1
|
Luijendijk MJ, Buijs SM, Jager A, Koolen SLW, van der Wall E, Schagen SB, Mathijssen RHJ. Effects of tamoxifen on cognitive function in patients with primary breast cancer. Br J Cancer 2025; 132:180-187. [PMID: 39592740 PMCID: PMC11747089 DOI: 10.1038/s41416-024-02914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Tamoxifen may adversely affect cognitive function by interfering with estrogen action in the brain. Despite growing evidence for a relationship between tamoxifen and cognitive problems, findings remain inconclusive. While some tamoxifen-related side effects seem exposure-dependent with concentrations of tamoxifen or its main metabolite, endoxifen, this has never been investigated for cognitive function. We investigated cognitive function after two years of tamoxifen and its association with tamoxifen and endoxifen exposure. METHODS 135 women with breast cancer completed the Amsterdam Cognition Scan (ACS), an online neuropsychological test battery, after two years of tamoxifen. Test scores were converted to standardized Z-scores based on a matched 'no-cancer' control group. Tamoxifen and endoxifen concentrations and tamoxifen dose were regressed separately on cognitive functioning. RESULTS Patients reported mild cognitive complaints and had worse verbal learning, processing speed, executive functioning, and motor functioning compared to matched controls. After correcting for age, mean tamoxifen and endoxifen levels, as well as tamoxifen dose, were associated with worse performance on several cognitive domains. CONCLUSION Tamoxifen is adversely associated with objective as well as self-reported cognitive function, which may depend on the level of exposure to tamoxifen and endoxifen. Further research is warranted to confirm this hypothesis.
Collapse
Affiliation(s)
- Maryse J Luijendijk
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Sanne M Buijs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sanne B Schagen
- Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
2
|
van Nijnatten RYM, Buijs SM, Agema BC, Fischer RMJ, Moghaddam-Helmantel IG, Contant CME, de Jongh FE, Huijben AMT, Kop M, van der Padt-Pruijsten A, Zuetenhorst HJM, van Schaik RHN, Koch BCP, Jager A, Koolen SLW, Mathijssen RHJ. Implementation of model-informed precision dosing for tamoxifen therapy in patients with breast cancer: A prospective intervention study. Breast 2025; 79:103880. [PMID: 39813819 PMCID: PMC11783121 DOI: 10.1016/j.breast.2025.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/09/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Tamoxifen is an estrogen-receptor (ER) antagonist, used as adjuvant treatment of ER-positive breast cancer. It is converted by CYP2D6 into endoxifen, its most active metabolite. Patients with endoxifen plasma concentrations <16 nM face a higher risk of recurrence. The use of a priori model-informed precision dosing (MIPD) may lead to faster target attainment and thus potentially improve patient outcomes. In total, 106 evaluable patients were prospectively included in this single-arm MIPD-intervention study. Patients received a model-predicted tamoxifen dose when starting tamoxifen-treatment (65.1 % of patients received 20 mg, 16.0 % received 30 mg and 18.9 % received 40 mg). Seventy-five percent of the 40 mg group was predicted to be unable to reach the threshold of 16 nM despite receiving the highest registered dose. After attaining steady-state, 84.0 % of patients reached endoxifen levels ≥16 nM, which was not significantly higher compared to a historical control cohort (77.9 %, p = 0.17). The model showed adequate performance and correctly identified patients requiring 40 mg tamoxifen. Endoxifen samples that were acquired 4-6 weeks after treatment initiation, are informative of steady-state endoxifen levels and can be used to inform MIPD and adjust tamoxifen dosing prior to steady-state attainment. In this first MIPD implementation study for patients treated with tamoxifen, MIPD did lead to more patients achieving endoxifen levels ≥16 nM as compared to the one-dose-fits-all strategy, albeit insignificant. This may partly be explained by a larger proportion of patients who were recommended to switch to an aromatase inhibitor (AI) in the intervention cohort. In conclusion, MIPD seems beneficial compared to one-size-fits-all-dosing, but TDM still remains an important addition.
Collapse
Affiliation(s)
| | - Sanne M Buijs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Bram C Agema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Raphaël M J Fischer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Felix E de Jongh
- Department of Internal Medicine, Breast Cancer Center South Holland South, Ikazia Hospital, Rotterdam, the Netherlands
| | - Auke M T Huijben
- Department of Internal Medicine, Breast Cancer Center South Holland South, Maasstad Hospital, Rotterdam, the Netherlands
| | - Manon Kop
- Department of Internal Medicine, IJsselland Hospital, Capelle aan den IJssel, the Netherlands
| | - Annemieke van der Padt-Pruijsten
- Department of Internal Medicine, Breast Cancer Center South Holland South, Spijkenisse Medical Center, Spijkenisse, the Netherlands
| | | | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - A Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Lee B, Nam SJ, Kim SW, Yu J, Chae BJ, Lee SK, Ryu JM, Lee JE, Lee SY. Endoxifen Concentration Is Associated with Recurrence-Free Survival in Hormone-Sensitive Breast Cancer Patients. Cancer Res Treat 2025; 57:140-149. [PMID: 38901825 PMCID: PMC11729306 DOI: 10.4143/crt.2023.1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
PURPOSE The metabolism of tamoxifen is influenced by various cytochrome p450 enzymes, including CYP2D6 and CYP2C19, leading to variations in the levels of endoxifen, even with the same tamoxifen dose. However, the clinical significance of endoxifen for the prognosis of breast cancer patients remains controversial. This study aimed to elucidate the relevance of endoxifen level to recurrence-free survival censored with tamoxifen discontinuation (RFSt), representing the RFS for tamoxifen itself, of breast cancer patients and determine a suitable cutoff for prognostication. MATERIALS AND METHODS The study included 478 breast cancer patients. Tamoxifen and its metabolites, including endoxifen, were measured using liquid chromatography-tandem mass spectrometry. An optimal cutoff was determined with maximally selected rank statistics. Survival analysis and Cox regression were conducted based on this cutoff. RESULTS An endoxifen level of 21.00 ng/mL was the optimal cutoff for prognostication. Survival analysis revealed a statistically significant difference in RFSt between the low endoxifen group (≤ 21.00 ng/mL) and the high endoxifen group (> 21.00 ng/mL) (log-rank test, p=0.032). The 10-year probability of RFSt was 83.2% (95% confidence interval [CI], 77.0 to 89.9) and 88.3% (95% CI, 83.3 to 93.5) in the low and high endoxifen groups, respectively. Multivariable Cox proportional hazards regression indicated endoxifen concentration as a significant factor associated with prognosis. CONCLUSION Endoxifen could serve as a marker for appropriate tamoxifen treatment with a cutoff of 21.00 ng/mL. Based on this cutoff, therapeutic drug monitoring would benefit patients displaying suboptimal endoxifen concentrations.
Collapse
Affiliation(s)
- Beomki Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Nam
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Won Kim
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jonghan Yu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung-Joo Chae
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Kyung Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jai Min Ryu
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Göransson S, Hernández-Varas P, Hammarström M, Hellgren R, Bäcklund M, Lång K, Rosendahl AH, Eriksson M, Borgquist S, Strömblad S, Czene K, Hall P, Gabrielson M. Low-dose tamoxifen treatment reduces collagen organisation indicative of tissue stiffness in the normal breast: results from the KARISMA randomised controlled trial. Breast Cancer Res 2024; 26:163. [PMID: 39593191 PMCID: PMC11590516 DOI: 10.1186/s13058-024-01919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Tissue stiffness, dictated by organisation of interstitial fibrillar collagens, increases breast cancer risk and contributes to cancer progression. Tamoxifen is a standard treatment for receptor-positive breast cancer and is also aproved for primary prevention. We investigated the effect of tamoxifen and its main metabolites on the breast tissue collagen organisation as a proxy for stiffness and explored the relationship between mammographic density (MD) and collagen organisation. MATERIAL AND METHODS This sub-study of the double-blinded dose-determination trial, KARISMA, included 83 healthy women randomised to 6 months of 20, 10, 5, 2.5, and 1 mg of tamoxifen or placebo. Ultrasound-guided core-needle breast biopsies collected before and after treatment were evaluated for collagen organisation by polarised light microscopy. RESULTS Tamoxifen reduced the amount of organised collagen and overall organisation, reflected by a shift from heavily crosslinked thick fibres to thinner, less crosslinked fibres. Collagen remodelling correlated with plasma concentrations of tamoxifen metabolites. MD change was not associated with changes in amount of organised collagen but was correlated with less crosslinking in premenopausal women. CONCLUSIONS In this study of healthy women, tamoxifen decreased the overall organisation of fibrillar collagens, and consequently, the breast tissue stiffness. These stromal alterations may play a role in the well-established preventive and therapeutic effects of tamoxifen. Trial registration ClinicalTrials.gov ID: NCT03346200. Registered November 1st, 2017. Retrospectively registered.
Collapse
Affiliation(s)
- Sara Göransson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Pablo Hernández-Varas
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mattias Hammarström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Solna, Sweden
| | | | - Magnus Bäcklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Solna, Sweden
| | - Kristina Lång
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Ann H Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Solna, Sweden
| | - Signe Borgquist
- Department of Oncology, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Solna, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Solna, Sweden
- Department of Breast Imaging, Södersjukhuset, Stockholm, Sweden
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77, Solna, Sweden.
| |
Collapse
|
5
|
Wauford N, Wachter G, Kiwimagi K, Weiss R. A Tunable Long Duration Pulse Generation Circuit in Mammalian Cells. ACS Synth Biol 2024; 13:3576-3586. [PMID: 39417639 DOI: 10.1021/acssynbio.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Pulse generator circuits based on incoherent feed-forward logic have been developed in bacterial, yeast, and mammalian systems but are typically limited to production of short pulses lasting less than 1 day. To generate longer-lasting pulses, we introduce a feedback-based topology that induces multiday pulsatile gene expression with tunable duration and amplitude in mammalian cells. We constructed the circuit using the PERSIST platform, which consists of entirely post-transcriptional logic, because our experience suggests that this approach may attenuate long-term epigenetic silencing. To enable external regulation of PERSIST regulatory elements, we engineered inducer-stabilized CRISPR endoRNases that respond to FDA-approved drugs, generating small molecule responses with greater than 20-fold change. These inducer-responsive proteins were connected to a two-state cross-repression positive feedback topology to generate the pulse generator circuit architecture. We then optimized circuit design through chromosomal integration of circuit components at varying stoichiometries, resulting in a small library of circuits displaying tunable pulses lasting between two and 6 days in response to a single 24 h input of inducer. We expect that the small molecule-stabilized PERSIST proteins developed will serve as valuable components in the toolbox for post-transcriptional gene circuit development and that tunable post-transcriptional pulse generator circuits in mammalian cells will enable study of endogenous hysteretic gene networks and support advances in cell therapies and organoid engineering.
Collapse
Affiliation(s)
- Noreen Wauford
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Georg Wachter
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katherine Kiwimagi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Medwid S, Schwarz UI, Choi YH, Keller D, Ross C, Kim RB. Solanidine Metabolites as Diet-Derived Biomarkers of CYP2D6-Mediated Tamoxifen Metabolism in Breast Cancer Patients. Clin Pharmacol Ther 2024; 116:1269-1277. [PMID: 39039708 DOI: 10.1002/cpt.3380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Tamoxifen is an important antiestrogen for the treatment of hormone receptor-positive breast cancer and undergoes bioactivation by CYP2D6 to its active metabolite endoxifen. Genetic variation in CYP2D6 has been linked to endoxifen levels during tamoxifen therapy. Recent studies have suggested solanidine, a glycoalkaloid phytochemical in potatoes, undergoes CYP2D6-mediated metabolism to 4-OH-solanidine (m/z 414) and 3,4-seco-solanidine-3,4-dioic acid (SSDA; m/z 444). Using a retrospective cohort of 1,032 breast cancer patients on tamoxifen therapy, we examined the association of solanidine metabolites with CYP2D6 activity and its correlation with tamoxifen metabolism. Solanidine, 4-OH-solanidine, or SSDA was detected in 99.7% (N = 1,029) of plasma samples. Decreased solanidine metabolite ratios were found in CYP2D6 intermediate and poor metabolizers (P < 0.0001). Patients on CYP2D6 strong inhibitors had a 77.6% and 94.2% decrease in 4-OH-solandine/solanidine (P < 0.0001) and SSDA/solanidine (P < 0.0001), respectively. The ratio of endoxifen to tamoxifen was highly correlated with both 4-OH-solandine/solanidine (ρ = 0.3207, P < 0.0001) and SSDA/solanidine (ρ = 0.5022, P < 0.0001) ratios. Logistic regression modeling was used to determine that 4-OH-solanidine/solanidine and SSDA/solanidine ratios below 2.1 and 0.8, respectively, predicted endoxifen concentrations of <16 nM. In conclusion, solanidine, 4-OH-solanidine, and SSDA are diet-derived biomarkers of CYP2D6 activity. Moreover, in patients on tamoxifen therapy, 4-OH-solanidine/solanidine and SSDA/solanidine predicted endoxifen levels including the inhibitory effects of concomitantly prescribed CYP2D6-interacting medications. Accordingly, 4-OH-solanidine/solanidine or SSDA/solanidine ratio has the potential to be particularly useful prior to initiation of tamoxifen or for determining the impact of CYP2D6 drug interactions, as well as prior to switching from an aromatase inhibitor to tamoxifen.
