1
|
Jahangiri S, Abdan Z, Soroush A, Houshmand M, Aznab M. Strong association of single nucleotide polymorphisms in BRCA1, ATM, and CHEK2 with breast cancer susceptibility in a sub-population of Iranian women. Breast Cancer Res Treat 2024:10.1007/s10549-024-07503-7. [PMID: 39436532 DOI: 10.1007/s10549-024-07503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent malignancy in females worldwide. Mutations in the DNA repair pathway genes contribute to a significant increase in BC risk. The present study aimed to assess the frequency of polymorphisms in BRCA1, ATM, and CHEK2 genes and their association with BC susceptibility in the Kurdish population from the West of Iran. METHODS In the present case-control study, the distribution of single nucleotide polymorphisms (SNPs) in CHEK2 (rs17879961), ATM (rs28904921), and BRCA1 (rs80357906, rs1555576855, rs1555576858, and rs397509247) genes were investigated in 335 BC cases and 354 healthy-matched controls by Taqman allelic discrimination assay. The chi-square goodness-of-fit test was employed for the assessment of Hardy-Weinberg Equation. Relative risk and odds ratios were calculated based on the Koopman asymptotic score and the Baptista-Pike method, respectively. Also, the sensitivity and specificity of each polymorphism were assessed using the Wilson-Brown test and a P-value < 0.05 indicating significant differences between the two groups in all assessments. RESULTS Data showed there was a strong association between rs397509247 (OR = 7.53, 95% CI 1.88-90.91, p = 0.004), rs1555576858 (OR = 10.53, 95% CI 0.01-0.51, p = 0.0005), and rs80357906 (OR = 6.33, 95% CI 0.05-0.043, p < 0.0001) in BRCA1 gene and rs17879961 (OR = 3.52, 95% CI 0.084-0.946, p = 0.02) in CHEK2 gene, with BC risk in the population of interest. Among these, rs28904921 in ATM gene demonstrated the strongest association (OR = 72.66, 95% CI 0.007-0.214, p < 0.0001). This suggests that these SNPs, particularly rs28904921, are significantly associated with an increased risk of BC in the studied population. CONCLUSION Our results indicated that BRCA1, ATM, and CHEK2 polymorphisms have a high frequency in the Iranian breast cancer population, with some mutant allele frequencies being much higher than those reported in other populations. We have also provided a simple, multiplex, rapid, and accurate genotyping assay that is useful in clinical settings.
Collapse
Grants
- 96259 Kermanshah University Of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University Of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University Of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University Of Medical Sciences, Kermanshah, Iran
- 96259 Kermanshah University Of Medical Sciences, Kermanshah, Iran
Collapse
Affiliation(s)
- Sepideh Jahangiri
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University Of Medical Sciences, Kermanshah, Iran
| | - Zahra Abdan
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University Of Medical Sciences, Kermanshah, Iran
| | - Ali Soroush
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University Of Medical Sciences, Kermanshah, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetics and Biotechnology, Tehran, Iran
| | - Mozaffar Aznab
- Clinical Research Development Center of Imam Reza Hospital, Kermanshah University Of Medical Sciences, Kermanshah, Iran.
- Medical Oncology-Hematology, Internal Medicine Department, Kermanshah University Of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Delaloge S, Khan SA, Wesseling J, Whelan T. Ductal carcinoma in situ of the breast: finding the balance between overtreatment and undertreatment. Lancet 2024; 403:2734-2746. [PMID: 38735296 DOI: 10.1016/s0140-6736(24)00425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 05/14/2024]
Abstract
Ductal carcinoma in situ (DCIS) accounts for 15-25% of all breast cancer diagnoses. Its prognosis is excellent overall, the main risk being the occurrence of local breast events, as most cases of DCIS do not progress to invasive cancer. Systematic screening has greatly increased the incidence of this non-obligate precursor of invasion, lending urgency to the need to identify DCIS that is prone to invasive progression and distinguish it from non-invasion-prone DCIS, as the latter can be overdiagnosed and therefore overtreated. Treatment strategies, including surgery, radiotherapy, and optional endocrine therapy, decrease the risk of local events, but have no effect on survival outcomes. Active surveillance is being evaluated as a possible new option for low-risk DCIS. Considerable efforts to decipher the biology of DCIS have led to a better understanding of the factors that determine its variable natural history. Given this variability, shared decision making regarding optimal, personalised treatment strategies is the most appropriate course of action. Well designed, risk-based de-escalation studies remain a major need in this field.
