1
|
Bhalla AK, Klein MJ, Hotz J, Kwok J, Bonilla-Cartagena JE, Baron DA, Kohler K, Bornstein D, Chang D, Vu K, Armenta-Quiroz A, Nelson LP, Newth CJL, Khemani RG. Noninvasive Surrogate for Physiologic Dead Space Using the Carbon Dioxide Ventilatory Equivalent: Testing in a Single-Center Cohort, 2017-2023. Pediatr Crit Care Med 2024; 25:784-794. [PMID: 38771137 PMCID: PMC11379541 DOI: 10.1097/pcc.0000000000003539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
OBJECTIVES We sought to evaluate the association between the carbon dioxide ( co2 ) ventilatory equivalent (VEq co2 = minute ventilation/volume of co2 produced per min), a marker of dead space that does not require a blood gas measurement, and mortality risk. We compared the strength of this association to that of physiologic dead space fraction (V D /V t = [Pa co2 -mixed-expired P co2 ]/Pa co2 ) as well as to other commonly used markers of dead space (i.e., the end-tidal alveolar dead space fraction [AVDSf = (Pa co2 -end-tidal P co2 )/Pa co2 ], and ventilatory ratio [VR = (minute ventilation × Pa co2 )/(age-adjusted predicted minute ventilation × 37.5)]). DESIGN Retrospective cohort data, 2017-2023. SETTING Quaternary PICU. PATIENTS One hundred thirty-one children with acute respiratory distress syndrome. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS All dead space markers were calculated at the same 1-minute timepoint for each patient within the first 72 hours of using invasive mechanical ventilation. The 131 children had a median (interquartile range, IQR) age of 5.8 (IQR 1.4, 12.6) years, oxygenation index (OI) of 7.5 (IQR 4.6, 14.3), V D /V t of 0.47 (IQR 0.38, 0.61), and mortality was 17.6% (23/131). Higher VEq co2 ( p = 0.003), V D /V t ( p = 0.002), and VR ( p = 0.013) were all associated with greater odds of mortality in multivariable models adjusting for OI, immunosuppressive comorbidity, and overall severity of illness. We failed to identify an association between AVDSf and mortality in the multivariable modeling. Similarly, we also failed to identify an association between OI and mortality after controlling for any dead space marker in the modeling. For the 28-day ventilator-free days outcome, we failed to identify an association between V D /V t and the dead space markers in multivariable modeling, although OI was significant. CONCLUSIONS VEq co2 performs similarly to V D /V t and other surrogate dead space markers, is independently associated with mortality risk, and may be a reasonable noninvasive surrogate for V D /V t .
Collapse
Affiliation(s)
- Anoopindar K Bhalla
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Margaret J Klein
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Justin Hotz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Jeni Kwok
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | | | - David A Baron
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Kristen Kohler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Dinnel Bornstein
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Daniel Chang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Kennedy Vu
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Anabel Armenta-Quiroz
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Lara P Nelson
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Christopher J L Newth
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Robinder G Khemani
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
2
|
Klein-Blommert R, Markhorst DG, Bem RA. Exhaled CO2: No Volume to Waste. Pediatr Crit Care Med 2024; 25:860-863. [PMID: 39240665 DOI: 10.1097/pcc.0000000000003570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Affiliation(s)
- Rozalinde Klein-Blommert
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Dick G Markhorst
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Reinout A Bem
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Alladina JW, Giacona FL, Haring AM, Hibbert KA, Medoff BD, Schmidt EP, Thompson T, Maron BA, Alba GA. Circulating Biomarkers of Endothelial Dysfunction Associated With Ventilatory Ratio and Mortality in ARDS Resulting From SARS-CoV-2 Infection Treated With Antiinflammatory Therapies. CHEST CRITICAL CARE 2024; 2:100054. [PMID: 39035722 PMCID: PMC11259037 DOI: 10.1016/j.chstcc.2024.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND The association of plasma biomarkers and clinical outcomes in ARDS resulting from SARS-CoV-2 infection predate the evidence-based use of immunomodulators. RESEARCH QUESTION Which plasma biomarkers are associated with clinical outcomes in patients with ARDS resulting from SARS-CoV-2 infection treated routinely with immunomodulators? STUDY DESIGN AND METHODS We collected plasma from patients with ARDS resulting from SARS-CoV-2 infection within 24 h of admission to the ICU between December 2020 and March 2021 (N = 69). We associated 16 total biomarkers of inflammation (eg, IL-6), coagulation (eg, D-dimer), epithelial injury (eg, surfactant protein D), and endothelial injury (eg, angiopoietin-2) with the primary outcome of in-hospital mortality and secondary outcome of ventilatory ratio (at baseline and day 3). RESULTS Thirty patients (43.5%) died within 60 days. All patients received corticosteroids and 6% also received tocilizumab. Compared with survivors, nonsurvivors demonstrated a higher baseline modified Sequential Organ Failure Assessment score (median, 8.5 [interquartile range (IQR), 7-9] vs 7 [IQR, 5-8]); P = .004), lower Pao2 to Fio2 ratio (median, 153 [IQR, 118-182] vs 184 [IQR, 142-247]; P = .04), and higher ventilatory ratio (median, 2.0 [IQR, 1.9-2.3] vs 1.5 [IQR, 1.4-1.9]; P < .001). No difference was found in inflammatory, coagulation, or epithelial biomarkers between groups. Nonsurvivors showed higher median neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) levels (median, 8.4 ng/mL [IQR, 7.0-11.2 ng/mL] vs 6.9 ng/mL [IQR, 5.5-8.0 ng/mL]; P = .0025), von Willebrand factor domain A2 levels (8.7 ng/mL [IQR, 7.9-9.7 ng/mL] vs 6.5 ng/mL [IQR, 5.7-8.7 ng/mL]; P = .007), angiopoietin-2 levels (9.0 ng/mL [IQR, 7.9-14.1 ng/mL] vs 7.0 ng/mL [IQR, 5.6-10.6 ng/mL]; P = .01), and syndecan-1 levels (15.9 ng/mL [IQR, 14.5-17.5 ng/mL] vs 12.6 ng/mL [IQR, 10.5-16.1 ng/mL]; P = .01). Only NEDD9 level met the adjusted threshold for significance (P < .003). Plasma NEDD9 level was associated with 60-day mortality (adjusted OR, 9.7; 95% CI, 1.6-60.4; P = .015). Syndecan-1 level correlated with both baseline (ρ = 0.4; P = .001) and day 3 ventilatory ratio (ρ = 0.5; P < .001). INTERPRETATION Biomarkers of inflammation, coagulation, and epithelial injury were not associated with clinical outcomes in a small cohort of patients with ARDS uniformly treated with immunomodulators. However, endothelial biomarkers, including plasma NEDD9, were associated with 60-day mortality.