Collapse
Affiliation(s)
- Samantha Medwid
- Department of Medicine, Western University, London, Ontario, Canada
| | - Ute I Schwarz
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Yun-Hee Choi
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Denise Keller
- London Health Sciences Centre, London, Ontario, Canada
| | - Cameron Ross
- Department of Medicine, Western University, London, Ontario, Canada
| | - Richard B Kim
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
7
|
Mc Laughlin AM, Helland T, Klima F, Koolen SLW, van Schaik RHN, Mathijssen RHJ, Neven P, Swen JJ, Guchelaar HJ, Dalenc F, White-Koning M, Michelet R, Mikus G, Schroth W, Mürdter T, Brauch H, Schwab M, Søiland H, Mellgren G, Thomas F, Kloft C, Hertz DL. Nonlinear Mixed-Effects Model of Z-Endoxifen Concentrations in Tamoxifen-Treated Patients from the CEPAM Cohort. Clin Pharmacol Ther 2024; 116:690-702. [PMID: 38494911 DOI: 10.1002/cpt.3238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
Tamoxifen is widely used in patients with hormone receptor-positive breast cancer. The polymorphic enzyme CYP2D6 is primarily responsible for metabolic activation of tamoxifen, resulting in substantial interindividual variability of plasma concentrations of its most important metabolite, Z-endoxifen. The Z-endoxifen concentration thresholds below which tamoxifen treatment is less efficacious have been proposed but not validated, and prospective trials of individualized tamoxifen treatment to achieve Z-endoxifen concentration thresholds are considered infeasible. Therefore, we aim to validate the association between Z-endoxifen concentration and tamoxifen treatment outcomes, and identify a Z-endoxifen concentration threshold of tamoxifen efficacy, using pharmacometric modeling and simulation. As a first step, the CYP2D6 Endoxifen Percentage Activity Model (CEPAM) cohort was created by pooling data from 28 clinical studies (> 7,000 patients) with measured endoxifen plasma concentrations. After cleaning, data from 6,083 patients were used to develop a nonlinear mixed-effect (NLME) model for tamoxifen and Z-endoxifen pharmacokinetics that includes a conversion factor to allow inclusion of studies that measured total endoxifen but not Z-endoxifen. The final parent-metabolite NLME model confirmed the primary role of CYP2D6, and contributions from body weight, CYP2C9 phenotype, and co-medication with CYP2D6 inhibitors, on Z-endoxifen pharmacokinetics. Future work will use the model to simulate Z-endoxifen concentrations in patients receiving single agent tamoxifen treatment within large prospective clinical trials with long-term survival to identify the Z-endoxifen concentration threshold below which tamoxifen is less efficacious. Identification of this concentration threshold would allow personalized tamoxifen treatment to improve outcomes in patients with hormone receptor-positive breast cancer.
Collapse
Affiliation(s)
- Anna M Mc Laughlin
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- PharMetrX Graduate Research Training Program, Berlin/Potsdam, Germany
| | - Thomas Helland
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fenja Klima
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- PharMetrX Graduate Research Training Program, Berlin/Potsdam, Germany
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Patrick Neven
- Department of Gynecological Oncology and Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Jesse J Swen
- Department Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Florence Dalenc
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Melanie White-Koning
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Werner Schroth
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
| | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
| | - Matthias Schwab
- University Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fabienne Thomas
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Sanchez-Spitman AB, Böhringer S, Dezentjé VO, Gelderblom H, Swen JJ, Guchelaar HJ. A Genome-Wide Association Study of Endoxifen Serum Concentrations and Adjuvant Tamoxifen Efficacy in Early-Stage Breast Cancer Patients. Clin Pharmacol Ther 2024; 116:155-164. [PMID: 38501904 DOI: 10.1002/cpt.3255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Tamoxifen is part of the standard of care of endocrine therapy for adjuvant treatment of breast cancer. However, survival outcomes with tamoxifen are highly variable. The concentration of endoxifen, the 30-100 times more potent metabolite of tamoxifen and bioactivated by the CYP2D6 enzyme, has been described as the most relevant metabolite of tamoxifen metabolism. A genome-wide association study (GWAS) was performed with the objective to identify genetic polymorphisms associated with endoxifen serum concentration levels and clinical outcome in early-stage breast cancer patients receiving tamoxifen. A GWAS was conducted in 608 women of the CYPTAM study (NTR1509/PMID: 30120701). Germline DNA and clinical and survival characteristics were readily available. Genotyping was performed on Infinium Global Screening Array (686,082 markers) and single nucleotide polymorphism (SNP) imputation by using 1000 Genomes. Relapse-free survival during tamoxifen (RFSt) was defined the primary clinical outcome. Endoxifen serum concentration was analyzed as a continuous variable. Several genetic variants reached genome-wide significance (P value: ≤5 × 10-8). Endoxifen concentrations analysis identified 430 variants, located in TCF20 and WBP2NL genes (chromosome 22), which are in strong linkage disequilibrium with CYP2D6 variants. In the RFSt analysis, several SNP were identified (LPP gene: rs77693286, HR 18.3, 95% CI: 15.2-21.1; rs6790761, OR 18.2, 95% CI: 15.5-21.1). Endoxifen concentrations have a strong association with the chromosome 22, which contains the CYP2D6 gene.
Collapse
Affiliation(s)
| | - Stefan Böhringer
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent Olaf Dezentjé
- Department of Medical Oncology, Antoni van Leeuwenhoek/Dutch Cancer Institute, Amsterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse Joachim Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Buijs SM, Koolen SLW, Mathijssen RHJ, Jager A. Tamoxifen Dose De-Escalation: An Effective Strategy for Reducing Adverse Effects? Drugs 2024; 84:385-401. [PMID: 38480629 PMCID: PMC11101371 DOI: 10.1007/s40265-024-02010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 05/19/2024]
Abstract
Tamoxifen, a cornerstone in the adjuvant treatment of estrogen receptor-positive breast cancer, significantly reduces breast cancer recurrence and breast cancer mortality; however, its standard adjuvant dose of 20 mg daily presents challenges due to a broad spectrum of adverse effects, contributing to high discontinuation rates. Dose reductions of tamoxifen might be an option to reduce treatment-related toxicity, but large randomized controlled trials investigating the tolerability and, more importantly, efficacy of low-dose tamoxifen in the adjuvant setting are lacking. We conducted an extensive literature search to explore evidence on the tolerability and clinical efficacy of reduced doses of tamoxifen. In this review, we discuss two important topics regarding low-dose tamoxifen: (1) the incidence of adverse effects and quality of life among women using low-dose tamoxifen; and (2) the clinical efficacy of low-dose tamoxifen examined in the preventive setting and evaluated through the measurement of several efficacy derivatives. Moreover, practical tools for tamoxifen dose reductions in the adjuvant setting are provided and further research to establish optimal dosing strategies for individual patients are discussed.
Collapse
Affiliation(s)
- Sanne M Buijs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3015 CN, Rotterdam, The Netherlands.
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3015 CN, Rotterdam, The Netherlands
- Department of Clinical Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3015 CN, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Lee O, Bazzi LA, Xu Y, Pearson E, Wang M, Hosseini O, Akasha AM, Choi JN, Karlan S, Pilewskie M, Kocherginsky M, Benante K, Helland T, Mellgren G, Dimond E, Perloff M, Heckman-Stoddard BM, Khan SA. A randomized Phase I pre-operative window trial of transdermal endoxifen in women planning mastectomy: Evaluation of dermal safety, intra-mammary drug distribution, and biologic effects. Biomed Pharmacother 2024; 171:116105. [PMID: 38171245 DOI: 10.1016/j.biopha.2023.116105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer prevention only requires local exposure of the breast to active drug. However, oral preventive agents entail systemic exposure, causing adverse effects that limit acceptance by high-risk women. Drug-delivery through the breast skin is an attractive option, but requires demonstration of dermal safety and drug distribution throughout the breast. We formulated the tamoxifen metabolite (E/Z)-endoxifen for transdermal delivery and tested it in a placebo-controlled, double-blinded Phase I trial with dose escalation from 10 to 20 mg daily. The primary endpoint was dermal toxicity. Thirty-two women planning mastectomy were randomized (2:1) to endoxifen-gel or placebo-gel applied to both breasts for 3-5 weeks. Both doses of endoxifen-gel incurred no dermal or systemic toxicity compared to placebo. All endoxifen-treated breasts contained the drug at each of five sampling locations; the median per-person tissue concentration in the treated participants was 0.6 ng/g (IQR 0.4-1.6), significantly higher (p < 0.001) than the median plasma concentration (0.2 ng/mL, IQR 0.2-0.2). The median ratio of the more potent (Z)-isomer to (E)-isomer at each breast location was 1.50 (IQR 0.96-2.54, p < 0.05). No discernible effects of breast size or adiposity on tissue concentrations were observed. At the endoxifen doses and duration used, and the tissue concentration achieved, we observed a non-significant overall reduction of tumor proliferation (Ki67 LI) and significant downregulation of gene signatures known to promote cancer invasion (FN1, SERPINH1, PLOD2, PDGFA, ITGAV) (p = 0.03). Transdermal endoxifen is an important potential breast cancer prevention agent but formulations with better dermal penetration are needed.
Collapse
Affiliation(s)
- Oukseub Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Latifa A Bazzi
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yanfei Xu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Erik Pearson
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Minhua Wang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Omid Hosseini
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Azza M Akasha
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Nam Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Scott Karlan
- Saul and Joyce Brandman Breast Center, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | | | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kelly Benante
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas Helland
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eileen Dimond
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Marjorie Perloff
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | | | - Seema A Khan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
Li X, Li Z, Li L, Liu T, Qian C, Ren Y, Li Z, Chen K, Ji D, Zhang M, Wang J. Toremifene, an Alternative Adjuvant Endocrine Therapy, Is Better Than Tamoxifen in Breast Cancer Patients with CYP2D6*10 Mutant Genotypes. Cancer Res Treat 2024; 56:134-142. [PMID: 37591782 PMCID: PMC10789960 DOI: 10.4143/crt.2023.652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023] Open
Abstract
PURPOSE Tamoxifen showed individual differences in efficacy under different CYP2D6*10 genotypes. Our study evaluated the prognosis of tamoxifen or toremifene in hormone receptor (HR)-positive breast cancer patients under different genotypes. MATERIALS AND METHODS CYP2D6*10 genotypes of HR-positive breast cancer patients were determined by Sanger sequencing, and all the patients were divided into tamoxifen group or toremifene group. RESULTS A total of 268 patients with HR-positive breast cancer were studied. The median follow-up time was 72.0 months (range, 5.0 to 88.0 months). Of these, 88 (32.9%), 114 (42.5%), and 66 (24.6%) patients had C/C, C/T, and T/T genotypes, respectively. Among patients who received tamoxifen (n=176), the 5-year disease-free survival (DFS) rate in patients with C/C and C/T genotype was better than that in patients with T/T genotype, and the difference was statistically significant (p < 0.001 and p=0.030, respectively). In patients receiving toremifene, CYP2D6*10 genotype was not significantly associated with DFS (p=0.325). Regardless of genotypes, the 5-year DFS rate was higher in patients treated with toremifene than in patients with tamoxifen (91.3% vs. 80.0%, p=0.011). Compared with tamoxifen, toremifene remained an independent prognostic marker of DFS in multivariate analysis (hazard ratio, 0.422; p=0.021). For all the 180 patients with CYP2D6*10 C/T and T/T genotypes, the 5-year DFS rate was significantly higher in the toremifene group than in the tamoxifen group (90.8% vs. 70.1%, p=0.003). CONCLUSION Toremifene may be an alternative adjuvant endocrine therapy for patients with CYP2D6*10 mutant genotypes.
Collapse
Affiliation(s)
- Xin Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zehao Li
- Department of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Lin Li
- Depatment of Thyroid and Breast Surgery, Ningbo Medical Center, Li Huili Hospital, Ningbo, China
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Cheng Qian
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanlv Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhigao Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kejin Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongchen Ji
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ming Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinsong Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
12
|
El Desoky ES, Taha AF, Mousa HS, Ibrahim A, Saleh MA, Abdelrady MA, Hareedy MS. Value of therapeutic drug monitoring of endoxifen in Egyptian premenopausal patients with breast cancer given tamoxifen adjuvant therapy: A pilot study. J Oncol Pharm Pract 2023; 29:1673-1686. [PMID: 36567618 DOI: 10.1177/10781552221146531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The complex metabolic profile of tamoxifen anticancer drug and polymorphism in its metabolizing enzymes particularly CYP2D6 contribute to the high-observed inter-individual variability in its main active metabolite endoxifen. Therapeutic drug monitoring of endoxifen may play a key role in optimizing tamoxifen therapy, and control of both adverse effects and cancer recurrence. This pilot study aims to assess the clinical benefits of applying endoxifen measurement during tamoxifen therapy in patients with breast cancer. METHODS Adult premenopausal breast cancer patients ≥ 18 years who received tamoxifen at a fixed dose of 20 mg daily were included. The primary endpoint was to identify the inter-subject variability in serum concentration of the drug and its metabolites especially endoxifen, through fixation of the tamoxifen dose. The secondary endpoint was to check the correlation between endoxifen metabolite concentration and the development of tamoxifen's adverse effects and cancer recurrence. RESULTS Sixty patients were included in the study with a mean age of 38.4 ± 0.6 years (range: 26-50). The mean concentration of tamoxifen and endoxifen was 181 ± 9.6 ng/mL and 31.49 ng/mL, respectively. The inter-individual variability in concentrations for the drug and its active metabolite as estimated by the coefficient of variation percentage was in 41% and 31%, respectively. Cancer recurrence was observed in a group of patients (n = 16) with an average endoxifen level of 24.48 ng/mL. Another group of patients (n = 25) developed different tamoxifen adverse effects including hot flashes, vaginal bleeding, endometrial thickness, and ovarian cysts with the average endoxifen level of 38.61 ng/mL. The rest of the patients (n = 19) who responded smoothly to the drug with no complications had an average endoxifen level of 31.37 ng/mL. Analysis of variance test showed a significant difference in endoxifen levels between the three groups (p = 0.002). CONCLUSION The measurement of the endoxifen active metabolite of tamoxifen in breast cancer patients can help dose optimization in light of the observed wide inter-individual variability in drug fixed-dose related concentration of the metabolite. Monitoring of serum concentration of endoxifen can help to reveal, reduce and control tamoxifen's adverse effects and cancer recurrence.
