1
|
Famta P, Shah S, Vambhurkar G, Pandey G, Bagasariya D, Kumar KC, Prasad SB, Shinde A, Wagh S, Srinivasarao DA, Kumar R, Khatri DK, Asthana A, Srivastava S. Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation. Drug Deliv Transl Res 2025; 15:389-406. [PMID: 39009931 DOI: 10.1007/s13346-024-01669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women. Chemo-, immune- and photothermal therapies are employed to manage BC. However, the tumor microenvironment (TME) prevents free drugs and nanocarriers (NCs) from entering the tumor premises. Formulation scientists rely on enhanced permeation and retention (EPR) to extravasate NCs in the TME. However, recent research has demonstrated the inconsistent nature of EPR among different patients and tumor types. In addition, angiogenesis, high intra-tumor fluid pressure, desmoplasia, and high cell and extracellular matrix density resist the accumulation of NCs in the TME. In this review, we discuss TME normalization as an approach to improve the penetration of drugs and NCSs in the tumor premises. Strategies such as normalization of tumor vessels, reversal of hypoxia, alleviation of high intra-tumor pressure, and infiltration of lymphocytes for the reversal of therapy failure have been discussed in this manuscript. Strategies to promote the infiltration of anticancer immune cells in the TME after vascular normalization have been discussed. Studies strategizing time points to administer TME-normalizing agents are highlighted. Mechanistic pathways controlling the angiogenesis and normalization processes are discussed along with the studies. This review will provide greater tumor-targeting insights to the formulation scientists.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Sajja Bhanu Prasad
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Akshay Shinde
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Suraj Wagh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Molecular and Cellular Biology Laboratory, Department of Pharmacology, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
2
|
Gutierrez-Riquelme T, Karkossa I, Schubert K, Liebscher G, Packeiser EM, Nolte I, von Bergen M, Murua Escobar H, Aguilera-Rojas M, Einspanier R, Stein T. Proteomic analysis of extracellular vesicles derived from canine mammary tumour cell lines identifies protein signatures specific for disease state. BMC Vet Res 2024; 20:488. [PMID: 39462388 PMCID: PMC11515202 DOI: 10.1186/s12917-024-04331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 10/13/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Canine mammary tumours (CMT) are among the most common types of tumours in female dogs. Diagnosis currently requires invasive tissue biopsies and histological analysis. Tumour cells shed extracellular vesicles (EVs) containing RNAs and proteins with potential for liquid biopsy diagnostics. We aimed to identify CMT subtype-specific proteome profiles by comparing the proteomes of EVs isolated from epithelial cell lines derived from morphologically normal canine mammary tissue, adenomas, and carcinomas. METHODS Whole-cell protein lysates (WCLs) and EV-lysates were obtained from five canine mammary cell lines: MTH53A (non-neoplastic); ZMTH3 (adenoma); MTH52C (simple carcinoma); 1305, DT1406TB (complex carcinoma); and their proteins identified by LC-MS/MS analyses. Gene Ontology analysis was performed on differentially abundant proteins from each group to identify up- and down-regulated biological processes. To establish CMT subtype-specific proteomic profiles, weighted gene correlation network analysis (WGCNA) was carried out. RESULTS WCL and EVs displayed distinct protein abundance signatures while still showing the same increase in adhesion, migration, and motility-related proteins in carcinoma-derived cell lines, and of RNA processing and RNA splicing factors in the adenoma cell line. WGCNA identified CMT stage-specific co-abundant EV proteins, allowing the identification of adenoma and carcinoma EV signatures not seen in WCLs. CONCLUSIONS EVs from CMT cell lines exhibit distinct protein profiles reflecting malignancy state, allowing us to identify potential biomarkers for canine mammary carcinomas, such as biglycan. Our dataset could therefore potentially serve as a basis for the development of a less invasive clinical diagnostic tool for the characterisation of CMT.
