1
|
Islam R, Yen KP, Rani NN'IM, Hossain MS. Recent advancement in developing small molecular inhibitors targeting key kinase pathways against triple-negative breast cancer. Bioorg Med Chem 2024; 112:117877. [PMID: 39159528 DOI: 10.1016/j.bmc.2024.117877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Triple-negative breast cancer (TNBC) stands out as the most formidable variant of breast cancer, predominantly affecting younger women and characterized by a bleak outlook and a high likelihood of spreading. The absence of safe and effective targeted treatments leaves standard cytotoxic chemotherapy as the primary option. The role of protein kinases, frequently altered in many cancers, is significant in the advancement and drug resistance of TNBC, making them a logical target for creating new, potent therapies against TNBC. Recently, an array of promising small molecules aimed at various kinases have been developed specifically for TNBC, with combination studies showing a synergistic improvement in combatting this condition. This review underscores the effectiveness of small molecule kinase inhibitors in battling the most lethal form of breast cancer and sheds light on prospective pathways for crafting novel treatments.
Collapse
Affiliation(s)
- Rajibul Islam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Khor Poh Yen
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Nur Najihah 'Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Md Selim Hossain
- Vascular Biology Centre, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
2
|
de Moraes FCA, Sano VKT, Pereira CRM, de Laia EA, Stecca C, Magalhães MCF, Burbano RMR. Treatment-related adverse events in patients with advanced breast cancer receiving adjuvant AKT inhibitors: a meta-analysis of randomized controlled trials. Eur J Clin Pharmacol 2024; 80:1373-1385. [PMID: 38888626 DOI: 10.1007/s00228-024-03713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Incorporation of AKT inhibitors into adjuvant therapy for advanced or metastatic breast cancer has improved clinical outcomes. However, the safety of AKT inhibitors should be better evaluated, given the possibility of prolonging survival and impacting patient quality of life. Our aim was to assess how the addition of AKT inhibitors to adjuvant therapy affects treatment-related adverse events. METHODS We evaluated binary outcomes with risk ratios (RRs), with 95% confidence intervals (CIs). We used DerSimonian and Laird random-effect models for all endpoints. Heterogeneity was assessed using I2 statistics. R, version 4.2.3, was used for statistical analyses. RESULTS A total of seven RCTs comprising 1619 patients with BC. The adverse effects that show significance statistical favoring the occurrence of adverse effects in AKT inhibitor were diarrhea (RR 3.05; 95% CI 2.48-3.75; p < 0.00001; I2 = 49%), hyperglycemia (RR 3.4; 95% CI 1.69-6.83; p = 0.00058; I2 = 75%), nausea (RR 1.69; 95% CI 1.34-2.13; p = 0.000008; I2 = 42%), rash (RR 2.79; 95% CI 1.49-5.23; p = 0.0013; I2 = 82%), stomatitis (RR 2.24; 95% CI 1.69-2.97; p < 0.00001; I2 = 16%) and vomiting (RR 2.99; 95% CI 1.85-4.86; p = 0.00009; I2 = 42%). There was no significant difference between the groups for alopecia (p = 0.80), fatigue (p = 0.087), and neuropathy (p = 0.363380). CONCLUSION The addition of AKT inhibitors to adjuvant therapy was associated with an increase in treatment-related adverse events. These results provide safety information for further clinical trials evaluating AKT inhibitor therapy for patients with metastatic BC. Clinicians should closely monitor patients for treatment-related adverse events to avoid discontinuation of therapy and morbidity caused by these early-stage therapies.
Collapse
Affiliation(s)
| | | | - Caroline R M Pereira
- Department of Medicine, State University of Rio de Janeiro (UERJ), Vila Isabel, Rio de Janeiro, 20551-030, Brazil
| | | | - Carlos Stecca
- Mackenzie Evangelical University Hospital, Curitiba, Paraná, 80730-150, Brazil
| | | | | |
Collapse
|
3
|
Nussinov R, Jang H. The value of protein allostery in rational anticancer drug design: an update. Expert Opin Drug Discov 2024; 19:1071-1085. [PMID: 39068599 PMCID: PMC11390313 DOI: 10.1080/17460441.2024.2384467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies. AREAS COVERED The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject. EXPERT OPINION To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
4
|
Elshazly AM, Xu J, Melhem N, Abdulnaby A, Elzahed AA, Saleh T, Gewirtz DA. Is Autophagy Targeting a Valid Adjuvant Strategy in Conjunction with Tyrosine Kinase Inhibitors? Cancers (Basel) 2024; 16:2989. [PMID: 39272847 PMCID: PMC11394573 DOI: 10.3390/cancers16172989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent a relatively large class of small-molecule inhibitors that compete with ATP for the catalytic binding site of tyrosine kinase proteins. While TKIs have demonstrated effectiveness in the treatment of multiple malignancies, including chronic myelogenous leukemia, gastrointestinal tumors, non-small cell lung cancers, and HER2-overexpressing breast cancers, as is almost always the case with anti-neoplastic agents, the development of resistance often imposes a limit on drug efficacy. One common survival response utilized by tumor cells to ensure their survival in response to different stressors, including anti-neoplastic drugs, is that of autophagy. The autophagic machinery in response to TKIs in multiple tumor models has largely been shown to be cytoprotective in nature, although there are a number of cases where autophagy has demonstrated a cytotoxic function. In this review, we provide an overview of the literature examining the role that autophagy plays in response to TKIs in different preclinical tumor model systems in an effort to determine whether autophagy suppression or modulation could be an effective adjuvant strategy to increase efficiency and/or overcome resistance to TKIs.
Collapse
Affiliation(s)
- Ahmed M Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Nebras Melhem
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Alsayed Abdulnaby
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Aya A Elzahed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA
| |
Collapse
|
5
|
Li H, Wen X, Ren Y, Fan Z, Zhang J, He G, Fu L. Targeting PI3K family with small-molecule inhibitors in cancer therapy: current clinical status and future directions. Mol Cancer 2024; 23:164. [PMID: 39127670 DOI: 10.1186/s12943-024-02072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The Phosphatidylinositol-3-kinase (PI3K) family is well-known to comprise three classes of intracellular enzymes. Class I PI3Ks primarily function in signaling by responding to cell surface receptor stimulation, while class II and III are more involved in membrane transport. Under normal physiological conditions, the PI3K signaling network orchestrates cell growth, division, migration and survival. Aberrant activation of the PI3K signaling pathway disrupts cellular activity and metabolism, often marking the onset of cancer. Currently, the Food and Drug Administration (FDA) has approved the clinical use of five class I PI3K inhibitors. These small-molecule inhibitors, which exhibit varying selectivity for different class I PI3K family members, are primarily used in the treatment of breast cancer and hematologic malignancies. Therefore, the development of novel class I PI3K inhibitors has been a prominent research focus in the field of oncology, aiming to enhance potential therapeutic selectivity and effectiveness. In this review, we summarize the specific structures of PI3Ks and their functional roles in cancer progression. Additionally, we critically evaluate small molecule inhibitors that target class I PI3K, with a particular focus on their clinical applications in cancer treatment. Moreover, we aim to analyze therapeutic approaches for different types of cancers marked by aberrant PI3K activation and to identify potential molecular targets amenable to intervention with small-molecule inhibitors. Ultimately, we propose future directions for the development of therapeutic strategies that optimize cancer treatment outcomes by modulating the PI3K family.
Collapse
Affiliation(s)
- Hongyao Li
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Yueting Ren
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
- Department of Brain Science, Faculty of Medicine, Imperial College, London, SW72AZ, UK
| | - Zhichao Fan
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China.
| | - Gu He
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan University, Chengdu, 610041, China.
| | - Leilei Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, 116023, China.
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
6
|
Shafiq M, Sherwani ZA, Mushtaq M, Nur-E-Alam M, Ahmad A, Ul-Haq Z. A deep learning-based theoretical protocol to identify potentially isoform-selective PI3Kα inhibitors. Mol Divers 2024; 28:1907-1924. [PMID: 38305819 DOI: 10.1007/s11030-023-10799-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Phosphoinositide 3-kinase alpha (PI3Kα) is one of the most frequently dysregulated kinases known for their pivotal role in many oncogenic diseases. While the side effects linked to existing drugs against PI3Kα-induced cancers provide an avenue for further research, the significant structural conservation among PI3Ks makes it extremely difficult to develop new isoform-selective PI3Kα inhibitors. Embracing this challenge, we herein designed a hybrid protocol by integrating machine learning (ML) with in silico drug-designing strategies. A deep learning classification model was developed and trained on the physicochemical descriptors data of known PI3Kα inhibitors and used as a screening filter for a database of small molecules. This approach led us to the prediction of 662 compounds showcasing appropriate features to be considered as PI3Kα inhibitors. Subsequently, a multiphase molecular docking was applied to further characterize the predicted hits in terms of their binding affinities and binding modes in the targeted cavity of the PI3Kα. As a result, a total of 12 compounds were identified whereas the best poses highlighted the efficiency of these ligands in maintaining interactions with the crucial residues of the protein to be targeted for the inhibition of associated activity. Notably, potential activity of compound 12 in counteracting PI3Kα function was found in a previous in vitro study. Following the drug-likeness and pharmacokinetic characterizations, six compounds (compounds 1, 2, 3, 6, 7, and 11) with suitable ADME-T profiles and promising bioavailability were selected. The mechanistic studies in dynamic mode further endorsed the potential of identified hits in blocking the ATP-binding site of the receptor with higher binding affinities than the native inhibitor, alpelisib (BYL-719), particularly the compounds 1, 2, and 11. These outcomes support the reliability of the developed classification model and the devised computational strategy for identifying new isoform-selective drug candidates for PI3Kα inhibition.