Collapse
Affiliation(s)
- Ehab S El Desoky
- Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Amira F Taha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Egypt
| | - Heba Salah Mousa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Abeer Ibrahim
- Department of Medical Oncology and Hematological Malignancy, South Egypt Cancer Institute, Assiut University, Egypt
| | - Medhat A Saleh
- Department of Public Health and Community Medicine, Faculty of Medicine, Assiut University, Egypt
| | | | | |
Collapse
|
13
|
Buijs SM, Braal CL, Buck SAJ, van Maanen NF, van der Meijden-Erkelens LM, Kuijper-Tissot van Patot HA, Hoop EOD, Saes L, van den Boogerd SJ, Struik LEM, van Rossum-Schornagel QC, Mathijssen RHJ, Koolen SLW, Jager A. CBD-oil as a potential solution in case of severe tamoxifen-related side effects. NPJ Breast Cancer 2023; 9:63. [PMID: 37543688 PMCID: PMC10404290 DOI: 10.1038/s41523-023-00570-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023] Open
Abstract
Tamoxifen may lead to bothersome side effects contributing to non-compliance and decreased quality of life. Patients searching for relief are increasingly turning to cannabinoids such as CBD-oil. However, CBD-oil might affect tamoxifen pharmacokinetics (PK) through CYP2D6 inhibition. The aims of this open-label, single-arm study were (1) to determine the PK profile of tamoxifen when using CBD-oil, and (2) to subsequently investigate whether CBD-oil has a beneficial influence on side effects. Study patients had to have steady-state endoxifen concentrations ≥16 nM (conservative threshold). PK sampling and side effect assessment was done at initiation of CBD-oil and 28 days thereafter. Bio-equivalence could be concluded if the 90% confidence interval (CI) for the difference in endoxifen AUC fell within the [-20%; +25%] interval. The effect of CBD-oil on side effects was evaluated using the FACT-ES questionnaire. Endoxifen AUC decreased after CBD-oil by 12.6% (n = 15, 90% CI -18.7%, -6.1%) but remained within bio-equivalence boundaries. The endocrine sub-scale of the FACT-ES improved clinically relevant with 6.7 points (n = 26, p < 0.001) and health-related quality of life improved with 4.7 points after using CBD (95% CI + 1.8, +7.6). We conclude that CBD-oil, if of good quality and with a dosage below 50 mg, does not have to be discouraged in patients using it for tamoxifen-related side effects. Clinical trial registration: International Clinical Trial Registry Platform (NL8786; https://www.who.int/clinical-trials-registry-platform ).
Collapse
Affiliation(s)
- Sanne M Buijs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - C Louwrens Braal
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Stefan A J Buck
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Noud F van Maanen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | | | - Esther Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lotte Saes
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Liesbeth E M Struik
- Department of Internal Medicine, Ikazia Hospital, Rotterdam, The Netherlands
| | | | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Eliassen FM, Blåfjelldal V, Helland T, Hjorth CF, Hølland K, Lode L, Bertelsen BE, Janssen EAM, Mellgren G, Kvaløy JT, Søiland H, Lende TH. Importance of endocrine treatment adherence and persistence in breast cancer survivorship: a systematic review. BMC Cancer 2023; 23:625. [PMID: 37403065 DOI: 10.1186/s12885-023-11122-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
PURPOSE Adjuvant endocrine treatment is essential for treating luminal subtypes of breast cancer, which constitute 75% of all breast malignancies. However, the detrimental side effects of treatment make it difficult for many patients to complete the guideline-required treatment. Such non-adherence may jeopardize the lifesaving ability of anti-estrogen therapy. In this systematic review, we aimed to assess the consequences of non-adherence and non-persistence from available studies meeting strict statistical and clinical criteria. METHODS A systematic literature search was performed using several databases, yielding identification of 2,026 studies. After strict selection, 14 studies were eligible for systematic review. The review included studies that examined endocrine treatment non-adherence (patients not taking treatment as prescribed) or non-persistence (patients stopping treatment prematurely), in terms of the effects on event-free survival or overall survival among women with non-metastatic breast cancer. RESULTS We identified 10 studies measuring the effects of endocrine treatment non-adherence and non-persistence on event-free survival. Of these studies, seven showed significantly poorer survival for the non-adherent or non-persistent patient groups, with hazard ratios (HRs) ranging from 1.39 (95% CI, 1.07 to 1.53) to 2.44 (95% CI, 1.89 to 3.14). We identified nine studies measuring the effects of endocrine treatment non-adherence and non-persistence on overall survival. Of these studies, seven demonstrated significantly reduced overall survival in the groups with non-adherence and non-persistence, with HRs ranging from 1.26 (95% CI, 1.11 to 1.43) to 2.18 (95% CI, 1.99 to 2.39). CONCLUSION The present systematic review demonstrates that non-adherence and non-persistence to endocrine treatment negatively affect event-free and overall survival. Improved follow-up, with focus on adherence and persistence, is vital for improving health outcomes among patients with non-metastatic breast cancer.
Collapse
Affiliation(s)
- Finn Magnus Eliassen
- Department of Surgery, Stavanger University Hospital, PO Box 8100, 4068, Stavanger, Norway.
| | - Vibeke Blåfjelldal
- Department of Surgery, Stavanger University Hospital, PO Box 8100, 4068, Stavanger, Norway
| | - Thomas Helland
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Cathrine Fonnesbech Hjorth
- Department of Clinical Epidemiology, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Kari Hølland
- Division of Research, University of Stavanger, Stavanger, Norway
| | - Lise Lode
- Department of Gastrointestinal Surgery, Hvidovre Hospital, Copenhagen, Denmark
| | - Bjørn-Erik Bertelsen
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, PO Box 8100, 4068, Stavanger, Norway
- Department of Chemistry, Biosciences and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Terje Kvaløy
- Department of Research, Stavanger University Hospital, PO Box 8100, 4068, Stavanger, Norway
- Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Research, Stavanger University Hospital, PO Box 8100, 4068, Stavanger, Norway
| | - Tone Hoel Lende
- Department of Surgery, Stavanger University Hospital, PO Box 8100, 4068, Stavanger, Norway
| |
Collapse
|
15
|
Souwer ETD, Sanchez-Spitman A, Moes DJAR, Gelderblom H, Swen JJ, Portielje JEA, Guchelaar HJ, van Gelder T. Tamoxifen pharmacokinetics and pharmacodynamics in older patients with non-metastatic breast cancer. Breast Cancer Res Treat 2023; 199:471-478. [PMID: 37067610 PMCID: PMC10175413 DOI: 10.1007/s10549-023-06925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND We aimed to study the pharmacokinetics and -dynamics of tamoxifen in older women with non-metastatic breast cancer. METHODS Data for this analysis were derived from the CYPTAM study (NTR1509) database. Patients were stratified by age (age groups < 65 and 65 and older). Steady-state trough concentrations were measured of tamoxifen, N-desmethyltamoxifen, 4-hydroxy-tamoxifen, and endoxifen. CYP2D6 and CYP3A4 phenotypes were assessed for all patients by genotyping. Multiple linear regression models were used to analyze tamoxifen and endoxifen variability. Outcome data included recurrence-free survival at time of tamoxifen discontinuation (RFSt) and overall survival (OS). RESULTS 668 patients were included, 141 (21%) were 65 and older. Demographics and treatment duration were similar across age groups. Older patients had significantly higher concentrations of tamoxifen 129.4 ng/ml (SD 53.7) versus 112.2 ng/ml (SD 42.0) and endoxifen 12.1 ng/ml (SD 6.6) versus 10.7 ng/ml (SD 5.7, p all < 0.05), independently of CYP2D6 and CYP3A4 gene polymorphisms. Age independently explained 5% of the variability of tamoxifen (b = 0.95, p < 0.001, R2 = 0.051) and 0.1% of the variability in endoxifen concentrations (b = 0.45, p = 0.12, R2 = 0.007). Older patients had worse RFSt (5.8 versus 7.3 years, p = 0.01) and worse OS (7.8 years versus 8.7 years, p = 0.01). This was not related to differences in endoxifen concentration (HR 1.0, 95% CI 0.96-1.04, p = 0.84) or CYP polymorphisms. CONCLUSION Serum concentrations of tamoxifen and its demethylated metabolites are higher in older patients, independent of CYP2D6 or CYP3A4 gene polymorphisms. A higher bioavailability of tamoxifen in older patients may explain the observed differences. However, clinical relevance of these findings is limited and should not lead to a different tamoxifen dose in older patients.
Collapse
Affiliation(s)
- E T D Souwer
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.
| | - A Sanchez-Spitman
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - D J A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - H Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J E A Portielje
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - H J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - T van Gelder
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Khor CC, Winter S, Sutiman N, Mürdter TE, Chen S, Lim JSL, Li Z, Li J, Sim KS, Ganchev B, Eccles D, Eccles B, Tapper W, Zgheib NK, Tfayli A, Ng RCH, Yap YS, Lim E, Wong M, Wong NS, Ang PCS, Dent R, Tremmel R, Klein K, Schaeffeler E, Zhou Y, Lauschke VM, Eichelbaum M, Schwab M, Brauch HB, Chowbay B, Schroth W. Cross-Ancestry Genome-Wide Association Study Defines the Extended CYP2D6 Locus as the Principal Genetic Determinant of Endoxifen Plasma Concentrations. Clin Pharmacol Ther 2023; 113:712-723. [PMID: 36629403 DOI: 10.1002/cpt.2846] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
The therapeutic efficacy of tamoxifen is predominantly mediated by its active metabolites 4-hydroxy-tamoxifen and endoxifen, whose formation is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6). Yet, known CYP2D6 polymorphisms only partially determine metabolite concentrations in vivo. We performed the first cross-ancestry genome-wide association study with well-characterized patients of European, Middle-Eastern, and Asian descent (n = 497) to identify genetic factors impacting active and parent metabolite formation. Genome-wide significant variants were functionally evaluated in an independent liver cohort (n = 149) and in silico. Metabolite prediction models were validated in two independent European breast cancer cohorts (n = 287, n = 189). Within a single 1-megabase (Mb) region of chromosome 22q13 encompassing the CYP2D6 gene, 589 variants were significantly associated with tamoxifen metabolite concentrations, particularly endoxifen and metabolic ratio (MR) endoxifen/N-desmethyltamoxifen (minimal P = 5.4E-35 and 2.5E-65, respectively). Previously suggested other loci were not confirmed. Functional analyses revealed 66% of associated, mostly intergenic variants to be significantly correlated with hepatic CYP2D6 activity or expression (ρ = 0.35 to -0.52), and six hotspot regions in the extended 22q13 locus impacting gene regulatory function. Machine learning models based on hotspot variants (n = 12) plus CYP2D6 activity score (AS) increased the explained variability (~ 9%) compared with AS alone, explaining up to 49% (median R2 ) and 72% of the variability in endoxifen and MR endoxifen/N-desmethyltamoxifen, respectively. Our findings suggest that the extended CYP2D6 locus at 22q13 is the principal genetic determinant of endoxifen plasma concentration. Long-distance haplotypes connecting CYP2D6 with adjacent regulatory sites and nongenetic factors may account for the unexplained portion of variability.
Collapse
Affiliation(s)
- Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Clinical Pharmacology, SingHealth, Singapore, Singapore
| | - Stefan Winter
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Natalia Sutiman
- Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Thomas E Mürdter
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Sylvia Chen
- Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Joanne Siok Liu Lim
- Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore
| | - Zheng Li
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Jingmei Li
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Kar Seng Sim
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Boian Ganchev
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Diana Eccles
- Faculty of Medicine, Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, University of Southampton, Southampton, UK.,University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Bryony Eccles
- Faculty of Medicine, Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, University of Southampton, Southampton, UK.,University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - William Tapper
- Faculty of Medicine, Cancer Sciences Academic Unit and University of Southampton Clinical Trials Unit, University of Southampton, Southampton, UK.,University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Arafat Tfayli
- Hematology-Oncology Division, Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Yoon Sim Yap
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Elaine Lim
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Mabel Wong
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Nan Soon Wong
- OncoCare Cancer Centre, Mount Elizabeth Novena Medical Centre, Singapore, Singapore
| | - Peter Cher Siang Ang
- OncoCare Cancer Centre, Mount Elizabeth Novena Medical Centre, Singapore, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Roman Tremmel
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Kathrin Klein
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany.,Image-Guided and Functionally Instructed Tumor Therapies Cluster of Excellence (iFIT), University of Tübingen, Tübingen, Germany
| | - Yitian Zhou
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Volker M Lauschke
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Michel Eichelbaum
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Image-Guided and Functionally Instructed Tumor Therapies Cluster of Excellence (iFIT), University of Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University of Tübingen, Tübingen, Germany.,Department of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Tübingen, Tübingen, Germany
| | - Hiltrud B Brauch
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany.,Image-Guided and Functionally Instructed Tumor Therapies Cluster of Excellence (iFIT), University of Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Tübingen, Tübingen, Germany
| | - Balram Chowbay
- Clinical Pharmacology, SingHealth, Singapore, Singapore.,Clinical Pharmacology Laboratory, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, Singapore.,Centre for Clinician-Scientist Development, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Werner Schroth
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Buijs SM, Hoop EOD, Braal CL, van Rosmalen MM, Drooger JC, van Rossum-Schornagel QC, Vastbinder MB, Koolen SLW, Jager A, Mathijssen RHJ. The impact of endoxifen-guided tamoxifen dose reductions on endocrine side-effects in patients with primary breast cancer. ESMO Open 2023; 8:100786. [PMID: 36753991 PMCID: PMC10024121 DOI: 10.1016/j.esmoop.2023.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Tamoxifen is important in the adjuvant treatment of hormone-sensitive breast cancer and substantially reduces recurrence; however, almost 50% of patients are non-compliant mainly due to side-effects. The aim of this study was to investigate whether endoxifen-guided tamoxifen dose reduction could lead to fewer side-effects. MATERIALS AND METHODS Effects of tamoxifen dose reduction were investigated in patients with bothersome side-effects and endoxifen levels ≥32 nM and compared to patients with side-effects who remained on tamoxifen 20 mg. Endocrine symptoms and health-related quality of life (HR-QOL) were assessed after 3 months with the Functional Assessment of Cancer Therapy-Endocrine Symptoms (FACT-ES) questionnaire. RESULTS Tamoxifen dose was reduced in 20 patients, 17 of whom were assessable for side-effect analyses. A clinically relevant improvement of >6 points was observed in endocrine symptoms and HR-QOL in 41% and 65% of the patients, respectively. In total, there was a significant and clinically relevant improvement in endocrine symptoms [5.7, 95% confidence interval (CI) -0.5-11.5] and HR-QOL (8.2, 95% CI 0.9-15.4) after dose reduction. This was not seen in patients whose doses were not reduced (n = 60). In 21% of patients, endoxifen dropped slightly below the 16-nM threshold (12.8, 15.5, 15.8, 15.9 nM). CONCLUSIONS Endoxifen-guided dose reduction of tamoxifen significantly improved tamoxifen-related side-effects and HR-QOL. Nearly 80% of patients remained above the most conservative endoxifen threshold.