Collapse
Affiliation(s)
- Tania Gutierrez-Riquelme
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Gudrun Liebscher
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Eva-Maria Packeiser
- Reproductive Unit, Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre of Environmental Research GmbH - UFZ, 04318, Leipzig, Germany
| | - Hugo Murua Escobar
- Department of Internal Medicine, Medical Clinic III, Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | | | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Torsten Stein
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany.
| |
Collapse
|
3
|
Hida K, Maishi N, Matsuda A, Yu L. Beyond starving cancer: anti-angiogenic therapy. J Med Ultrason (2001) 2024; 51:605-610. [PMID: 37170042 PMCID: PMC11499530 DOI: 10.1007/s10396-023-01310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Tumor blood vessels contribute to cancer progression by supplying nutrients and oxygen to the tumor, removing waste products, and providing a pathway to distant organs. Current angiogenesis inhibitors primarily target molecules in the vascular endothelial growth factor (VEGF) signaling pathway, inhibiting cancer growth and metastasis by preventing the formation of blood vessels that feed cancer. They also normalize vascular structural abnormalities caused by excess VEGF and improve reflux, resulting in increased drug delivery to cancer tissue and immune cell mobilization. As a result, by normalizing blood vessels, angiogenesis inhibitors have been shown to enhance the effects of chemotherapy and immunotherapy. We present findings on the characteristics of tumor vascular endothelial cells that angiogenesis inhibitors target.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7 Kita-Ku, Sapporo, 060-8586, Japan.
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7 Kita-Ku, Sapporo, 060-8586, Japan
| | - Aya Matsuda
- Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7 Kita-Ku, Sapporo, 060-8586, Japan
| | - Li Yu
- Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, N13 W7 Kita-Ku, Sapporo, 060-8586, Japan
| |
Collapse
|
4
|
Celik C, Lee STT, Tanoto FR, Veleba M, Kline K, Thibault G. Decoding the complexity of delayed wound healing following Enterococcus faecalis infection. eLife 2024; 13:RP95113. [PMID: 38767331 PMCID: PMC11105157 DOI: 10.7554/elife.95113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Wound infections are highly prevalent and can lead to delayed or failed healing, causing significant morbidity and adverse economic impacts. These infections occur in various contexts, including diabetic foot ulcers, burns, and surgical sites. Enterococcus faecalis is often found in persistent non-healing wounds, but its contribution to chronic wounds remains understudied. To address this, we employed single-cell RNA sequencing (scRNA-seq) on infected wounds in comparison to uninfected wounds in a mouse model. Examining over 23,000 cells, we created a comprehensive single-cell atlas that captures the cellular and transcriptomic landscape of these wounds. Our analysis revealed unique transcriptional and metabolic alterations in infected wounds, elucidating the distinct molecular changes associated with bacterial infection compared to the normal wound healing process. We identified dysregulated keratinocyte and fibroblast transcriptomes in response to infection, jointly contributing to an anti-inflammatory environment. Notably, E. faecalis infection prompted a premature, incomplete epithelial-mesenchymal transition in keratinocytes. Additionally, E. faecalis infection modulated M2-like macrophage polarization by inhibiting pro-inflammatory resolution in vitro, in vivo, and in our scRNA-seq atlas. Furthermore, we discovered macrophage crosstalk with neutrophils, which regulates chemokine signaling pathways, while promoting anti-inflammatory interactions with endothelial cells. Overall, our findings offer new insights into the immunosuppressive role of E. faecalis in wound infections.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Stella Tue Ting Lee
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Frederick Reinhart Tanoto
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological UniversitySingaporeSingapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological UniversitySingaporeSingapore
| | - Kimberly Kline
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