Collapse
Affiliation(s)
- Suzette Delaloge
- Department of Cancer Medicine, Interception Programme, Gustave Roussy, Villejuif, France.
| | - Seema Ahsan Khan
- Department of Surgery, Northwestern University, Chicago, IL, USA
| | - Jelle Wesseling
- Divisions of Molecular Pathology & Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Timothy Whelan
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Schmidt MK, Lips EH, Schmitz RS, Verschuur E, Wesseling J. Invasive breast cancer and breast cancer death after non-screen detected ductal carcinoma in situ. BMJ 2024; 384:q22. [PMID: 38267067 DOI: 10.1136/bmj.q22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Marjanka K Schmidt
- Division of Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Netherlands
- Leiden University Medical Center, Leiden, Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Netherlands
| | - Renée Sjm Schmitz
- Division of Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Netherlands
- Leiden University Medical Center, Leiden, Netherlands
| | | | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Netherlands
- Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Hsu DS, Jiang SF, Habel LA, Hoodfar E, Karlea A, Manace-Brenman L, Dzubnar JM, Shim VC. Germline Genetic Testing Among Women ≤ 45 Years of Age with Ductal Carcinoma In Situ Versus Invasive Breast Cancer in a Large Integrated Health Care System. Ann Surg Oncol 2023; 30:6454-6461. [PMID: 37386303 DOI: 10.1245/s10434-023-13745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND We compared the results of hereditary cancer multigene panel testing among patients ≤ 45 years of age diagnosed with ductal carcinoma in situ (DCIS) versus invasive breast cancer (IBC) in a large integrated health care system. METHODS A retrospective cohort study of hereditary cancer gene testing among women ≤ 45 years of age diagnosed with DCIS or IBC at Kaiser Permanente Northern California between September 2019 and August 2020 was performed. During the study period, institutional guidelines recommended the above population be referred to genetic counselors for pretesting counseling and testing. RESULTS A total of 61 DCIS and 485 IBC patients were identified. Genetic counselors met with 95% of both groups, and 86.4% of DCIS patients and 93.9% of IBC patients (p = 0.0339) underwent gene testing. Testing differed by race/ethnicity (p = 0.0372). Among those tested, 11.76% (n = 6) of DCIS patients and 16.71% (n = 72) of IBC patients had a pathogenic variant (PV) or likely pathogenic variant (LPV) based on the 36-gene panel (p = 0.3650). Similar trends were seen in 13 breast cancer (BC)-related genes (p = 0.0553). Family history of cancer was significantly associated with both BC-related and non-BC-related PVs in IBC, but not DCIS. CONCLUSION In our study, 95% of patients were seen by a genetic counselor when age was used as an eligibility criterion for referral. While larger studies are needed to further compare the prevalence of PVs/LPVs among DCIS and IBC patients, our data suggest that even in younger patients, the prevalence of PVs/LPVs in BC-related genes is lower in DCIS patients.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/epidemiology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinoma, Intraductal, Noninfiltrating/epidemiology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Genetic Predisposition to Disease
- Retrospective Studies
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Genetic Testing
Collapse
Affiliation(s)
- Diana S Hsu
- University of California San Francisco, East Bay, Oakland, CA, USA
| | | | - Laurel A Habel
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| | | | - Audrey Karlea
- Department of Genetics, Kaiser Permanente, Oakland, CA, USA
| | | | | | | |
Collapse
|
5
|
Evans DG, Sithambaram S, van Veen EM, Burghel GJ, Schlecht H, Harkness EF, Byers H, Ellingford JM, Gandhi A, Howell SJ, Howell A, Forde C, Lalloo F, Newman WG, Smith MJ, Woodward ER. Differential involvement of germline pathogenic variants in breast cancer genes between DCIS and low-grade invasive cancers. J Med Genet 2023; 60:740-746. [PMID: 36442995 DOI: 10.1136/jmg-2022-108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate frequency of germline pathogenic variants (PVs) in women with ductal carcinoma in situ (DCIS) and grade 1 invasive breast cancer (G1BC). METHODS We undertook BRCA1/2 analysis in 311 women with DCIS and 392 with G1BC and extended panel testing (non-BRCA1/2) in 176/311 with DCIS and 156/392 with G1BC. We investigated PV detection by age at diagnosis, Manchester Score (MS), DCIS grade and receptor status. RESULTS 30/311 (9.6%) with DCIS and 16/392 with G1BC (4.1%) had a BRCA1/2 PV (p=0.003), and 24/176-(13.6%) and 7/156-(4.5%), respectively, a non-BRCA1/2 PV (p=0.004). Increasing MS was associated with increased likelihood of BRCA1/2 PV in both DCIS and G1BC, although the 10% threshold was not predictive for G1GB. 13/32 (40.6%) DCIS and 0/17 with G1BC <40 years had a non-BRCA1/2 PV (p<0.001). 0/16 DCIS G1 had a PV. For G2 and G3 DCIS, PV rates were 10/98 (BRCA1/2) and 9/90 (non-BRCA1/2), and 8/47 (BRCA1/2) and 8/45 (non-BRCA1/2), respectively. 6/9 BRCA1 and 3/26 BRCA2-associated DCIS were oestrogen receptor negative-(p=0.003). G1BC population testing showed no increased PV rate (OR=1.16, 95% CI 0.28 to 4.80). CONCLUSION DCIS is more likely to be associated with both BRCA1/2 and non-BRCA1/2 PVs than G1BC. Extended panel testing ought to be offered in young-onset DCIS where PV detection rates are highest.