Collapse
Affiliation(s)
- S M Buijs
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - E Oomen-de Hoop
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - C L Braal
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - M M van Rosmalen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J C Drooger
- Department of Medical Oncology, Breast Cancer Center South Holland South, Ikazia Hospital, Rotterdam, The Netherlands
| | | | - M B Vastbinder
- Department of Internal Medicine, IJsselland Hospital, Capelle aan den Ijssel, Rotterdam, The Netherlands
| | - S L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - R H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Sanchez-Spitman A, Guchelaar HJ. Personalizing tamoxifen therapy in adjuvant therapy: a brief summary of the ongoing discussion. Expert Rev Clin Pharmacol 2023; 16:93-95. [PMID: 36461813 DOI: 10.1080/17512433.2023.2154652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Anabel Sanchez-Spitman
- Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Pharmacokinetics of Tamoxifen and Its Major Metabolites and the Effect of the African Ancestry Specific CYP2D6*17 Variant on the Formation of the Active Metabolite, Endoxifen. J Pers Med 2023; 13:jpm13020272. [PMID: 36836506 PMCID: PMC9961245 DOI: 10.3390/jpm13020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Tamoxifen (TAM) is widely used in the treatment of hormone receptor-positive breast cancer. TAM is metabolized into the active secondary metabolite endoxifen (ENDO), primarily by CYP2D6. We aimed to investigate the effects of an African-specific CYP2D6 variant allele, CYP2D6*17, on the pharmacokinetics (PK) of TAM and its active metabolites in 42 healthy black Zimbabweans. Subjects were grouped based on CYP2D6 genotypes as CYP2D6*1/*1 or *1/*2 or *2/*2 (CYP2D6*1 or *2), CYP2D6*1/*17 or 2*/*17, and CYP2D6*17/*17. PK parameters for TAM and three metabolites were determined. The pharmacokinetics of ENDO showed statistically significant differences among the three groups. The mean ENDO AUC0-∞ in CYP2D6*17/*17 subjects was 452.01 (196.94) h·*ng/mL, and the AUC0-∞ in CYP2D6*1/*17 subjects was 889.74 h·ng/mL, which was 5-fold and 2.8-fold lower than in CYP2D6*1 or *2 subjects, respectively. Individuals who were heterozygous or homozygous for CYP2D6*17 alleles showed a 2- and 5-fold decrease in Cmax, respectively, compared to the CYP2D6*1 or *2 genotype. CYP2D6*17 gene carriers have significantly lower ENDO exposure levels than CYP2D6*1 or *2 gene carriers. Pharmacokinetic parameters of TAM and the two primary metabolites, N-desmethyl tamoxifen (NDT) and 4-hydroxy tamoxifen (4OHT), did not show any significant difference in the three genotype groups. The African-specific CYP2D6*17 variant had effects on ENDO exposure levels that could potentially have clinical implications for patients homozygous for this variant.
Collapse
|
20
|
Arnone AA, Cook KL. Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology 2022; 164:6772818. [PMID: 36282876 PMCID: PMC9923803 DOI: 10.1210/endocr/bqac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/16/2023]
Abstract
Despite advances in treatment strategies, breast cancer (BC) remains one of the most prevalent cancers worldwide. Recent studies implicate the gut microbiome as a potential risk factor for BC development. Alterations in gut microbial diversity resulting in dysbiosis have been linked to breast carcinogenesis by modulating host immune responses and inflammatory pathways, favoring tumorigenesis and progression. Moreover, gut microbiota populations are different between women with BC vs those that are cancer free, further implicating the role of the gut microbiome in cancer development. This alteration in gut microbiota is also associated with changes in estrogen metabolism, which strongly correlates with BC development. Gut microbiota that express the enzyme β-glucuronidase (GUS) may increase estrogen bioavailability by deconjugating estrogen-glucuronide moieties enabling reabsorption into circulation. Increased circulating estrogens may, in turn, drive estrogen receptor-positive BC. GUS-expressing microbiota also affect cancer therapy efficacy and toxicity by modifying glucuronide-conjugated drug metabolites. Therefore, GUS inhibitors have emerged as a potential antitumor treatment. However, the effectiveness of GUS inhibitors is still exploratory. Further studies are needed to determine how oral endocrine-targeting therapies may influence or be influenced by the microbiota and how that may affect carcinogenesis initiation and tumor recurrence.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Katherine L Cook
- Correspondence: Katherine L. Cook, PhD, Wake Forest School of Medicine, 575 N Patterson Ave, Ste 340, Winston-Salem, NC 27157, USA.
| |
Collapse
|
21
|
Søiland H, Janssen EAM, Helland T, Eliassen FM, Hagland M, Nordgård O, Lunde S, Lende TH, Sagen JV, Tjensvoll K, Gilje B, Jonsdottir K, Gudlaugsson E, Lode K, Hagen KB, Gripsrud BH, Lind R, Heie A, Aas T, Austdal M, Egeland NG, Bernklev T, Lash TL, Skartveit L, Kroksveen AC, Oltedal S, Kvaløy JT, Lien EA, Sleire L, Mellgren G. Liquid biopsies and patient-reported outcome measures for integrative monitoring of patients with early-stage breast cancer: a study protocol for the longitudinal observational Prospective Breast Cancer Biobanking (PBCB) study. BMJ Open 2022; 12:e054404. [PMID: 35487718 PMCID: PMC9058781 DOI: 10.1136/bmjopen-2021-054404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Breast cancer is still the most common malignancy among women worldwide. The Prospective Breast Cancer Biobank (PBCB) collects blood and urine from patients with breast cancer every 6 or 12 months for 11 years from 2011 to 2030 at two university hospitals in Western Norway. The project aims to identify new biomarkers that enable detection of systemic recurrences at the molecular level. As blood represents the biological interface between the primary tumour, the microenvironment and distant metastases, liquid biopsies represent the ideal medium to monitor the patient's cancer biology for identification of patients at high risk of relapse and for early detection systemic relapse.Including patient-reported outcome measures (PROMs) allows for a vast number of possibilities to compare PROM data with biological information, enabling the study of fatigue and Quality of Life in patients with breast cancer. METHODS AND ANALYSIS A total of 1455 patients with early-stage breast cancer are enrolled in the PBCB study, which has a one-armed prospective observational design. Participants consent to contribute liquid biopsies (i.e., peripheral blood and urine samples) every 6 or 12 months for 11 years. The liquid biopsies are the basis for detection of circulating tumour cells, circulating tumour DNA (ctDNA), exosomal micro-RNA (miRNA), miRNA in Tumour Educated Platelet and metabolomic profiles. In addition, participants respond to 10 PROM questionnaires collected annually. Moreover, a control group comprising 200 women without cancer aged 25-70 years will provide the same data. ETHICS AND DISSEMINATION The general research biobank PBCB was approved by the Ministry of Health and Care Services in 2007, by the Regional Ethics Committee (REK) in 2010 (#2010/1957). The PROM (#2011/2161) and the biomarker study PerMoBreCan (#2015/2010) were approved by REK in 2011 and 2015 respectively. Results will be published in international peer reviewed journals. Deidentified data will be accessible on request. TRIAL REGISTRATION NUMBER NCT04488614.
Collapse
Affiliation(s)
- Håvard Søiland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Emiel A M Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Thomas Helland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Finn Magnus Eliassen
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Magnus Hagland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
- Department of Chemistry, Bioscience, University of Stavanger, Stavanger, Norway
| | - Siri Lunde
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Tone Hoel Lende
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Jørn Vegard Sagen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Kjersti Tjensvoll
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Bjørnar Gilje
- Department of Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Kristin Jonsdottir
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Einar Gudlaugsson
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Kirsten Lode
- Department of Research, Stavanger University Hospital, Stavanger, Norway
- Faculty of Health Sciences Department of Caring and Ethics, University of Stavanger, Stavanger, Norway
| | - Kari Britt Hagen
- Department of Breast and Endocrine Surgery, Haukeland University Hospital, Bergen, Norway
| | - Birgitta Haga Gripsrud
- Faculty of Health Sciences Department of Caring and Ethics, University of Stavanger, Stavanger, Norway
| | - Ragna Lind
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anette Heie
- Department of Breast and Endocrine Surgery, Haukeland University Hospital, Bergen, Norway
| | - Turid Aas
- Department of Breast and Endocrine Surgery, Haukeland University Hospital, Bergen, Norway
| | - Marie Austdal
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
- Department of Research, Stavanger University Hospital, Stavanger, Norway
| | - Nina Gran Egeland
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Tomm Bernklev
- Central Hospital in Vestfold, Tønsberg, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Timothy L Lash
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Linn Skartveit
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - Satu Oltedal
- Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Jan Terje Kvaløy
- Department of Research, Stavanger University Hospital, Stavanger, Norway
- Mathematics and Physics, Department of Mathematics and Natural Science, University of Stavanger, Stavanger, Norway
| | - Ernst A Lien
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Linda Sleire
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
(Z)-Endoxifen and Early Recurrence of Breast Cancer: An Explorative Analysis in a Prospective Brazilian Study. J Pers Med 2022; 12:jpm12040511. [PMID: 35455627 PMCID: PMC9030524 DOI: 10.3390/jpm12040511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023] Open
Abstract
Adherence to treatment and use of co-medication, but also molecular factors such as CYP2D6 genotype, affect tamoxifen metabolism, with consequences for early breast cancer prognosis. In a prospective study of 149 tamoxifen-treated early-stage breast cancer patients from Brazil followed up for 5 years, we investigated the association between the active tamoxifen metabolite (Z)-endoxifen at 3 months and event-free survival (EFS) adjusted for clinico-pathological factors. Twenty-five patients (16.8%) had recurred or died at a median follow-up of 52.3 months. When we applied a putative 15 nM threshold used in previous independent studies, (Z)-endoxifen levels below the threshold showed an association with shorter EFS in univariate analysis (p = 0.045) and after adjustment for stage (HR 2.52; 95% CI 1.13–5.65; p = 0.024). However, modeling of plasma concentrations with splines instead of dichotomization did not verify a significant association with EFS (univariate analysis: p = 0.158; adjusted for stage: p = 0.117). Hence, in our small exploratory study, the link between impaired tamoxifen metabolism and early breast cancer recurrence could not be unanimously demonstrated. This inconsistency justifies larger modeling studies backed up by mechanistic pharmacodynamic analyses to shed new light on this suspected association and the stipulation of an appropriate predictive (Z)-endoxifen threshold.
Collapse
|
23
|
Boehm KM, Khosravi P, Vanguri R, Gao J, Shah SP. Harnessing multimodal data integration to advance precision oncology. Nat Rev Cancer 2022; 22:114-126. [PMID: 34663944 PMCID: PMC8810682 DOI: 10.1038/s41568-021-00408-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Advances in quantitative biomarker development have accelerated new forms of data-driven insights for patients with cancer. However, most approaches are limited to a single mode of data, leaving integrated approaches across modalities relatively underdeveloped. Multimodal integration of advanced molecular diagnostics, radiological and histological imaging, and codified clinical data presents opportunities to advance precision oncology beyond genomics and standard molecular techniques. However, most medical datasets are still too sparse to be useful for the training of modern machine learning techniques, and significant challenges remain before this is remedied. Combined efforts of data engineering, computational methods for analysis of heterogeneous data and instantiation of synergistic data models in biomedical research are required for success. In this Perspective, we offer our opinions on synthesizing complementary modalities of data with emerging multimodal artificial intelligence methods. Advancing along this direction will result in a reimagined class of multimodal biomarkers to propel the field of precision oncology in the coming decade.
Collapse
Affiliation(s)
- Kevin M Boehm
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pegah Khosravi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rami Vanguri
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jianjiong Gao
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Preliminary results using a kit to measure tamoxifen and metabolites concentrations in capillary blood samples from women with breast cancer. Sci Rep 2022; 12:1643. [PMID: 35102224 PMCID: PMC8803831 DOI: 10.1038/s41598-022-05443-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
The aim of the study was to compare 3 blood sampling methods, including capillary blood sampling, for determining Tamoxifen (TAM), Z-endoxifen (END), and 4-hydroxytamoxifen (4HT) concentrations. High performance liquid chromatography-mass spectrometry was used to quantify concentrations of TAM, END, and 4HT in plasma, venous blood, and capillary blood samples of 16 participants on TAM therapy for breast cancer. The rhelise kit was used for capillary sampling. Calibration curves using 13C-labeled analogs of TAM, END, and 4HT as internal standards were used for quantifications. A capillary sampling kit was used successfully for all participants. Mean TAM concentrations did not differ significantly in the 3 types of samples. Mean END and 4HT concentrations did differ significantly between capillary and venous blood samples, possibly related to photodegradation in the internal standards prior to use or degradation products with chromatographic retention times similar to the metabolites. TAM, END, and 4HT concentrations were relatively stable when stored for 14 days at 8 °C and 20 °C. Therapeutic drug monitoring of TAM using an innovative kit and capillary blood sampling is feasible. Preliminary data from this study will aid in developing a multicenter, randomized clinical trial of personalized TAM dose monitoring and adjustments, with the goal of enhancing the quality-of-life and outcomes of patients with breast cancer. Clinical Trial Identification: EudraCT No 2017-000641-44.
Collapse
|
25
|
Braal CL, Kleijburg A, Jager A, Koolen SLW, Mathijssen RHJ, Corro Ramos I, Wetzelaer P, Uyl-de Groot CA. Therapeutic Drug Monitoring-Guided Adjuvant Tamoxifen Dosing in Patients with Early Breast Cancer: A Cost-Effectiveness Analysis from the Prospective TOTAM Trial. Clin Drug Investig 2022; 42:163-175. [PMID: 35020170 PMCID: PMC8844136 DOI: 10.1007/s40261-021-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
Background and Objectives Endoxifen is the active metabolite of tamoxifen, and a minimal plasma concentration of 16 nM has been suggested as a threshold above which it is effective in reducing the risk of breast cancer recurrence. The aim of the current analysis was to investigate the cost-effectiveness of therapeutic drug monitoring (TDM)-guided tamoxifen dosing. Methods A cost-effectiveness analysis was performed from a Dutch healthcare perspective, using a partitioned survival model and a lifetime horizon. The reduction in subtherapeutic treatment following TDM is modelled as improved rates of recurrence-free survival (RFS) and overall survival (OS) in comparison to standard tamoxifen treatment. A probabilistic sensitivity analysis (PSA) and a series of scenario analyses were performed to assess the robustness of the results. Results Base-case results estimated a total increase in life years and quality-adjusted life years (QALYs) for TDM of 0.40 and 0.53, respectively. Total costs for TDM and standard tamoxifen treatment are €32,893 and €39,524, respectively. The TDM intervention results in both more QALYs and less healthcare costs, indicating a dominating effect for TDM. The PSA results indicate that the probability of TDM being cost-effective is 92% when using a willingness-to-pay threshold of €20,000. Conclusions TDM-guided dose optimization of tamoxifen is estimated to save costs and increase QALYs for early breast cancer patients.
