1
|
Hu A, Pickup ME, Lawal MA, Patel HJ, Ahmed MI. The involvement of Elf5 in regulating keratinocyte proliferation and differentiation processes in skin. PLoS One 2025; 20:e0316134. [PMID: 39752333 PMCID: PMC11698348 DOI: 10.1371/journal.pone.0316134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025] Open
Abstract
Skin and hair development is regulated by multitude of programs of activation and silencing of gene expression to maintain normal skin and hair follicle (HF) development, homeostasis, and cycling. Here, we have identified E74-like factor 5 (Elf5) transcription factor, as a novel regulator of keratinocyte proliferation and differentiation processes in skin. Expression analysis has revealed that Elf5 expression was localised and elevated in stem/progenitor cell populations of both the epidermis (basal and suprabasal) and in HF bulge and hair germ stem cell (SCs) compartments during skin and hair development and cycling. Expressional and functional analysis using RT-qPCR, western blot and colony forming assays, revealed that Elf5 plays an important role in regulating keratinocyte proliferation and differentiation processes as well as potentially determining cell fate by regulating the stem/progenitor cell populations in skin and HFs. These data will provide a platform for pharmacological manipulation of Elf5 in skin, leading to advancements in many areas of research, including stem cell, regenerative medicine, and ageing.
Collapse
Affiliation(s)
- Anhua Hu
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Maximilian E. Pickup
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Maryam A. Lawal
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Hetal J. Patel
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Mohammed I. Ahmed
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
2
|
Lin L, Deng J, Yu J, Bauden M, Andersson R, Shen X, Ansari D, Xue X. Anoikis-related genes linked with patient outcome in pancreatic cancer. Gene 2024; 930:148868. [PMID: 39154969 DOI: 10.1016/j.gene.2024.148868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Anoikis is programmed cell death occurring upon cell detachment from the extracellular matrix. Cancer cells need to evade anoikis to be able to metastasize to distant sites. However, the molecular features and prognostic value of anoikis-related genes (ARGs) in pancreatic cancer remain unclear. In this study, we utilized transcriptome data from the TCGA and GSE102238 databases to identify 64 ARGs significantly associated with prognosis. We used the "ConsensusClusterPlus" R package to stratify patients into high and low-risk prognostic subgroups. The KEGG and GSEA analyses revealed that the clusters with poor prognosis were enriched for the ECM receptor interaction pathway, the TP53 signaling pathway, and the galactose metabolism pathway, and that the cell cycle pathway was upregulated. A prognostic model consisting of seven ARGs (SERPINE1, EGF, E2F1, MSLN, RAB27B, ETV7, MST1) was constructed using LASSO regression and when combined with clinicopathological parameters using Cox regression, a prognostic Nomogram was created, which demonstrated high prognostic utility. Among the biomarker candidates, we report ETV7 as a novel, independent prognostic marker in pancreatic cancer. ETV7 was highly expressed in KRAS and TP53 co-occurrent mutant TCGA patients, indicating that it may be regulated by the two major driver genes of pancreatic cancer. Therefore, targeting ETV7 could be a potential focus for future therapeutic studies.
Collapse
Affiliation(s)
- Lizhi Lin
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden; Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Deng
- Department of Basic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiaye Yu
- Department of Basic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Monika Bauden
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.
| | - Xiangyang Xue
- Department of Basic Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Feng X, Wu W, Liu F. AH-6809 mediated regulation of lung adenocarcinoma metastasis through NLRP7 and prognostic analysis of key metastasis-related genes. Front Pharmacol 2024; 15:1486265. [PMID: 39697539 PMCID: PMC11652142 DOI: 10.3389/fphar.2024.1486265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) has become one of the leading causes of cancer-related deaths globally, with metastasis representing the most lethal stage of the disease. Despite significant advances in diagnostic and therapeutic strategies for LUAD, the mechanisms enabling cancer cells to breach the blood-brain barrier remain poorly understood. While genomic profiling has shed light on the nature of primary tumors, the genetic drivers and clinical relevance of LUAD metastasis are still largely unexplored. Objectives This study aims to investigate the genomic differences between brain-metastatic and non-brain-metastatic LUAD, identify potential prognostic biomarkers, and evaluate the efficacy of AH-6809 in modulating key molecular pathways involved in LUAD metastasis, with a focus on post-translational modifications (PTMs). Methods Genomic analyses were performed using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between brain-metastatic and non-metastatic LUAD samples were identified. Key gene modules were determined using Weighted Gene Co-expression Network Analysis (WGCNA), and their prognostic significance was assessed through Kaplan-Meier analysis. Cellular experiments, including CCK8 and qRT-PCR assays, were conducted to evaluate the anti-cancer effects of AH-6809 in LUAD cells. Apoptosis and inflammatory marker expression were assessed using immunofluorescence. Results Genomic analysis differentiated brain-metastatic from non-brain-metastatic LUAD and identified NLRP7, FIBCD1, and ELF5 as prognostic markers. AH-6809 significantly suppressed LUAD cell proliferation, promoted apoptosis, and modulated epithelial-mesenchymal transition (EMT) markers. These effects were reversed upon NLRP7 knockdown, highlighting its role in metastasis. Literature analysis further supported AH-6809's tumor-suppressive activity, particularly in NLRP7 knockdown cells, where it inhibited cell growth and facilitated apoptosis. AH-6809 was also found to affect SUMO1-mediated PTMs and downregulate EMT markers, including VIM and CDH2. NLRP7 knockdown partially reversed these effects. Immunofluorescence revealed enhanced apoptosis and inflammation in lung cancer cells, especially in NLRP7 knockdown cells treated with AH-6809. The regulatory mechanisms involve SUMO1-mediated post-translational modifications and NQO1. Further studies are required to elucidate the molecular mechanisms and assess the clinical potential of these findings. Conclusion These findings demonstrate the critical role of NLRP7 and associated genes in LUAD metastasis and suggest that AH-6809 holds promise as a potential therapeutic agent for brain-metastatic LUAD.
Collapse
Affiliation(s)
- Xu Feng
- Department of Neurointerventional, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wei Wu
- Department of Acupuncture, Jin Zhou Hospital of Traditional Chinese Medicine, Jinzhou, China
| | - Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou MedicalUniversity, Jinzhou, China
| |
Collapse
|
4
|
Zhan J, Harwood F, Have ST, Lamond A, Phillips AH, Kriwacki RW, Halder P, Cardone M, Grosveld GC. Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain. Int J Mol Sci 2024; 25:10042. [PMID: 39337528 PMCID: PMC11432197 DOI: 10.3390/ijms251810042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components. mTORC3 phosphorylates mTORC1 and mTORC2 targets and contains the ETS transcription factor ETV7, which binds to mTOR and is essential for mTORC3 assembly in the cytoplasm. Tumor cells that assemble mTORC3 have a proliferative advantage and become resistant to rapamycin, indicating that inhibiting mTORC3 may have a therapeutic impact on cancer. Here, we investigate which domains or amino acid residues of ETV7 and mTOR are involved in their mutual binding. We found that the mTOR FRB and LBE sequences in the kinase domain interact with the pointed (PNT) and ETS domains of ETV7, respectively. We also found that forced expression of the mTOR FRB domain in the mTORC3-expressing, rapamycin-resistant cell line Karpas-299 out-competes mTOR for ETV7 binding and renders these cells rapamycin-sensitive in vivo. Our data provide useful information for the development of molecules that prevent the assembly of mTORC3, which may have therapeutic value in the treatment of mTORC3-positive cancer.
Collapse
Affiliation(s)
- Jun Zhan
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Frank Harwood
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Sara Ten Have
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK; (S.T.H.); (A.L.)
| | - Angus Lamond
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK; (S.T.H.); (A.L.)
| | - Aaron H. Phillips
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.H.P.); (R.W.K.)