Collapse
Affiliation(s)
- D Gareth Evans
- Division of Evolution and Genomic Science, The University of Manchester School of Health Sciences, Manchester, UK
| | - Siva Sithambaram
- Manchester Univerities Hospital NHS Foundation Trust, Manchester, UK
| | - Elke Maria van Veen
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester, UK
| | | | - Helene Schlecht
- North West Genomic Laboratory Hub, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Elaine F Harkness
- Division of Evolution and Genomic Sciences, The University of Manchester, Manchester, UK
| | - Helen Byers
- Genomic Medicine, The University of Manchester School of Health Sciences, Manchester, UK
| | - Jamie M Ellingford
- Institute of Human Development, The University of Manchester School of Health Sciences, Manchester, UK
| | - Ashu Gandhi
- Prevent Breast Cancer Centre, Wythenshawe Hospital Manchester Universities Foundation Trust, Manchester, UK
| | - Sacha J Howell
- Manchester Univerities Hospital NHS Foundation Trust, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Anthony Howell
- Manchester Foundation Trust, Prevent Breast Cancer Centre, Manchester, UK
| | - Claire Forde
- Clinical Genetics Service, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Fiona Lalloo
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - William G Newman
- Genetics, The University of Manchester School of Health Sciences, Manchester, UK
| | - Miriam Jane Smith
- Genetic Medicine, The University of Manchester School of Health Sciences, Manchester, UK
| | | |
Collapse
|
6
|
Kotnik U, Maver A, Peterlin B, Lovrecic L. Assessment of pathogenic variation in gynecologic cancer genes in a national cohort. Sci Rep 2023; 13:5307. [PMID: 37002323 PMCID: PMC10066348 DOI: 10.1038/s41598-023-32397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Population-based estimates of pathogenic variation burden in gynecologic cancer predisposition genes are a prerequisite for the development of effective precision public health strategies. This study aims to reveal the burden of pathogenic variants in a comprehensive set of clinically relevant breast, ovarian, and endometrial cancer genes in a large population-based study. We performed a rigorous manual classification procedure to identify pathogenic variants in a panel of 17 gynecologic cancer predisposition genes in a cohort of 7091 individuals, representing 0.35% of the general population. The population burden of pathogenic variants in hereditary gynecologic cancer-related genes in our study was 2.14%. Pathogenic variants in genes ATM, BRCA1, and CDH1 are significantly enriched and the burden of pathogenic variants in CHEK2 is decreased in our population compared to the control population. We have identified a high burden of pathogenic variants in several gynecologic cancer-related genes in the Slovenian population, most importantly in the BRCA1 gene.
Collapse
Affiliation(s)
- Urška Kotnik
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia.
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Luca Lovrecic
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Udayasiri RI, Luo T, Gorringe KL, Fox SB. Identifying recurrences and metastasis after ductal carcinoma in situ (DCIS) of the breast. Histopathology 2023; 82:106-118. [PMID: 36482277 PMCID: PMC10953414 DOI: 10.1111/his.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumour that has the potential to progress to invasive ductal carcinoma (IDC). Thus, it represents a treatment dilemma: alone it does not present a risk to life, however, left untreated it may progress to a life-threatening condition. Current clinico-pathological features cannot accurately predict which patients with DCIS have invasive potential, and therefore clinicians are unable to quantify the risk of progression for an individual patient. This leads to many women being over-treated, while others may not receive sufficient treatment to prevent invasive recurrence. A better understanding of the molecular features of DCIS, both tumour-intrinsic and the microenvironment, could offer the ability to better predict which women need aggressive treatment, and which can avoid therapies carrying significant side-effects and such as radiotherapy. In this review, we summarise the current knowledge of DCIS, and consider future research directions.
Collapse
Affiliation(s)
- Ruwangi I Udayasiri
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Tongtong Luo
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
8
|
Casasent AK, Almekinders MM, Mulder C, Bhattacharjee P, Collyar D, Thompson AM, Jonkers J, Lips EH, van Rheenen J, Hwang ES, Nik-Zainal S, Navin NE, Wesseling J. Learning to distinguish progressive and non-progressive ductal carcinoma in situ. Nat Rev Cancer 2022; 22:663-678. [PMID: 36261705 DOI: 10.1038/s41568-022-00512-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive breast neoplasia that accounts for 25% of all screen-detected breast cancers diagnosed annually. Neoplastic cells in DCIS are confined to the ductal system of the breast, although they can escape and progress to invasive breast cancer in a subset of patients. A key concern of DCIS is overtreatment, as most patients screened for DCIS and in whom DCIS is diagnosed will not go on to exhibit symptoms or die of breast cancer, even if left untreated. However, differentiating low-risk, indolent DCIS from potentially progressive DCIS remains challenging. In this Review, we summarize our current knowledge of DCIS and explore open questions about the basic biology of DCIS, including those regarding how genomic events in neoplastic cells and the surrounding microenvironment contribute to the progression of DCIS to invasive breast cancer. Further, we discuss what information will be needed to prevent overtreatment of indolent DCIS lesions without compromising adequate treatment for high-risk patients.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Charlotta Mulder
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | | | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Esther H Lips
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Nicholas E Navin
- Department of Genetics, MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioinformatics, MD Anderson Cancer Center, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands.
