1
|
Mo H, Zhang X, Ren L. Analysis of neuroglia and immune cells in the tumor microenvironment of breast cancer brain metastasis. Cancer Biol Ther 2024; 25:2398285. [PMID: 39238191 PMCID: PMC11382727 DOI: 10.1080/15384047.2024.2398285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Breast cancer stands as the most prevalent cancer diagnosed worldwide, often leading to brain metastasis, a challenging complication characterized by high mortality rates and a grim prognosis. Understanding the intricate mechanisms governing breast cancer brain metastasis (BCBM) remains an ongoing challenge. The unique microenvironment in the brain fosters an ideal setting for the colonization of breast cancer cells. The tumor microenvironment (TME) in brain metastases plays a pivotal role in the initiation and progression of BCBM, shaping the landscape for targeted therapeutic interventions. Current research primarily concentrates on unraveling the complexities of the TME in BCBM, with a particular emphasis on neuroglia and immune cells, such as microglia, monocyte-derived macrophages (MDMs), astrocytes and T cells. This comprehensive review delves deeply into these elements within the TME of BCBM, shedding light on their interplay, mechanisms, and potential as therapeutic targets to combat BCBM.
Collapse
Affiliation(s)
- Haixin Mo
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liangliang Ren
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| |
Collapse
|
2
|
Jiang RY, Zhu JY, Zhang HP, Yu Y, Dong ZX, Zhou HH, Wang X. STAT3: Key targets of growth-promoting receptor positive breast cancer. Cancer Cell Int 2024; 24:356. [PMID: 39468521 PMCID: PMC11520424 DOI: 10.1186/s12935-024-03541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Breast cancer has become the malignant tumor with the first incidence and the second mortality among female cancers. Most female breast cancers belong to luminal-type breast cancer and HER2-positive breast cancer. These breast cancer cells all have different driving genes, which constantly promote the proliferation and metastasis of breast cancer cells. Signal transducer and activator of transcription 3 (STAT3) is an important breast cancer-related gene, which can promote the progress of breast cancer. It has been proved in clinical and basic research that over-expressed and constitutively activated STAT3 is involved in the progress, proliferation, metastasis and chemotherapy resistance of breast cancer. STAT3 is an important key target in luminal-type breast cancer and HER2-positive cancer, which has an important impact on the curative effect of related treatments. In breast cancer, the activation of STAT3 will change the spatial position of STAT3 protein and cause different phenotypic changes of breast cancer cells. In the current basic research and clinical research, small molecule inhibitors activated by targeting STAT3 can effectively treat breast cancer, and enhance the efficacy level of related treatment methods for luminal-type and HER2-positive breast cancers.
Collapse
Affiliation(s)
- Rui-Yuan Jiang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jia-Yu Zhu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huan-Ping Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
- Department of Graduate Student, Wenzhou Medical University, No.270, Xueyuan West Road, Lucheng District, Wenzhou, 325027, Zhejiang, China
| | - Yuan Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Zhi-Xin Dong
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No.89-9, Dongge Road, Qingxiu District, Nanning, 530000, Guangxi, China
| | - Huan-Huan Zhou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, NO.548, Binwen Road, Binjiang District, Hangzhou, 310000, Zhejiang, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojia Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
3
|
Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024; 25:1793-1808. [PMID: 39285252 DOI: 10.1038/s41590-024-01960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Metastasis, the spread of cancer from a primary site to distant organs, is an important challenge in oncology. This Review explores the complexities of immune escape mechanisms used throughout the metastatic cascade to promote tumor cell dissemination and affect organotropism. Specifically, we focus on adaptive plasticity of disseminated epithelial tumor cells to understand how they undergo phenotypic transitions to survive microenvironmental conditions encountered during metastasis. The interaction of tumor cells and their microenvironment is analyzed, highlighting the local and systemic effects that innate and adaptive immune systems have in shaping an immunosuppressive milieu to foster aggressive metastatic tumors. Effectively managing metastatic disease demands a multipronged approach to target the parallel and sequential mechanisms that suppress anti-tumor immunity. This management necessitates a deep understanding of the complex interplay between tumor cells, their microenvironment and immune responses that we provide with this Review.