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.H.P.); (R.W.K.)
| | - Priyanka Halder
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Monica Cardone
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Gerard C. Grosveld
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| |
Collapse
|
5
|
Roy M, Hussain F. Mitigation of Breast Cancer Cells' Invasiveness via Down Regulation of ETV7, Hippo, and PI3K/mTOR Pathways by Vitamin D3 Gold-Nanoparticles. Int J Mol Sci 2024; 25:5348. [PMID: 38791386 PMCID: PMC11120902 DOI: 10.3390/ijms25105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Metastasis in breast cancer is the major cause of death in females (about 30%). Based on our earlier observation that Vitamin D3 downregulates mTOR, we hypothesized that Vitamin D3 conjugated to gold nanoparticles (VD3-GNPs) reduces breast cancer aggressiveness by downregulating the key cancer controller PI3K/AKT/mTOR. Western blots, migration/invasion assays, and other cell-based, biophysical, and bioinformatics studies are used to study breast cancer cell aggressiveness and nanoparticle characterization. Our VD3-GNP treatment of breast cancer cells (MCF-7 and MDA-MB-231) significantly reduces the aggressiveness (cancer cell migration and invasion rates > 45%) via the simultaneous downregulation of ETV7 and the Hippo pathway. Consistent with our hypothesis, we, indeed, found a downregulation of the PI3K/AKT/mTOR pathway. It is surprising that the extremely low dose of VD3 in the nano formulation (three orders of magnitude lower than in earlier studies) is quite effective in the alteration of cancer invasiveness and cell signaling pathways. Clearly, VD3-GNPs are a viable candidate for non-toxic, low-cost treatment for reducing breast cancer aggressiveness.
Collapse
Affiliation(s)
- Moumita Roy
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Fazle Hussain
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
6
|
Miyano M, LaBarge MA. ELF5: A Molecular Clock for Breast Aging and Cancer Susceptibility. Cancers (Basel) 2024; 16:431. [PMID: 38275872 PMCID: PMC10813895 DOI: 10.3390/cancers16020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Breast cancer is predominantly an age-related disease, with aging serving as the most significant risk factor, compounded by germline mutations in high-risk genes like BRCA1/2. Aging induces architectural changes in breast tissue, particularly affecting luminal epithelial cells by diminishing lineage-specific molecular profiles and adopting myoepithelial-like characteristics. ELF5 is an important transcription factor for both normal breast and breast cancer development. This review focuses on the role of ELF5 in normal breast development, its altered expression throughout aging, and its implications in cancer. It discusses the lineage-specific expression of ELF5, its regulatory mechanisms, and its potential as a biomarker for breast-specific biological age and cancer risk.
Collapse
Affiliation(s)
- Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Center for Cancer and Aging, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Mark A. LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Center for Cancer and Aging, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
- Center for Cancer Biomarkers Research, University of Bergen, 5007 Bergen, Norway
| |
Collapse
|
7
|
Salimi M, Rastegarpouyani S. E74-like Factor 5 Promoter Methylation in Circulating Tumor DNA as a Potential Prognostic Marker in Breast Cancer Patients. Asian Pac J Cancer Prev 2023; 24:4035-4041. [PMID: 38156835 PMCID: PMC10909102 DOI: 10.31557/apjcp.2023.24.12.4035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Epigenetic alternations, such as DNA methylation, play a crucial role in breast tumor initiation and progression. The identification of noninvasive prognostic biomarkers has great importance in cancer management. Methylated cell-free DNA (cfDNA), circulating in the blood as a convenient tumor-associated DNA marker, can be used as a minimally invasive cancer biomarker. This study aimed to evaluate the promoter methylation status of E74-like factor 5 (ELF5) tumor suppressor gene in both tumors and plasma cell-free DNA of 80 breast cancer patients, compared with normal controls. METHODS Plasma cfDNA concentrations were measured using quantitative real-time PCR, and methylation pattern in the ELF5 gene promoter region was performed using methylation-specific polymerase chain reaction (MS-PCR) technique. RESULTS The data revealed a statistically significant increase in cfDNA concentrations in breast cancer patients, particularly in those with higher stages of the disease, triple-negative status, and metastasis (p<0.001). ELF5 promoter region hypermethylation was observed in 70% of breast cancer patients in both plasma cfDNA and tumor tissues. Notably, all patients with lymph node involvement and distant metastatic exhibited promoter hypermethylation in the ELF5 gene. CONCLUSION Our findings suggest that ELF5 promoter methylation in circulating DNA could serve as a potential non-invasive prognostic molecular marker in breast cancer patients. However, further studies are warranted to evaluate its diagnostic value.
Collapse
Affiliation(s)
- Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | | |
Collapse
|
8
|
Li T, Xu L, Wei Z, Zhang S, Liu X, Yang Y, Gu Y, Zhang J. ELF5 drives angiogenesis suppression though stabilizing WDTC1 in renal cell carcinoma. Mol Cancer 2023; 22:184. [PMID: 37980532 PMCID: PMC10656961 DOI: 10.1186/s12943-023-01871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system. Angiogenesis is a main contributing factor for tumorigenesis. E74-like transcription factor 5 (ELF5) has been verified to participate in the progression of different cancers and can regulate angiogenesis. This study was aimed to explore the functions of ELF5 in RCC. METHODS Bioinformatics tools were used to predict the expression of ELF5 in RCC. RT-qPCR was applied for testing ELF5 expression in RCC cells. Cell behaviors were evaluated by colony formation, CCK-8, and transwell assays. The tube formation assay was used for determining angiogenesis. Methylation-specific PCR (MSP) was utilized for measuring the methylation level of ELF5 in RCC cells. ChIP and luciferase reporter assays were applied for assessing the binding of ELF5 and ubiquitin-specific protease 3 (USP3). Co-IP and GST pull-down were utilized for detecting the interaction of WD40 and tetratricopeptide repeats 1 (WDTC1) and USP3. Ubiquitination level of WDTC1 was determined by ubiquitination assay. RESULTS ELF5 was lowly expressed in RCC cells and tissues. High expression of ELF5 expression notably suppressed RCC cell proliferative, migratory, and invasive capabilities, and inhibited angiogenesis. The tumor growth in mice was inhibited by ELF5 overexpression. ELF5 was highly methylated in RCC samples, and DNA methyltransferases (DNMTs) can promote hypermethylation level of ELF5 in RCC cells. ELF5 was further proved to transcriptionally activate USP3 in RCC. Moreover, USP3 inhibited WDTC1 ubiquitination. ELF5 can promote USP3-mediated WDTC1 stabilization. Additionally, WDTC1 silencing reversed the functions of ELF5 overexpression on RCC progression. CONCLUSION Downregulation of ELF5 due to DNA hypermethylation inhibits RCC development though the USP3/WDTC1axis in RCC.
Collapse
Affiliation(s)
- Tushuai Li
- School of Biology and Food Engineering, Changshu Institute of Technology, 99 Southern Sanhuan Road, Suzhou, 215500, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214013, China
| | - Longjiang Xu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Zhe Wei
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214013, China
| | - Shaomei Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xingyu Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, 99 Southern Sanhuan Road, Suzhou, 215500, China
| | - Yanzi Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, 99 Southern Sanhuan Road, Suzhou, 215500, China.
| |
Collapse
|
9
|
Meškytė EM, Pezzè L, Bartolomei L, Forcato M, Bocci IA, Bertalot G, Barbareschi M, Oliveira-Ferrer L, Bisio A, Bicciato S, Baltriukienė D, Ciribilli Y. ETV7 reduces inflammatory responses in breast cancer cells by repressing the TNFR1/NF-κB axis. Cell Death Dis 2023; 14:263. [PMID: 37041130 PMCID: PMC10089821 DOI: 10.1038/s41419-023-05718-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 04/13/2023]
Abstract
The transcription factor ETV7 is an oncoprotein that is up-regulated in all breast cancer (BC) types. We have recently demonstrated that ETV7 promoted breast cancer progression by increasing cancer cell proliferation and stemness and was also involved in the development of chemo- and radio-resistance. However, the roles of ETV7 in breast cancer inflammation have yet to be studied. Gene ontology analysis previously performed on BC cells stably over-expressing ETV7 demonstrated that ETV7 was involved in the suppression of innate immune and inflammatory responses. To better decipher the involvement of ETV7 in these signaling pathways, in this study, we identified TNFRSF1A, encoding for the main receptor of TNF-α, TNFR1, as one of the genes down-regulated by ETV7. We demonstrated that ETV7 directly binds to the intron I of this gene, and we showed that the ETV7-mediated down-regulation of TNFRSF1A reduced the activation of NF-κB signaling. Furthermore, in this study, we unveiled a potential crosstalk between ETV7 and STAT3, another master regulator of inflammation. While it is known that STAT3 directly up-regulates the expression of TNFRSF1A, here we demonstrated that ETV7 reduces the ability of STAT3 to bind to the TNFRSF1A gene via a competitive mechanism, recruiting repressive chromatin remodelers, which results in the repression of its transcription. The inverse correlation between ETV7 and TNFRSF1A was confirmed also in different cohorts of BC patients. These results suggest that ETV7 can reduce the inflammatory responses in breast cancer through the down-regulation of TNFRSF1A.