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
9
|
Šerman N, Vranić S, Glibo M, Šerman L, Mokos ZB. Genetic risk factors in melanoma etiopathogenesis and the role of genetic counseling: A concise review. Bosn J Basic Med Sci 2022; 22:673-682. [PMID: 35465855 PMCID: PMC9519167 DOI: 10.17305/bjbms.2021.7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is a highly aggressive cancer originating from melanocytes. Its etiopathogenesis is strongly related to genetic, epigenetic, and environmental factors. Melanomas encountered in clinical practice are predominantly sporadic, whereas hereditary melanomas account for approximately 10% of the cases. Hereditary melanomas mainly develop due to mutations in the CDKN2A gene, which encodes two tumor suppressor proteins involved in the cell cycle regulation. CDKN2A, along with CDK4, TERT, and POT1 genes, is a high-risk gene for melanoma. Among the genes that carry a moderate risk are MC1R and MITF, whose protein products are involved in melanin synthesis. The environment also contributes to the development of melanoma. Patients at risk of melanoma should be offered genetic counseling to discuss genetic testing options and the importance of skin UV protection, avoidance of sun exposure, and regular preventive dermatological examinations. Although cancer screening cannot prevent the development of the disease, it allows for early diagnosis when the survival rate is the highest.
Collapse
Affiliation(s)
| | - Semir Vranić
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljiljana Šerman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zrinka Bukvić Mokos
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Turza L, Lovejoy LA, Turner CE, Shriver CD, Ellsworth RE. Eligibility, uptake and response to germline genetic testing in women with DCIS. Front Oncol 2022; 12:918757. [PMID: 36091166 PMCID: PMC9459377 DOI: 10.3389/fonc.2022.918757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Ductal carcinoma in situ (DCIS) is a malignant, yet pre-invasive disease of the breast. While the majority of DCIS have low risk of recurrence, a subset of women with germline pathogenic variants (PV) in cancer predisposition genes are at increased risk for recurrence. Uptake of genetic testing and subsequent surgical intervention in women with DCIS has not been well-studied. The aim of this study was to evaluate test eligibility parameters, uptake of clinical testing, impact on surgical decision making and second cancer events (SCE) in women with DCIS. Methods Four-hundred eighty-four women diagnosed with unilateral DCIS 2001-2020 were eligible for this study. Demographic, commercial genetic test results and surgical procedures were extracted from the database. Test-eligibility was assigned using National Comprehensive Cancer Network (NCCN) criteria. Panel genetic testing was performed in the research laboratory across 94 cancer predisposition genes. Statistical analyses were performed using Fisher's exact tests and Chi-square analyses with p < 0.05 defining significance. Results Forty-four percent of women were test-eligible at diagnosis of which 63.4% pursued genetic testing before definitive surgery; 9.9% pursued testing only after a second cancer event. Bilateral mastectomy (BM) was significantly higher (p<0.001) in women who had testing before definitive surgery (46.9%) compared to those who had testing afterword (10.8%) and in women who underwent testing before definitive surgery with PV (75%) compared to those without PV (37.5%. p=0.045). Of the 39 women with PV, 20 (51.3%) were detected only in the research setting, with 7 (17.9%) of these women not eligible for genetic testing based on NCCN criteria. In women who did not undergo BM at diagnosis, SCE were significantly higher (p=0.001) in women with PV (33.3%) compared to those without PV (11.9%). Conclusion Pursuit of genetic testing and subsequent use of risk-reducing surgeries in women with PV was suboptimal in women with a primary diagnosis of DCIS. In conjunction, >50% of PV were detected only in the research setting. Because omission of genetic testing in women with DCIS may represent a lost opportunity for prevention, genetic testing at the time of diagnosis should be standard for all women with DCIS.
Collapse
Affiliation(s)
- Lauren Turza
- Department of Surgery, Rebecca Fortney Breast Center, Anne Arundel Medical Center, Annapolis, MD, United States
| | - Leann A Lovejoy
- Clinical Breast Care Project, Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, United States
| | - Clesson E Turner
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Craig D Shriver
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Rachel E Ellsworth
- Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
11
|
Morrissey RL, Thompson AM, Lozano G. Is loss of p53 a driver of ductal carcinoma in situ progression? Br J Cancer 2022; 127:1744-1754. [PMID: 35764786 DOI: 10.1038/s41416-022-01885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive carcinoma. Multiple studies have shown that DCIS lesions typically possess a driver mutation associated with cancer development. Mutation in the TP53 tumour suppressor gene is present in 15-30% of pure DCIS lesions and in ~30% of invasive breast cancers. Mutations in TP53 are significantly associated with high-grade DCIS, the most likely form of DCIS to progress to invasive carcinoma. In this review, we summarise published evidence on the prevalence of mutant TP53 in DCIS (including all DCIS subtypes), discuss the availability of mouse models for the study of DCIS and highlight the need for functional studies of the role of TP53 in the development of DCIS and progression from DCIS to invasive disease.