Collapse
Affiliation(s)
- Nicole M Haynes
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas B Chadwick
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda S Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Feng Y, Hu X, Zhang Y, Wang Y. The Role of Microglia in Brain Metastases: Mechanisms and Strategies. Aging Dis 2024; 15:169-185. [PMID: 37307835 PMCID: PMC10796095 DOI: 10.14336/ad.2023.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/14/2023] [Indexed: 06/14/2023] Open
Abstract
Brain metastases and related complications are one of the major fatal factors in cancer. Patients with breast cancer, lung cancer, and melanoma are at a high risk of developing brain metastases. However, the mechanisms underlying the brain metastatic cascade remain poorly understood. Microglia, one of the major resident macrophages in the brain parenchyma, are involved in multiple processes associated with brain metastasis, including inflammation, angiogenesis, and immune modulation. They also closely interact with metastatic cancer cells, astrocytes, and other immune cells. Current therapeutic approaches against metastatic brain cancers, including small-molecule drugs, antibody-coupled drugs (ADCs), and immune-checkpoint inhibitors (ICIs), have compromised efficacy owing to the impermeability of the blood-brain barrier (BBB) and complex brain microenvironment. Targeting microglia is one of the strategies for treating metastatic brain cancer. In this review, we summarize the multifaceted roles of microglia in brain metastases and highlight them as potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Ying Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xueqing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Nicolini A, Rossi G, Ferrari P. Experimental and clinical evidence in favour of an effective immune stimulation in ER-positive, endocrine-dependent metastatic breast cancer. Front Immunol 2024; 14:1225175. [PMID: 38332913 PMCID: PMC10850262 DOI: 10.3389/fimmu.2023.1225175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/04/2023] [Indexed: 02/10/2024] Open
Abstract
In ER+ breast cancer, usually seen as the low immunogenic type, the main mechanisms favouring the immune response or tumour growth and immune evasion in the tumour microenvironment (TME) have been examined. The principal implications of targeting the oestrogen-mediated pathways were also considered. Recent experimental findings point out that anti-oestrogens contribute to the reversion of the immunosuppressive TME. Moreover, some preliminary clinical data with the hormone-immunotherapy association in a metastatic setting support the notion that the reversion of immune suppression in TME is likely favoured by the G0-G1 state induced by anti-oestrogens. Following immune stimulation, the reverted immune suppression allows the boosting of the effector cells of the innate and adaptive immune response. This suggests that ER+ breast cancer is a molecular subtype where a successful active immune manipulation can be attained. If this is confirmed by a prospective multicentre trial, which is expected in light of the provided evidence, the proposed hormone immunotherapy can also be tested in the adjuvant setting. Furthermore, the different rationale suggests a synergistic activity of our proposed immunotherapy with the currently recommended regimen consisting of antioestrogens combined with cyclin kinase inhibitors. Overall, this lays the foundation for a shift in clinical practice within this most prevalent molecular subtype of breast cancer.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Epidemiology and Biostatistics Unit, Institute of Clinical Physiology, National Research Council and Gabriele Monasterio Foundation, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Aljassim FK, El-Sheikh AA, Motabagani MA. The Effect of Tamoxifen Citrate on Granulosa Cells of Ovarian Follicles in Adult Female Rats: Light Microscopic Study. J Microsc Ultrastruct 2024; 12:1-5. [PMID: 38633571 PMCID: PMC11019587 DOI: 10.4103/jmau.jmau_79_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022] Open
Abstract
Background Tamoxifen is a drug that has been used extensively as a chemotherapeutic agent for breast cancer. It should be taken for a long period, from few weeks up to many years, so it can induce gynecological and nongynecological complications. Aim Present study was conducted to clarify the histopathological effects of tamoxifen intake on the ovarian follicles of rats and evaluate the promising recovery after drug withdrawal. Materials and Methods Adult female albino rats (n = 24) were randomly divided into four groups. Group I: Control rats without treatment. Group II: Rats received olive oil vehicle. Group III: Rats received 5 mg/kg daily of tamoxifen dissolved in olive oil by oral administration for 4 weeks. Group IV: Rats received tamoxifen as in Group III then will be kept for another 4 weeks without treatment for recovery. Then, the rats were anaesthetized and the ovaries were removed and prepared for histological assessment by light microscope. Results The ovarian histological findings in the ovary of Group III revealed an increase in atretic ovarian follicles, appearance of cystic ovarian follicles, and cystic corpus luteum. The granulosa cells of ovarian follicles were disorganized with vacuolation of their cytoplasm, increased number of pyknotic nuclei, fragmented nuclei, and apoptotic bodies. After the withdrawal of drug, the ovarian tissue showed slight improvement with the appearance of some atretic follicles with degenerated oocyte and stromal hyperplasia. Conclusion Based on the results, tamoxifen induced marked histological changes in the ovary. If tamoxifen is mandatory for the prevention of breast cancer, frequent gynecological examination should be carried out to detect any side effects.