Collapse
Affiliation(s)
- Erna Marija Meškytė
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Alia Therapeutics, s.r.l., Trento, Italy
| | - Laura Bartolomei
- Laboratory of Radiobiology, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Irene Adelaide Bocci
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institut für Zellbiologie, Universitätsklinikum Essen, Essen, Germany
| | - Giovanni Bertalot
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Mattia Barbareschi
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | | | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
10
|
Zhang T, Kutler D, Scognamiglio T, Gudas LJ, Tang XH. Transcriptomic analysis predicts the risk of progression of premalignant lesions in human tongue. Discov Oncol 2023; 14:24. [PMID: 36820942 PMCID: PMC9950315 DOI: 10.1007/s12672-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023] Open
Abstract
The 5-year survival rate for patients with oral squamous cell carcinomas (SCC), including tongue SCC, has not significantly improved over the last several decades. Oral potentially malignant disorders (OPMD), including oral dysplasias, are oral epithelial disorders that can develop into oral SCCs. To identify molecular characteristics that might predict conversion of OPMDs to SCCs and guide treatment plans, we performed global transcriptomic analysis of human tongue OPMD (n = 9) and tongue SCC (n = 11) samples with paired normal margin tissue from patients treated at Weill Cornell Medicine. Compared to margin tissue, SCCs showed more transcript changes than OPMDs. OPMDs and SCCs shared some altered transcripts, but these changes were generally greater in SCCs than OPMDs. Both OPMDs and SCCs showed altered signaling pathways related to cell migration, basement membrane disruption, and metastasis. We suggest that OPMDs are on the path toward malignant transformation. Based on patterns of gene expression, both OPMD and tongue SCC samples can be categorized into subclasses (mesenchymal, classical, basal, and atypical) similar to those seen in human head and neck SCC (HNSCC). These subclasses of OPMDs have the potential to be used to stratify patient prognoses and therapeutic options for tongue OPMDs. Lastly, we identified a gene set (ELF5; RPTN; IGSF10; CRMP1; HTR3A) whose transcript changes have the power to classify OPMDs and SCCs and developed a Firth logistic regression model using the changes in these transcripts relative to paired normal tissue to validate pathological diagnosis and potentially predict the likelihood of an OPMD developing into SCC, as data sets become available.
Collapse
Affiliation(s)
- Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - David Kutler
- Division of Head and Neck Surgery in the Department of Otolaryngology at New York Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, 10065, USA
| | - Theresa Scognamiglio
- Division of Anatomic Pathology, New York Presbyterian Hospital, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Petrillo F, Chernyakov D, Esteva-Font C, Poulsen SB, Edemir B, Fenton RA. Genetic deletion of the nuclear factor of activated T cells 5 in collecting duct principal cells causes nephrogenic diabetes insipidus. FASEB J 2022; 36:e22583. [PMID: 36197017 DOI: 10.1096/fj.202200856r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
Water homeostasis is tightly regulated by the kidneys via the process of urine concentration. During reduced water intake, the antidiuretic hormone arginine vasopressin (AVP) binds to the vasopressin receptor type II (V2R) in the kidney to enhance countercurrent multiplication and medullary osmolality, and increase water reabsorption via aquaporin-2 (AQP2) water channels. The importance of this AVP, V2R, and AQP2 axis is highlighted by low urine osmolality and polyuria in people with various water balance disorders, including nephrogenic diabetes insipidus (NDI). ELF5 and nuclear factor of activated T cells 5 (NFAT5) are two transcription factors proposed to regulate Aqp2 expression, but their role is poorly defined. Here we generated two novel mouse lines with principal cell (PC)-specific deletion of ELF5 or NFAT5 and phenotyped them in respect to renal water handling. ELF5-deficient mice (ELF5PC-KO ) had a very mild phenotype, with no clear differences in AQP2 abundance, and mild differences in renal water handling and maximal urinary concentrating capacity. In contrast, NFAT5 (NFAT5PC-KO ) mice had significantly higher water intake and their 24 h urine volume was almost 10-fold greater than controls. After challenging with dDAVP or 8 h water restriction, NFAT5PC-KO mice were unable to concentrate their urine, demonstrating that they suffer from NDI. The abundance of AQP2, other AQPs, and the urea transporter UT-A1 were greatly decreased in NFAT5PC-KO mice. In conclusion, NFAT5 is a major regulator of not only Aqp2 gene transcription, but also other genes important for water homeostasis and its absence leads to the development of NDI.
Collapse
Affiliation(s)
| | - Dmitry Chernyakov
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bayram Edemir
- Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Institute for Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Pietzner M, Chua RL, Wheeler E, Jechow K, Willett JDS, Radbruch H, Trump S, Heidecker B, Zeberg H, Heppner FL, Eils R, Mall MA, Richards JB, Sander LE, Lehmann I, Lukassen S, Wareham NJ, Conrad C, Langenberg C. ELF5 is a potential respiratory epithelial cell-specific risk gene for severe COVID-19. Nat Commun 2022; 13:4484. [PMID: 35970849 PMCID: PMC9378714 DOI: 10.1038/s41467-022-31999-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Despite two years of intense global research activity, host genetic factors that predispose to a poorer prognosis of COVID-19 infection remain poorly understood. Here, we prioritise eight robust (e.g., ELF5) or suggestive but unreported (e.g., RAB2A) candidate protein mediators of COVID-19 outcomes by integrating results from the COVID-19 Host Genetics Initiative with population-based plasma proteomics using statistical colocalisation. The transcription factor ELF5 (ELF5) shows robust and directionally consistent associations across different outcome definitions, including a >4-fold higher risk (odds ratio: 4.88; 95%-CI: 2.47-9.63; p-value < 5.0 × 10-6) for severe COVID-19 per 1 s.d. higher genetically predicted plasma ELF5. We show that ELF5 is specifically expressed in epithelial cells of the respiratory system, such as secretory and alveolar type 2 cells, using single-cell RNA sequencing and immunohistochemistry. These cells are also likely targets of SARS-CoV-2 by colocalisation with key host factors, including ACE2 and TMPRSS2. In summary, large-scale human genetic studies together with gene expression at single-cell resolution highlight ELF5 as a risk gene for severe COVID-19, supporting a role of epithelial cells of the respiratory system in the adverse host response to SARS-CoV-2.