Collapse
Affiliation(s)
- Rhiannon L Morrissey
- Genetics and Epigenetics Program at The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alastair M Thompson
- Division of Surgical Oncology, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Guillermina Lozano
- Genetics and Epigenetics Program at The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA. .,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Lips EH, Kumar T, Megalios A, Visser LL, Sheinman M, Fortunato A, Shah V, Hoogstraat M, Sei E, Mallo D, Roman-Escorza M, Ahmed AA, Xu M, van den Belt-Dusebout AW, Brugman W, Casasent AK, Clements K, Davies HR, Fu L, Grigoriadis A, Hardman TM, King LM, Krete M, Kristel P, de Maaker M, Maley CC, Marks JR, Menegaz BA, Mulder L, Nieboer F, Nowinski S, Pinder S, Quist J, Salinas-Souza C, Schaapveld M, Schmidt MK, Shaaban AM, Shami R, Sridharan M, Zhang J, Stobart H, Collyar D, Nik-Zainal S, Wessels LFA, Hwang ES, Navin NE, Futreal PA, Thompson AM, Wesseling J, Sawyer EJ. Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer. Nat Genet 2022; 54:850-860. [PMID: 35681052 PMCID: PMC9197769 DOI: 10.1038/s41588-022-01082-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
Ductal carcinoma in situ (DCIS) is the most common form of preinvasive breast cancer and, despite treatment, a small fraction (5-10%) of DCIS patients develop subsequent invasive disease. A fundamental biologic question is whether the invasive disease arises from tumor cells in the initial DCIS or represents new unrelated disease. To address this question, we performed genomic analyses on the initial DCIS lesion and paired invasive recurrent tumors in 95 patients together with single-cell DNA sequencing in a subset of cases. Our data show that in 75% of cases the invasive recurrence was clonally related to the initial DCIS, suggesting that tumor cells were not eliminated during the initial treatment. Surprisingly, however, 18% were clonally unrelated to the DCIS, representing new independent lineages and 7% of cases were ambiguous. This knowledge is essential for accurate risk evaluation of DCIS, treatment de-escalation strategies and the identification of predictive biomarkers.
Collapse
Affiliation(s)
- Esther H Lips
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tapsi Kumar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Anargyros Megalios
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Lindy L Visser
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michael Sheinman
- Division of Molecular Carcinogenesis, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Angelo Fortunato
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Vandna Shah
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Marlous Hoogstraat
- Division of Molecular Carcinogenesis, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emi Sei
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Diego Mallo
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Maria Roman-Escorza
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Ahmed A Ahmed
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Mingchu Xu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Wim Brugman
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anna K Casasent
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Clements
- Screening Quality Assurance Service, Public Health England, London, UK
| | - Helen R Davies
- Early Cancer Unit, Hutchison/MRC Research Centre and Academic Department of Medical Genetics, Cambridge Biomedical Research Campus, University of Cambridge, Cambridge, UK
| | - Liping Fu
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anita Grigoriadis
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Timothy M Hardman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Lorraine M King
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Marielle Krete
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Petra Kristel
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiel de Maaker
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carlo C Maley
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Brian A Menegaz
- Department of Surgery, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lennart Mulder
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank Nieboer
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Salpie Nowinski
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Sarah Pinder
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Jelmar Quist
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Carolina Salinas-Souza
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Michael Schaapveld
- Division of Psychosocial research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Abeer M Shaaban
- Queen Elizabeth Hospital Birmingham and University of Birmingham, Birmingham, UK
| | - Rana Shami
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - Mathini Sridharan
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK
| | - John Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Serena Nik-Zainal
- Early Cancer Unit, Hutchison/MRC Research Centre and Academic Department of Medical Genetics, Cambridge Biomedical Research Campus, University of Cambridge, Cambridge, UK
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute and The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alastair M Thompson
- Department of Surgery, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Divisions of Diagnostic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elinor J Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London, UK.