Collapse
Affiliation(s)
- Muhammad Shafiq
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zaid Anis Sherwani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mamona Mushtaq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohammad Nur-E-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Aftab Ahmad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
7
|
Browne IM, Okines AFC. Resistance to Targeted Inhibitors of the PI3K/AKT/mTOR Pathway in Advanced Oestrogen-Receptor-Positive Breast Cancer. Cancers (Basel) 2024; 16:2259. [PMID: 38927964 PMCID: PMC11201395 DOI: 10.3390/cancers16122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The PI3K/AKT/mTOR signalling pathway is one of the most frequently activated pathways in breast cancer and also plays a central role in the regulation of several physiologic functions. There are major efforts ongoing to exploit precision medicine by developing inhibitors that target the three kinases (PI3K, AKT, and mTOR). Although multiple compounds have been developed, at present, there are just three inhibitors approved to target this pathway in patients with advanced ER-positive, HER2-negative breast cancer: everolimus (mTOR inhibitor), alpelisib (PIK3CA inhibitor), and capivasertib (AKT inhibitor). Like most targeted cancer drugs, resistance poses a major problem in the clinical setting and is a factor that has frequently limited the overall efficacy of these agents. Drug resistance can be categorised into intrinsic or acquired resistance depending on the timeframe it has developed within. Whereas intrinsic resistance exists prior to a specific treatment, acquired resistance is induced by a therapy. The majority of patients with ER-positive, HER2-negative advanced breast cancer will likely be offered an inhibitor of the PI3K/AKT/mTOR pathway at some point in their cancer journey, with the options available depending on the approval criteria in place and the cancer's mutation status. Within this large cohort of patients, it is likely that most will develop resistance at some point, which makes this an area of interest and an unmet need at present. Herein, we review the common mechanisms of resistance to agents that target the PI3K/AKT/mTOR signalling pathway, elaborate on current management approaches, and discuss ongoing clinical trials attempting to mitigate this significant issue. We highlight the need for additional studies into AKT1 inhibitor resistance in particular.
Collapse
|
8
|
Bullock KK, Richmond A. Beyond Anti-PD-1/PD-L1: Improving Immune Checkpoint Inhibitor Responses in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:2189. [PMID: 38927895 PMCID: PMC11201651 DOI: 10.3390/cancers16122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The introduction of anti-programmed cell death protein-1 (anti-PD-1) to the clinical management of triple-negative breast cancer (TNBC) represents a breakthrough for a disease whose treatment has long relied on the standards of chemotherapy and surgery. Nevertheless, few TNBC patients achieve a durable remission in response to anti-PD-1, and there is a need to develop strategies to maximize the potential benefit of immune checkpoint inhibition (ICI) for TNBC patients. In the present review, we discuss three conceptual strategies to improve ICI response rates in TNBC patients. The first effort involves improving patient selection. We discuss proposed biomarkers of response and resistance to anti-PD-1, concluding that an optimal biomarker will likely be multifaceted. The second effort involves identifying existing targeted therapies or chemotherapies that may synergize with ICI. In particular, we describe recent efforts to use inhibitors of the PI3K/AKT or RAS/MAPK/ERK pathways in combination with ICI. Third, considering the possibility that targeting the PD-1 axis is not the most promising strategy for TNBC treatment, we describe ongoing efforts to identify novel immunotherapy strategies.
Collapse
Affiliation(s)
| | - Ann Richmond
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA;
| |
Collapse
|
9
|
Yang X, Shang L, Yang L, Sun L, Tuo X, Ma S, Zhao L, Li X, Yang W. A Novel Germline Mutation of BRCA1 and Integrated Analysis With Somatic Mutation in a Chinese Multi-Cancer Family. Oncologist 2024; 29:e837-e842. [PMID: 38159086 PMCID: PMC11144973 DOI: 10.1093/oncolo/oyad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/26/2023] [Indexed: 01/03/2024] Open
Abstract
The presence of mutations in the BRCA1 gene (MIM: 113705) is widely recognized as a significant genetic predisposition for ovarian cancer. This study investigated the genomic mutations in a Chinese family with a history of ovarian, breast, and rectal adenocarcinoma. A novel germline mutation (Phe1695Val) in BRCA1 was identified through whole-exome sequencing. Subsequently, we performed whole-genome sequencing to identify somatic mutations and analyze mutational signatures in individuals carrying the novel germline mutation. Our findings revealed a correlation between somatic mutational signatures and the BRCA1 germline mutation in the proband with ovarian cancer, while no such association was observed in the tumor tissue from the patient with breast cancer. Furthermore, distinct somatic driver mutations were identified, a truncated mutation in the TP53 gene in the ovarian tumor tissue, and a hotspot mutation in the PIK3CA gene in the breast cancer. According to our findings, the BRCA1 F1695V mutation is linked to ovarian cancer susceptibility in the family and causes specific somatic mutational profiles.
Collapse
Affiliation(s)
- Xiling Yang
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Li Shang
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Shenzhen Health Development Research and Data Management Center, Shenzhen, Guangdong, People’s Republic of China
| | - Liren Yang
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - Landi Sun
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaoqian Tuo
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Sijia Ma
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Obstetrics and Gynecology, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Le Zhao
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xu Li
- Center for Translational Medicine, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Obstetrics and Gynecology, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Wenfang Yang
- Maternal & Child Health Center, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Obstetrics and Gynecology, Xi’an Jiaotong University Medical College First Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
10
|
Xue Y, Ruan Y, Wang Y, Xiao P, Xu J. Signaling pathways in liver cancer: pathogenesis and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:20. [PMID: 38816668 PMCID: PMC11139849 DOI: 10.1186/s43556-024-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Liver cancer remains one of the most prevalent malignancies worldwide with high incidence and mortality rates. Due to its subtle onset, liver cancer is commonly diagnosed at a late stage when surgical interventions are no longer feasible. This situation highlights the critical role of systemic treatments, including targeted therapies, in bettering patient outcomes. Despite numerous studies on the mechanisms underlying liver cancer, tyrosine kinase inhibitors (TKIs) are the only widely used clinical inhibitors, represented by sorafenib, whose clinical application is greatly limited by the phenomenon of drug resistance. Here we show an in-depth discussion of the signaling pathways frequently implicated in liver cancer pathogenesis and the inhibitors targeting these pathways under investigation or already in use in the management of advanced liver cancer. We elucidate the oncogenic roles of these pathways in liver cancer especially hepatocellular carcinoma (HCC), as well as the current state of research on inhibitors respectively. Given that TKIs represent the sole class of targeted therapeutics for liver cancer employed in clinical practice, we have particularly focused on TKIs and the mechanisms of the commonly encountered phenomena of its resistance during HCC treatment. This necessitates the imperative development of innovative targeted strategies and the urgency of overcoming the existing limitations. This review endeavors to shed light on the utilization of targeted therapy in advanced liver cancer, with a vision to improve the unsatisfactory prognostic outlook for those patients.
Collapse
Affiliation(s)
- Yangtao Xue
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yeling Ruan
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Yali Wang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China
- Zhejiang University Cancer Center, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Peng Xiao
- Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, 310016, China.
- Zhejiang University Cancer Center, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.
| |
Collapse
|
11
|
Olaoba OT, Adelusi TI, Yang M, Maidens T, Kimchi ET, Staveley-O’Carroll KF, Li G. Driver Mutations in Pancreatic Cancer and Opportunities for Targeted Therapy. Cancers (Basel) 2024; 16:1808. [PMID: 38791887 PMCID: PMC11119842 DOI: 10.3390/cancers16101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic cancer is the sixth leading cause of cancer-related mortality globally. As the most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC) represents up to 95% of all pancreatic cancer cases, accounting for more than 300,000 deaths annually. Due to the lack of early diagnoses and the high refractory response to the currently available treatments, PDAC has a very poor prognosis, with a 5-year overall survival rate of less than 10%. Targeted therapy and immunotherapy are highly effective and have been used for the treatment of many types of cancer; however, they offer limited benefits in pancreatic cancer patients due to tumor-intrinsic and extrinsic factors that culminate in drug resistance. The identification of key factors responsible for PDAC growth and resistance to different treatments is highly valuable in developing new effective therapeutic strategies. In this review, we discuss some molecules which promote PDAC initiation and progression, and their potential as targets for PDAC treatment. We also evaluate the challenges associated with patient outcomes in clinical trials and implications for future research.
Collapse
Affiliation(s)
- Olamide T. Olaoba
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Temitope I. Adelusi
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| | - Ming Yang
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| | - Tessa Maidens
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA;
| | - Eric T. Kimchi
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| | - Guangfu Li
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| |
Collapse
|
12
|
Shen X, Xia Y, Lu H, Zheng P, Wang J, Chen Y, Xu C, Qiu C, Zhang Y, Xiao Z, Zou P, Cui R, Ni D. Synergistic targeting of TrxR1 and ATM/AKT pathway in human colon cancer cells. Biomed Pharmacother 2024; 174:116507. [PMID: 38565059 DOI: 10.1016/j.biopha.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.
Collapse
Affiliation(s)
- Xin Shen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yiqun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hui Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Peisen Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Junqi Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yinghua Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Chenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Chenyu Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yafei Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Peng Zou
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Ri Cui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Daoyong Ni
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
13
|
Tang Y, Yuan Z, Lu X, Song Y, Zhu S, Qiu C, zhang Q, Fu B, Jia C, Li H. RAMP1 Protects Hepatocytes against Ischemia-reperfusion Injury by Inhibiting the ERK/YAP Pathway. J Clin Transl Hepatol 2024; 12:357-370. [PMID: 38638379 PMCID: PMC11022058 DOI: 10.14218/jcth.2023.00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 04/20/2024] Open
Abstract
Background and Aims Hepatic ischemia-reperfusion injury (HIRI) is a prevalent complication of liver transplantation, partial hepatectomy, and severe infection, necessitating the development of more effective clinical strategies. Receptor activity-modifying protein 1 (RAMP1), a member of the G protein-coupled receptor adapter family, has been implicated in numerous physiological and pathological processes. The study aimed to investigate the pathogenesis of RAMP1 in HIRI. Methods We established a 70% liver ischemia-reperfusion model in RAMP1 knockout (KO) and wild-type mice. Liver and blood samples were collected after 0, 6, and 24 h of hypoxia/reperfusion. Liver histological and serological analyses were performed to evaluate liver damage. We also conducted in-vitro and in-vivo experiments to explore the molecular mechanism underlying RAMP1 function. Results Liver injury was exacerbated in RAMP1-KO mice compared with the sham group, as evidenced by increased cell death and elevated serum transaminase and inflammation levels. HIRI was promoted in RAMP1-KO mice via the induction of hepatocyte apoptosis and inhibition of proliferation. The absence of RAMP1 led to increased activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and yes-associated protein (YAP) phosphorylation, ultimately promoting apoptosis. SCH772984, an ERK/MAPK phosphorylation inhibitor, and PY-60, a YAP phosphorylation inhibitor, reduced apoptosis in in-vitro and in-vivo experiments. Conclusions Our findings suggest that RAMP1 protects against HIRI by inhibiting ERK and YAP phosphorylation signal transduction, highlighting its potential as a therapeutic target for HIRI and providing a new avenue for intervention.