Collapse
Affiliation(s)
- Maik Pietzner
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Katharina Jechow
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian D S Willett
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Health Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marcus A Mall
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - J Brent Richards
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
- Departments of Medicine, Human Genetics, Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Twin Research, King's College London, London, United Kingdom
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Wang L, Zhou Y, Cao C, Lin S, Zhi W, Zhang D, Li J, Wei R, Jiang G, Xu H, Wang X, Xi L, Wu P. The exon 12-containing LHX6 isoforms promote cervical cancer cell proliferation by regulating the MAPK signaling pathway. Cancer Med 2022; 11:3657-3673. [PMID: 35384355 PMCID: PMC9554449 DOI: 10.1002/cam4.4734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
LIM homeobox 6 (LHX6) has been reported to be downregulated and inhibits cell proliferation in various cancers. Alternative splicing of LHX6 leads to six annotated isoforms, which can be found in the NCBI database. However, the expression patterns and potential roles of these isoforms remain poorly characterized in cervical cancer. Here, we demonstrated that the LHX6 isoforms containing exon 12 (LHX6EX(+12) group) and isoforms lacking exon 12 (LHX6EX(-12) group) were differentially expressed in cervical tissue by qRT-PCR. The mRNA expression level of LHX6EX(+12) group was higher than that of LHX6EX(-12) group in cervical cancer tissue. Knockdown of LHX6EX(+12) group and all LHX6 isoforms (LHX6All group) inhibited cell growth, increased cell apoptosis, and induced cell cycle arrest from G0/G1 phase to S phase in vitro. Consistently, overexpression of the LHX6EX(+12) group promoted cervical cancer cell proliferation in vitro. In contrast, no significant differences in cell proliferation were found between LHX6EX(-12) isoform knockdown group and its control. RNA-sequencing suggested that the LHX6EX(+12) isoform group might exert its cancer-promoting effects in cervical cancer via regulating MAPK signaling pathway. Downregulation of the LHX6EX(+12) group significantly suppressed the phosphorylation of MRK, ERK, JNK, and P38 at the protein level. We also identified some unique biological processes and signaling pathways in which each isoform group might be involved. In summary, our results indicated that LHX6EX(+12) isoform group was the dominant oncogenic type of LHX6 in cervical cancer, which may be a new biomarker and a potential precise therapeutic target for cervical cancer in the future.
Collapse
Affiliation(s)
- Ling Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shitong Lin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danya Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guiying Jiang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hanjie Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueqian Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Rees WD, Telkar N, Lin DTS, Wong MQ, Poloni C, Fathi A, Kobor M, Zachos NC, Steiner TS. An in vitro chronic damage model impairs inflammatory and regenerative responses in human colonoid monolayers. Cell Rep 2022; 38:110283. [PMID: 35045294 DOI: 10.1016/j.celrep.2021.110283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Acute damage to the intestinal epithelium can be repaired via de-differentiation of mature intestinal epithelial cells (IECs) to a stem-like state, but there is a lack of knowledge on how intestinal stem cells function after chronic injury, such as in inflammatory bowel disease (IBD). We developed a chronic-injury model in human colonoid monolayers by repeated rounds of air-liquid interface and submerged culture. We use this model to understand how chronic intestinal damage affects the ability of IECs to (1) respond to microbial stimulation, using the Toll-like receptor 5 (TLR5) agonist FliC and (2) regenerate and protect the epithelium from further damage. Repeated rounds of damage impair the ability of IECs to regrow and respond to TLR stimulation. We also identify mRNA expression and DNA methylation changes in genes associated with IBD and colon cancer. This methodology results in a human model of recurrent IEC injury like that which occurs in IBD.
Collapse
Affiliation(s)
- William D Rees
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada; Division of Hematology, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nikita Telkar
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada; BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - David T S Lin
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - May Q Wong
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Chad Poloni
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Ayda Fathi
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Michael Kobor
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada
| | - Nicholas C Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Theodore S Steiner
- BC Children's Hospital Research Institute, University of British Columbia, Rm. C328 HP East, VGH, Vancouver, BC V5Z 3J5, Canada.
| |
Collapse
|
15
|
Bagchee-Clark AJ, Mucaki EJ, Whitehead T, Rogan PK. Pathway-extended gene expression signatures integrate novel biomarkers that improve predictions of patient responses to kinase inhibitors. MedComm (Beijing) 2021; 1:311-327. [PMID: 34766125 PMCID: PMC8491218 DOI: 10.1002/mco2.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer chemotherapy responses have been related to multiple pharmacogenetic biomarkers, often for the same drug. This study utilizes machine learning to derive multi‐gene expression signatures that predict individual patient responses to specific tyrosine kinase inhibitors, including erlotinib, gefitinib, sorafenib, sunitinib, lapatinib and imatinib. Support vector machine (SVM) learning was used to train mathematical models that distinguished sensitivity from resistance to these drugs using a novel systems biology‐based approach. This began with expression of genes previously implicated in specific drug responses, then expanded to evaluate genes whose products were related through biochemical pathways and interactions. Optimal pathway‐extended SVMs predicted responses in patients at accuracies of 70% (imatinib), 71% (lapatinib), 83% (sunitinib), 83% (erlotinib), 88% (sorafenib) and 91% (gefitinib). These best performing pathway‐extended models demonstrated improved balance predicting both sensitive and resistant patient categories, with many of these genes having a known role in cancer aetiology. Ensemble machine learning‐based averaging of multiple pathway‐extended models derived for an individual drug increased accuracy to >70% for erlotinib, gefitinib, lapatinib and sorafenib. Through incorporation of novel cancer biomarkers, machine learning‐based pathway‐extended signatures display strong efficacy predicting both sensitive and resistant patient responses to chemotherapy.
Collapse
Affiliation(s)
- Ashis J Bagchee-Clark
- Department of Biochemistry, Schulich School of Medicine and Dentistry University of Western Ontario, London, Canada N6A 2C8 Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine and Dentistry University of Western Ontario, London, Canada N6A 2C8 Canada
| | - Tyson Whitehead
- SHARCNET University of Western Ontario London Ontario N6A 5B7 Canada
| | - Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine and Dentistry University of Western Ontario, London, Canada N6A 2C8 Canada.,Cytognomix Inc., 60 North Centre Road, Box 27052, London, Canada N5X 3X5 Canada
| |
Collapse
|
16
|
Miyano M, Sayaman RW, Shalabi SF, Senapati P, Lopez JC, Angarola BL, Hinz S, Zirbes A, Anczukow O, Yee LD, Sedrak MS, Stampfer MR, Seewaldt VL, LaBarge MA. Breast-Specific Molecular Clocks Comprised of ELF5 Expression and Promoter Methylation Identify Individuals Susceptible to Cancer Initiation. Cancer Prev Res (Phila) 2021; 14:779-794. [PMID: 34140348 PMCID: PMC8338914 DOI: 10.1158/1940-6207.capr-20-0635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 01/09/2023]
Abstract
A robust breast cancer prevention strategy requires risk assessment biomarkers for early detection. We show that expression of ELF5, a transcription factor critical for normal mammary development, is downregulated in mammary luminal epithelia with age. DNA methylation of the ELF5 promoter is negatively correlated with expression in an age-dependent manner. Both ELF5 methylation and gene expression were used to build biological clocks to estimate chronological ages of mammary epithelia. ELF5 clock-based estimates of biological age in luminal epithelia from average-risk women were within three years of chronological age. Biological ages of breast epithelia from BRCA1 or BRCA2 mutation carriers, who were high risk for developing breast cancer, suggested they were accelerated by two decades relative to chronological age. The ELF5 DNA methylation clock had better performance at predicting biological age in luminal epithelial cells as compared with two other epigenetic clocks based on whole tissues. We propose that the changes in ELF5 expression or ELF5-proximal DNA methylation in luminal epithelia are emergent properties of at-risk breast tissue and constitute breast-specific biological clocks. PREVENTION RELEVANCE: ELF5 expression or DNA methylation level at the ELF5 promoter region can be used as breast-specific biological clocks to identify women at higher than average risk of breast cancer.
Collapse
Affiliation(s)
- Masaru Miyano
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, California
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, California
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Sundus F Shalabi
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, California
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
| | - Parijat Senapati
- Department of Diabetes Complications and Metabolism, Beckman Research Institute at City of Hope, Duarte, California
| | - Jennifer C Lopez
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, California
| | | | - Stefan Hinz
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, California
| | - Arrianna Zirbes
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, California
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Lisa D Yee
- Department of Surgery, City of Hope National Medical Center, Duarte, California
| | - Mina S Sedrak
- Center for Cancer and Aging, City of Hope, Duarte, California
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Victoria L Seewaldt
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, California
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute at City of Hope, Duarte, California.