| |
Collapse
|
13
|
Evans DGR, van Veen EM, Harkness EF, Brentnall AR, Astley SM, Byers H, Woodward ER, Sampson S, Southworth J, Howell SJ, Maxwell AJ, Newman WG, Cuzick J, Howell A. Breast cancer risk stratification in women of screening age: Incremental effects of adding mammographic density, polygenic risk, and a gene panel. Genet Med 2022; 24:1485-1494. [PMID: 35426792 DOI: 10.1016/j.gim.2022.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022] Open
Abstract
PURPOSE There is great promise in breast cancer risk stratification to target screening and prevention. It is unclear whether adding gene panels to other risk tools improves breast cancer risk stratification and adds discriminatory benefit on a population basis. METHODS In total, 10,025 of 57,902 women aged 46 to 73 years in the Predicting Risk of Cancer at Screening study provided DNA samples. A case-control study was used to evaluate breast cancer risk assessment using polygenic risk scores (PRSs), cancer gene panel (n = 33), mammographic density (density residual [DR]), and risk factors collected using a self-completed 2-page questionnaire (Tyrer-Cuzick [TC] model version 8). In total, 525 cases and 1410 controls underwent gene panel testing and PRS calculation (18, 143, and/or 313 single-nucleotide polymorphisms [SNPs]). RESULTS Actionable pathogenic variants (PGVs) in BRCA1/2 were found in 1.7% of cases and 0.55% of controls, and overall PGVs were found in 6.1% of cases and 1.3% of controls. A combined assessment of TC8-DR-SNP313 and gene panel provided the best risk stratification with 26.1% of controls and 9.7% of cases identified at <1.4% 10-year risk and 9.01% of controls and 23.3% of cases at ≥8% 10-year risk. Because actionable PGVs were uncommon, discrimination was identical with/without gene panel (with/without: area under the curve = 0.67, 95% CI = 0.64-0.70). Only 7 of 17 PGVs in cases resulted in actionable risk category change. Extended case (n = 644)-control (n = 1779) series with TC8-DR-SNP143 identified 18.9% of controls and only 6.4% of stage 2+ cases at <1.4% 10-year risk and 20.7% of controls and 47.9% of stage 2+ cases at ≥5% 10-year risk. CONCLUSION Further studies and economic analysis will determine whether adding panels to PRS is a cost-effective strategy for risk stratification.
Collapse
Affiliation(s)
- D Gareth R Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Prevention Breast Cancer Unit and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust (South), Manchester, United Kingdom; The Christie NHS Foundation Trust, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust (Central), Manchester, United Kingdom; Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom; Cancer Prevention Early Detection Theme, NIHR Manchester Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Elke M van Veen
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elaine F Harkness
- Prevention Breast Cancer Unit and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust (South), Manchester, United Kingdom; Cancer Prevention Early Detection Theme, NIHR Manchester Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Adam R Brentnall
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Charterhouse Square, Barts and The London, Queen Mary University of London, London, United Kingdom
| | - Susan M Astley
- Prevention Breast Cancer Unit and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust (South), Manchester, United Kingdom; Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom; Cancer Prevention Early Detection Theme, NIHR Manchester Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Helen Byers
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Cancer Prevention Early Detection Theme, NIHR Manchester Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Emma R Woodward
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Cancer Prevention Early Detection Theme, NIHR Manchester Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sarah Sampson
- Prevention Breast Cancer Unit and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust (South), Manchester, United Kingdom
| | - Jake Southworth
- Prevention Breast Cancer Unit and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust (South), Manchester, United Kingdom
| | - Sacha J Howell
- Prevention Breast Cancer Unit and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust (South), Manchester, United Kingdom; The Christie NHS Foundation Trust, Manchester, United Kingdom; Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom; Cancer Prevention Early Detection Theme, NIHR Manchester Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Anthony J Maxwell
- Prevention Breast Cancer Unit and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust (South), Manchester, United Kingdom; Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom; Cancer Prevention Early Detection Theme, NIHR Manchester Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust (Central), Manchester, United Kingdom; Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Jack Cuzick
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Charterhouse Square, Barts and The London, Queen Mary University of London, London, United Kingdom
| | - Anthony Howell
- Prevention Breast Cancer Unit and Nightingale Breast Screening Centre, Manchester University NHS Foundation Trust (South), Manchester, United Kingdom; The Christie NHS Foundation Trust, Manchester, United Kingdom; Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom; Cancer Prevention Early Detection Theme, NIHR Manchester Biomedical Research Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
14
|
Byun DJ, Wu SP, Nagar H, Gerber NK. Ductal Carcinoma in Situ in Young Women: Increasing Rates of Mastectomy and Variability in Endocrine Therapy Use. Ann Surg Oncol 2021; 28:6083-6096. [PMID: 33914220 DOI: 10.1245/s10434-021-09972-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Young women with ductal carcinoma in situ (DCIS) represent a unique cohort given considerations for future risk reduction and treatment effects on fertility and quality of life. We evaluated national patterns of care in the treatment of young women and the impact of those treatments on overall survival (OS). METHODS Women younger than 50 years of age diagnosed with pure DCIS from 2004 to 2016 in the National Cancer Database (NCDB) were identified. Clinical, demographic, and choice of local therapy are summarized and trended over time. OS was analyzed using Cox proportional hazard models. RESULTS A total of 52,150 women were identified, and the most common surgical treatment was breast-conservation surgery (BCS; 59%). Bilateral mastectomy (BM) increased in frequency from 2004 to 2016 (11-27%; p < 0.001). In women < 40 years of age, BM (39%) surpassed BCS (35%) in 2010 with a continued upward trend. On multivariable analysis, no OS benefit of BM (hazard ratio [HR] 0.99, p = 0.90) or unilateral mastectomy (UM; HR 0.98, p = 0.80) was observed when compared with BCS + radiation therapy (RT). Inferior OS was seen with BCS, Black race, estrogen receptor (ER)-negative, and tumor ≥ 2.5 cm (p ≤ 0.006). In ER+ patients, there was a significant difference in endocrine therapy (ET) use between BM (11%), UM (33%), and BCS (28%) compared with BCS + RT (64%, p < 0.001). CONCLUSION The use of BM for DCIS is increasing in younger patients and now exceeds breast-conservation approaches in women < 40 years of age with no evidence of improved OS. Among ER+ patients, the rates of ET are lower in the BM, UM, and BCS-alone groups compared with BCS + RT.