Collapse
Affiliation(s)
- Jehan W Alladina
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Francesca L Giacona
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Alexis M Haring
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Kathryn A Hibbert
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Bradley A Maron
- Department of Medicine; University of Maryland School of Medicine, Baltimore, University of Maryland-Institute for Health Computing, Bethesda, MD
| | - George A Alba
- Division of Pulmonary and Critical Care Medicine, Bethesda, MD, Department of Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
4
|
Boscolo A, Pettenuzzo T, Zarantonello F, Sella N, Pistollato E, De Cassai A, Congedi S, Paiusco I, Bertoldo G, Crociani S, Toma F, Mormando G, Lorenzoni G, Gregori D, Navalesi P. Asymmetrical high-flow nasal cannula performs similarly to standard interface in patients with acute hypoxemic post-extubation respiratory failure: a pilot study. BMC Pulm Med 2024; 24:21. [PMID: 38191347 PMCID: PMC10775427 DOI: 10.1186/s12890-023-02820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Standard high-flow nasal cannula (HFNC) is a respiratory support device widely used to manage post-extubation hypoxemic acute respiratory failure (hARF) due to greater comfort, oxygenation, alveolar recruitment, humidification, and reduction of dead space, as compared to conventional oxygen therapy. On the contrary, the effects of the new asymmetrical HFNC interface (Optiflow® Duet system (Fisher & Paykel, Healthcare, Auckland, New Zealand) is still under discussion. Our aim is investigating whether the use of asymmetrical HFNC interface presents any relevant difference, compared with the standard configuration, on lung aeration (as assessed by end-expiratory lung impedance (EELI) measured by electrical impedance tomography (EIT)), diaphragm ultrasound thickening fraction (TFdi) and excursion (DE), ventilatory efficiency (estimated by corrected minute ventilation (MV)), gas exchange, dyspnea, and comfort. METHODS Pilot physiological crossover randomized controlled study enrolling 20 adults admitted to the Intensive Care unit, invasively ventilated for at least 24 h, and developing post-extubation hARF, i.e., PaO2/set FiO2 < 300 mmHg during Venturi mask (VM) within 120 min after extubation. Each HFNC configuration was applied in a randomized 60 min sequence at a flow rate of 60 L/min. RESULTS Global EELI, TFdi, DE, ventilatory efficiency, gas exchange and dyspnea were not significantly different, while comfort was greater during asymmetrical HFNC support, as compared to standard interface (10 [7-10] and 8 [7-9], p-value 0.044). CONCLUSIONS In post-extubation hARF, the use of the asymmetrical HFNC, as compared to standard HFNC interface, slightly improved patient comfort without affecting lung aeration, diaphragm activity, ventilatory efficiency, dyspnea and gas exchange. CLINICAL TRIAL NUMBER ClinicalTrial.gov. REGISTRATION NUMBER NCT05838326 (01/05/2023). NEW & NOTEWORTHY The asymmetrical high-flow nasal cannula oxygen therapy (Optiflow® Duet system (Fisher & Paykel, Healthcare, Auckland, New Zealand) provides greater comfort as compared to standard interface; while their performance in term of lung aeration, diaphragm activity, ventilatory efficiency, dyspnea, and gas exchange is similar.
Collapse
Affiliation(s)
- Annalisa Boscolo
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, 13, Giustiniani Street, Padua, 35128, Italy
- Thoracic Surgery and Lung Transplant Unit, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, Padua, Italy
| | - Tommaso Pettenuzzo
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, 13, Giustiniani Street, Padua, 35128, Italy
| | - Francesco Zarantonello
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, 13, Giustiniani Street, Padua, 35128, Italy
| | - Nicolò Sella
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, 13, Giustiniani Street, Padua, 35128, Italy.
| | - Elisa Pistollato
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Alessandro De Cassai
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, 13, Giustiniani Street, Padua, 35128, Italy
| | - Sabrina Congedi
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Irene Paiusco
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Giacomo Bertoldo
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Silvia Crociani
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Francesca Toma
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Giulia Mormando
- Emergency Department, Padua University Hospital, Padua, Italy
| | - Giulia Lorenzoni
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Vascular Sciences, and Public Health, University of Padua, Thoracic, Padua, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology, and Public Health, Department of Cardiac, Vascular Sciences, and Public Health, University of Padua, Thoracic, Padua, Italy
| | - Paolo Navalesi
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, 13, Giustiniani Street, Padua, 35128, Italy
| |
Collapse
|