- Center for Cancer and Aging, City of Hope, Duarte, California
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
- Center for Cancer Biomarkers, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
ETV7 regulates breast cancer stem-like cell features by repressing IFN-response genes. Cell Death Dis 2021; 12:742. [PMID: 34315857 PMCID: PMC8316333 DOI: 10.1038/s41419-021-04005-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) represent a population of cells within the tumor able to drive tumorigenesis and known to be highly resistant to conventional chemotherapy and radiotherapy. In this work, we show a new role for ETV7, a transcriptional repressor member of the ETS family, in promoting breast cancer stem-like cells plasticity and resistance to chemo- and radiotherapy in breast cancer (BC) cells. We observed that MCF7 and T47D BC-derived cells stably over-expressing ETV7 showed reduced sensitivity to the chemotherapeutic drug 5-fluorouracil and to radiotherapy, accompanied by an adaptive proliferative behavior observed in different culture conditions. We further noticed that alteration of ETV7 expression could significantly affect the population of breast CSCs, measured by CD44+/CD24low cell population and mammosphere formation efficiency. By transcriptome profiling, we identified a signature of Interferon-responsive genes significantly repressed in cells over-expressing ETV7, which could be responsible for the increase in the breast CSCs population, as this could be partially reverted by the treatment with IFN-β. Lastly, we show that the expression of the IFN-responsive genes repressed by ETV7 could have prognostic value in breast cancer, as low expression of these genes was associated with a worse prognosis. Therefore, we propose a novel role for ETV7 in breast cancer stem cells’ plasticity and associated resistance to conventional chemotherapy and radiotherapy, which involves the repression of a group of IFN-responsive genes, potentially reversible upon IFN-β treatment. We, therefore, suggest that an in-depth investigation of this mechanism could lead to novel breast CSCs targeted therapies and to the improvement of combinatorial regimens, possibly involving the therapeutic use of IFN-β, with the aim of avoiding resistance development and relapse in breast cancer.
Collapse
|
18
|
Harris A. Human molecular genetics and the long road to treating cystic fibrosis. Hum Mol Genet 2021; 30:R264-R273. [PMID: 34245257 DOI: 10.1093/hmg/ddab191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
The causative gene in cystic fibrosis was identified in 1989, three years before the publication of the first issue of Human Molecular Genetics. CFTR was among the first genes underlying a common inherited disorder to be cloned, and hence its subsequent utilization towards a cure for CF provides a roadmap for other monogenic diseases. Over the past 30 years the advances that built upon knowledge of the gene and the CFTR protein to develop effective therapeutics have been remarkable, and yet the setbacks have also been challenging. Technological progress in other fields has often circumvented the barriers. This review focuses on key aspects of CF diagnostics and current approaches to develop new therapies for all CFTR mutations. It also highlights the major research advances that underpinned progress towards treatments, and considers the remaining obstacles.
Collapse
Affiliation(s)
- Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
19
|
Reehorst CM, Nightingale R, Luk IY, Jenkins L, Koentgen F, Williams DS, Darido C, Tan F, Anderton H, Chopin M, Schoffer K, Eissmann MF, Buchert M, Mouradov D, Sieber OM, Ernst M, Dhillon AS, Mariadason JM. EHF is essential for epidermal and colonic epithelial homeostasis, and suppresses Apc-initiated colonic tumorigenesis. Development 2021; 148:269265. [PMID: 34180969 DOI: 10.1242/dev.199542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023]
Abstract
Ets homologous factor (EHF) is a member of the epithelial-specific Ets (ESE) family of transcription factors. To investigate its role in development and epithelial homeostasis, we generated a series of novel mouse strains in which the Ets DNA-binding domain of Ehf was deleted in all tissues (Ehf-/-) or specifically in the gut epithelium. Ehf-/- mice were born at the expected Mendelian ratio, but showed reduced body weight gain, and developed a series of pathologies requiring most Ehf-/- mice to reach an ethical endpoint before reaching 1 year of age. These included papillomas in the facial skin, abscesses in the preputial glands (males) or vulvae (females), and corneal ulcers. Ehf-/-mice also displayed increased susceptibility to experimentally induced colitis, which was confirmed in intestinal-specific Ehf knockout mice. Gut-specific Ehf deletion also impaired goblet cell differentiation, induced extensive transcriptional reprogramming in the colonic epithelium and enhanced Apc-initiated adenoma development. The Ets DNA-binding domain of EHF is therefore essential for postnatal homeostasis of the epidermis and colonic epithelium, and its loss promotes colonic tumour development.
Collapse
Affiliation(s)
- Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Laura Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | | | - David S Williams
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Charbel Darido
- Peter MacCallum Cancer Centre, Melbourne, 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010Australia
| | - Fiona Tan
- Peter MacCallum Cancer Centre, Melbourne, 3000Australia
| | - Holly Anderton
- Walter and Eliza Hall Institute, Melbourne, 3052Australia
| | - Michael Chopin
- Walter and Eliza Hall Institute, Melbourne, 3052Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010Australia
| | - Kael Schoffer
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | | | - Oliver M Sieber
- Walter and Eliza Hall Institute, Melbourne, 3052Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010Australia.,Department of Surgery, The University of Melbourne, Parkville, Victoria, 3010Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Amardeep S Dhillon
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, 3216Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, 3010Australia
| |
Collapse
|
20
|
Qu X, Li Q, Tu S, Yang X, Wen W. ELF5 inhibits the proliferation and invasion of breast cancer cells by regulating CD24. Mol Biol Rep 2021; 48:5023-5032. [PMID: 34146197 DOI: 10.1007/s11033-021-06495-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
E74-like factor five (ELF5) is a basic transcription factor that plays a key role in breast tissue and gland development. However, the molecular mechanism of ELF5 in breast cancer cells has not been elucidated. In this study, we examined the effect of ELF5 on the human breast cancer cell lines MCF-7 and T47D and confirmed that ELF5 can inhibit cell proliferation, migration and invasion. In further research, the relationship between ELF5 and CD24 was characterized in breast cancer cells. We found that CD24 was a target gene of ELF5 through chromatin immunoprecipitation (ChIP) -Sequence assays, and proved that ELF5 could bind to the ETS cis-element on the proximal promoter of the CD24 gene and regulate the expression of CD24. Moreover, overexpression of ELF5 in MCF-7 cells significantly increased both the mRNA and protein levels of CD24, while knockdown of CD24 expression restored cell proliferation, migration and invasion through adaptive ELF5 expression in MCF-7 cells. Therefore, these data suggest that ELF5 inhibits migration and invasion of breast cancer cells by regulating CD24 expression, which make provides a molecular mechanism for ELF5 to inhibit breast cancer from a new perspective and provides further theoretical support for the treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Xinjian Qu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| | - Qianqian Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Simei Tu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Xiaocheng Yang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Wen Wen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
21
|
Deng Y, Zhao H, Ye L, Hu Z, Fang K, Wang J. Correlations Between the Characteristics of Alternative Splicing Events, Prognosis, and the Immune Microenvironment in Breast Cancer. Front Genet 2021; 12:686298. [PMID: 34194482 PMCID: PMC8236959 DOI: 10.3389/fgene.2021.686298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
Objective Alternative splicing (AS) is the mechanism by which a few genes encode numerous proteins, and it redefines the concept of gene expression regulation. Recent studies showed that dysregulation of AS was an important cause of tumorigenesis and microenvironment formation. Therefore, we performed a systematic analysis to examine the role of AS in breast cancer (Breast Cancer, BrCa) progression. Methods The present study included 993 BrCa patients from The Cancer Genome Atlas (TCGA) database in the genome-wide analysis of AS events. We used differential and prognostic analyses and found differentially expressed alternative splicing (DEAS) events and independent prognostic factors related to patients' overall survival (OS) and disease-free survival (DFS). We divided the patients into two groups based on these AS events and analyzed their clinical features, molecular subtyping and immune characteristics. We also constructed a splicing factor (SF) regulation network for key AS events and verified the existence of AS events in tissue samples using real-time quantitative PCR. Results A total of 678 AS events were identified as differentially expressed, of which 13 and 10 AS events were independent prognostic factors of patients' OS and DFS, respectively. Unsupervised clustering analysis based on these prognostic factors indicated that the Cluster 1 group had a better prognosis and more immune cell infiltration. SFs were significantly related to the expression of AS events, and AA-RPS21 was significantly upregulated in tumors. Conclusion Alternative splicing expands the mechanism of breast cancer progression from a new perspective. Notably, alternative splicing may affect the patient's prognosis by affecting the infiltration of immune cells. Our research provides important guidance for subsequent studies of AS in breast cancer.