Collapse
Affiliation(s)
- Yongsheng Tang
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zenan Yuan
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Lu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingqiu Song
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuguang Zhu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunhui Qiu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi zhang
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Binsheng Fu
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changchang Jia
- Department of Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Li
- Department of Hepatic Surgery, Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Pervanidis KA, D'Angelo GD, Weisner J, Brandherm S, Rauh D. Akt Inhibitor Advancements: From Capivasertib Approval to Covalent-Allosteric Promises. J Med Chem 2024; 67:6052-6063. [PMID: 38592948 DOI: 10.1021/acs.jmedchem.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Akt kinase is vital in cell growth, survival, metabolism, and migration. Dysregulation of Akt signaling is implicated in cancer and metabolic disorders. In the context of cancer, overactive Akt promotes cell survival and proliferation. This has spurred extensive research into developing Akt inhibitors as potential therapeutic agents to disrupt aberrant Akt signaling. Akt inhibitors are classified into three main types: ATP-competitive, allosteric, and covalent-allosteric inhibitors (CAAIs). ATP-competitive inhibitors compete with ATP for binding to Akt, allosteric inhibitors interact with the Pleckstrin homology (PH) domain, and covalent-allosteric inhibitors form covalent bonds, making them more potent and selective. Notably, capivasertib (AZD5363), a potent ATP-competitive Akt inhibitor, received FDA approval in November 2023 for use in combination with the estrogen receptor degrader fulvestrant to treat breast cancer. Challenges remain, including improving selectivity, identifying biomarkers to tailor treatments, and enhancing therapeutic efficacy while minimizing adverse effects. Particularly covalent-allosteric inhibitors hold promise for future more effective and personalized treatments.
Collapse
Affiliation(s)
- Kosmas Alexandros Pervanidis
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Giovanni Danilo D'Angelo
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Jörn Weisner
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Sven Brandherm
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
15
|
MacLean MR, Walker OL, Arun RP, Fernando W, Marcato P. Informed by Cancer Stem Cells of Solid Tumors: Advances in Treatments Targeting Tumor-Promoting Factors and Pathways. Int J Mol Sci 2024; 25:4102. [PMID: 38612911 PMCID: PMC11012648 DOI: 10.3390/ijms25074102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation within tumors that promote cancer progression, metastasis, and recurrence due to their self-renewal capacity and resistance to conventional therapies. CSC-specific markers and signaling pathways highly active in CSCs have emerged as a promising strategy for improving patient outcomes. This review provides a comprehensive overview of the therapeutic targets associated with CSCs of solid tumors across various cancer types, including key molecular markers aldehyde dehydrogenases, CD44, epithelial cellular adhesion molecule, and CD133 and signaling pathways such as Wnt/β-catenin, Notch, and Sonic Hedgehog. We discuss a wide array of therapeutic modalities ranging from targeted antibodies, small molecule inhibitors, and near-infrared photoimmunotherapy to advanced genetic approaches like RNA interference, CRISPR/Cas9 technology, aptamers, antisense oligonucleotides, chimeric antigen receptor (CAR) T cells, CAR natural killer cells, bispecific T cell engagers, immunotoxins, drug-antibody conjugates, therapeutic peptides, and dendritic cell vaccines. This review spans developments from preclinical investigations to ongoing clinical trials, highlighting the innovative targeting strategies that have been informed by CSC-associated pathways and molecules to overcome therapeutic resistance. We aim to provide insights into the potential of these therapies to revolutionize cancer treatment, underscoring the critical need for a multi-faceted approach in the battle against cancer. This comprehensive analysis demonstrates how advances made in the CSC field have informed significant developments in novel targeted therapeutic approaches, with the ultimate goal of achieving more effective and durable responses in cancer patients.
Collapse
Affiliation(s)
- Maya R. MacLean
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Olivia L. Walker
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Raj Pranap Arun
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.R.M.); (O.L.W.); (R.P.A.); (W.F.)
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Nova Scotia Health Authority, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
16
|
Khorasani ABS, Hafezi N, Sanaei MJ, Jafari-Raddani F, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/AKT/mTOR signaling pathway in breast cancer: Review of clinical trials and latest advances. Cell Biochem Funct 2024; 42:e3998. [PMID: 38561964 DOI: 10.1002/cbf.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer mortality in women. As the phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a wide range of physiological functions of cells including growth, proliferation, motility, and angiogenesis, any alteration in this axis could induce oncogenic features; therefore, numerous preclinical and clinical studies assessed agents able to inhibit the components of this pathway in BC patients. To the best of our knowledge, this is the first study that analyzed all the registered clinical trials investigating safety and efficacy of the PI3K/AKT/mTOR axis inhibitors in BC. Of note, we found that the trends of PI3K inhibitors in recent years were superior as compared with the inhibitors of either AKT or mTOR. However, most of the trials entering phase III and IV used mTOR inhibitors (majorly Everolimus) followed by PI3K inhibitors (majorly Alpelisib) leading to the FDA approval of these drugs in the BC context. Despite favorable efficacies, our analysis shows that the majority of trials are utilizing PI3K pathway inhibitors in combination with hormone therapy and chemotherapy; implying monotherapy cannot yield huge clinical benefits, at least partly, due to the activation of compensatory mechanisms. To emphasize the beneficial effects of these inhibitors in combined-modal strategies, we also reviewed recent studies which investigated the conjugation of nanocarriers with PI3K inhibitors to reduce harmful toxicities, increase the local concentration, and improve their efficacies in the context of BC therapy.
Collapse
Affiliation(s)
| | - Nasim Hafezi
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Jafari-Raddani
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
18
|
Murawski M, Jagodziński A, Bielawska-Pohl A, Klimczak A. Complexity of the Genetic Background of Oncogenesis in Ovarian Cancer-Genetic Instability and Clinical Implications. Cells 2024; 13:345. [PMID: 38391958 PMCID: PMC10886918 DOI: 10.3390/cells13040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Ovarian cancer is a leading cause of death among women with gynecological cancers, and is often diagnosed at advanced stages, leading to poor outcomes. This review explores genetic aspects of high-grade serous, endometrioid, and clear-cell ovarian carcinomas, emphasizing personalized treatment approaches. Specific mutations such as TP53 in high-grade serous and BRAF/KRAS in low-grade serous carcinomas highlight the need for tailored therapies. Varying mutation prevalence across subtypes, including BRCA1/2, PTEN, PIK3CA, CTNNB1, and c-myc amplification, offers potential therapeutic targets. This review underscores TP53's pivotal role and advocates p53 immunohistochemical staining for mutational analysis. BRCA1/2 mutations' significance as genetic risk factors and their relevance in PARP inhibitor therapy are discussed, emphasizing the importance of genetic testing. This review also addresses the paradoxical better prognosis linked to KRAS and BRAF mutations in ovarian cancer. ARID1A, PIK3CA, and PTEN alterations in platinum resistance contribute to the genetic landscape. Therapeutic strategies, like restoring WT p53 function and exploring PI3K/AKT/mTOR inhibitors, are considered. The evolving understanding of genetic factors in ovarian carcinomas supports tailored therapeutic approaches based on individual tumor genetic profiles. Ongoing research shows promise for advancing personalized treatments and refining genetic testing in neoplastic diseases, including ovarian cancer. Clinical genetic screening tests can identify women at increased risk, guiding predictive cancer risk-reducing surgery.
Collapse
Affiliation(s)
- Marek Murawski
- 1st Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Adam Jagodziński
- 1st Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Aleksandra Bielawska-Pohl
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.B.-P.); (A.K.)
| |
Collapse
|
19
|
Zafar A, Khan MJ, Abu J, Naeem A. Revolutionizing cancer care strategies: immunotherapy, gene therapy, and molecular targeted therapy. Mol Biol Rep 2024; 51:219. [PMID: 38281269 PMCID: PMC10822809 DOI: 10.1007/s11033-023-09096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
Despite the availability of technological advances in traditional anti-cancer therapies, there is a need for more precise and targeted cancer treatment strategies. The wide-ranging shortfalls of conventional anticancer therapies such as systematic toxicity, compromised life quality, and limited to severe side effects are major areas of concern of conventional cancer treatment approaches. Owing to the expansion of knowledge and technological advancements in the field of cancer biology, more innovative and safe anti-cancerous approaches such as immune therapy, gene therapy and targeted therapy are rapidly evolving with the aim to address the limitations of conventional therapies. The concept of immunotherapy began with the capability of coley toxins to stimulate toll-like receptors of immune cells to provoke an immune response against cancers. With an in-depth understating of the molecular mechanisms of carcinogenesis and their relationship to disease prognosis, molecular targeted therapy approaches, that inhibit or stimulate specific cancer-promoting or cancer-inhibitory molecules respectively, have offered promising outcomes. In this review, we evaluate the achievement and challenges of these technically advanced therapies with the aim of presenting the overall progress and perspective of each approach.
Collapse
Affiliation(s)
- Aasma Zafar
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan
| | | | - Junaid Abu
- Hazm Mebaireek General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aisha Naeem
- Qatar University Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
20
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
21
|
Cencic R, Im YK, Naineni SK, Moustafa-Kamal M, Jovanovic P, Sabourin V, Annis MG, Robert F, Schmeing TM, Koromilas A, Paquet M, Teodoro JG, Huang S, Siegel PM, Topisirovic I, Ursini-Siegel J, Pelletier J. A second-generation eIF4A RNA helicase inhibitor exploits translational reprogramming as a vulnerability in triple-negative breast cancer. Proc Natl Acad Sci U S A 2024; 121:e2318093121. [PMID: 38232291 PMCID: PMC10823175 DOI: 10.1073/pnas.2318093121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, we aimed to address the current limitations of therapies for macro-metastatic triple-negative breast cancer (TNBC) and provide a therapeutic lead that overcomes the high degree of heterogeneity associated with this disease. Specifically, we focused on well-documented but clinically underexploited cancer-fueling perturbations in mRNA translation as a potential therapeutic vulnerability. We therefore developed an orally bioavailable rocaglate-based molecule, MG-002, which hinders ribosome recruitment and scanning via unscheduled and non-productive RNA clamping by the eukaryotic translation initiation factor (eIF) 4A RNA helicase. We demonstrate that MG-002 potently inhibits mRNA translation and primary TNBC tumor growth without causing overt toxicity in mice. Importantly, given that metastatic spread is a major cause of mortality in TNBC, we show that MG-002 attenuates metastasis in pre-clinical models. We report on MG-002, a rocaglate that shows superior properties relative to existing eIF4A inhibitors in pre-clinical models. Our study also paves the way for future clinical trials exploring the potential of MG-002 in TNBC and other oncological indications.