Collapse
Affiliation(s)
- Fatimah Khalil Aljassim
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amal Ahmed El-Sheikh
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohamed A. Motabagani
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
7
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
8
|
Huang G, Wu Y, Gan H, Chu L. Overexpression of CD2/CD27 could inhibit the activation of nitrogen metabolism pathways and suppress M2 polarization of macrophages, thereby preventing brain metastasis of breast cancer. Transl Oncol 2023; 37:101768. [PMID: 37666207 PMCID: PMC10480780 DOI: 10.1016/j.tranon.2023.101768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVE Our study aimed to reveal the possible molecular mechanisms of CD2 and CD27 in influencing the tumor microenvironment of breast cancer (BC) brain metastasis based on the TCGA (The Cancer Genome Atlas) and SRA (Sequence Read Archive) databases. METHODS We calculated the proportions of tumor-infiltrating immune cells and the immune and stromal cell scores in 1222 BC samples from the TCGA-BRCA dataset, followed by identification of candidate DEGs. We further screened for BC brain metastasis-related DEGs in the BC brain metastasis dataset SUB12911144 from the SRA database. Finally, we established a mouse breast cancer brain metastasis model for in vivo validation. RESULTS We further screened two immune-regulatory DEGs (CD2 and CD27). GSEA analysis showed that the downregulation of CD2 and CD27 expression was closely related to the activation of nitrogen metabolism pathways. CIBERSORT algorithm analysis showed a correlation between the expression of 16 types of tumor-infiltrating immune cells and CD2 and 19 types of tumor-infiltrating immune cells and CD27. In addition, CD2 and CD27 expression were negatively associated with the proportion of M2 macrophages. In vivo experimental results demonstrated that overexpression of CD2/CD27 could suppress the M2 polarization of macrophages and inhibit breast cancer brain metastasis. CONCLUSION In the tumor microenvironment, overexpression of CD2/CD27 inhibited the activation of nitrogen metabolism pathways and suppressed M2 polarization of macrophages, thereby preventing brain metastasis of breast cancer.
Collapse
Affiliation(s)
- Guanyou Huang
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital), No.547 Jinyang South Road, Guanshanhu District, Guiyang 550081, China.