Collapse
Affiliation(s)
- C Louwrens Braal
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Anne Kleijburg
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands.,CAPHRI School of Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands.,Centre of Economic Evaluation and Machine Learning, Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Isaac Corro Ramos
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Pim Wetzelaer
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Carin A Uyl-de Groot
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands.,Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Association between genetic polymorphisms in cytochrome P450 enzymes and survivals in women with breast cancer receiving adjuvant endocrine therapy: a systematic review and meta-analysis. Expert Rev Mol Med 2022; 24:e1. [PMID: 34991754 PMCID: PMC9884795 DOI: 10.1017/erm.2021.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tamoxifen is commonly prescribed for preventing recurrence in patients with breast cancer. However, the responses of the patients on tamoxifen treatment are variable. Cytochrome P450 genetic variants have been reported to have a significant impact on the clinical outcomes of tamoxifen treatment but no tangible conclusion can be made up till now. The present review attempts to provide a comprehensive review on the associative relationship between genetic polymorphisms in cytochrome P450 enzymes and survival in breast cancer patients on adjuvant tamoxifen therapy. The literature search was conducted using five databases, resulting in the inclusion of 58 studies in the review. An appraisal of the reporting quality of the included studies was conducted using the assessment tool from the Effective Public Health Practice Project (EPHPP). Meta-analyses were performed on CYP2D6 studies using Review Manager 5.3 software. For other studies, descriptive analyses were performed. The results of meta-analyses demonstrated that shorter overall survival, disease-free survival and relapse-free survival were found in the patients with decreased metabolisers when compared to normal metabolisers. The findings also showed that varying and conflicting results were reported by the included studies. The possible explanations for the variable results are discussed in this review.
Collapse
|
27
|
Jayaraman S, Reid JM, Hawse JR, Goetz MP. Endoxifen, an Estrogen Receptor Targeted Therapy: From Bench to Bedside. Endocrinology 2021; 162:6364076. [PMID: 34480554 PMCID: PMC8787422 DOI: 10.1210/endocr/bqab191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 11/19/2022]
Abstract
The selective estrogen receptor (ER) modulator, tamoxifen, is the only endocrine agent with approvals for both the prevention and treatment of premenopausal and postmenopausal estrogen-receptor positive breast cancer as well as for the treatment of male breast cancer. Endoxifen, a secondary metabolite resulting from CYP2D6-dependent biotransformation of the primary tamoxifen metabolite, N-desmethyltamoxifen (NDT), is a more potent antiestrogen than either NDT or the parent drug, tamoxifen. However, endoxifen's antitumor effects may be related to additional molecular mechanisms of action, apart from its effects on ER. In phase 1/2 clinical studies, the efficacy of Z-endoxifen, the active isomer of endoxifen, was evaluated in patients with endocrine-refractory metastatic breast cancer as well as in patients with gynecologic, desmoid, and hormone-receptor positive solid tumors, and demonstrated substantial oral bioavailability and promising antitumor activity. Apart from its potent anticancer effects, Z-endoxifen appears to result in similar or even greater bone agonistic effects while resulting in little or no endometrial proliferative effects compared with tamoxifen. In this review, we summarize the preclinical and clinical studies evaluating endoxifen in the context of breast and other solid tumors, the potential benefits of endoxifen in bone, as well as its emerging role as an antimanic agent in bipolar disorder. In total, the summarized body of literature provides compelling arguments for the ongoing development of Z-endoxifen as a novel drug for multiple indications.
Collapse
Affiliation(s)
| | - Joel M Reid
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew P Goetz
- Correspondence: Matthew P. Goetz, MD, Department of Medical Oncology and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
28
|
Petri BJ, Piell KM, South Whitt GC, Wilt AE, Poulton CC, Lehman NL, Clem BF, Nystoriak MA, Wysoczynski M, Klinge CM. HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett 2021; 518:152-168. [PMID: 34273466 PMCID: PMC8358706 DOI: 10.1016/j.canlet.2021.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022]
Abstract
Despite new combination therapies improving survival of breast cancer patients with estrogen receptor α (ER+) tumors, the molecular mechanisms for endocrine-resistant disease remain unresolved. Previously we demonstrated that expression of the RNA binding protein and N6-methyladenosine (m6A) reader HNRNPA2B1 (A2B1) is higher in LCC9 and LY2 tamoxifen (TAM)-resistant ERα breast cancer cells relative to parental TAM-sensitive MCF-7 cells. Here we report that A2B1 protein expression is higher in breast tumors than paired normal breast tissue. Modest stable overexpression of A2B1 in MCF-7 cells (MCF-7-A2B1 cells) resulted in TAM- and fulvestrant- resistance whereas knockdown of A2B1 in LCC9 and LY2 cells restored TAM and fulvestrant, endocrine-sensitivity. MCF-7-A2B1 cells gained hallmarks of TAM-resistant metastatic behavior: increased migration and invasion, clonogenicity, and soft agar colony size, which were attenuated by A2B1 knockdown in MCF-7-A2B1 and the TAM-resistant LCC9 and LY2 cells. MCF-7-A2B1, LCC9, and LY2 cells have a higher proportion of CD44+/CD24-/low cancer stem cells (CSC) compared to MCF-7 cells. MCF-7-A2B1 cells have increased ERα and reduced miR-222-3p that targets ERα. Like LCC9 cells, MCF-7-A2B1 have activated AKT and MAPK that depend on A2B1 expression and are growth inhibited by inhibitors of these pathways. These data support that targeting A2B1 could provide a complimentary therapeutic approach to reduce acquired endocrine resistance.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Gordon C South Whitt
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Ali E Wilt
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Claire C Poulton
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Norman L Lehman
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Matthew A Nystoriak
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Marcin Wysoczynski
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
29
|
Peccatori FA, Codacci-Pisanelli G, Mellgren G, Buonomo B, Baldassarre E, Lien EA, Bifulco E, Hustad S, Zachariassen E, Johansson H, Helland T. First-in-human pharmacokinetics of tamoxifen and its metabolites in the milk of a lactating mother: a case study. ESMO Open 2021; 5:e000859. [PMID: 33115771 PMCID: PMC7594360 DOI: 10.1136/esmoopen-2020-000859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
BackgroundBreast cancer represents the most frequent neoplasm diagnosed in women of childbearing age. When the tumour is oestrogen receptor-positive, tamoxifen is among the recommended endocrine treatments. Lactating women are advised not to breastfeed while receiving tamoxifen. However, information about tamoxifen transfer into breast milk is lacking.MethodsWe measured the concentration of tamoxifen and its metabolites by liquid chromatography-tandem mass spectrometry in the milk of a nursing mother that was treated for pregnancy-associated breast cancer diagnosed a few months after delivery. She was advised not to breastfeed her child and she collected milk samples for 23 days while the baby was fed with formula.ResultsTamoxifen concentrations in milk increased reaching a maximum of 214 nM. The two active metabolitesZ-4-hydroxy-tamoxifen and Z-endoxifen, could not be quantified in milk the first days after tamoxifen intake, but increased over time and reached clinically significant levels after day 18.ConclusionThis study demonstrates for the first time in human that tamoxifen and its metabolites transfer into milk. Since tamoxifen has a complete oral bioavailability, a long half-life (>7 days) and may interfere with the normal development of the infant, mothers should not breastfeed during tamoxifen treatment.
Collapse
Affiliation(s)
- Fedro Alessandro Peccatori
- Division of Gynecologic Oncology, Department of Gynecology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Codacci-Pisanelli
- Department of Medical and Surgical Sciences and Biotechnology, Universita degli Studi La Sapienza, Roma, Italy.
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Barbara Buonomo
- Division of Gynecologic Oncology, Department of Gynecology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | | | - Ernst Asbjorn Lien
- Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Ersilia Bifulco
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Steinar Hustad
- Department of Clinical Science, University of Bergen, Bergen, Norway; Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Emil Zachariassen
- Department of Clinical Science, University of Bergen, Bergen, Norway; Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO - European Institute of Oncology IRCCS, Milan, Italy
| | - Thomas Helland
- Department of Clinical Science, University of Bergen, Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
30
|
Chen Y, Marcath LA, Eliassen FM, Lende TH, Soiland H, Mellgren G, Helland T, Hertz DL. Effect of Genetic Variability in 20 Pharmacogenes on Concentrations of Tamoxifen and Its Metabolites. J Pers Med 2021; 11:jpm11060507. [PMID: 34199712 PMCID: PMC8228634 DOI: 10.3390/jpm11060507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Tamoxifen, as a treatment of estrogen receptor positive (ER+) breast cancer, is a weak anti-estrogen that requires metabolic activation to form metabolites with higher anti-estrogenic activity. Endoxifen is the most-studied active tamoxifen metabolite, and endoxifen concentrations are highly associated with CYP2D6 activity. Associations of tamoxifen efficacy with measured or CYP2D6-predicted endoxifen concentrations have been inconclusive. Another active metabolite, 4-OHtam, and other, less active metabolites, Z-4'-endoxifen and Z-4'-OHtam, have also been reported to be associated with tamoxifen efficacy. METHOD Genotype for 20 pharmacogenes was determined by VeriDose® Core Panel and VeriDose®CYP2D6 CNV Panel, followed by translation to metabolic activity phenotype following standard activity scoring. Concentrations of tamoxifen and seven metabolites were measured by UPLC-MS/MS in serum samples collected from patients receiving 20 mg tamoxifen per day. Metabolic activity was tested for association with tamoxifen and its metabolites using linear regression with adjustment for upstream metabolites to identify genes associated with each step in the tamoxifen metabolism pathway. RESULTS A total of 187 patients with genetic and tamoxifen concentration data were included in the analysis. CYP2D6 was the primary gene associated with the tamoxifen metabolism pathway, especially the conversion of tamoxifen to endoxifen. CYP3A4 and CYP2C9 were also responsible for the metabolism of tamoxifen. CYP2C9 especially impacted the hydroxylation to 4-OHtam, and this involved the OATP1B1 (SLCO1B1) transporter. CONCLUSION Multiple genes are involved in tamoxifen metabolism and multi-gene panels could be useful to predict active metabolite concentrations and guide tamoxifen dosing.
Collapse
Affiliation(s)
- Yuanhuang Chen
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109-1065, USA; (Y.C.); (T.H.)
| | - Lauren A. Marcath
- Department of Pharmacotherapy, Washington State University College of Pharmacy & Pharmaceutical Sciences, Spokane, WA 99202, USA;
| | - Finn Magnus Eliassen
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, P.O. Box 8100, 4068 Stavanger, Norway; (F.M.E.); (T.H.L.)
| | - Tone Hoel Lende
- Department of Breast and Endocrine Surgery, Stavanger University Hospital, P.O. Box 8100, 4068 Stavanger, Norway; (F.M.E.); (T.H.L.)
| | - Havard Soiland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.S.); (G.M.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.S.); (G.M.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Thomas Helland
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109-1065, USA; (Y.C.); (T.H.)
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (H.S.); (G.M.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109-1065, USA; (Y.C.); (T.H.)
- Correspondence: ; Tel.: +1-734-763-0015; Fax: +1-734-763-4480
| |
Collapse
|
31
|
Mueller-Schoell A, Michelet R, Klopp-Schulze L, van Dyk M, Mürdter TE, Schwab M, Joerger M, Huisinga W, Mikus G, Kloft C. Computational Treatment Simulations to Assess the Need for Personalized Tamoxifen Dosing in Breast Cancer Patients of Different Biogeographical Groups. Cancers (Basel) 2021; 13:cancers13102432. [PMID: 34069810 PMCID: PMC8157244 DOI: 10.3390/cancers13102432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tamoxifen is a drug often used to treat the most common type of breast cancer. Its metabolite endoxifen is formed by the liver enzyme CYP2D6, whose activity is variable and depends on a patient’s genetic profile. The frequency of CYP2D6 variants with different functional enzymatic activity varies largely between populations. To ensure sufficient efficacy of tamoxifen, a certain target concentration of endoxifen is needed, and 20% of White breast cancer patients have been shown not to reach this target concentration. However, little is known about the risk of not attaining the endoxifen target amongst other ethnic populations. This study investigated the risk for suboptimal endoxifen concentration in nine different biogeographical populations based on their distinct CYP2D6 genetic profile. The variability between the populations was high (up to three-fold), and East Asian breast cancer patients were identified as the population with the highest need for personalized tamoxifen dosing. Abstract Tamoxifen is used worldwide to treat estrogen receptor-positive breast cancer. It is extensively metabolized, and minimum steady-state concentrations of its metabolite endoxifen (CSS,min ENDX) >5.97 ng/mL have been associated with favorable outcome. Endoxifen formation is mediated by the enzyme CYP2D6, and impaired CYP2D6 function has been associated with lower CSS,min ENDX. In the Women’s Healthy Eating and Living (WHEL) study proposing the target concentration, 20% of patients showed subtarget CSS,min ENDX at tamoxifen standard dosing. CYP2D6 allele frequencies vary largely between populations, and as 87% of the patients in the WHEL study were White, little is known about the risk for subtarget CSS,min ENDX in other populations. Applying pharmacokinetic simulations, this study investigated the risk for subtarget CSS,min ENDX at tamoxifen standard dosing and the need for dose individualization in nine different biogeographical groups with distinct CYP2D6 allele frequencies. The high variability in CYP2D6 allele frequencies amongst the biogeographical groups resulted in an up to three-fold difference in the percentages of patients with subtarget CSS,min ENDX. Based on their CYP2D6 allele frequencies, East Asian breast cancer patients were identified as the population for which personalized, model-informed precision dosing would be most beneficial (28% of patients with subtarget CSS,min ENDX).