Collapse
Affiliation(s)
- Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Young K. Im
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Mohamed Moustafa-Kamal
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Predrag Jovanovic
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Valerie Sabourin
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
| | - Matthew G. Annis
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Antonis Koromilas
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Marilène Paquet
- Département de pathologie et de microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jose G. Teodoro
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
| | - Peter M. Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
- Department of Medicine, McGill University, Montreal, QCH4A 3J1, Canada
| | - Ivan Topisirovic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Josie Ursini-Siegel
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Lady Davis Institute for Medical Research, Montreal, QCH3T 1E2, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QCH3A 1A3, Canada
- Division of Experimental Medicine, McGill University, Montreal, QCH4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QCH4A 3T2, Canada
| |
Collapse
|
22
|
Li X, Hu S, Cai Y, Liu X, Luo J, Wu T. Revving the engine: PKB/AKT as a key regulator of cellular glucose metabolism. Front Physiol 2024; 14:1320964. [PMID: 38264327 PMCID: PMC10804622 DOI: 10.3389/fphys.2023.1320964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Glucose metabolism is of critical importance for cell growth and proliferation, the disorders of which have been widely implicated in cancer progression. Glucose uptake is achieved differently by normal cells and cancer cells. Even in an aerobic environment, cancer cells tend to undergo metabolism through glycolysis rather than the oxidative phosphorylation pathway. Disordered metabolic syndrome is characterized by elevated levels of metabolites that can cause changes in the tumor microenvironment, thereby promoting tumor recurrence and metastasis. The activation of glycolysis-related proteins and transcription factors is involved in the regulation of cellular glucose metabolism. Changes in glucose metabolism activity are closely related to activation of protein kinase B (PKB/AKT). This review discusses recent findings on the regulation of glucose metabolism by AKT in tumors. Furthermore, the review summarizes the potential importance of AKT in the regulation of each process throughout glucose metabolism to provide a theoretical basis for AKT as a target for cancers.
Collapse
Affiliation(s)
- Xia Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuying Hu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yaoting Cai
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Luo
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Hachey SJ, Hatch CJ, Gaebler D, Mocherla A, Nee K, Kessenbrock K, Hughes CCW. Targeting tumor-stromal interactions in triple-negative breast cancer using a human vascularized micro-tumor model. Breast Cancer Res 2024; 26:5. [PMID: 38183074 PMCID: PMC10768273 DOI: 10.1186/s13058-023-01760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with limited available treatments. Stromal cells in the tumor microenvironment (TME) are crucial in TNBC progression; however, understanding the molecular basis of stromal cell activation and tumor-stromal crosstalk in TNBC is limited. To investigate therapeutic targets in the TNBC stromal niche, we used an advanced human in vitro microphysiological system called the vascularized micro-tumor (VMT). Using single-cell RNA sequencing, we revealed that normal breast tissue stromal cells activate neoplastic signaling pathways in the TNBC TME. By comparing interactions in VMTs with clinical data, we identified therapeutic targets at the tumor-stromal interface with potential clinical significance. Combining treatments targeting Tie2 signaling with paclitaxel resulted in vessel normalization and increased efficacy of paclitaxel in the TNBC VMT. Dual inhibition of HER3 and Akt also showed efficacy against TNBC. These data demonstrate the potential of inducing a favorable TME as a targeted therapeutic approach in TNBC.
Collapse
Affiliation(s)
- Stephanie J Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | | | - Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Aneela Mocherla
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Kevin Nee
- Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Christopher C W Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
24
|
Papanikolaou V, Chrysovergis A, Adamopoulou M, Spyropoulou D, Roukas D, Papanastasiou G, Mastronikoli S, Papouliakos S, Manaios L, Tsiambas E, Pantos P, Ragos V, Fotiades P, Peschos D, Mastronikolis N, Kyrodimos E. PTEN Deregulation Mechanisms in Salivary Gland Carcinomas. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:25-29. [PMID: 38173659 PMCID: PMC10758848 DOI: 10.21873/cdp.10280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Among the tumour suppressor genes that affect critically cell functions and homeostasis, phosphatase and tensin homolog deleted in chromosome 10 (PTEN- gene locus: 10q21) regulates the PI3K/Akt/mTOR signalling pathway. PTEN is deleted, mutated or epigenetically hyper-methylated in a variety of human solid malignancies. Salivary gland carcinomas (SGCs) belong to the head and neck carcinomas (HNCs) super category of solid malignancies. Histo-pathologically, they demonstrate a significant diversity due to a variety of distinct and mixed subtypes. Genetically, they are characterized by a broad spectrum of gene and chromosomal imbalances. Referring specifically to suppressor genes, PTEN deregulation plays a critical role in signaling transduction in the corresponding SGC pre- and malignant epithelia modifying the response rates to potential targeted therapeutic strategies. In the current review, we explored the role of PTEN deregulation mechanisms that are involved in the onset and progression of SGCs.
Collapse
Affiliation(s)
- Vasileios Papanikolaou
- First Department of Otolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | - Aristeidis Chrysovergis
- First Department of Otolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | - Maria Adamopoulou
- Biomedical Sciences Program, Department of Science and Mathematics, Deree American College, Athens, Greece
| | - Despoina Spyropoulou
- Department of Radiation Oncology, Medical School, University of Patras, Patras, Greece
| | - Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - George Papanastasiou
- Department of Maxillofacial Surgery, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | | - Evangelos Tsiambas
- Department of Cytology, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - Pavlos Pantos
- First Department of Otolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| | - Vasileios Ragos
- Department of Maxillofacial Surgery, Medical School, University of Ioannina, Ioannina, Greece
| | | | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | | | - Efthymios Kyrodimos
- First Department of Otolaryngology, Hippocration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
25
|
Ye G, Tu L, Li Z, Li X, Zheng X, Song Y. SYNPO2 promotes the development of BLCA by upregulating the infiltration of resting mast cells and increasing the resistance to immunotherapy. Oncol Rep 2024; 51:14. [PMID: 38038167 PMCID: PMC10758676 DOI: 10.3892/or.2023.8673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023] Open
Abstract
Synaptopodin 2 (SYNPO2) plays a pivotal role in regulating tumor growth, development and progression in bladder urothelial Carcinoma (BLCA). However, the precise biological functions and mechanisms of SYNPO2 in BLCA remain unclear. Based on TCGA database‑derived BLCA RNA sequencing data, survival analysis and prognosis analysis indicate that elevated SYNPO2 expression was associated with poor survival outcomes. Notably, exogenous SYNPO2 expression significantly promoted tumor invasion and migration by upregulating vimentin expression in BLCA cell lines. Enrichment analysis revealed the involvement of SYNPO2 in humoral immune responses and the PI3K/AKT signaling pathway. Moreover, increased SYNPO2 levels increased the sensitivity of BLCA to PI3K/AKT pathway‑targeted drugs while being resistant to conventional chemotherapy. In in vivo BLCA mouse models, SYNPO2 overexpression increased pulmonary metastasis of 5637 cells. High SYNPO2 expression led to increased infiltration of innate immune cells, particularly mast cells, in both nude mouse model and clinical BLCA samples. Furthermore, tumor immune dysfunction and exclusion score showed that patients with BLCA patients and high SYNPO2 expression exhibited worse clinical outcomes when treated with immune checkpoint inhibitors. Notably, in the IMvigor 210 cohort, SYNPO2 expression was significantly associated with the population of resting mast cells in BLCA tissue following PD1/PDL1 targeted therapy. In conclusion, SYNPO2 may be a promising prognostic factor in BLCA by modulating mast cell infiltration and exacerbating resistance to immune therapy and conventional chemotherapy.
Collapse
Affiliation(s)
- Gongjie Ye
- Department of Critical Care Medicine, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Zhuduo Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiangyu Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
| | - Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310012, P.R. China
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
26
|
Hossein-Tehrani M, Abbasalipourkabir R, Ziamajidi N. The role of miR-133a in silibinin-mediated inhibition of the PI3K/AKT/mTOR pathway in MCF-7 breast carcinoma cells. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:79-83. [PMID: 38504785 PMCID: PMC10946549 DOI: 10.22099/mbrc.2024.48818.1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Breast cancer is particularly severe in women. Research highlights the crucial role of miRNAs in key cellular processes, showcasing their intricate interactions with the oncogenic PI3K/AKT/mTOR (PAM) signaling pathway and underscoring their significant role as tumor suppressors. The effect of silibinin on cell growth and survival was evaluated using an MTT assay. Bioinformatics analysis identified putative miR-133a targets inside the PAM pathway. After incubating MCF-7 cells with silibinin, we measured miR-133a, EGFR, PI3K, AKT, PTEN, and mTOR expression levels using qRT-PCR. Furthermore, protein expression levels of mTOR were assessed using Western blotting. The MTT experiment displayed that silibinin effectively inhibits MCF-7 cell proliferation in a time- and dose-dependent manner. Silibinin's IC50 value, determined at 370 μM after 48 hours, was established. qRT-PCR analysis at this IC50 concentration highlighted reduced expression of EGFR, PI3K, AKT, PTEN, and mTOR mRNAs, alongside increased miR-133a expression. Notably, miR-133a exhibited a negative correlation with both EGFR and PIK3C2A expression. Furthermore, western blotting confirmed silibinin's capacity to diminish p-mTOR protein levels, the ultimate element of the PAM signaling pathway. The findings enhance comprehension of silibinin's impact on PAM signaling and miR-133a expression, offering promise for targeted therapies in disrupting oncogenic pathways in MCF-7 breast cancer cells. This insight could advance breast cancer treatment strategies.