| | - Yujuan Wu
- Department of Neurology, The Second People's Hospital of Guiyang (Jinyang Hospital), No.547 Jinyang South Road, Guanshanhu District, Guiyang 550081, China
| | - Hongchuan Gan
- Department of Neurosurgery, The Second People's Hospital of Guiyang (Jinyang Hospital), No.547 Jinyang South Road, Guanshanhu District, Guiyang 550081, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| |
Collapse
|
9
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
10
|
Zhao J, Zhang J, Sun Y, Wang R, Shi D, Shen W, Sun X. Maternal tamoxifen exposure leads to abnormal primordial follicle assembly. Histochem Cell Biol 2023:10.1007/s00418-023-02196-3. [PMID: 37148333 DOI: 10.1007/s00418-023-02196-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Tamoxifen (TAM) is an accredited drug used for treatment and prevention of breast cancer. Due to the long-term taking and the trend for women to delay childbearing, inadvertent conception occasionally occurs during TAM treatment. To explore the effects of TAM on a fetus, pregnant mice at gestation day 16.5 were orally administrated with different concentrations of TAM. Molecular biology techniques were used to analyze the effects of TAM on primordial follicle assembly of female offspring and the mechanism. It was found that maternal TAM exposure affected primordial follicle assembly and damaged the ovarian reserve in 3 dpp offspring. Up to 21 dpp, the follicular development had not recovered, with significantly decreased antral follicles and decreased total follicle number after maternal TAM exposure. Cell proliferation was significantly inhibited; however, the cell apoptosis was induced by maternal TAM exposure. Epigenetic regulation was also involved in the process of TAM induced abnormal primordial follicle assembly. The changed levels of H3K4me3, H3K9me3, and H3K27me3 presented the function of histone methylation in the regulation of the effects of maternal TAM exposure on the reproduction of female offspring. Moreover, the changed level of RNA m6A modification and the changed expression of genes related to transmethylation and demethylation proved the role of m6A in the process. Maternal TAM exposure led to abnormal primordial follicle assembly and follicular development by affecting cell proliferation, cell apoptosis, and epigenetics.
Collapse
Affiliation(s)
- Jinxin Zhao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, China
| | - Jiaona Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, China
| | - Yonghong Sun
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Ruiting Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, China
| | - Dachuan Shi
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, China.
| | - Xiaofeng Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, China.
| |
Collapse
|
11
|
Terrisse S, Zitvogel L, Kroemer G. Impact of microbiota on breast cancer hormone therapy. Cell Stress 2023; 7:12-19. [PMID: 36926118 PMCID: PMC10012050 DOI: 10.15698/cst2023.03.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
Recent observations indicate that the pathogenesis and prognosis of hormone-receptor breast cancer is not only dictated by the properties of the malignant cells but also by immune and microbial parameters. Thus, the immunosurveillance system retards the development of hormone-positive breast cancer and contributes to the therapeutic efficacy of estrogen receptor antagonists and aromatase inhibitors. Moreover, the anticancer immune response is profoundly modulated by the local and intestinal microbiota, which influences cancer cell-intrinsic signaling pathways, affects the composition and function of the immune infiltrate present in the tumor microenvironment and modulates the metabolism of estrogens. Indeed, specific bacteria in the gut produce enzymes that affect the enterohepatic cycle of estrogen metabolites, convert estrogens into androgens or generate estrogen-like molecules. The knowledge of these circuitries is in its infancy, calling for further in-depth analyses.
Collapse
Affiliation(s)
| | - Laurence Zitvogel
- INSERM U1015, Equipe Labellisée - Ligue Nationale contre le Cancer, Villejuif, France.,University Paris Saclay, Gif-sur-Yvette, France.,Gustave Roussy, ClinicObiome, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris Cité, Sorbonne Université, Institut Universitaire de France, Inserm U1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
12
|
Scarpetti L, Oturkar CC, Juric D, Shellock M, Malvarosa G, Post K, Isakoff S, Wang N, Nahed B, Oh K, Das GM, Bardia A. Therapeutic Role of Tamoxifen for Triple-Negative Breast Cancer: Leveraging the Interaction Between ERβ and Mutant p53. Oncologist 2023; 28:358-363. [PMID: 36772966 PMCID: PMC10078911 DOI: 10.1093/oncolo/oyac281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/30/2022] [Indexed: 02/12/2023] Open
Abstract
The absence of effective therapeutic targets and aggressive nature of triple-negative breast cancer (TNBC) renders this disease subset difficult to treat. Although estrogen receptor beta (ERβ) is expressed in TNBC, studies on its functional role have yielded inconsistent results. However, recently, our preclinical studies, along with other observations, have shown the potential therapeutic utility of ERβ in the context of mutant p53 expression. The current case study examines the efficacy of the selective estrogen receptor modulator tamoxifen in p53-mutant TNBC with brain metastases. Significant increase in ERβ protein expression and anti-proliferative interaction between mutant p53 and ERβ were observed after cessation of tamoxifen therapy, with significant regression of brain metastases. This case study provides supporting evidence for the use of tamoxifen in p53-mutant, ERβ+TNBC, especially in the setting of brain metastasis.
