Sara H. Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- Instituto Ciências da Vida e da Saúde in Portuguese (ICVS)/3B's-PT Government Associate Laboratory, Braga, Portugal
- Clinical Academic Center, Hospital of Braga, Braga, Portugal
| |
Collapse
|
14
|
Pantazopoulos I, Mavrovounis G, Mermiri M, Kampolis C. Proportional assist ventilation versus pressure support ventilation for weaning from mechanical ventilation in adults: weaning success and mortality. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:200. [PMID: 34112213 PMCID: PMC8194124 DOI: 10.1186/s13054-021-03575-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Ioannis Pantazopoulos
- Department of Emergency Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110, Larissa, Greece
| | - Georgios Mavrovounis
- Department of Emergency Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110, Larissa, Greece.
| | - Maria Mermiri
- Department of Anesthesiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Kampolis
- Department of Emergency Medicine, Ippokrateio General Hospital, Athens, Greece
| |
Collapse
|