Collapse
Affiliation(s)
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran
| |
Collapse
|
27
|
Jiang Y, Zhu Y, Shao Y, Yang K, Zhu L, Liu Y, Zhang P, Zhang X, Zhou Y. Platelet-Derived Apoptotic Vesicles Promote Bone Regeneration via Golgi Phosphoprotein 2 (GOLPH2)-AKT Signaling Axis. ACS NANO 2023; 17:25070-25090. [PMID: 38047915 PMCID: PMC10753896 DOI: 10.1021/acsnano.3c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Apoptotic vesicles (apoVs) are apoptotic-cell-derived nanosized vesicles that take on dominant roles in regulating bone homeostasis. We have demonstrated that mesenchymal stem cell (MSC)-derived apoVs are promising therapeutic agents for bone regeneration. However, clinical translation of MSC-derived apoVs has been hindered due to cell expansion and nuclear substance. As another appealing source for apoV therapy, blood cells could potentially eliminate these limitations. However, whether blood cells can release apoVs during apoptosis is uncertain, and the detailed characteristics and biological properties of respective apoVs are not elucidated. In this study, we showed that platelets (PLTs) could rapidly release abundant apoVs during apoptosis in a short time. To recognize the different protein expressions between PLT-derived apoVs and PLTs, we established their precise protein landscape. Furthermore, we identified six proteins specifically enriched in PLT-derived apoVs, which could be considered as specific biomarkers. More importantly, PLT-derived apoVs promoted osteogenesis of MSCs and rescued bone loss via Golgi phosphoprotein 2 (GOLPH2)-induced AKT phosphorylation, therefore, leading to the emergence of their potential in bone regeneration. In summary, we comprehensively determined characteristics of PLT-derived apoVs and confirmed their roles in bone metabolism through previously unrecognized GOPLH2-dependent AKT signaling, providing more understanding for exploring apoV-based therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Yuhe Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuzi Shao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Lei Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
28
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
29
|
Wylaź M, Kaczmarska A, Pajor D, Hryniewicki M, Gil D, Dulińska-Litewka J. Exploring the role of PI3K/AKT/mTOR inhibitors in hormone-related cancers: A focus on breast and prostate cancer. Biomed Pharmacother 2023; 168:115676. [PMID: 37832401 DOI: 10.1016/j.biopha.2023.115676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) and prostate cancer (PC) are at the top of the list when it comes to the most common types of cancers worldwide. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is important, in that it strongly influences the development and progression of these tumors. Previous studies have emphasized the key role of inhibitors of the PIK3/AKT/mTOR signaling pathway in the treatment of BC and PC, and it remains to be a crucial method of treatment. In this review, the inhibitors of these signaling pathways are compared, as well as their effectiveness in therapy and potential as therapeutic agents. The use of these inhibitors as polytherapy is evaluated, especially with the use of hormonal therapy, which has shown promising results.
Collapse
Affiliation(s)
- Mateusz Wylaź
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Anna Kaczmarska
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dawid Pajor
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Matthew Hryniewicki
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland.
| |
Collapse
|
30
|
Park J, Zhang H, Kwak HJ, Gadhe CG, Kim Y, Kim H, Noh M, Shin D, Ha SJ, Kwon YG. A novel small molecule, CU05-1189, targeting the pleckstrin homology domain of PDK1 suppresses VEGF-mediated angiogenesis and tumor growth by blocking the Akt signaling pathway. Front Pharmacol 2023; 14:1275749. [PMID: 38035024 PMCID: PMC10687218 DOI: 10.3389/fphar.2023.1275749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Inhibition of angiogenesis is considered a promising therapeutic approach for cancer treatment. Our previous genetic research showed that the use of a cell-penetrating peptide to inhibit the pleckstrin homology (PH) domain of 3-phosphoinositide-dependent kinase 1 (PDK1) was a viable approach to suppress pathological angiogenesis. Herein, we synthesized and characterized a novel small molecule, CU05-1189, based on our prior study and present evidence for the first time that this compound possesses antiangiogenic properties both in vitro and in vivo. The computational analysis showed that CU05-1189 can interact with the PH domain of PDK1, and it significantly inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, invasion, and tube formation in human umbilical vein endothelial cells without apparent toxicity. Western blot analysis revealed that the Akt signaling pathway was specifically inhibited by CU05-1189 upon VEGF stimulation, without affecting other VEGF receptor 2 downstream molecules or cytosolic substrates of PDK1, by preventing translocation of PDK1 to the plasma membrane. We also found that CU05-1189 suppressed VEGF-mediated vascular network formation in a Matrigel plug assay. More importantly, CU05-1189 had a good pharmacokinetic profile with a bioavailability of 68%. These results led to the oral administration of CU05-1189, which resulted in reduced tumor microvessel density and growth in a xenograft mouse model. Taken together, our data suggest that CU05-1189 may have great potential and be a promising lead as a novel antiangiogenic agent for cancer treatment.
Collapse
Affiliation(s)
- Jeongeun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Haiying Zhang
- Department of Bio Research, Curacle Co., Ltd., Seoul, Republic of Korea
| | - Hyun Jung Kwak
- Department of Strategic Planning, Curacle Co., Ltd., Seoul, Republic of Korea
| | | | - Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyejeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Perales-Linares R, Leli NM, Mohei H, Beghi S, Rivera OD, Kostopoulos N, Giglio A, George SS, Uribe-Herranz M, Costabile F, Pierini S, Pustylnikov S, Skoufos G, Barash Y, Hatzigeorgiou AG, Koumenis C, Maity A, Lotze MT, Facciabene A. Parkin Deficiency Suppresses Antigen Presentation to Promote Tumor Immune Evasion and Immunotherapy Resistance. Cancer Res 2023; 83:3562-3576. [PMID: 37578274 PMCID: PMC10618737 DOI: 10.1158/0008-5472.can-22-2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/20/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Parkin is an E3 ubiquitin ligase, which plays a key role in the development of Parkinson disease. Parkin defects also occur in numerous cancers, and a growing body of evidence indicates that Parkin functions as a tumor suppressor that impedes a number of cellular processes involved in tumorigenesis. Here, we generated murine and human models that closely mimic the advanced-stage tumors where Parkin deficiencies are found to provide deeper insights into the tumor suppressive functions of Parkin. Loss of Parkin expression led to aggressive tumor growth, which was associated with poor tumor antigen presentation and limited antitumor CD8+ T-cell infiltration and activation. The effect of Parkin deficiency on tumor growth was lost following depletion of CD8+ T cells. In line with previous findings, Parkin deficiency was linked with mitochondria-associated metabolic stress, PTEN degradation, and enhanced Akt activation. Increased Akt signaling led to dysregulation of antigen presentation, and treatment with the Akt inhibitor MK2206-2HCl restored antigen presentation in Parkin-deficient tumors. Analysis of data from patients with clear cell renal cell carcinoma indicated that Parkin expression was downregulated in tumors and that low expression correlated with reduced overall survival. Furthermore, low Parkin expression correlated with reduced patient response to immunotherapy. Overall, these results identify a role for Parkin deficiency in promoting tumor immune evasion that may explain the poor prognosis associated with loss of Parkin across multiple types of cancer. SIGNIFICANCE Parkin prevents immune evasion by regulating tumor antigen processing and presentation through the PTEN/Akt network, which has important implications for immunotherapy treatments in patients with Parkin-deficient tumors.
Collapse
Affiliation(s)
- Renzo Perales-Linares
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hesham Mohei
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Silvia Beghi
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Osvaldo D. Rivera
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nektarios Kostopoulos
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrea Giglio
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Subin S. George
- Penn Bioinformatics Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Francesca Costabile
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Stefano Pierini
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sergei Pustylnikov
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Giorgos Skoufos
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Yoseph Barash
- Graduate Group in Cell and Molecular Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Artemis G. Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly - Hellenic Pasteur Institute, Athens, Greece
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Andrea Facciabene
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Ye Q, Zhou X, Ren H, Han F, Lin R, Li J. An overview of the past decade of bufalin in the treatment of refractory and drug-resistant cancers: current status, challenges, and future perspectives. Front Pharmacol 2023; 14:1274336. [PMID: 37860119 PMCID: PMC10582727 DOI: 10.3389/fphar.2023.1274336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Profound progress has been made in cancer treatment in the past three decades. However, drug resistance remains prevalent and a critical challenge. Drug resistance can be attributed to oncogenes mutations, activated defensive mechanisms, ATP-bind cassette transporters overexpression, cancer stem cells, etc. Chinese traditional medicine toad venom has been used for centuries for different diseases, including resistant cancers. Bufalin is one of the bufadienolides in toad venom that has been extensively studied for its potential in refractory and drug-resistant cancer treatments in vitro and in vivo. In this work, we would like to critically review the progress made in the past decade (2013-2022) of bufalin in overcoming drug resistance in cancers. Generally, bufalin shows high potential in killing certain refractory and resistant cancer cells via multiple mechanisms. More importantly, bufalin can work as a chemo-sensitizer that enhances the sensitivity of certain conventional and targeted therapies at low concentrations. In addition, the development of bufalin derivatives was also briefly summarized and discussed. We also analyzed the obstacles and challenges and provided possible solutions for future perspectives. We hope that the collective information may help evoke more effort for more in-depth studies and evaluation of bufalin in both lab and possible clinical trials.
Collapse
Affiliation(s)
- Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Han Ren
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Lin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
33
|
Lei JT, Jaehnig EJ, Smith H, Holt MV, Li X, Anurag M, Ellis MJ, Mills GB, Zhang B, Labrie M. The Breast Cancer Proteome and Precision Oncology. Cold Spring Harb Perspect Med 2023; 13:a041323. [PMID: 37137501 PMCID: PMC10547392 DOI: 10.1101/cshperspect.a041323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The goal of precision oncology is to translate the molecular features of cancer into predictive and prognostic tests that can be used to individualize treatment leading to improved outcomes and decreased toxicity. Success for this strategy in breast cancer is exemplified by efficacy of trastuzumab in tumors overexpressing ERBB2 and endocrine therapy for tumors that are estrogen receptor positive. However, other effective treatments, including chemotherapy, immune checkpoint inhibitors, and CDK4/6 inhibitors are not associated with strong predictive biomarkers. Proteomics promises another tier of information that, when added to genomic and transcriptomic features (proteogenomics), may create new opportunities to improve both treatment precision and therapeutic hypotheses. Here, we review both mass spectrometry-based and antibody-dependent proteomics as complementary approaches. We highlight how these methods have contributed toward a more complete understanding of breast cancer and describe the potential to guide diagnosis and treatment more accurately.