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
- Graduate Research Training Program PharMetrX, 12169 Berlin, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
| | - Lena Klopp-Schulze
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia;
| | - Thomas E. Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University Tübingen, 70376 Tübingen, Germany;
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
- German Cancer Consortium (DKTK), Partner Site Tübingen, German Cancer Research, 69120 Heidelberg, Germany
- Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Tübingen, 72076 Tübingen, Germany
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital, 9007 St. Gallen, Switzerland;
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, 14476 Potsdam, Germany;
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, 53113 Bonn, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, 12169 Berlin, Germany; (A.M.-S.); (R.M.); (L.K.-S.); (G.M.)
- Correspondence:
| |
Collapse
|
32
|
Fabian CJ. Tamoxifen: Will Less Equal More in Women with Precancerous Breast Disease? Clin Cancer Res 2021; 27:3510-3511. [PMID: 33926916 DOI: 10.1158/1078-0432.ccr-21-0729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
Similar risk reduction but fewer side effects would predict more uptake and compliance with low (5 mg) versus full (20 mg) dose tamoxifen. Benefit with low dose is demonstrated for perimenopausal/postmenopausal women with intraepithelial neoplasia and high lesion Ki-67. Longer follow-up needed to determine benefit with low lesion Ki-67.See related article by DeCensi et al., p. 3576.
Collapse
Affiliation(s)
- Carol J Fabian
- Department of Internal Medicine, Division of Clinical Oncology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
33
|
DeCensi A, Johansson H, Helland T, Puntoni M, Macis D, Aristarco V, Caviglia S, Webber TB, Briata IM, D'Amico M, Serrano D, Guerrieri-Gonzaga A, Bifulco E, Hustad S, Søiland H, Boni L, Bonanni B, Mellgren G. Association of CYP2D6 genotype and tamoxifen metabolites with breast cancer recurrence in a low-dose trial. NPJ Breast Cancer 2021; 7:34. [PMID: 33767162 PMCID: PMC7994552 DOI: 10.1038/s41523-021-00236-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Low-dose tamoxifen halves recurrence in non-invasive breast cancer without significant adverse events. Some adjuvant trials with tamoxifen 20 mg/day had shown an association between low endoxifen levels (9–16 nM) and recurrence, but no association with CYP2D6 was shown in the NSABP P1 and P2 prevention trials. We studied the association of CYP2D6 genotype and tamoxifen metabolites with tumor biomarkers and recurrence in a randomized phase III trial of low-dose tamoxifen. Median (IQR) endoxifen levels at year 1 were 8.4 (5.3–11.4) in patients who recurred vs 7.5 (5.1–10.2) in those who did not recur (p = 0.60). Tamoxifen and metabolites significantly decreased C-reactive protein (CRP, p < 0.05), and a CRP increase after 3 years was associated with higher risk of recurrence (HR = 4.37, 95% CI, 1.14–16.73, P = 0.03). In conclusion, endoxifen is below 9 nM in most subjects treated with 5 mg/day despite strong efficacy and there is no association with recurrence, suggesting that the reason for tamoxifen failure is not poor drug metabolism. Trial registration: ClinicalTrials.gov, Identifier: NCT01357772.
Collapse
Affiliation(s)
- Andrea DeCensi
- Division of Medical Oncology, E.O. Galliera Hospital, Genoa, Italy.
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Thomas Helland
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Matteo Puntoni
- Clinical Trial Unit, Office of the Scientific Director, E.O. Galliera Hospital, Genoa, Italy
| | - Debora Macis
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Caviglia
- Division of Medical Oncology, E.O. Galliera Hospital, Genoa, Italy
| | | | | | - Mauro D'Amico
- Division of Medical Oncology, E.O. Galliera Hospital, Genoa, Italy
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Ersilia Bifulco
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Steinar Hustad
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Breast and Endocrine Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Luca Boni
- IRCCS San Martino Hospital, Genoa, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
34
|
Helland T, Alsomairy S, Lin C, Søiland H, Mellgren G, Hertz DL. Generating a Precision Endoxifen Prediction Algorithm to Advance Personalized Tamoxifen Treatment in Patients with Breast Cancer. J Pers Med 2021; 11:jpm11030201. [PMID: 33805613 PMCID: PMC8000933 DOI: 10.3390/jpm11030201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen is an endocrine treatment for hormone receptor positive breast cancer. The effectiveness of tamoxifen may be compromised in patients with metabolic resistance, who have insufficient metabolic generation of the active metabolites endoxifen and 4-hydroxy-tamoxifen. This has been challenging to validate due to the lack of measured metabolite concentrations in tamoxifen clinical trials. CYP2D6 activity is the primary determinant of endoxifen concentration. Inconclusive results from studies investigating whether CYP2D6 genotype is associated with tamoxifen efficacy may be due to the imprecision in using CYP2D6 genotype as a surrogate of endoxifen concentration without incorporating the influence of other genetic and clinical variables. This review summarizes the evidence that active metabolite concentrations determine tamoxifen efficacy. We then introduce a novel approach to validate this relationship by generating a precision endoxifen prediction algorithm and comprehensively review the factors that must be incorporated into the algorithm, including genetics of CYP2D6 and other pharmacogenes. A precision endoxifen algorithm could be used to validate metabolic resistance in existing tamoxifen clinical trial cohorts and could then be used to select personalized tamoxifen doses to ensure all patients achieve adequate endoxifen concentrations and maximum benefit from tamoxifen treatment.
Collapse
Affiliation(s)
- Thomas Helland
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
- Correspondence: ; Tel.: +47-92847793
| | - Sarah Alsomairy
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| | - Chenchia Lin
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, University of Bergen, 5007 Bergen, Norway;
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA; (S.A.); (C.L.); (D.L.H.)
| |
Collapse
|
35
|
Mulder TAM, de With M, del Re M, Danesi R, Mathijssen RHJ, van Schaik RHN. Clinical CYP2D6 Genotyping to Personalize Adjuvant Tamoxifen Treatment in ER-Positive Breast Cancer Patients: Current Status of a Controversy. Cancers (Basel) 2021; 13:cancers13040771. [PMID: 33673305 PMCID: PMC7917604 DOI: 10.3390/cancers13040771] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Tamoxifen is an important adjuvant endocrine therapy in estrogen receptor (ER)-positive breast cancer patients. It is mainly catalyzed by the enzyme CYP2D6 into the most active metabolite endoxifen. Genetic variation in the CYP2D6 gene influences endoxifen formation and thereby potentially therapy outcome. However, the association between CYP2D6 genotype and clinical outcome on tamoxifen is still under debate, as contradictory outcomes have been published. This review describes the latest insights in both CYP2D6 genotype and endoxifen concentrations, as well CYP2D6 genotype and clinical outcome, from 2018 to 2020. Abstract Tamoxifen is a major option for adjuvant endocrine treatment in estrogen receptor (ER) positive breast cancer patients. The conversion of the prodrug tamoxifen into the most active metabolite endoxifen is mainly catalyzed by the enzyme cytochrome P450 2D6 (CYP2D6). Genetic variation in the CYP2D6 gene leads to altered enzyme activity, which influences endoxifen formation and thereby potentially therapy outcome. The association between genetically compromised CYP2D6 activity and low endoxifen plasma concentrations is generally accepted, and it was shown that tamoxifen dose increments in compromised patients resulted in higher endoxifen concentrations. However, the correlation between CYP2D6 genotype and clinical outcome is still under debate. This has led to genotype-based tamoxifen dosing recommendations by the Clinical Pharmacogenetic Implementation Consortium (CPIC) in 2018, whereas in 2019, the European Society of Medical Oncology (ESMO) discouraged the use of CYP2D6 genotyping in clinical practice for tamoxifen therapy. This paper describes the latest developments on CYP2D6 genotyping in relation to endoxifen plasma concentrations and tamoxifen-related clinical outcome. Therefore, we focused on Pharmacogenetic publications from 2018 (CPIC publication) to 2021 in order to shed a light on the current status of this debate.
Collapse
Affiliation(s)
- Tessa A. M. Mulder
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
| | - Mirjam de With
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands;
| | - Marzia del Re
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Romano Danesi
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126 Pisa, Italy
| | - Ron H. J. Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, Wytemaweg 80, 3015CN Rotterdam, The Netherlands;
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC University Hospital, Wytemaweg 80, 3015CN Rotterdam, The Netherlands; (T.A.M.M.); (M.d.W.); (M.d.R.); (R.D.)
- Correspondence: ; Tel.: +31-10-703-3119
| |
Collapse
|
36
|
Sula A, Hollingworth D, Ng LCT, Larmore M, DeCaen PG, Wallace BA. A tamoxifen receptor within a voltage-gated sodium channel. Mol Cell 2021; 81:1160-1169.e5. [PMID: 33503406 PMCID: PMC7980221 DOI: 10.1016/j.molcel.2020.12.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Voltage-gated sodium channels are targets for many analgesic and antiepileptic drugs whose therapeutic mechanisms and binding sites have been well characterized. We describe the identification of a previously unidentified receptor site within the NavMs voltage-gated sodium channel. Tamoxifen, an estrogen receptor modulator, and its primary and secondary metabolic products bind at the intracellular exit of the channel, which is a site that is distinct from other previously characterized sodium channel drug sites. These compounds inhibit NavMs and human sodium channels with similar potencies and prevent sodium conductance by delaying channel recovery from the inactivated state. This study therefore not only describes the structure and pharmacology of a site that could be leveraged for the development of new drugs for the treatment of sodium channelopathies but may also have important implications for off-target health effects of this widely used therapeutic drug.
Collapse
Affiliation(s)
- Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - David Hollingworth
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Leo C T Ng
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Megan Larmore
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul G DeCaen
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - B A Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
37
|
Slanař O, Hronová K, Bartošová O, Šíma M. Recent advances in the personalized treatment of estrogen receptor-positive breast cancer with tamoxifen: a focus on pharmacogenomics. Expert Opin Drug Metab Toxicol 2020; 17:307-321. [PMID: 33320718 DOI: 10.1080/17425255.2021.1865310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Tamoxifen is still an important drug in hormone-dependent breast cancer therapy. Personalization of its clinical use beyond hormone receptor positivity could improve the substantial variability of the treatment response.Areas covered: The overview of the current evidence for the treatment personalization using therapeutic drug monitoring, or using genetic biomarkers including CYP2D6 is provided. Although many studies focused on the PK aspects or the impact of CYP2D6 variability the translation into clinical routine is not clearly defined due to the inconsistent clinical outcome data.Expert opinion: We believe that at least the main candidate factors, i.e. CYP2D6 polymorphism, CYP2D6 inhibition, endoxifen serum levels may become important predictors of clinical relevance for tamoxifen treatment personalization in the future. To achieve this aim, however, further research should take into consideration more precise characterization of the disease, epigenetic factors and also utilize an appropriately powered multifactorial approach instead of a single gene evaluating studies.
Collapse
Affiliation(s)
- Ondřej Slanař
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Karolína Hronová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Olga Bartošová
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
38
|
Helland T, Naume B, Hustad S, Bifulco E, Kvaløy JT, Saetersdal AB, Synnestvedt M, Lende TH, Gilje B, Mjaaland I, Weyde K, Blix ES, Wiedswang G, Borgen E, Hertz DL, Janssen EAM, Mellgren G, Søiland H. Low Z-4OHtam concentrations are associated with adverse clinical outcome among early stage premenopausal breast cancer patients treated with adjuvant tamoxifen. Mol Oncol 2020; 15:957-967. [PMID: 33252186 PMCID: PMC8024735 DOI: 10.1002/1878-0261.12865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/01/2020] [Accepted: 11/27/2020] [Indexed: 11/06/2022] Open
Abstract
Low steady-state levels of active tamoxifen metabolites have been associated with inferior treatment outcomes. In this retrospective analysis of 406 estrogen receptor-positive breast cancer (BC) patients receiving adjuvant tamoxifen as initial treatment, we have associated our previously reported thresholds for the two active metabolites, Z-endoxifen and Z-4-hydroxy-tamoxifen (Z-4OHtam), with treatment outcomes in an independent cohort of BC patients. Among all patients, metabolite levels did not affect survival. However, in the premenopausal subgroup receiving tamoxifen alone (n = 191) we confirmed an inferior BC -specific survival in patients with the previously described serum concentration threshold of Z-4OHtam ≤ 3.26 nm (HR = 2.37, 95% CI = 1.02-5.48, P = 0.039). The 'dose-response' survival trend in patients categorized to ordinal concentration cut-points of Z-4OHtamoxifen (≤ 3.26, 3.27-8.13, > 8.13 nm) was also replicated (P-trend log-rank = 0.048). Z-endoxifen was not associated with outcome. This is the first study to confirm the association between a published active tamoxifen metabolite threshold and BC outcome in an independent patient cohort. Premenopausal patients receiving 5-year of tamoxifen alone may benefit from therapeutic drug monitoring to ensure tamoxifen effectiveness.