- Singapore Centre for Environmental Life Science Engineering, Nanyang Technological UniversitySingaporeSingapore
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
5
|
Farach-Carson MC, Wu D, França CM. Proteoglycans in Mechanobiology of Tissues and Organs: Normal Functions and Mechanopathology. PROTEOGLYCAN RESEARCH 2024; 2:e21. [PMID: 39584146 PMCID: PMC11584024 DOI: 10.1002/pgr2.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 11/26/2024]
Abstract
Proteoglycans (PGs) are a diverse class of glycoconjugates that serve critical functions in normal mechanobiology and mechanopathology. Both the protein cores and attached glycosaminoglycan (GAG) chains function in mechanically-sensitive processes, and loss of either can contribute to development of pathological conditions. PGs function as key components of the extracellular matrix (ECM) where they can serve as mechanosensors in mechanosensitive tissues including bone, cartilage, tendon, blood vessels and soft organs. The mechanical properties of these tissues depend on the presence and function of PGs, which play important roles in tissue elasticity, osmolarity and pressure sensing, and response to physical activity. Tissue responses depend on cell surface mechanoreceptors that include integrins, CD44, voltage sensitive ion channels, transient receptor potential (TRP) and piezo channels. PGs contribute to cell and molecular interplay in wound healing, fibrosis, and cancer, where they transduce the mechanical properties of the ECM and influence the progression of various context-specific conditions and diseases. The PGs that are most important in mechanobiology vary depending on the tissue and its functions and functional needs. Perlecan, for example, is important in the mechanobiology of basement membranes, cardiac and skeletal muscle, while aggrecan plays a primary role in the mechanical properties of cartilage and joints. A variety of techniques have been used to study the mechanobiology of PGs, including atomic force microscopy, mouse knockout models, and in vitro cell culture experiments with 3D organoid models. These studies have helped to elucidate the tissue-specific roles that PGs play in cell-level mechanosensing and tissue mechanics. Overall, the study of PGs in mechanobiology is yielding fundamental new concepts in the molecular basis of mechanosensing that can open the door to the development of new treatments for a host of conditions related to mechanopathology.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX 77005
| | - Cristiane Miranda França
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, Portland, OR, 97201
- Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201
| |
Collapse
|
6
|
Yu L, Hong Y, Maishi N, Matsuda AY, Hida Y, Hasebe A, Kitagawa Y, Hida K. Oral bacterium Streptococcus mutans promotes tumor metastasis through thrombosis formation. Cancer Sci 2024; 115:648-659. [PMID: 38096871 PMCID: PMC10859626 DOI: 10.1111/cas.16010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 02/13/2024] Open
Abstract
Thrombosis is a well-known cardiovascular disease (CVD) complication that has caused death in many patients with cancer. Oral bacteria have been reported to contribute to systemic diseases, including CVDs, and tumor metastasis. However, whether oral bacteria-induced thrombosis induces tumor metastasis remains poorly understood. In this study, the cariogenic oral bacterium Streptococcus mutans was used to examine thrombosis in vitro and in vivo. Investigation of tumor metastasis to the lungs was undertaken by intravenous S. mutans implantation using a murine breast cancer metastasis model. The results indicated that platelet activation, aggregation, and coagulation were significantly altered in S. mutans-stimulated endothelial cells (ECs), with elevated neutrophil migration, thereby inducing thrombosis formation. Streptococcus mutans stimulation significantly enhances platelet and tumor cell adhesion to the inflamed ECs. Furthermore, S. mutans-induced pulmonary thrombosis promotes breast cancer cell metastasis to the lungs in vivo, which can be reduced by using aspirin, an antiplatelet drug. Our findings indicate that oral bacteria promote tumor metastasis through thrombosis formation. Oral health management is important to prevent CVDs, tumor metastasis, and their associated death.