Collapse
Affiliation(s)
- Jonathan T Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hannah Smith
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Matthew V Holt
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xi Li
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marilyne Labrie
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
34
|
Garcia G, Chakravarty N, Paiola S, Urena E, Gyani P, Tse C, French SW, Danielpour M, Breunig JJ, Nathanson DA, Arumugaswami V. Differential Susceptibility of Ex Vivo Primary Glioblastoma Tumors to Oncolytic Effect of Modified Zika Virus. Cells 2023; 12:2384. [PMID: 37830597 PMCID: PMC10572118 DOI: 10.3390/cells12192384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time. Zika virus (ZIKV) has demonstrated oncotropism and oncolytic effects on GBM stem cells (GSCs). To address the need for safe and effective GBM treatments, we designed an attenuated ZIKV strain (ZOL-1) that does not cause paralytic or neurological diseases in mouse models compared with unmodified ZIKV. Importantly, we found that patient-derived GBM tumors exhibited susceptibility (responders) and non-susceptibility (non-responders) to ZOL-1-mediated tumor cell killing, as evidenced by differential apoptotic cell death and cell viability upon ZOL-1 treatment. The oncolytic effect observed in responder cells was seen both in vitro in neurosphere models and in vivo upon xenograft. Finally, we observed that the use of ZOL-1 as combination therapy with multiple PI3K-AKT inhibitors in non-responder GBM resulted in enhanced chemotherapeutic efficacy. Altogether, this study establishes ZOL-1 as a safe and effective treatment against GBM and provides a foundation to conduct further studies evaluating its potential as an effective adjuvant with other chemotherapies and kinase inhibitors.
Collapse
Affiliation(s)
- Gustavo Garcia
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Sophia Paiola
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Estrella Urena
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Priya Gyani
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
| | - Samuel W. French
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.D.); (J.J.B.)
| | - Joshua J. Breunig
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (M.D.); (J.J.B.)
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David A. Nathanson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; (G.G.J.); (D.A.N.)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
35
|
Zhi F, Li B, Zhang C, Xia F, Wang R, Xie W, Cai S, Zhang D, Kong R, Hu Y, Yang Y, Peng Y, Cui J. NLRP6 potentiates PI3K/AKT signalling by promoting autophagic degradation of p85α to drive tumorigenesis. Nat Commun 2023; 14:6069. [PMID: 37770465 PMCID: PMC10539329 DOI: 10.1038/s41467-023-41739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
The PI3K/AKT pathway plays an essential role in tumour development. NOD-like receptors (NLRs) regulate innate immunity and are implicated in cancer, but whether they are involved in PI3K/AKT pathway regulation is poorly understood. Here, we report that NLRP6 potentiates the PI3K/AKT pathway by binding and destabilizing p85α, the regulatory subunit of PI3K. Mechanistically, NLRP6 recruits the E3 ligase RBX1 to p85α and ubiquitinates lysine 256 on p85α, which is recognized by the autophagy cargo receptor OPTN, causing selective autophagic degradation of p85α and subsequent activation of the PI3K/AKT pathway by reducing PTEN stability. We further show that loss of NLRP6 suppresses cell proliferation, colony formation, cell migration, and tumour growth in glioblastoma cells in vitro and in vivo. Disruption of the NLRP6/p85α interaction using the Pep9 peptide inhibits the PI3K/AKT pathway and generates potent antitumour effects. Collectively, our results suggest that NLRP6 promotes p85α degradation via selective autophagy to drive tumorigenesis, and the interaction between NLRP6 and p85α can be a promising therapeutic target for tumour treatment.
Collapse
Affiliation(s)
- Feng Zhi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Bowen Li
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Chuanxia Zhang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Xia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rong Wang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weihong Xie
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sihui Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dawei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Ren Kong
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yilin Yang
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Jun Cui
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Atehortua L, Morris J, Street SE, Bedel N, Davidson WS, Chougnet CA. Apolipoprotein E-containing HDL decreases caspase-dependent apoptosis of memory regulatory T lymphocytes. J Lipid Res 2023; 64:100425. [PMID: 37579971 PMCID: PMC10507648 DOI: 10.1016/j.jlr.2023.100425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023] Open
Abstract
Plasma levels of HDL cholesterol are inversely associated with CVD progression. It is becoming increasingly clear that HDL plays important roles in immunity that go beyond its traditionally understood roles in lipid transport. We previously reported that HDL interaction with regulatory T cells (Treg) protected them from apoptosis, which could be a mechanism underlying the broad anti-inflammatory effect of HDL. Herein, we extend our work to show that HDL interacts mainly with memory Treg, particularly with the highly suppressive effector memory Treg, by limiting caspase-dependent apoptosis in an Akt-dependent manner. Reconstitution experiments identified the protein component of HDL as the primary driver of the effect, though the most abundant HDL protein, apolipoprotein A-I (APOA1), was inactive. In contrast, APOE-depleted HDL failed to rescue effector memory Treg, suggesting the critical role of APOE proteins. HDL particles reconstituted with APOE, and synthetic phospholipids blunted Treg apoptosis at physiological concentrations. The APOE3 and APOE4 isoforms were the most efficient. Similar results were obtained when lipid-free recombinant APOEs were tested. Binding experiments showed that lipid-free APOE3 bound to memory Treg but not to naive Treg. Overall, our results show that APOE interaction with Treg results in blunted caspase-dependent apoptosis and increased survival. As dysregulation of HDL-APOE levels has been reported in CVD and obesity, our data bring new insight on how this defect may contribute to these diseases.
Collapse
Affiliation(s)
- Laura Atehortua
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jamie Morris
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Scott E Street
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nicholas Bedel
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - W Sean Davidson
- Division of Experimental Pathology, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
37
|
Lin K, Zhou E, Shi T, Zhang S, Zhang J, Zheng Z, Pan Y, Gao W, Yu Y. m6A eraser FTO impairs gemcitabine resistance in pancreatic cancer through influencing NEDD4 mRNA stability by regulating the PTEN/PI3K/AKT pathway. J Exp Clin Cancer Res 2023; 42:217. [PMID: 37605223 PMCID: PMC10464189 DOI: 10.1186/s13046-023-02792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Gemcitabine resistance has brought great challenges to the treatment of pancreatic cancer. The N6-methyladenosine (m6A) mutation has been shown to have a significant regulatory role in chemosensitivity; however, it is not apparent whether gemcitabine resistance can be regulated by fat mass and obesity-associated protein (FTO). METHODS Cells with established gemcitabine resistance and tissues from pancreatic cancer patients were used to evaluate FTO expression. The biological mechanisms of the effects of FTO on gemcitabine resistant cells were investigated using CCK-8, colony formation assay, flow cytometry, and inhibitory concentration 50. Immunoprecipitation/mass spectrometry, MeRIP-seq, RNA sequencing and RIP assays, RNA stability, luciferase reporter, and RNA pull down assays were employed to examine the mechanism of FTO affecting gemcitabine resistant pancreatic cancer cells. RESULTS The results revealed that FTO was substantially expressed in cells and tissues that were resistant to gemcitabine. Functionally, the gemcitabine resistance of pancreatic cancer could be enhanced by FTO, while its depletion inhibited the growth of gemcitabine resistant tumor cells in vivo. Immunoprecipitation/mass spectrometry showed that the FTO protein can be bound to USP7 and deubiquitinated by USP7, leading to the upregulation of FTO. At the same time, FTO knockdown significantly decreased the expression level of NEDD4 in an m6A-dependent manner. RNA pull down and RNA immunoprecipitation verified YTHDF2 as the reader of NEDD4, which promoted the chemoresistance of gemcitabine resistant cells. FTO knockdown markedly increased the PTEN expression level in an NEDD4-dependent manner and influenced the chemosensitivity to gemcitabine through the PI3K/AKT pathway in pancreatic cancer cells. CONCLUSION In conclusion, we found that gemcitabine resistance in pancreatic cancer can be influenced by FTO that demethylates NEDD4 RNA in a m6A-dependent manner, which then influences the PTEN expression level and thereby affects the PI3K/AKT pathway. We also identified that the FTO level can be upregulated by USP7.
Collapse
Affiliation(s)
- Kai Lin
- Department of Gastrointestinal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Endi Zhou
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Shi
- Department of Hepatobiliary Surgery, The Afliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Siqing Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinfan Zhang
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziruo Zheng
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuetian Pan
- Medical Faculty of Ludwig Maximilians, University of Munich-Munich, Bayern, Germany
| | - Wentao Gao
- Pancreas Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yabin Yu
- Department of Hepatobiliary Surgery, The Afliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| |
Collapse
|
38
|
Chen H, Ding Q, Khazai L, Zhao L, Damodaran S, Litton JK, Rauch GM, Yam C, Chang JT, Seth S, Lim B, Thompson AM, Mittendorf EA, Adrada B, Virani K, White JB, Ravenberg E, Song X, Candelaria R, Arun B, Ueno NT, Santiago L, Saleem S, Abouharb S, Murthy RK, Ibrahim N, Routbort MJ, Sahin A, Valero V, Symmans WF, Tripathy D, Wang WL, Moulder S, Huo L. PTEN in triple-negative breast carcinoma: protein expression and genomic alteration in pretreatment and posttreatment specimens. Ther Adv Med Oncol 2023; 15:17588359231189422. [PMID: 37547448 PMCID: PMC10399250 DOI: 10.1177/17588359231189422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Background Recent advances have been made in targeting the phosphoinositide 3-kinase pathway in breast cancer. Phosphatase and tensin homolog (PTEN) is a key component of that pathway. Objective To understand the changes in PTEN expression over the course of the disease in patients with triple-negative breast cancer (TNBC) and whether PTEN copy number variation (CNV) by next-generation sequencing (NGS) can serve as an alternative to immunohistochemistry (IHC) to identify PTEN loss. Methods We compared PTEN expression by IHC between pretreatment tumors and residual tumors in the breast and lymph nodes after neoadjuvant chemotherapy in 96 patients enrolled in a TNBC clinical trial. A correlative analysis between PTEN protein expression and PTEN CNV by NGS was also performed. Results With a stringent cutoff for PTEN IHC scoring, PTEN expression was discordant between pretreatment and posttreatment primary tumors in 5% of patients (n = 96) and between posttreatment primary tumors and lymph node metastases in 9% (n = 33). A less stringent cutoff yielded similar discordance rates. Intratumoral heterogeneity for PTEN loss was observed in 7% of the patients. Among pretreatment tumors, PTEN copy numbers by whole exome sequencing (n = 72) were significantly higher in the PTEN-positive tumors by IHC compared with the IHC PTEN-loss tumors (p < 0.0001). However, PTEN-positive and PTEN-loss tumors by IHC overlapped in copy numbers: 14 of 60 PTEN-positive samples showed decreased copy numbers in the range of those of the PTEN-loss tumors. Conclusion Testing various specimens by IHC may generate different PTEN results in a small proportion of patients with TNBC; therefore, the decision of testing one versus multiple specimens in a clinical trial should be defined in the patient inclusion criteria. Although a distinct cutoff by which CNV differentiated PTEN-positive tumors from those with PTEN loss was not identified, higher copy number of PTEN may confer positive PTEN, whereas lower copy number of PTEN would necessitate additional testing by IHC to assess PTEN loss. Trial registration NCT02276443.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingqing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laila Khazai
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gaiane M. Rauch
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T. Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sahil Seth
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bora Lim
- Department of Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Alastair M. Thompson
- Division of Surgical Oncology, Section of Breast Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Beatriz Adrada
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Virani
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B. White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosalind Candelaria
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Banu Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lumarie Santiago
- Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sadia Saleem
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sausan Abouharb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi K. Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nuhad Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aysegul Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Fraser Symmans
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
39
|
Chapdelaine AG, Sun G. Challenges and Opportunities in Developing Targeted Therapies for Triple Negative Breast Cancer. Biomolecules 2023; 13:1207. [PMID: 37627272 PMCID: PMC10452226 DOI: 10.3390/biom13081207] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogeneous group of breast cancers characterized by their lack of estrogen receptors, progesterone receptors, and the HER2 receptor. They are more aggressive than other breast cancer subtypes, with a higher mean tumor size, higher tumor grade, the worst five-year overall survival, and the highest rates of recurrence and metastasis. Developing targeted therapies for TNBC has been a major challenge due to its heterogeneity, and its treatment still largely relies on surgery, radiation therapy, and chemotherapy. In this review article, we review the efforts in developing targeted therapies for TNBC, discuss insights gained from these efforts, and highlight potential opportunities going forward. Accumulating evidence supports TNBCs as multi-driver cancers, in which multiple oncogenic drivers promote cell proliferation and survival. In such multi-driver cancers, targeted therapies would require drug combinations that simultaneously block multiple oncogenic drivers. A strategy designed to generate mechanism-based combination targeted therapies for TNBC is discussed.