Collapse
Affiliation(s)
- Youyuan Deng
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| | - Hongjun Zhao
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| | - Lifen Ye
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| | - Zhiya Hu
- Department of Pharmacy, Third Hospital of Changsha, Changsha, China
| | - Kun Fang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Jianguo Wang
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, China
| |
Collapse
|
22
|
Acetylation of ELF5 suppresses breast cancer progression by promoting its degradation and targeting CCND1. NPJ Precis Oncol 2021; 5:20. [PMID: 33742100 PMCID: PMC7979705 DOI: 10.1038/s41698-021-00158-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
E74-like ETS transcription factor 5 (ELF5) is involved in a wide spectrum of biological processes, e.g., mammogenesis and tumor progression. We have identified a list of p300-interacting proteins in human breast cancer cells. Among these, ELF5 was found to interact with p300 via acetylation, and the potential acetylation sites were identified as K130, K134, K143, K197, K228, and K245. Furthermore, an ELF5-specific deacetylase, SIRT6, was also identified. Acetylation of ELF5 promoted its ubiquitination and degradation, but was also essential for its antiproliferative effect against breast cancer, as overexpression of wild-type ELF5 and sustained acetylation-mimicking ELF5 mutant could inhibit the expression of its target gene CCND1. Taken together, the results demonstrated a novel regulation of ELF5 as well as shedding light on its important role in modulation of breast cancer progression.
Collapse
|
23
|
Tan J, Zhu H, Tang G, Liu H, Wanggou S, Cao Y, Xin Z, Zhou Q, Zhan C, Wu Z, Guo Y, Jiang Z, Zhao M, Ren C, Jiang X, Yin W. Molecular Subtypes Based on the Stemness Index Predict Prognosis in Glioma Patients. Front Genet 2021; 12:616507. [PMID: 33732284 PMCID: PMC7957071 DOI: 10.3389/fgene.2021.616507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glioma is the common histological subtype of malignancy in the central nervous system, with high morbidity and mortality. Glioma cancer stem cells (CSCs) play essential roles in tumor recurrence and treatment resistance. Thus, exploring the stem cell-related genes and subtypes in glioma is important. In this study, we collected the RNA-sequencing (RNA-seq) data and clinical information of glioma patients from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. With the differentially expressed genes (DEGs) and weighted gene correlation network analysis (WGCNA), we identified 86 mRNA expression-based stemness index (mRNAsi)-related genes in 583 samples from TCGA RNA-seq dataset. Furthermore, these samples from TCGA database could be divided into two significantly different subtypes with different prognoses based on the mRNAsi corresponding gene, which could also be validated in the CGGA database. The clinical characteristics and immune cell infiltrate distribution of the two stemness subtypes are different. Then, functional enrichment analyses were performed to identify the different gene ontology (GO) terms and pathways in the two different subtypes. Moreover, we constructed a stemness subtype-related risk score model and nomogram to predict the prognosis of glioma patients. Finally, we selected one gene (ETV2) from the risk score model for experimental validation. The results showed that ETV2 can contribute to the invasion, migration, and epithelial-mesenchymal transition (EMT) process of glioma. In conclusion, we identified two distinct molecular subtypes and potential therapeutic targets of glioma, which could provide new insights for the development of precision diagnosis and prognostic prediction for glioma patients.
Collapse
Affiliation(s)
- Jun Tan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Guihua Tang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Cao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqi Xin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Quanwei Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chaohong Zhan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoping Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhipeng Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, China
| | - Caiping Ren
- Key Laboratory for Carcinogenesis of Chinese Ministry of Health, School of Basic Medical Science, Cancer Research Institute, Central South University, Changsha, China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wen Yin
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Yoon G, Carroll RJ, Gaynanova I. Sparse semiparametric canonical correlation analysis for data of mixed types. Biometrika 2020; 107:609-625. [PMID: 34621080 PMCID: PMC8494134 DOI: 10.1093/biomet/asaa007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Canonical correlation analysis investigates linear relationships between two sets of variables, but often works poorly on modern datasets due to high-dimensionality and mixed data types (continuous/binary/zero-inflated). We propose a new approach for sparse canonical correlation analysis of mixed data types that does not require explicit parametric assumptions. Our main contribution is the use of truncated latent Gaussian copula to model the data with excess zeroes, which allows us to derive a rank-based estimator of latent correlation matrix without the estimation of marginal transformation functions. The resulting semiparametric sparse canonical correlation analysis method works well in high-dimensional settings as demonstrated via numerical studies, and application to the analysis of association between gene expression and micro RNA data of breast cancer patients.
Collapse
Affiliation(s)
- Grace Yoon
- Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A
| | - Raymond J Carroll
- Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A
| | - Irina Gaynanova
- Department of Statistics, Texas A&M University, College Station, Texas 77843, U.S.A
| |
Collapse
|
25
|
Piggin CL, Roden DL, Law AMK, Molloy MP, Krisp C, Swarbrick A, Naylor MJ, Kalyuga M, Kaplan W, Oakes SR, Gallego-Ortega D, Clark SJ, Carroll JS, Bartonicek N, Ormandy CJ. ELF5 modulates the estrogen receptor cistrome in breast cancer. PLoS Genet 2020; 16:e1008531. [PMID: 31895944 PMCID: PMC6959601 DOI: 10.1371/journal.pgen.1008531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/14/2020] [Accepted: 11/20/2019] [Indexed: 11/28/2022] Open
Abstract
Acquired resistance to endocrine therapy is responsible for half of the therapeutic failures in the treatment of breast cancer. Recent findings have implicated increased expression of the ETS transcription factor ELF5 as a potential modulator of estrogen action and driver of endocrine resistance, and here we provide the first insight into the mechanisms by which ELF5 modulates estrogen sensitivity. Using chromatin immunoprecipitation sequencing we found that ELF5 binding overlapped with FOXA1 and ER at super enhancers, enhancers and promoters, and when elevated, caused FOXA1 and ER to bind to new regions of the genome, in a pattern that replicated the alterations to the ER/FOXA1 cistrome caused by the acquisition of resistance to endocrine therapy. RNA sequencing demonstrated that these changes altered estrogen-driven patterns of gene expression, the expression of ER transcription-complex members, and 6 genes known to be involved in driving the acquisition of endocrine resistance. Using rapid immunoprecipitation mass spectrometry of endogenous proteins, and proximity ligation assays, we found that ELF5 interacted physically with members of the ER transcription complex, such as DNA-PKcs. We found 2 cases of endocrine-resistant brain metastases where ELF5 levels were greatly increased and ELF5 patterns of gene expression were enriched, compared to the matched primary tumour. Thus ELF5 alters ER-driven gene expression by modulating the ER/FOXA1 cistrome, by interacting with it, and by modulating the expression of members of the ER transcriptional complex, providing multiple mechanisms by which ELF5 can drive endocrine resistance.
Collapse
Affiliation(s)
- Catherine L. Piggin
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Daniel L. Roden
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Andrew M. K. Law
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Mark P. Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Alexander Swarbrick
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Matthew J. Naylor
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Maria Kalyuga
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Warren Kaplan
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Samantha R. Oakes
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - David Gallego-Ortega
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Susan J. Clark
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Jason S. Carroll
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre Robinson Way, Cambridge, United Kingdom
| | - Nenad Bartonicek
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Christopher J. Ormandy
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Victoria Street Darlinghurst Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| |
Collapse
|
26
|
Hypertonicity-Affected Genes Are Differentially Expressed in Clear Cell Renal Cell Carcinoma and Correlate with Cancer-Specific Survival. Cancers (Basel) 2019; 12:cancers12010006. [PMID: 31861377 PMCID: PMC7017076 DOI: 10.3390/cancers12010006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
The heterogeneity of renal cell carcinoma (RCC) subtypes reflects the cell type of origin in the nephron, with consequences for therapy and prognosis. The transcriptional cues that determine segment-specific gene expression patterns are poorly understood. We recently showed that hypertonicity in the renal medulla regulates nephron-specific gene expression. Here, we analyzed a set of 223 genes, which were identified in the present study by RNA-Seq to be differentially expressed by hypertonicity, for the prediction of cancer-specific survival (CSS). Cluster analyses of these genes showed discrimination between tumor and non-tumor samples of clear cell RCC (ccRCC). Refinement of this gene signature to a four-gene score (OSM score) through statistical analyses enabled prediction of CSS in ccRCC patients of The Cancer Genome Atlas (TCGA) (n = 436) in univariate (HR = 4.1; 95% CI: 2.78−6.07; p = 4.39 × 10−13), and multivariate analyses including primary tumor (T); regional lymph node (N); distant metastasis (M); grading (G)(p = 2.3 × 10−5). The OSM score could be validated in an independent ccRCC study (n = 52) in univariate (HR = 1.29; 95% CI = 1.05–1.59; p = 0.011) and multivariate analyses (p = 0.016). Cell culture experiments using RCC cell lines demonstrated that the expression of the tumor suppressor ELF5 could be restored by hypertonicity. The innovation of our novel gene signature is that these genes are physiologically regulated only by hypertonicity, thereby providing the possibility to be targeted for therapy.