Collapse
Affiliation(s)
- David J Byun
- Department of Radiation Oncology, NYU Langone Health, Perlmutter Cancer Center, New York, NY, USA
| | - S Peter Wu
- Department of Radiation Oncology, Holy Name Medical Center, Teaneck, NJ, USA
| | - Himanshu Nagar
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Naamit K Gerber
- Department of Radiation Oncology, NYU Langone Health, Perlmutter Cancer Center, New York, NY, USA.
| |
Collapse
|
15
|
von Stedingk K, Stjernfelt KJ, Kvist A, Wahlström C, Kristoffersson U, Stenmark-Askmalm M, Wiebe T, Hjorth L, Koster J, Olsson H, Øra I. Prevalence of germline pathogenic variants in 22 cancer susceptibility genes in Swedish pediatric cancer patients. Sci Rep 2021; 11:5307. [PMID: 33674644 PMCID: PMC7935871 DOI: 10.1038/s41598-021-84502-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Up to 10% of pediatric cancer patients harbor pathogenic germline variants in one or more cancer susceptibility genes. A recent study from the US reported pathogenic variants in 22 out of 60 analyzed autosomal dominant cancer susceptibility genes, implicating 8.5% of pediatric cancer patients. Here we aimed to assess the prevalence of germline pathogenic variants in these 22 genes in a population-based Swedish cohort and to compare the results to those described in other populations. We found pathogenic variants in 10 of the 22 genes covering 3.8% of these patients. The prevalence of TP53 mutations was significantly lower than described in previous studies, which can largely be attributed to differences in tumor diagnosis distributions across the three cohorts. Matched family history for relatives allowed assessment of familial cancer incidence, however, no significant difference in cancer incidence was found in families of children carrying pathogenic variants compared to those who did not.
Collapse
Affiliation(s)
- Kristoffer von Stedingk
- Department of Pediatrics, Clinical Sciences, Lund University, Lasarettsgatan 40, 22185, Lund, Sweden. .,Department of Oncogenomics, University Medical Center, AMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Karl-Johan Stjernfelt
- Department of Pediatrics, Clinical Sciences, Lund University, Lasarettsgatan 40, 22185, Lund, Sweden.,Pediatric Oncology and Hematology, Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - Anders Kvist
- Department of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Cecilia Wahlström
- Department of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Ulf Kristoffersson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Marie Stenmark-Askmalm
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Thomas Wiebe
- Department of Pediatrics, Clinical Sciences, Lund University, Lasarettsgatan 40, 22185, Lund, Sweden.,Pediatric Oncology and Hematology, Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - Lars Hjorth
- Department of Pediatrics, Clinical Sciences, Lund University, Lasarettsgatan 40, 22185, Lund, Sweden.,Pediatric Oncology and Hematology, Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - Jan Koster
- Department of Oncogenomics, University Medical Center, AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Håkan Olsson
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden.,Department of Cancer Epidemiology, Clinical Sciences, Lund, University, Lund, Sweden
| | - Ingrid Øra
- Department of Pediatrics, Clinical Sciences, Lund University, Lasarettsgatan 40, 22185, Lund, Sweden.,Pediatric Oncology and Hematology, Children's Hospital, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
16
|
Mukama T, Fallah M, Brenner H, Xu X, Sundquist K, Sundquist J, Kharazmi E. Risk of invasive breast cancer in relatives of patients with breast carcinoma in situ: a prospective cohort study. BMC Med 2020; 18:295. [PMID: 33148280 PMCID: PMC7643418 DOI: 10.1186/s12916-020-01772-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Wide implementation of mammography screening has resulted in increased numbers of women diagnosed with breast carcinoma in situ. We aimed to determine the risk of invasive breast cancer in relatives of patients with breast carcinoma in situ in comparison to the risk in relatives of patients with invasive breast cancer. METHODS We analyzed the occurrence of cancer in a nationwide cohort including all 5,099,172 Swedish women born after 1931 with at least one known first-degree relative. This was a record linkage study of Swedish family cancer datasets, including cancer registry data collected from January 1, 1958, to December 31, 2015. We calculated standardized incidence ratios (SIRs) and 10-year cumulative risk of breast cancer diagnosis for women with a family history of in situ and invasive breast cancer. RESULTS Having one first-degree relative with breast carcinoma in situ was associated with 50% increased risk of invasive breast cancer (SIR = 1.5, 95% CI 1.4-1.7) when compared to those who had no family history of invasive breast cancer or breast carcinoma in situ in either first- or second-degree relatives. Similarly, having one first-degree relative with invasive breast cancer was associated with 70% (1.7, 1.7-1.8) increased risk. The 10-year cumulative risk for women at age 50 with a relative with breast carcinoma in situ was 3.5% (2.9-3.9%) and was not significantly different from 3.7% (3.6-3.8%) risk for 50-year-old women with a relative with invasive breast cancer (95% confidence intervals overlapped). CONCLUSIONS The risk of invasive breast cancer for women with a family history of breast carcinoma in situ was comparable to that for women with a family history of invasive breast cancer. Therefore, family history of breast carcinoma in situ should not be overlooked in recommendations for breast cancer prevention for women with a family history of breast cancer.