Collapse
Affiliation(s)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
40
|
魏 可, 石 纪, 肖 雨, 王 文, 杨 清, 陈 昌. [MiR-30e-5p overexpression promotes proliferation and migration of colorectal cancer cells by activating the CXCL12 axis via downregulating PTEN]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1081-1092. [PMID: 37488790 PMCID: PMC10366527 DOI: 10.12122/j.issn.1673-4254.2023.07.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVE To investigate the regulatory effects of miR-30e-5p on biological behaviors of colorectal cancer cells and the role of PTEN/CXCL12 axis in mediating these effects. METHODS Bioinformatic analysis was performed to explore the differential expression of miR-30e-5p between colorectal cancer tissues and normal tissues. RT-qPCR was used to detect the differential expression of miR-30e-5p in intestinal epithelial cells and colorectal cancer cells. Bioinformatics and dual luciferase assay were used to predict and validate the targeting relationship between miR-30e-5p and PTEN. Human and murine colorectal cancer cell lines were transfected with miR-30e-5p mimics, miR-30e-5p inhibitor, miR-30e-5p mimics+LV-PTEN, or miR-30e-5p inhibitor + si-PTEN. The changes in biological behaviors of the cells were detected using plate clone formation assay, CCK-8 assay, flow cytometry, scratch healing and Transwell assays. PTEN and CXCL12 expressions in the cancer cells were detected by Western blotting. The effects of miR-30e-5p inhibitor on colorectal carcinogenesis and development were observed in nude mice. RESULTS Bioinformatic analysis showed that miR-30e-5p expression was significantly elevated in colorectal cancer tissues compared with the adjacent tissue (P < 0.01). Higher miR-30e-5p expression was detected in colorectal cancer cell lines than in intestinal epithelial cells (P < 0.01). Dual luciferase assay confirmed the targeting relationship between miR-30e-5p and PTEN (P < 0.05). Transfection with miR-30e-5p mimics significantly enhanced proliferation and metastasis and inhibited apoptosis of the colorectal cancer cells (P < 0.05), and co-transfection with LV-PTEN obviously reversed these changes (P < 0.05). MiR-30e-5p mimics significantly inhibited PTEN expression and enhanced CXCL12 expression in the cancer cells (P < 0.01), and miR-30e-5p inhibitor produced the opposite effect. Transfection with miR-30e-5p inhibitor caused cell cycle arrest in the cancer cells, which was reversed by co-transfection with si-PTEN (P < 0.05). In the in vivo experiments, the colorectal cancer cells transfected with miR-30e-5p inhibitor showed significantly lowered tumorigenesis. CONCLUSION Overexpression of miR-30e-5p promotes the malignant behaviors of colorectal cancer cells by downregulating PTEN to activate the CXCL12 axis.
Collapse
Affiliation(s)
- 可 魏
- 蚌埠医学院癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Cancer Translational Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院肿瘤基础研究与临床检验诊断重点实验室,安徽 蚌埠 233000Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu 233000, China
| | - 纪雯 石
- 蚌埠医学院癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Cancer Translational Medicine, Bengbu Medical College, Bengbu 233000, China
| | - 雨寒 肖
- 蚌埠医学院癌症转化医学安徽省重点实验室,安徽 蚌埠 233000Anhui Provincial Key Laboratory of Cancer Translational Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院肿瘤基础研究与临床检验诊断重点实验室,安徽 蚌埠 233000Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu 233000, China
| | - 文锐 王
- 蚌埠医学院生物技术教研室,安徽 蚌埠 233000Department of Biotechnology, Bengbu Medical College, Bengbu 233000, China
| | - 清玲 杨
- 蚌埠医学院生物化学与分子生物学教研室,安徽 蚌埠 233000Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233000, China
| | - 昌杰 陈
- 蚌埠医学院生物化学与分子生物学教研室,安徽 蚌埠 233000Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
41
|
Gao HL, Cui Q, Wang JQ, Ashby CR, Chen Y, Shen ZX, Chen ZS. The AKT inhibitor, MK-2206, attenuates ABCG2-mediated drug resistance in lung and colon cancer cells. Front Pharmacol 2023; 14:1235285. [PMID: 37521473 PMCID: PMC10373739 DOI: 10.3389/fphar.2023.1235285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: The overexpression of ATP-binding cassette (ABC) transporters, ABCB1 and ABCG2, are two of the major mediators of multidrug resistance (MDR) in cancers. Although multiple ABCB1 and ABCG2 inhibitors have been developed and some have undergone evaluation in clinical trials, none have been clinically approved. The compound, MK-2206, an inhibitor of the protein kinases AKT1/2/3, is undergoing evaluation in multiple clinical trials for the treatment of certain types of cancers, including those resistant to erlotinib. In this in vitro study, we conducted in vitro experiments to determine if MK-2206 attenuates multidrug resistance in cancer cells overexpressing the ABCB1 or ABCG2 transporter. Methodology: The efficacy of MK-2206 (0.03-1 μM), in combination with the ABCB1 transporter sub-strates doxorubicin and paclitaxel, and ABCG2 transporter substrates mitoxantrone, SN-38 and topotecan, were determined in the cancer cell lines, KB-C2 and SW620/Ad300, which overexpress the ABCB1 transporter or H460/MX20 and S1-M1-80, which overexpress the ABCG2 transporter, respectively. The expression level and the localization of ABCG2 transporter on the cancer cells membranes were determined using western blot and immunofluorescence assays, respectively, following the incubation of cells with MK-2206. Finally, the interaction between MK-2206 and human ABCG2 transporter was predicted using computer-aided molecular modeling. Results: MK-2206 significantly increased the efficacy of anticancer compounds that were substrates for the ABCG2 but not the ABCB1 transporter. MK-2206 alone (0.03-1 μM) did not significantly alter the viability of H460/MX20 and S1-M1-80 cancer cells, which overexpress the ABCG2 transporter, compared to cells incubated with vehicle. However, MK-2206 (0.3 and 1 μM) significantly increased the anticancer efficacy of mitoxantrone, SN-38 and topotecan, in H460/MX20 and S1-M1-80 cancer cells, as indicated by a significant decrease in their IC50 values, compared to cells incubated with vehicle. MK-2206 significantly increased the basal activity of the ABCG2 ATPase (EC50 = 0.46 μM) but did not significantly alter its expression level and sub-localization in the membrane. The molecular modeling results suggested that MK-2206 binds to the active pocket of the ABCG2 transporter, by a hydrogen bond, hydrophobic interactions and π-π stacking. Conclusion: These in vitro data indicated that MK-2206 surmounts resistance to mitoxantrone, SN-38 and topotecan in cancer cells overexpressing the ABCG2 transporter. If these results can be translated to humans, it is possible that MK-2206 could be used to surmount MDR in cancer cells overexpressing the ABCG2 transporter.
Collapse
Affiliation(s)
- Hai-Ling Gao
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Yanchun Chen
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Zhi-Xin Shen
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|
42
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
43
|
Li L, Guo Y, Lu Y, Xu Y, Lu Y, Zhu X, Dong X, Che J. An updated patent review of AKT inhibitors (2020 - present). Expert Opin Ther Pat 2023; 33:549-564. [PMID: 37864349 DOI: 10.1080/13543776.2023.2273895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/18/2023] [Indexed: 10/22/2023]
Abstract
INTRODUCTION Protein kinase B (Akt), an essential protein in the PI3K/Akt/mTOR signaling pathway, plays a crucial role in tumor progression. Over the past two years, different types of Akt modulators have continued to emerge in the patent literature. AREAS COVERED This review focuses on the patent literature covering small molecule inhibitors, peptides, PROTACs, and antisense nucleic acids targetingAkt from 2020 to present. Also, we discuss the outcomes of several clinical trials, combination strategies for different mechanisms, and the application of Akt regulators in other non-oncology indications.Our search for relevant information was conducted using various databases, including the European Patent Office, SciFinder, andPubMed, from 01.2020 to 04.2023. EXPERT OPINION In recent years, some combination therapeutic strategies involvingAkt inhibitors have shown promising clinical outcomes. Future research can be directed toward developing new applications of Akt inhibitors, which may have implications for other diseases beyond cancer. New attempts suggest that targeting allosteric sites may be a potential solution to the problem of isoform selectivity.Furthermore, directly knocking out Akt protein by using the degraderssuggests a promising direction for future development.