Collapse
Affiliation(s)
- Lauren Scarpetti
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Dejan Juric
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Maria Shellock
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giuliana Malvarosa
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kathryn Post
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Steven Isakoff
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Nancy Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Brian Nahed
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Oh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Gokul M Das
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
14
|
Chen Q, Xiong J, Ma Y, Wei J, Liu C, Zhao Y. Systemic treatments for breast cancer brain metastasis. Front Oncol 2023; 12:1086821. [PMID: 36686840 PMCID: PMC9853531 DOI: 10.3389/fonc.2022.1086821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in females and BC brain metastasis (BCBM) is considered as the second most frequent brain metastasis. Although the advanced treatment has significantly prolonged the survival in BC patients, the prognosis of BCBM is still poor. The management of BCBM remains challenging. Systemic treatments are important to maintain control of central nervous system disease and improve patients' survival. BCBM medical treatment is a rapidly advancing area of research. With the emergence of new targeted drugs, more options are provided for the treatment of BM. This review features currently available BCBM treatment strategies and outlines novel drugs and ongoing clinical trials that may be available in the future. These treatment strategies are discovered to be more efficacious and potent, and present a paradigm shift in the management of BCBMs.
Collapse
Affiliation(s)
| | | | | | | | - Cuiwei Liu
- *Correspondence: Cuiwei Liu, ; Yanxia Zhao,
| | | |
Collapse
|
15
|
Hintelmann K, Petersen C, Borgmann K. Radiotherapeutic Strategies to Overcome Resistance of Breast Cancer Brain Metastases by Considering Immunogenic Aspects of Cancer Stem Cells. Cancers (Basel) 2022; 15:211. [PMID: 36612206 PMCID: PMC9818478 DOI: 10.3390/cancers15010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most diagnosed cancer in women, and symptomatic brain metastases (BCBMs) occur in 15-20% of metastatic breast cancer cases. Despite technological advances in radiation therapy (RT), the prognosis of patients is limited. This has been attributed to radioresistant breast cancer stem cells (BCSCs), among other factors. The aim of this review article is to summarize the evidence of cancer-stem-cell-mediated radioresistance in brain metastases of breast cancer from radiobiologic and radiation oncologic perspectives to allow for the better interpretability of preclinical and clinical evidence and to facilitate its translation into new therapeutic strategies. To this end, the etiology of brain metastasis in breast cancer, its radiotherapeutic treatment options, resistance mechanisms in BCSCs, and effects of molecularly targeted therapies in combination with radiotherapy involving immune checkpoint inhibitors are described and classified. This is considered in the context of the central nervous system (CNS) as a particular metastatic niche involving the blood-brain barrier and the CNS immune system. The compilation of this existing knowledge serves to identify possible synergistic effects between systemic molecularly targeted therapies and ionizing radiation (IR) by considering both BCSCs' relevant resistance mechanisms and effects on normal tissue of the CNS.