Collapse
Affiliation(s)
- Trasias Mukama
- Division of Preventive Oncology, Risk Adapted Prevention (RAD) Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany.,Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Mahdi Fallah
- Division of Preventive Oncology, Risk Adapted Prevention (RAD) Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Center for Primary Health Care Research, Lund University, Malmö, Sweden.
| | - Hermann Brenner
- Division of Preventive Oncology, Risk Adapted Prevention (RAD) Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xing Xu
- Division of Preventive Oncology, Risk Adapted Prevention (RAD) Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden.,Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA.,Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Izumo, Japan
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden.,Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA.,Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Izumo, Japan
| | - Elham Kharazmi
- Division of Preventive Oncology, Risk Adapted Prevention (RAD) Group, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Center for Primary Health Care Research, Lund University, Malmö, Sweden.,Statistical Genetics Group, Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Nadeu F, Martin-Garcia D, Clot G, Díaz-Navarro A, Duran-Ferrer M, Navarro A, Vilarrasa-Blasi R, Kulis M, Royo R, Gutiérrez-Abril J, Valdés-Mas R, López C, Chapaprieta V, Puiggros M, Castellano G, Costa D, Aymerich M, Jares P, Espinet B, Muntañola A, Ribera-Cortada I, Siebert R, Colomer D, Torrents D, Gine E, López-Guillermo A, Küppers R, Martin-Subero JI, Puente XS, Beà S, Campo E. Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes. Blood 2020; 136:1419-1432. [PMID: 32584970 PMCID: PMC7498364 DOI: 10.1182/blood.2020005289] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/14/2020] [Indexed: 01/03/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm initially driven by CCND1 rearrangement with 2 molecular subtypes, conventional MCL (cMCL) and leukemic non-nodal MCL (nnMCL), that differ in their clinicobiological behavior. To identify the genetic and epigenetic alterations determining this diversity, we used whole-genome (n = 61) and exome (n = 21) sequencing (74% cMCL, 26% nnMCL) combined with transcriptome and DNA methylation profiles in the context of 5 MCL reference epigenomes. We identified that open and active chromatin at the major translocation cluster locus might facilitate the t(11;14)(q13;32), which modifies the 3-dimensional structure of the involved regions. This translocation is mainly acquired in precursor B cells mediated by recombination-activating genes in both MCL subtypes, whereas in 8% of cases the translocation occurs in mature B cells mediated by activation-induced cytidine deaminase. We identified novel recurrent MCL drivers, including CDKN1B, SAMHD1, BCOR, SYNE1, HNRNPH1, SMARCB1, and DAZAP1. Complex structural alterations emerge as a relevant early oncogenic mechanism in MCL, targeting key driver genes. Breakage-fusion-bridge cycles and translocations activated oncogenes (BMI1, MIR17HG, TERT, MYC, and MYCN), generating gene amplifications and remodeling regulatory regions. cMCL carried significant higher numbers of structural variants, copy number alterations, and driver changes than nnMCL, with exclusive alterations of ATM in cMCL, whereas TP53 and TERT alterations were slightly enriched in nnMCL. Several drivers had prognostic impact, but only TP53 and MYC aberrations added value independently of genomic complexity. An increasing genomic complexity, together with the presence of breakage-fusion-bridge cycles and high DNA methylation changes related to the proliferative cell history, defines patients with different clinical evolution.
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - David Martin-Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Ander Díaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Martí Duran-Ferrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Navarro
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Roser Vilarrasa-Blasi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Kulis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Romina Royo
- Barcelona Supercomputing Center, Barcelona, Spain
| | - Jesús Gutiérrez-Abril
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Rafael Valdés-Mas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
| | - Pedro Jares
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| | - Blanca Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Hospital del Mar, Barcelona, Spain
| | - Ana Muntañola
- Servei d'Hematologia, Hospital Mútua de Terrassa, Terrassa, Spain
| | - Inmaculada Ribera-Cortada
- Hospital Clínic of Barcelona, Barcelona, Spain
- Hospital Nostra Senyora de Meritxell, Escaldes-Engordany, Andorra la Vella, Andorra
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| | | | - Eva Gine
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
| | - Armando López-Guillermo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
- German Consortium for Cancer Research, Heidelberg, Germany; and
| | - Jose I Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Sílvia Beà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Departament de Fonaments Clinics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|