Collapse
Affiliation(s)
- Thomas Helland
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Norway
| | - Bjørn Naume
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Steinar Hustad
- Core Facility for Metabolomics, Department of Clinical Science, University of Bergen, Norway
| | - Ersilia Bifulco
- Core Facility for Metabolomics, Department of Clinical Science, University of Bergen, Norway
| | - Jan Terje Kvaløy
- Department of Mathematics and Physics, University of Stavanger, Norway.,Department of Research, Stavanger University Hospital, Norway
| | | | - Marit Synnestvedt
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Norway
| | - Tone Hoel Lende
- Department of Surgery, Section for Breast and Endocrine Surgery, Stavanger University Hospital, Norway
| | - Bjørnar Gilje
- Department of Oncology and Radiotherapy, Stavanger University Hospital, Norway
| | - Ingvil Mjaaland
- Department of Oncology and Radiotherapy, Stavanger University Hospital, Norway
| | - Kjetil Weyde
- Department of Oncology, Sykehuset Innlandet, Gjøvik, Norway
| | - Egil Støre Blix
- Immunology Research Group, Institute of Medical Biology, University of Tromsø, Norway.,Department of Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Gro Wiedswang
- Department of GI-Surgery, Oslo University Hospital, Norway
| | - Elin Borgen
- Department of Pathology, Oslo University Hospital, Norway
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Emiel Adrianus Maria Janssen
- Department of Pathology, Stavanger University Hospital, Norway.,Department of Bioscience and Environmental Engineering, University of Stavanger, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Norway
| | - Håvard Søiland
- Department of Clinical Science, University of Bergen, Norway.,Department of Oncology and Radiotherapy, Stavanger University Hospital, Norway
| |
Collapse
|
39
|
Malash I, Mansour O, Shaarawy S, Abdellateif MS, Omar A, Gaafer R, Zekri ARN, Ahmed OS, Bahnassy A. The Role of CYP2D6 Polymorphisms in Determining Response to Tamoxifen in Metastatic Breast Cancer Patients: Review and Egyptian Experience. Asian Pac J Cancer Prev 2020; 21:3619-3625. [PMID: 33369460 PMCID: PMC8046328 DOI: 10.31557/apjcp.2020.21.12.3619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Metastatic breast cancer (MBC) represents a major health problem in Egypt and worldwide. Prognostic and predictive factors for patients with MBC are highly required for better management and improved survival. The aim of this study was to assess the prognostic and predictive value(s) of CYP2D6 polymorphisms in Tamoxifen responders and non-responders. Methods: A cohort of 157 hormone receptor positive, locally recurrent inoperable and/or metastatic (MBC) Egyptian female patients was assessed for CYP2D6 polymorphisms. Data were correlated to relevant clinic-pathological features of the patients, response to tamoxifen, and survival rates. Results: CYP2D6 polymorphisms were detected in 44/157 cases (28%), 30 of them (68.2%) were refractory and 14 (31.8%) were responders (P=0.027). The CYP2D6 *3,*4 variants were significantly prevalent in the refractory group 26/30 (86.6%), while the *10/*10 and *10/*3 variants were more common in the responders 12/14 (85.71%, P=0.027). CYP2D6 polymorphism associated significantly with Her-2 amplification (P=0.001) as well as reduced overall survival rates in both refractory and responder patients (P< 0.001). Conclusion: CYP2D6 polymorphisms can significantly predict response to Tamoxifen treatment, and also associates with poor overall survival rates in MBC patients.
Collapse
Affiliation(s)
- Ibrahim Malash
- Medical Oncology department, National Cancer Institute (NCI), Cairo University, Egypt
| | - Osman Mansour
- Medical Oncology department, National Cancer Institute (NCI), Cairo University, Egypt
| | | | | | - Anan Omar
- Molecular Virology and Immunology Unit, Cancer Biology Department, NCI, Cairo University, Egypt
| | - Rabab Gaafer
- Medical Oncology department, National Cancer Institute (NCI), Cairo University, Egypt
| | - Abdel-Rhaman N Zekri
- Molecular Virology and Immunology Unit, Cancer Biology Department, NCI, Cairo University, Egypt
| | - Ola S Ahmed
- Molecular Virology and Immunology Unit, Cancer Biology Department, NCI, Cairo University, Egypt
| | - Abeer Bahnassy
- Tissue Culture and Cytogenetics Unit, Department of Pathology, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
40
|
Lee CI, Low SK, Maldonado R, Fox P, Balakrishnar B, Coulter S, de Bruijn P, Koolen SLW, Gao B, Lynch J, Zdenkowski N, Hui R, Liddle C, Mathijssen RHJ, Wilcken N, Wong M, Gurney H. Simplified phenotyping of CYP2D6 for tamoxifen treatment using the N-desmethyl-tamoxifen/ endoxifen ratio. Breast 2020; 54:229-234. [PMID: 33161337 PMCID: PMC7653100 DOI: 10.1016/j.breast.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION CYP2D6 protein activity can be inferred from the ratio of N-desmethyl-tamoxifen (NDMT) to endoxifen (E). CYP2D6 polymorphisms are common and can affect CYP2D6 protein activity and E level. Some retrospective studies indicate that E < 16 nM may relate to worse outcome. MATERIALS AND METHODS A target NDMT/E ratio was defined as associated with an E level of 15 nM in the 161 patient Test cohort of tamoxifen-treated patients, dichotomizing them into 'Normal' (NM) and 'Slow' (SM) CYP2D6 metabolizer groups. This ratio was then tested on a validation cohort of 52 patients. Patients were phenotyped based on the standard method (ultrarapid/extensive, intermediate or poor metabolizers; UM/EM, IM, PM) or a simplified system based on whether any variant allele (V) vs wildtype (wt) was present (wt/wt, wt/V, V/V). Comprehensive CYP2D6 genotyping was undertaken on germline DNA. RESULTS A target NDMT/E ratio of 35 correlated with the 15 nM E level, dichotomizing patients into NM (<35; N = 117) and SM (>35; N = 44) groups. The ratio was independently validated by a validation cohort. The simplified system was better in predicting patients without slow metabolism, with specificity and sensitivity of 96% and 44% respectively, compared with the standard method - sensitivity 81% and specificity 83%. CONCLUSIONS The simplified classification system based on whether any variant was present better identified patients who were truly not CYP2D6 slow metabolizers more accurately than the current system. However, as CYP2D6 genotype is not the only determinant of endoxifen level, we recommend that direct measurement of endoxifen should also be considered.
Collapse
Affiliation(s)
- Clara Inkyung Lee
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, Australia; Department of Medical Oncology, Bankstown-Lidcombe Hospital, Bankstown, Australia; Faculty of Medicine, University of New South Wales, Australia.
| | - Siew Kee Low
- Sydney Medical School, University of Sydney, Camperdown, Australia
| | | | - Peter Fox
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, Australia
| | | | - Sally Coulter
- Westmead Institute for Medical Research, Westmead, Australia
| | - Peter de Bruijn
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Bo Gao
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, Australia
| | - Jodi Lynch
- St George Hospital, Kogarah, Australia; Sutherland Hospital, Caringbah, Australia
| | | | - Rina Hui
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Christopher Liddle
- Sydney Medical School, University of Sydney, Camperdown, Australia; Westmead Institute for Medical Research, Westmead, Australia
| | | | - Nicholas Wilcken
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Mark Wong
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, Australia; Sydney Medical School, University of Sydney, Camperdown, Australia; Macquarie University, Australia
| |
Collapse
|
41
|
Puszkiel A, Arellano C, Vachoux C, Evrard A, Le Morvan V, Boyer JC, Robert J, Delmas C, Dalenc F, Debled M, Venat-Bouvet L, Jacot W, Dohollou N, Bernard-Marty C, Laharie-Mineur H, Filleron T, Roché H, Chatelut E, Thomas F, White-Koning M. Model-Based Quantification of Impact of Genetic Polymorphisms and Co-Medications on Pharmacokinetics of Tamoxifen and Six Metabolites in Breast Cancer. Clin Pharmacol Ther 2020; 109:1244-1255. [PMID: 33047329 DOI: 10.1002/cpt.2077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022]
Abstract
Variations in clinical response to tamoxifen (TAM) may be related to polymorphic cytochromes P450 (CYPs) involved in forming its active metabolite endoxifen (ENDO). We developed a population pharmacokinetic (PopPK) model for tamoxifen and six metabolites to determine clinically relevant factors of ENDO exposure. Concentration-time data for TAM and 6 metabolites come from a prospective, multicenter, 3-year follow-up study of adjuvant TAM (20 mg/day) in patients with breast cancer, with plasma samples drawn every 6 months, and genotypes for 63 genetic polymorphisms (PHACS study, NCT01127295). Concentration data for TAM and 6 metabolites from 928 patients (n = 27,433 concentrations) were analyzed simultaneously with a 7-compartment PopPK model. CYP2D6 phenotype (poor metabolizer (PM), intermediate metabolizer (IM), normal metabolizer (NM), and ultra-rapid metabolizer (UM)), CYP3A4*22, CYP2C19*2, and CYP2B6*6 genotypes, concomitant CYP2D6 inhibitors, age, and body weight had a significant impact on TAM metabolism. Formation of ENDO from N-desmethyltamoxifen was decreased by 84% (relative standard error (RSE) = 14%) in PM patients and by 47% (RSE = 9%) in IM patients and increased in UM patients by 27% (RSE = 12%) compared with NM patients. Dose-adjustment simulations support an increase from 20 mg/day to 40 and 80 mg/day in IM patients and PM patients, respectively, to reach ENDO levels similar to those in NM patients. However, when considering Antiestrogenic Activity Score (AAS), a dose increase to 60 mg/day in PM patients seems sufficient. This PopPK model can be used as a tool to predict ENDO levels or AAS according to the patient's CYP2D6 phenotype for TAM dose adaptation.
Collapse
Affiliation(s)
- Alicja Puszkiel
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Cécile Arellano
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Christelle Vachoux
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| | - Alexandre Evrard
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire Nîmes-Carémeau, Nîmes, France.,IRCM, Inserm, Université de Montpellier, ICM, Montpellier, France
| | - Valérie Le Morvan
- Inserm U1218, Université de Bordeaux, Bordeaux, France.,Institut Bergonié, Bordeaux, France
| | - Jean-Christophe Boyer
- Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire Nîmes-Carémeau, Nîmes, France
| | - Jacques Robert
- Inserm U1218, Université de Bordeaux, Bordeaux, France.,Institut Bergonié, Bordeaux, France
| | - Caroline Delmas
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Florence Dalenc
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | | | | | - William Jacot
- Institut du Cancer de Montpellier, Montpellier, France
| | | | | | | | - Thomas Filleron
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Henri Roché
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Etienne Chatelut
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Fabienne Thomas
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | - Melanie White-Koning
- Cancer Research Center of Toulouse (CRCT), Inserm U1037, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
42
|
Hockings JK, Castrillon JA, Cheng F. Pharmacogenomics meets precision cardio-oncology: is there synergistic potential? Hum Mol Genet 2020; 29:R177-R185. [PMID: 32601683 PMCID: PMC7574955 DOI: 10.1093/hmg/ddaa134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/12/2022] Open
Abstract
An individual's inherited genetic makeup and acquired genomic variants may account for a significant portion of observable variability in therapy efficacy and toxicity. Pharmacogenomics (PGx) is the concept that treatments can be modified to account for these differences to increase chances of therapeutic efficacy while minimizing risk of adverse effects. This is particularly applicable to oncology in which treatment may be multimodal. Each tumor type has a unique genomic signature that lends to inclusion of targeted therapy but may be associated with cumulative toxicity, such as cardiotoxicity, and can impact quality of life. A greater understanding of therapeutic agents impacted by PGx and subsequent implementation has the potential to improve outcomes and reduce risk of drug-induced adverse effects.
Collapse
Affiliation(s)
- Jennifer K Hockings
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica A Castrillon
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
43
|
Gusella M, Pasini F, Corso B, Bertolaso L, De Rosa G, Falci C, Modena Y, Barile C, Da Corte Z D, Fraccon A, Toso S, Cretella E, Brunello A, Modonesi C, Segati R, Oliani C, Minicuci N, Padrini R. Predicting steady-state endoxifen plasma concentrations in breast cancer patients by CYP2D6 genotyping or phenotyping. Which approach is more reliable? Pharmacol Res Perspect 2020; 8:e00646. [PMID: 32813313 PMCID: PMC7437348 DOI: 10.1002/prp2.646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
In previous studies, steady-state Z-endoxifen plasma concentrations (ENDOss) correlated with relapse-free survival in women on tamoxifen (TAM) treatment for breast cancer. ENDOss also correlated significantly with CYP2D6 genotype (activity score) and CYP2D6 phenotype (dextromethorphan test). Our aim was to ascertain which method for assessing CYP2D6 activity is more reliable in predicting ENDOss. The study concerned 203 Caucasian women on tamoxifen-adjuvant therapy (20 mg q.d.). Before starting treatment, CYP2D6 was genotyped (and activity scores computed), and the urinary log(dextromethorphan/dextrorphan) ratio [log(DM/DX)] was calculated after 15 mg of oral dextromethorphan. Plasma concentrations of TAM, N-desmethyl-tamoxifen (ND-TAM), Z-4OH-tamoxifen (4OH-TAM) and ENDO were assayed 1, 4, and 8 months after first administering TAM. Multivariable regression analysis was used to identify the clinical and laboratory variables predicting log-transformed ENDOss (log-ENDOss). Genotype-derived CYP2D6 phenotypes (PM, IM, NM, EM) and log(DM/DX) correlated independently with log-ENDOss. Genotype-phenotype concordance was almost complete only for poor metabolizers, whereas it emerged that 34% of intermediate, normal, and ultrarapid metabolizers were classified differently based on log(DM/DX). Multivariable regression analysis selected log(DM/DX) as the best predictor, with patients' age, weak inhibitor use, and CYP2D6 phenotype decreasingly important: log-ENDOss = 0.162 - log(DM/DX) × 0.170 + age × 0.0063 - weak inhibitor use × 0.250 + IM × 0.105 + (NM + UM) × 0.210; (R2 = 0.51). In conclusion, log(DM/DX) seems superior to genotype-derived CYP2D6 phenotype in predicting ENDOss.