Collapse
Affiliation(s)
- Katharina Hintelmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
16
|
Caffarel MM, Braza MS. Microglia and metastases to the central nervous system: victim, ravager, or something else? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:327. [PMID: 36411434 PMCID: PMC9677912 DOI: 10.1186/s13046-022-02535-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Central nervous system (CNS) metastases are a major cause of death in patients with cancer. Tumor cells must survive during their migration and dissemination in various sites and niches. The brain is considered an immunological sanctuary site, and thus the safest place for metastasis establishment. The risk of brain metastases is highest in patients with melanoma, lung, or breast cancers. In the CNS, metastatic cancer cells exploit the activity of different non-tumoral cell types in the brain microenvironment to create a new niche and to support their proliferation and survival. Among these cells, microglia (the brain resident macrophages) display an exceptional role in immune surveillance and tumor clearance. However, upon recruitment to the metastatic site, depending on the microenvironment context and disease conditions, microglia might be turned into tumor-supportive or -unsupportive cells. Recent single-cell 'omic' analyses have contributed to clarify microglia functional and spatial heterogeneity during tumor development and metastasis formation in the CNS. This review summarizes findings on microglia heterogeneity from classical studies to the new single-cell omics. We discuss i) how microglia interact with metastatic cancer cells in the unique brain tumor microenvironment; ii) the microglia classical M1-M2 binary concept and its limitations; and iii) single-cell omic findings that help to understand human and mouse microglia heterogeneity (core sensomes) and to describe the multi-context-dependent microglia functions in metastases to the CNS. We then propose ways to exploit microglia plasticity for brain metastasis treatment depending on the microenvironment profile.
Collapse
Affiliation(s)
- Maria M. Caffarel
- grid.432380.eBiodonostia Health Research Institute, Basque Country, Spain ,grid.424810.b0000 0004 0467 2314Ikarbasque, Basque Foundation for Science, Basque Country, Spain
| | - Mounia S. Braza
- grid.432380.eBiodonostia Health Research Institute, Basque Country, Spain ,grid.424810.b0000 0004 0467 2314Ikarbasque, Basque Foundation for Science, Basque Country, Spain ,grid.59734.3c0000 0001 0670 2351Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY USA
| |
Collapse
|
17
|
Farhadi Z, Azizian H, Haji-Seyed-Javadi R, Khaksari M. A review: Effects of estrogen and estrogen receptor modulators on leptin resistance: Mechanisms and pathway. OBESITY MEDICINE 2022; 34:100446. [DOI: 10.1016/j.obmed.2022.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
18
|
Li K, Zong D, Sun J, Chen D, Ma M, Jia L. Rewiring of the Endocrine Network in Triple-Negative Breast Cancer. Front Oncol 2022; 12:830894. [PMID: 35847875 PMCID: PMC9280148 DOI: 10.3389/fonc.2022.830894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
The immunohistochemical definition of estrogen/progesterone receptors dictates endocrine feasibility in the treatment course of breast cancer. Characterized by the deficiency of estrogen receptor α, ERα-negative breast cancers are dissociated from any endocrine regimens in the routine clinical setting, triple-negative breast cancer in particular. However, the stereotype was challenged by triple-negative breast cancers’ retained sensitivity and vulnerability to endocrine agents. The interplay of hormone action and the carcinogenic signaling program previously underscored was gradually recognized along with the increasing investigation. In parallel, the overlooked endocrine-responsiveness in ERα-negative breast cancers attracted attention and supplied fresh insight into the therapeutic strategy in an ERα-independent manner. This review elaborates on the genomic and non-genomic steroid hormone actions and endocrine-related signals in triple-negative breast cancers attached to the hormone insensitivity label. We also shed light on the non-canonical mechanism detected in common hormone agents to showcase their pleiotropic effects.
Collapse
Affiliation(s)
- Kaixuan Li
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese medicine, Beijing, China
| | | | - Jianrong Sun
- School of Clinical Medicine. Beijing University of Chinese Medicine, Beijing, China
| | - Danxiang Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minkai Ma
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The Fourth Central Hospital, Baoding, China
| | - Liqun Jia
- Department of Integrated Traditional Chinese and Western Medicine Oncology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Liqun Jia,
| |
Collapse
|
19
|
Marin J, Journe F, Ghanem GE, Awada A, Kindt N. Cytokine Landscape in Central Nervous System Metastases. Biomedicines 2022; 10:biomedicines10071537. [PMID: 35884845 PMCID: PMC9313120 DOI: 10.3390/biomedicines10071537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective treatments. In this review, we explore the involvement of cytokines, including interleukins and chemokines, during the development of brain and leptomeningeal metastases from the epithelial-to-mesenchymal cell transition and blood–brain barrier extravasation to the interaction between cancer cells and cells from the brain microenvironment, including astrocytes and microglia. Furthermore, the role of the gut–brain axis on cytokine release during this process will also be addressed.