Collapse
|
27
|
Gene expression signature of atypical breast hyperplasia and regulation by SFRP1. Breast Cancer Res 2019; 21:76. [PMID: 31248446 PMCID: PMC6598287 DOI: 10.1186/s13058-019-1157-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/28/2019] [Indexed: 02/06/2023] Open
Abstract
Background Atypical breast hyperplasias (AH) have a 10-year risk of progression to invasive cancer estimated at 4–7%, with the overall risk of developing breast cancer increased by ~ 4-fold. AH lesions are estrogen receptor alpha positive (ERα+) and represent risk indicators and/or precursor lesions to low grade ERα+ tumors. Therefore, molecular profiles of AH lesions offer insights into the earliest changes in the breast epithelium, rendering it susceptible to oncogenic transformation. Methods In this study, women were selected who were diagnosed with ductal or lobular AH, but no breast cancer prior to or within the 2-year follow-up. Paired AH and histologically normal benign (HNB) tissues from patients were microdissected. RNA was isolated, amplified linearly, labeled, and hybridized to whole transcriptome microarrays to determine gene expression profiles. Genes that were differentially expressed between AH and HNB were identified using a paired analysis. Gene expression signatures distinguishing AH and HNB were defined using AGNES and PAM methods. Regulation of gene networks was investigated using breast epithelial cell lines, explant cultures of normal breast tissue and mouse tissues. Results A 99-gene signature discriminated the histologically normal and AH tissues in 81% of the cases. Network analysis identified coordinated alterations in signaling through ERα, epidermal growth factor receptors, and androgen receptor which were associated with the development of both lobular and ductal AH. Decreased expression of SFRP1 was also consistently lower in AH. Knockdown of SFRP1 in 76N-Tert cells resulted altered expression of 13 genes similarly to that observed in AH. An SFRP1-regulated network was also observed in tissues from mice lacking Sfrp1. Re-expression of SFRP1 in MCF7 cells provided further support for the SFRP1-regulated network. Treatment of breast explant cultures with rSFRP1 dampened estrogen-induced progesterone receptor levels. Conclusions The alterations in gene expression were observed in both ductal and lobular AH suggesting shared underlying mechanisms predisposing to AH. Loss of SFRP1 expression is a significant regulator of AH transcriptional profiles driving previously unidentified changes affecting responses to estrogen and possibly other pathways. The gene signature and pathways provide insights into alterations contributing to AH breast lesions. Electronic supplementary material The online version of this article (10.1186/s13058-019-1157-5) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Hsing M, Wang Y, Rennie PS, Cox ME, Cherkasov A. ETS transcription factors as emerging drug targets in cancer. Med Res Rev 2019; 40:413-430. [PMID: 30927317 DOI: 10.1002/med.21575] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which have been implicated in development and progression of a variety of cancers. While one family member, ERG, has been rigorously studied in the context of prostate cancer where it plays a critical role, other ETS factors keep emerging as potential hallmark oncodrivers. In recent years, numerous studies have reported initial discoveries of small molecule inhibitors of ETS proteins and opened novel avenues for ETS-directed cancer therapies. This review summarizes the state of the art data on therapeutic targeting of ETS family members and highlights the corresponding drug discovery strategies.
Collapse
Affiliation(s)
- Michael Hsing
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E Cox
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Song X, Tang T, Li C, Liu X, Zhou L. CBX8 and CD96 Are Important Prognostic Biomarkers of Colorectal Cancer. Med Sci Monit 2018; 24:7820-7827. [PMID: 30383736 PMCID: PMC6225733 DOI: 10.12659/msm.908656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies worldwide, with high morbidity and mortality rates. The purpose of this study was to identify potential biomarkers in the progression of CRC. MATERIAL AND METHODS Gene and isoform expression datasets of CRC was downloaded from The Cancer Genome Atlas (TCGA). EBSeq of R was used for the normalization of gene and isoform expression, as well as the identification of differential expression genes (DEGs) and isoforms (DEIs) of CRC samples compared with normal samples. The enriched functions of DEGs and DEIs were obtained based on the Database for Annotation, Visualization and Integrated Discovery (DAVID). An independent dataset, GSE38832, was downloaded from the Gene Expression Omnibus (GEO) database for survival analysis of genes with sustained decreased/increased expression values at both gene and isoform levels with the development of CRC. RESULTS A total of 2301 genes and 4241 isoforms were found to be significantly differentially expressed in stage I-IV CRC samples. They are closely associated with muscle or cell system activity. Sixteen genes were screened out with sustained decreased/increased expression values at both gene and isoform levels with the development of CRC. Aberrant CBX8 and CD96 expressions were found to be significantly associated with CRC survival. CONCLUSIONS Through combined analysis of gene and isoform expression profiles, we identified several potential biomarkers that may play an important role in the development of CRC and could be helpful in its early diagnosis and treatment.
Collapse
Affiliation(s)
- Xin Song
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Tao Tang
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Chaofeng Li
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Xin Liu
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China (mainland)
| | - Lei Zhou
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, China (mainland)
| |
Collapse
|
30
|
Luk IY, Reehorst CM, Mariadason JM. ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. Molecules 2018; 23:molecules23092191. [PMID: 30200227 PMCID: PMC6225137 DOI: 10.3390/molecules23092191] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelium-specific ETS (ESE) transcription factors (ELF3, ELF5, EHF and SPDEF) are defined by their highly conserved ETS DNA binding domain and predominant epithelial-specific expression profile. ESE transcription factors maintain normal cell homeostasis and differentiation of a number of epithelial tissues, and their genetic alteration and deregulated expression has been linked to the progression of several epithelial cancers. Herein we review the normal function of the ESE transcription factors, the mechanisms by which they are dysregulated in cancers, and the current evidence for their role in cancer progression. Finally, we discuss potential therapeutic strategies for targeting or reactivating these factors as a novel means of cancer treatment.
Collapse
Affiliation(s)
- Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
31
|
Dehghanian F, Hojati Z, Hosseinkhan N, Mousavian Z, Masoudi-Nejad A. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer. Comput Biol Med 2018; 99:76-84. [PMID: 29890510 DOI: 10.1016/j.compbiomed.2018.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/22/2023]
Abstract
The Hippo signaling pathway (HSP) has been identified as an essential and complex signaling pathway for tumor suppression that coordinates proliferation, differentiation, cell death, cell growth and stemness. In the present study, we conducted a genome-scale co-expression analysis to reconstruct the HSP in colorectal cancer (CRC). Five key modules were detected through network clustering, and a detailed discussion of two modules containing respectively 18 and 13 over and down-regulated members of HSP was provided. Our results suggest new potential regulatory factors in the HSP. The detected modules also suggest novel genes contributing to CRC. Moreover, differential expression analysis confirmed the differential expression pattern of HSP members and new suggested regulatory factors between tumor and normal samples. These findings can further reveal the importance of HSP in CRC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran.