Collapse
Affiliation(s)
| | - Felice Pasini
- Oncology UnitCasa di Cura PederzoliPeschiera del GardaItaly
| | - Barbara Corso
- National Research CouncilNeuroscience InstitutePadovaItaly
| | | | - Giovanni De Rosa
- Clinical Pharmacology Unit of the Department of Medicine (DIMED)University of PadovaPadovaItaly
| | - Cristina Falci
- Oncology Unit 2Istituto Oncologico Veneto (IOV)IRCCS PadovaPadovaItaly
| | | | | | | | | | | | | | | | | | | | | | - Nadia Minicuci
- National Research CouncilNeuroscience InstitutePadovaItaly
| | - Roberto Padrini
- Clinical Pharmacology Unit of the Department of Medicine (DIMED)University of PadovaPadovaItaly
| | | |
Collapse
|
44
|
Sanchez-Spitman AB, Moes DJAR, Swen JJ, Dezentjé VO, Lambrechts D, Neven P, Gelderblom H, Guchelaar HJ. Exposure-response analysis of endoxifen serum concentrations in early-breast cancer. Cancer Chemother Pharmacol 2020; 85:1141-1152. [PMID: 32468081 PMCID: PMC7305085 DOI: 10.1007/s00280-020-04089-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
Purpose
Tamoxifen is part of endocrine therapy in breast cancer treatment. Studies have indicated the use of endoxifen concentrations, tamoxifen active metabolite, to guide tamoxifen efficacy. Three endoxifen thresholds have been suggested (5.9 ng/ml, 5.2 ng/ml and 3.3 ng/ml) for therapeutic drug monitoring (TDM). Our aim was to validate these thresholds and to examine endoxifen exposure with clinical outcome in early-breast cancer patients using tamoxifen. Methods Data from 667 patients from the CYPTAM study (NTR1509) were available. Patients were stratified (above or below), according to the endoxifen threshold values for tamoxifen efficacy and tested by Cox regression. Logistic regressions to estimate the probability of relapse and tamoxifen discontinuation were performed. Results None of the thresholds showed a statistically significant difference in relapse-free survival: 5.2 ng/ml threshold: hazard ratio (HR): 2.545, 95% confidence interval (CI) 0.912–7.096, p value: 0.074; 3.3 ng/ml threshold: HR: 0.728; 95% CI 0.421–1.258, p value: 0.255. Logistic regression did not show a statistically significant association between the risk of relapse (odds ratio (OR): 0.971 (95% CI 0.923–1.021, p value: 0.248) and the risk for tamoxifen discontinuation (OR: 1.006 95% CI 0.961–1.053, p value: 0.798) with endoxifen concentrations. Conclusion Our findings do not confirm the endoxifen threshold values for TDM nor does it allow definition of a novel threshold. These findings indicate a limited value of TDM to guide tamoxifen efficacy.
Collapse
Affiliation(s)
- Anabel Beatriz Sanchez-Spitman
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk-Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent O Dezentjé
- Department of Medical Oncology, Netherlands Cancer Institute/Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Patrick Neven
- Department of Medical Oncology, University Hospital Leuven, Leuven, Belgium
| | - Hans Gelderblom
- Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Leiden Network for Personalised Therapeutics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
45
|
Rashad N, Abdelhamid T, Shouman SA, Nassar H, Omran MA, El Desouky ED, Khaled H. Capecitabine-Based Chemoendocrine Combination as First-Line Treatment for Metastatic Hormone-Positive Metastatic Breast Cancer: Phase 2 Study. Clin Breast Cancer 2020; 20:228-237. [PMID: 32005499 DOI: 10.1016/j.clbc.2019.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Preclinical studies have suggested a synergistic effect of tamoxifen and capecitabine in estrogen receptor-positive cell lines. We evaluated the safety and efficacy of first-line chemoendocrine treatment in patients with metastatic breast cancer. Biochemical assessment was performed of serum levels of thymidine phosphorylase enzyme (TP), serum tamoxifen, hydroxytamoxifen, and 5-fluorouracil in relationship to efficacy. PATIENTS AND METHODS This prospective phase 2 interventional study studied patients with estrogen receptor-positive, HER2- metastatic breast cancer who received either tamoxifen/capecitabine or letrozole/capecitabine as first-line treatment. The dose of capecitabine provided at 2000 mg per day continuously as a fixed dose. RESULTS Forty women with a median age of 49.3 years were enrolled. For the whole study group, median progression-free survival (PFS) was 10 months and median overall survival (OS) was 23.3 months. The overall response rate was 60% and the clinical benefit rate 82.5%. Progesterone receptor positivity was associated with significantly longer PFS (12 vs. 7 months, P = .021). The most frequent adverse events were palmar-plantar erythrodysesthesia (62.5%), fatigue (62.5%), diarrhea (30%), abdominal pain (12.5%), and constipation (10%). Changes in serum level of TP were not correlated to response to treatment, PFS, or OS. Higher serum levels of tamoxifen and hydroxytamoxifen were correlated with higher response rates and longer PFS but not OS. CONCLUSION Chemoendocrine treatment is well tolerated, with no evidence of contradictory effects between the combination components. However, the efficacy data need more validation.
Collapse
MESH Headings
- Abdominal Pain/chemically induced
- Abdominal Pain/epidemiology
- Adult
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/adverse effects
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/adverse effects
- Antineoplastic Agents, Hormonal/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/blood
- Breast Neoplasms/drug therapy
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Capecitabine/administration & dosage
- Capecitabine/adverse effects
- Capecitabine/pharmacokinetics
- Constipation/chemically induced
- Constipation/epidemiology
- Diarrhea/chemically induced
- Diarrhea/epidemiology
- Female
- Hand-Foot Syndrome/epidemiology
- Hand-Foot Syndrome/etiology
- Humans
- Letrozole/administration & dosage
- Letrozole/adverse effects
- Letrozole/pharmacokinetics
- Middle Aged
- Progression-Free Survival
- Prospective Studies
- Receptor, ErbB-2/analysis
- Receptors, Estrogen/analysis
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/analysis
- Receptors, Progesterone/metabolism
- Tamoxifen/administration & dosage
- Tamoxifen/adverse effects
- Tamoxifen/pharmacokinetics
Collapse
Affiliation(s)
- Noha Rashad
- Department of Medical Oncology, Maadi Armed Forces Hospital, Cairo, Egypt.
| | - Thoraya Abdelhamid
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia A Shouman
- Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hanan Nassar
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mervat A Omran
- Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman D El Desouky
- Department of Biostatistics and Epidemiology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hussein Khaled
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
46
|
Panoptic View of Prognostic Models for Personalized Breast Cancer Management. Cancers (Basel) 2019; 11:cancers11091325. [PMID: 31500225 PMCID: PMC6770520 DOI: 10.3390/cancers11091325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
The efforts to personalize treatment for patients with breast cancer have led to a focus on the deeper characterization of genotypic and phenotypic heterogeneity among breast cancers. Traditional pathology utilizes microscopy to profile the morphologic features and organizational architecture of tumor tissue for predicting the course of disease, and is the first-line set of guiding tools for customizing treatment decision-making. Currently, clinicians use this information, combined with the disease stage, to predict patient prognosis to some extent. However, tumoral heterogeneity stubbornly persists among patient subgroups delineated by these clinicopathologic characteristics, as currently used methodologies in diagnostic pathology lack the capability to discern deeper genotypic and subtler phenotypic differences among individual patients. Recent advancements in molecular pathology, however, are poised to change this by joining forces with multiple-omics technologies (genomics, transcriptomics, epigenomics, proteomics, and metabolomics) that provide a wealth of data about the precise molecular complement of each patient's tumor. In addition, these technologies inform the drivers of disease aggressiveness, the determinants of therapeutic response, and new treatment targets in the individual patient. The tumor architecture information can be integrated with the knowledge of the detailed mutational, transcriptional, and proteomic phenotypes of cancer cells within individual tumors to derive a new level of biologic insight that enables powerful, data-driven patient stratification and customization of treatment for each patient, at each stage of the disease. This review summarizes the prognostic and predictive insights provided by commercially available gene expression-based tests and other multivariate or clinical -omics-based prognostic/predictive models currently under development, and proposes a more inclusive multiplatform approach to tackling the challenging heterogeneity of breast cancer to individualize its management. "The future is already here-it's just not very evenly distributed."-William Ford Gibson.
Collapse
|
47
|
Chen Z, Li Z, Li H, Jiang Y. Metabolomics: a promising diagnostic and therapeutic implement for breast cancer. Onco Targets Ther 2019; 12:6797-6811. [PMID: 31686838 PMCID: PMC6709037 DOI: 10.2147/ott.s215628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women and the leading cause of cancer death. Despite the advent of numerous diagnosis and treatment methods in recent years, this heterogeneous disease still presents great challenges in early diagnosis, curative treatments and prognosis monitoring. Thus, finding promising early diagnostic biomarkers and therapeutic targets and approaches is meaningful. Metabolomics, which focuses on the analysis of metabolites that change during metabolism, can reveal even a subtle abnormal change in an individual. In recent decades, the exploration of cancer-related metabolomics has increased. Metabolites can be promising biomarkers for the screening, response evaluation and prognosis of BC. In this review, we summarized the workflow of metabolomics, described metabolite signatures based on molecular subtype as well as reclassification and then discussed the application of metabolomics in the early diagnosis, monitoring and prognosis of BC to offer new insights for clinicians in breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Zhanghan Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Haoran Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
48
|
Braal CL, Beijnen JH, Koolen SL, Oomen-de Hoop E, Steeghs N, Jager A, Huitema AD, Mathijssen RH. Relevance of Endoxifen Concentrations: Absence of Evidence Is Not Evidence of Absence. J Clin Oncol 2019; 37:1980-1981. [DOI: 10.1200/jco.19.00418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- C. Louwrens Braal
- C. Louwrens Braal, PharmD, Erasmus University Medical Center, Rotterdam, the Netherlands; Jos H. Beijnen, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands, and Utrecht University, Utrecht, the Netherlands; Stijn L.W. Koolen, PhD, PharmD and Esther Oomen-de Hoop, PhD, Erasmus University Medical Center, Rotterdam, the Netherlands; Neeltje Steeghs, MD, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Agnes Jager, MD, PhD,
| | - Jos H. Beijnen
- C. Louwrens Braal, PharmD, Erasmus University Medical Center, Rotterdam, the Netherlands; Jos H. Beijnen, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands, and Utrecht University, Utrecht, the Netherlands; Stijn L.W. Koolen, PhD, PharmD and Esther Oomen-de Hoop, PhD, Erasmus University Medical Center, Rotterdam, the Netherlands; Neeltje Steeghs, MD, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Agnes Jager, MD, PhD,
| | - Stijn L.W. Koolen
- C. Louwrens Braal, PharmD, Erasmus University Medical Center, Rotterdam, the Netherlands; Jos H. Beijnen, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands, and Utrecht University, Utrecht, the Netherlands; Stijn L.W. Koolen, PhD, PharmD and Esther Oomen-de Hoop, PhD, Erasmus University Medical Center, Rotterdam, the Netherlands; Neeltje Steeghs, MD, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Agnes Jager, MD, PhD,
| | - Esther Oomen-de Hoop
- C. Louwrens Braal, PharmD, Erasmus University Medical Center, Rotterdam, the Netherlands; Jos H. Beijnen, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands, and Utrecht University, Utrecht, the Netherlands; Stijn L.W. Koolen, PhD, PharmD and Esther Oomen-de Hoop, PhD, Erasmus University Medical Center, Rotterdam, the Netherlands; Neeltje Steeghs, MD, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Agnes Jager, MD, PhD,
| | - Neeltje Steeghs
- C. Louwrens Braal, PharmD, Erasmus University Medical Center, Rotterdam, the Netherlands; Jos H. Beijnen, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands, and Utrecht University, Utrecht, the Netherlands; Stijn L.W. Koolen, PhD, PharmD and Esther Oomen-de Hoop, PhD, Erasmus University Medical Center, Rotterdam, the Netherlands; Neeltje Steeghs, MD, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Agnes Jager, MD, PhD,
| | - Agnes Jager
- C. Louwrens Braal, PharmD, Erasmus University Medical Center, Rotterdam, the Netherlands; Jos H. Beijnen, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands, and Utrecht University, Utrecht, the Netherlands; Stijn L.W. Koolen, PhD, PharmD and Esther Oomen-de Hoop, PhD, Erasmus University Medical Center, Rotterdam, the Netherlands; Neeltje Steeghs, MD, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Agnes Jager, MD, PhD,
| | - Alwin D.R. Huitema
- C. Louwrens Braal, PharmD, Erasmus University Medical Center, Rotterdam, the Netherlands; Jos H. Beijnen, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands, and Utrecht University, Utrecht, the Netherlands; Stijn L.W. Koolen, PhD, PharmD and Esther Oomen-de Hoop, PhD, Erasmus University Medical Center, Rotterdam, the Netherlands; Neeltje Steeghs, MD, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Agnes Jager, MD, PhD,
| | - Ron H.J. Mathijssen
- C. Louwrens Braal, PharmD, Erasmus University Medical Center, Rotterdam, the Netherlands; Jos H. Beijnen, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands, and Utrecht University, Utrecht, the Netherlands; Stijn L.W. Koolen, PhD, PharmD and Esther Oomen-de Hoop, PhD, Erasmus University Medical Center, Rotterdam, the Netherlands; Neeltje Steeghs, MD, PhD, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, the Netherlands; Agnes Jager, MD, PhD,
| |
Collapse
|
49
|
Hennig EE, Piątkowska M, Goryca K, Pośpiech E, Paziewska A, Karczmarski J, Kluska A, Brewczyńska E, Ostrowski J. Non- CYP2D6 Variants Selected by a GWAS Improve the Prediction of Impaired Tamoxifen Metabolism in Patients with Breast Cancer. J Clin Med 2019; 8:jcm8081087. [PMID: 31344832 PMCID: PMC6722498 DOI: 10.3390/jcm8081087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022] Open
Abstract
A certain minimum plasma concentration of (Z)-endoxifen is presumably required for breast cancer patients to benefit from tamoxifen therapy. In this study, we searched for DNA variants that could aid in the prediction of risk for insufficient (Z)-endoxifen exposure. A metabolic ratio (MR) corresponding to the (Z)-endoxifen efficacy threshold level was adopted as a cutoff value for a genome-wide association study comprised of 287 breast cancer patients. Multivariate regression was used to preselect variables exhibiting an independent impact on the MR and develop models to predict below-threshold MR values. In total, 15 single-nucleotide polymorphisms (SNPs) were significantly associated with below-threshold MR values. The strongest association was with rs8138080 (WBP2NL). Two alternative models for MR prediction were developed. The predictive accuracy of Model 1, including rs7245, rs6950784, rs1320308, and the CYP2D6 genotype, was considerably higher than that of the CYP2D6 genotype alone (AUC 0.879 vs 0.758). Model 2, which was developed using the same three SNPs as for Model 1 plus rs8138080, appeared as an interesting alternative to the full CYP2D6 genotype testing. In conclusion, the four novel SNPs, tested alone or in combination with the CYP2D6 genotype, improved the prediction of impaired tamoxifen-to-endoxifen metabolism, potentially allowing for treatment optimization.
Collapse
Affiliation(s)
- Ewa E Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Elżbieta Brewczyńska
- Department of Breast Cancer and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
50
|
Fabian CJ. Will a Low-Dose Option Improve Uptake of Tamoxifen for Breast Cancer Risk Reduction? J Clin Oncol 2019; 37:1595-1597. [DOI: 10.1200/jco.19.00656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|