Collapse
Affiliation(s)
- Julie Marin
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Laboratory of Human Anatomy and Experimental Oncology, Institut Santé, Université de Mons (UMons), 7000 Mons, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Nadège Kindt
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Correspondence:
| |
Collapse
|
20
|
Sfogliarini C, Pepe G, Dolce A, Della Torre S, Cesta MC, Allegretti M, Locati M, Vegeto E. Tamoxifen Twists Again: On and Off-Targets in Macrophages and Infections. Front Pharmacol 2022; 13:879020. [PMID: 35431927 PMCID: PMC9006819 DOI: 10.3389/fphar.2022.879020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Beyond the wide use of tamoxifen in breast cancer chemotherapy due to its estrogen receptor antagonist activity, this drug is being assayed in repurposing strategies against a number of microbial infections. We conducted a literature search on the evidence related with tamoxifen activity in macrophages, since these immune cells participate as a first line-defense against pathogen invasion. Consistent data indicate the existence of estrogen receptor-independent targets of tamoxifen in macrophages that include lipid mediators and signaling pathways, such as NRF2 and caspase-1, which allow these cells to undergo phenotypic adaptation and potentiate the inflammatory response, without the induction of cell death. Thus, these lines of evidence suggest that the widespread antimicrobial activity of this drug can be ascribed, at least in part, to the potentiation of the host innate immunity. This widens our understanding of the pharmacological activity of tamoxifen with relevant therapeutic implications for infections and other clinical indications that may benefit from the immunomodulatory effects of this drug.
Collapse
Affiliation(s)
- Chiara Sfogliarini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giovanna Pepe
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | - Massimo Locati
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elisabetta Vegeto
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Lv T, Zhang Z, Yu H, Ren S, Wang J, Li S, Sun L. Tamoxifen Exerts Anticancer Effects on Pituitary Adenoma Progression via Inducing Cell Apoptosis and Inhibiting Cell Migration. Int J Mol Sci 2022; 23:ijms23052664. [PMID: 35269804 PMCID: PMC8910631 DOI: 10.3390/ijms23052664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Although pituitary adenomas are histologically benign, they are often accompanied by multiple complications, such as cardiovascular disease and metabolic dysfunction. In the present study, we repositioned the Food and Drug Administration -approved immune regulator tamoxifen to target STAT6 based on the genomics analysis of PAs. Tamoxifen inhibited the proliferation of GH3 and AtT-20 cells with respective IC50 values of 9.15 and 7.52 μM and increased their apoptotic rates in a dose-dependent manner. At the molecular level, tamoxifen downregulated phosphorylated PI3K, phosphorylated AKT and the anti-apoptotic protein Bcl-2 and increased the expression of pro-apoptotic proteins p53 and Bax in GH3 and AtT-20 cells. Furthermore, tamoxifen also inhibited the migration of both cell lines by reprogramming tumor-associated macrophages to the M1 phenotype through STAT6 inactivation and inhibition of the macrophage-specific immune checkpoint SHP1/SHP. Finally, administration of tamoxifen (20, 50, 100 mg·kg−1·d−1, for 21 days) inhibited the growth of pituitary adenomas xenografts in nude mice in a dose-dependent manner. Taken together, tamoxifen is likely to be a promising combination therapy for pituitary adenomas and should be investigated further.
Collapse
Affiliation(s)
- Tingting Lv
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zirui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haoying Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyue Ren
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jingrong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (T.L.); (Z.Z.); (H.Y.); (S.R.); (J.W.); (S.L.)
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence:
| |
Collapse
|