| | - Nazanin Hosseinkhan
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Zaynab Mousavian
- Department of Computer Science, School of Mathematics, Statistics, and Computer Science, University of Tehran, Tehran, Iran; Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
32
|
Liu L, Liu Y, Chen X, Wang M, Zhou Y, Zhou P, Li W, Zhu F. Variant 2 of KIAA0101, antagonizing its oncogenic variant 1, might be a potential therapeutic strategy in hepatocellular carcinoma. Oncotarget 2018; 8:43990-44003. [PMID: 28410205 PMCID: PMC5546456 DOI: 10.18632/oncotarget.16702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide and effective therapies, including molecular therapy, remain elusive. Our previous work demonstrates that oncogenic KIAA0101 transcript variant (tv) 1 promotes HCC development and might be a HCC therapeutic target. However, the function of another KIAA0101 variant, KIAA0101 tv2, remains unknown. In this study, we reported that KIAA0101 tv2 was highly expressed in adjacent non-tumorous liver tissues (NTs) compared to HCC tissues. In vivo and in vitro results showed that KIAA0101 tv2 decreased cell survival, colony formation, tumor xenografts, migration, and invasion, as well as induced cell cycle arrest and apoptosis. Interestingly, it could inhibit the function of KIAA0101 tv1 by partially down-regulating KIAA0101 tv1, acting similar to KIAA0101 tv1 short hairpin RNA (shRNA). Further studies illustrated that KIAA0101 tv2 could increase the activity of p53 by competing with KIAA0101 tv1 for P53 binding. In conclusion, KIAA0101 tv2 exerts anti-tumor activity in HCC and acts as an endogenous competitor of tumor-associated KIAA0101 tv1. KIAA0101 tv2 has a potential to work as a therapeutic drug targeting the KIAA0101 tv1 in HCC.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China.,College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Youyi Liu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Xiaobei Chen
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Miao Wang
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Yan Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Ping Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Wenxin Li
- College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Fan Zhu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, P.R. China
| |
Collapse
|
33
|
Comprehensive landscape of subtype-specific coding and non-coding RNA transcripts in breast cancer. Oncotarget 2018; 7:68851-68863. [PMID: 27634900 PMCID: PMC5356595 DOI: 10.18632/oncotarget.11998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/24/2016] [Indexed: 01/12/2023] Open
Abstract
Molecular classification of breast cancer into clinically relevant subtypes helps improve prognosis and adjuvant-treatment decisions. The aim of this study is to provide a better characterization of the molecular subtypes by providing a comprehensive landscape of subtype-specific isoforms including coding, long non-coding RNA and microRNA transcripts. Isoform-level expression of all coding and non-coding RNAs is estimated from RNA-sequence data of 1168 breast samples obtained from The Cancer Genome Atlas (TCGA) project. We then search the whole transcriptome systematically for subtype-specific isoforms using a novel algorithm based on a robust quasi-Poisson model. We discover 5451 isoforms specific to single subtypes. A total of 27% of the subtype-specific isoforms have better accuracy in classifying the intrinsic subtypes than that of their corresponding genes. We find three subtype-specific miRNA and 707 subtype-specific long non-coding RNAs. The isoforms from long non-coding RNAs also show high performance for separation between Luminal A and Luminal B subtypes with an AUC of 0.97 in the discovery set and 0.90 in the validation set. In addition, we discover 1500 isoforms preferentially co-expressed in two subtypes, including 369 isoforms co-expressed in both Normal-like and Basal subtypes, which are commonly considered to have distinct ER-receptor status. Finally, analyses at protein level reveal four subtype-specific proteins and two subtype co-expression proteins that successfully validate results from the isoform level.
Collapse
|
34
|
Effect of the normal mammary differentiation regulator ELF5 upon clinical outcomes of triple negative breast cancers patients. Breast Cancer 2018; 25:489-496. [PMID: 29396764 DOI: 10.1007/s12282-018-0842-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/28/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elf5 is a transcription factor previously shown to be involved in regulating cell differentiation in both normal and pathological breast tissues. Pertinently, Elf5 was reported to interact with the FOXA1 transcription factor, a pivotal regulatory factor in a subset of AR overexpressing triple negative cancer (TNBC) cases. METHODS We examined the correlation among AR, FOXA1, and Elf5 expression in a series of TNBC cases. The cases were retrieved from surgical pathological files of Tohoku University Hospital Japan and consisted of 60 cases operated between the year 1999 and 2007. An additional cohort cases of 51 TNBC ductal carcinoma in situ was used to compare invasive and non-invasive TNBC. RESULTS In our cohort, 47% of all carcinomas were positive for Elf5, with a significantly higher proportion of Elf5 positive cases occurring in the younger age groups (p = 0.0061). Elf5 immunoreactivity was not associated with any other clinicopathological factors examined in this study. However, Elf5 expression was associated with decreased overall and disease-free survival of the patients (Peto-Peto modification of Gehan-Wilcoxon test, OS p = 0.132, DFS p = 0.1 (LI cutoff 10%); OS p = 0.038, DFS p = 0.021 (LI cutoff 50%)). Of particular interest, its effects on survival were more pronounced in the EGFR-/CK5/6- (non-basal surrogate) than the EGFR+ and/or CK5/6+ (basal-surrogate) subtype of TNBC. CONCLUSIONS Elf5 is present in TNBC and its status was significantly correlated with overall survival of the patients. Further studies examining possible interactions between Elf5 and other factors in TNBC could contribute to disentangling TNBC biology.
Collapse
|
35
|
Law AMK, Lim E, Ormandy CJ, Gallego-Ortega D. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocr Relat Cancer 2017; 24:R123-R144. [PMID: 28193698 PMCID: PMC5425956 DOI: 10.1530/erc-16-0404] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
A cancer cell-centric view has long dominated the field of cancer biology. Research efforts have focussed on aberrant cancer cell signalling pathways and on changes to cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types within the tumour stroma co-evolve and support tumour growth and development, greatly modifying cancer cell behaviour, facilitating invasion and metastasis and controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent potential targets for cancer therapy. Among these cell types, immune cells have emerged as a promising target for therapy. The adaptive and the innate immune system play an important role in normal mammary development and breast cancer. The number of infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration occurs in a large proportion of cases. There is strong evidence demonstrating the importance of the immunosuppressive role of the innate immune system during breast cancer progression. A consideration of components of both the innate and the adaptive immune system is essential for the design and development of immunotherapies in breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) as potential targets for breast cancer therapy.
Collapse
Affiliation(s)
- Andrew M K Law
- Tumour Development GroupThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Cancer Biology LaboratoryThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Elgene Lim
- Connie Johnson Breast Cancer Research LaboratoryThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Christopher J Ormandy
- Cancer Biology LaboratoryThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - David Gallego-Ortega
- Tumour Development GroupThe Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales Australia, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Endo A, Tomizawa D, Aoki Y, Morio T, Mizutani S, Takagi M. EWSR1/ELF5 induces acute myeloid leukemia by inhibiting p53/p21 pathway. Cancer Sci 2016; 107:1745-1754. [PMID: 27627705 PMCID: PMC5198945 DOI: 10.1111/cas.13080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/26/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023] Open
Abstract
The Ewing sarcoma breakpoint region 1 (EWSR1) gene is known to fuse with various partner genes to promote the development of the Ewing sarcoma family of tumors and other sarcomas. In contrast, the association of EWSR1 chimeric fusion genes with leukemia has rarely been reported. We identified a novel EWSR1‐associated chimeric fusion gene in a patient with acute myeloid leukemia harboring 46, XY, t (11; 22) (p13; q12) karyotype abnormality. The patient was refractory to intensified chemotherapy including hematopoietic stem cell transplantation. Total RNA paired‐end sequencing identified a novel chimeric fusion gene as EWSR1/ELF5, a member of the E26 transformation‐specific transcription factor family. Transduction of EWSR1/ELF5 to NIH3T3 cells induced transformation by attenuating with the p53/p21‐dependent pathway. The injection of EWSR1/ELF5‐transduced NIH3T3 cells into NSG‐SCID mice systematically induced the development of tumors in vivo. These results revealed the oncogenic potency of EWSR1/ELF5.
Collapse
Affiliation(s)
- Akifumi Endo
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Tomizawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan.,Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yuki Aoki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Pediatric Oncology, National Cancer Center, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuki Mizutani
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|