Collapse
Affiliation(s)
- Linjie Li
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yaping Xu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yan Lu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Xiuping Zhu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, P. R. China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
44
|
Safaroghli-Azar A, Sanaei MJ, Pourbagheri-Sigaroodi A, Bashash D. Phosphoinositide 3-kinase (PI3K) classes: From cell signaling to endocytic recycling and autophagy. Eur J Pharmacol 2023:175827. [PMID: 37269974 DOI: 10.1016/j.ejphar.2023.175827] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Lipid signaling is defined as any biological signaling action in which a lipid messenger binds to a protein target, converting its effects to specific cellular responses. In this complex biological pathway, the family of phosphoinositide 3-kinase (PI3K) represents a pivotal role and affects many aspects of cellular biology from cell survival, proliferation, and migration to endocytosis, intracellular trafficking, metabolism, and autophagy. While yeasts have a single isoform of phosphoinositide 3-kinase (PI3K), mammals possess eight PI3K types divided into three classes. The class I PI3Ks have set the stage to widen research interest in the field of cancer biology. The aberrant activation of class I PI3Ks has been identified in 30-50% of human tumors, and activating mutations in PIK3CA is one of the most frequent oncogenes in human cancer. In addition to indirect participation in cell signaling, class II and III PI3Ks primarily regulate vesicle trafficking. Class III PI3Ks are also responsible for autophagosome formation and autophagy flux. The current review aims to discuss the original data obtained from international research laboratories on the latest discoveries regarding PI3Ks-mediated cell biological processes. Also, we unravel the mechanisms by which pools of the same phosphoinositides (PIs) derived from different PI3K types act differently.
Collapse
Affiliation(s)
- Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Li J, Goh ELK, He J, Li Y, Fan Z, Yu Z, Yuan P, Liu DX. Emerging Intrinsic Therapeutic Targets for Metastatic Breast Cancer. BIOLOGY 2023; 12:697. [PMID: 37237509 PMCID: PMC10215321 DOI: 10.3390/biology12050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Breast cancer is now the most common cancer worldwide, and it is also the main cause of cancer-related death in women. Survival rates for female breast cancer have significantly improved due to early diagnosis and better treatment. Nevertheless, for patients with advanced or metastatic breast cancer, the survival rate is still low, reflecting a need for the development of new therapies. Mechanistic insights into metastatic breast cancer have provided excellent opportunities for developing novel therapeutic strategies. Although high-throughput approaches have identified several therapeutic targets in metastatic disease, some subtypes such as triple-negative breast cancer do not yet have an apparent tumor-specific receptor or pathway to target. Therefore, exploring new druggable targets in metastatic disease is a high clinical priority. In this review, we summarize the emerging intrinsic therapeutic targets for metastatic breast cancer, including cyclin D-dependent kinases CDK4 and CDK6, the PI3K/AKT/mTOR pathway, the insulin/IGF1R pathway, the EGFR/HER family, the JAK/STAT pathway, poly(ADP-ribose) polymerases (PARP), TROP-2, Src kinases, histone modification enzymes, activated growth factor receptors, androgen receptors, breast cancer stem cells, matrix metalloproteinases, and immune checkpoint proteins. We also review the latest development in breast cancer immunotherapy. Drugs that target these molecules/pathways are either already FDA-approved or currently being tested in clinical trials.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Eyleen L. K. Goh
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Ji He
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Zhimin Fan
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan 250033, China;
| | - Peng Yuan
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| |
Collapse
|
46
|
Zhang J, Croft J, Le A. Familial CCM Genes Might Not Be Main Drivers for Pathogenesis of Sporadic CCMs-Genetic Similarity between Cancers and Vascular Malformations. J Pers Med 2023; 13:jpm13040673. [PMID: 37109059 PMCID: PMC10143507 DOI: 10.3390/jpm13040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are abnormally dilated intracranial capillaries that form cerebrovascular lesions with a high risk of hemorrhagic stroke. Recently, several somatic "activating" gain-of-function (GOF) point mutations in PIK3CA (phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit p110α) were discovered as a dominant mutation in the lesions of sporadic forms of cerebral cavernous malformation (sCCM), raising the possibility that CCMs, like other types of vascular malformations, fall in the PIK3CA-related overgrowth spectrum (PROS). However, this possibility has been challenged with different interpretations. In this review, we will continue our efforts to expound the phenomenon of the coexistence of gain-of-function (GOF) point mutations in the PIK3CA gene and loss-of-function (LOF) mutations in CCM genes in the CCM lesions of sCCM and try to delineate the relationship between mutagenic events with CCM lesions in a temporospatial manner. Since GOF PIK3CA point mutations have been well studied in reproductive cancers, especially breast cancer as a driver oncogene, we will perform a comparative meta-analysis for GOF PIK3CA point mutations in an attempt to demonstrate the genetic similarities shared by both cancers and vascular anomalies.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Jacob Croft
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Alexander Le
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
47
|
Yadav TT, Patil PD, Shaikh GM, Kumar MS, Chintamaneni M, YC M. Evaluation of N 10 -substituted acridone-based derivatives as AKT inhibitors against breast cancer cells: in vitro and molecular docking studies. 3 Biotech 2023; 13:111. [PMID: 36879888 PMCID: PMC9984606 DOI: 10.1007/s13205-023-03524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
A series of N 10 -substituted acridone-2-carboxamide derivatives were synthesized and evaluated for their potent anti-cancer agents targeting AKT kinase. In vitro cytotoxicity activity of the target compounds was tested against breast cancer cell lines (MCF-7 and MDA-MB-231). Among the tested compounds, four compounds (7f, 8d, 8e, and 8f) exhibited promising anti-cancer activity against both cancer cell lines. Notably, compound 8f demonstrated the highest activity against MCF-7 and MDA-MB-231 at IC50 values of 4.72 and 5.53 μM, respectively. In vitro AKT kinase activity revealed that compounds 7f and 8f were the most potent AKT inhibitors with IC50 values of 5.38 and 6.90 μM, respectively. In addition, the quantitative ELISA method of testing confirmed that compound 8f effectively inhibited cell proliferation by suppressing the activation of p-AKT Ser473. Furthermore, molecular docking studies revealed that compound 8f can bind well to the active site of the AKT enzyme. The in silico ADME studies suggested that all synthesized molecules showed good oral bioavailability with a low-toxicity profile and can be used for further optimization as AKT kinase inhibitors in the treatment of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03524-z.
Collapse
Affiliation(s)
- Tanuja T. Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Piyush D. Patil
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Gulam Moin Shaikh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Maushmi S. Kumar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Meena Chintamaneni
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’s NMIMS, Mumbai, 400056 India
| | - Mayur YC
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Mumbai, 400077 India
| |
Collapse
|
48
|
Xu H, Li L, Qu L, Tu J, Sun X, Liu X, Xu K. Atractylenolide-1 affects glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI to inhibit the proliferation and invasion of human triple-negative breast cancer cells. Phytother Res 2023; 37:820-833. [PMID: 36420870 DOI: 10.1002/ptr.7661] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Atractylenolide-1 (AT-1) is a major octanol alkaloid isolated from Atractylodes Rhizoma and is widely used to treat various diseases. However, few reports have addressed the anticancer potential of AT-1, and the underlying molecular mechanisms of its anticancer effects are unclear. This study aimed to assess the effect of AT-1 on triple-negative breast cancer (TNBC) cell proliferation and migration and explore its potential molecular mechanisms. Cell invasion assays confirmed that the number of migrating cells decreased after AT-1 treatment. Colony formation assays showed that AT-1 treatment impaired the ability of MDA-MB-231 cells to form colonies. AT-1 inhibited the expression of p-p38, p-ERK, and p-AKT in MDA-MB-231 cells, significantly downregulated the proliferation of anti-apoptosis-related proteins CDK1, CCND1, and Bcl2, and up-regulated pro-apoptotic proteins Bak, caspase 3, and caspase 9. The gas chromatography-mass spectroscopy results showed that AT-1 downregulated the metabolism-related genes TPI1 and GPI through the glycolysis/gluconeogenesis pathway and inhibited tumor growth in vivo. AT-1 affected glycolysis/gluconeogenesis by downregulating the expression of TPI1 and GPI, inhibiting the proliferation, migration, and invasion of (TNBC) MDA-MB-231 cells and suppressing tumor growth in vivo.
Collapse
Affiliation(s)
- Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Linghang Qu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiyuan Tu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiongjie Sun
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xianqiong Liu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
49
|
Integrin αvβ3 Is a Master Regulator of Resistance to TKI-Induced Ferroptosis in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041216. [PMID: 36831558 PMCID: PMC9954089 DOI: 10.3390/cancers15041216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER2)-targeting therapies provide clinical benefits for patients with HER2-positive breast cancer. However, the resistance to monotherapies invariably develops and leads to disease relapse and treatment failure. Previous studies have demonstrated a link between the potency of HER2-targeting tyrosine kinase inhibitors (TKIs) and their ability to induce an iron-dependent form of cell death called ferroptosis. The aim of this study was to understand the mechanisms of resistance to TKI-induced ferroptosis and identify novel approaches to overcome treatment resistance. We used mouse and human HER2-positive models of acquired TKI resistance to demonstrate an intimate link between the resistance to TKIs and to ferroptosis and present the first evidence that the cell adhesion receptor αvβ3 integrin is a critical mediator of resistance to TKI-induced ferroptosis. Our findings indicate that αvβ3 integrin-mediated resistance is associated with the re-wiring of the iron/antioxidant metabolism and persistent activation of AKT signalling. Moreover, using gene manipulation approaches and pharmacological inhibitors, we show that this "αvβ3 integrin addiction" can be targeted to reverse TKI resistance. Collectively, these findings provide critical insights into new therapeutic strategies to improve the treatment of advanced HER2-positive breast cancer patients.
Collapse
|
50
|
Raith F, O’Donovan DH, Lemos C, Politz O, Haendler B. Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032289. [PMID: 36768610 PMCID: PMC9917236 DOI: 10.3390/ijms24032289] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes.
Collapse
Affiliation(s)
- Fabio Raith
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daniel H. O’Donovan
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer Research and Innovation Center, Bayer US LLC, 238 Main Street, Cambridge, MA 02142, USA
| | - Oliver Politz
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Bernard Haendler
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-2215-41198
| |
Collapse
|