Collapse
Affiliation(s)
- Li Yu
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yuying Hong
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
- Oral Diagnosis and Medicine, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Aya Yanagawa Matsuda
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yasuhiro Hida
- Advanced Robotic and Endoscopic Surgery, School of MedicineFujita Health UniversityToyoakeJapan
| | - Akira Hasebe
- Oral Molecular Microbiology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
7
|
Ungefroren H, Reimann J, Konukiewitz B, Braun R, Wellner UF, Lehnert H, Marquardt JU. RAC1b Collaborates with TAp73α-SMAD4 Signaling to Induce Biglycan Expression and Inhibit Basal and TGF-β-Driven Cell Motility in Human Pancreatic Cancer. Biomedicines 2024; 12:199. [PMID: 38255305 PMCID: PMC10813112 DOI: 10.3390/biomedicines12010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer type characterized by a marked desmoplastic tumor stroma that is formed under the influence of transforming growth factor (TGF)-β. Data from mouse models of pancreatic cancer have revealed that transcriptionally active p73 (TAp73) impacts the TGF-β pathway through activation of Smad4 and secretion of biglycan (Bgn). However, whether this pathway also functions in human PDAC cells has not yet been studied. Here, we show that RNA interference-mediated silencing of TAp73 in PANC-1 cells strongly reduced the stimulatory effect of TGF-β1 on BGN. TAp73-mediated regulation of BGN, and inhibition of TGF-β signaling through a (Smad-independent) ERK pathway, are reminiscent of what we previously observed for the small GTPase, RAC1b, prompting us to hypothesize that in human PDAC cells TAp73 and RAC1b are part of the same tumor-suppressive pathway. Like TAp73, RAC1b induced SMAD4 protein and mRNA expression. Moreover, siRNA-mediated knockdown of RAC1b reduced TAp73 mRNA levels, while ectopic expression of RAC1b increased them. Inhibition of BGN synthesis or depletion of secreted BGN from the culture medium reproduced the promigratory effect of RAC1b or TAp73 silencing and was associated with increased basal and TGF-β1-dependent ERK activation. BGN also phenocopied the effects of RAC1b or TAp73 on the expression of downstream effectors, like the EMT markers E-cadherin, Vimentin and SNAIL, as well as on negative regulation of the ALK2-SMAD1/5 arm of TGF-β signaling. Collectively, we showed that tumor-suppressive TAp73-Smad4-Bgn signaling also operates in human cells and that RAC1b likely acts as an upstream activator of this pathway.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538 Lübeck, Germany
- Institute of Pathology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany
| | - Julissa Reimann
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538 Lübeck, Germany
| | - Björn Konukiewitz
- Institute of Pathology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany
| | - Rüdiger Braun
- Department of Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538 Lübeck, Germany
| | - Ulrich F. Wellner
- Department of Surgery, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538 Lübeck, Germany
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
8
|
Morimoto M, Maishi N, Hida K. Acquisition of drug resistance in endothelial cells by tumor-derived extracellular vesicles and cancer progression. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:1. [PMID: 38318528 PMCID: PMC10838380 DOI: 10.20517/cdr.2023.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/17/2023] [Indexed: 02/07/2024]
Abstract
Angiogenesis by endothelial cells (ECs) is essential for tumor growth. Angiogenesis inhibitors are used in combination with anticancer drugs in many tumor types, but tumors eventually become resistant. Previously, the underlying mechanism for developing drug resistance was considered to be a change in the characteristics of tumor cells whereas ECs were thought to be genetically stable and do not contribute to drug resistance. However, tumor endothelial cells (TECs) have been shown to differ from normal endothelial cells (NECs) in that they exhibit chromosomal abnormalities, angiogenic potential, and drug resistance. Extracellular vesicles (EVs) secreted by tumor cells have recently attracted attention as a factor involved in the acquisition of such abnormalities. Various cells communicate with each other through EVs, and it has been reported that tumor-derived EVs act on other tumor cells or stromal cells to develop drug resistance. Drug-resistant tumor cells confer drug resistance to recipient cells by transporting mRNAs encoding ATP-binding cassette subfamily B member 1 (ABCB1) and ATP-binding cassette subfamily C member 1 (ABCC1) as well as miRNAs involved in signaling such as Akt, drug efflux transporters, and P-glycoprotein modulators via EVs. However, there are limited reports on the acquisition of drug resistance in ECs by tumor-derived EVs. Since drug resistance of ECs may induce tumor metastasis and support tumor cell proliferation, the mechanism underlying the development of resistance should be elucidated to find therapeutic application. This review provides insight into the acquisition of drug resistance in ECs via tumor EVs in the tumor microenvironment.
Collapse
Affiliation(s)
- Masahiro Morimoto
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
- Department of Oral Diagnosis and Medicine, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
| | - Nako Maishi
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo 060-8586, Japan
| |
Collapse
|
9
|
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Berdiaki A, Giatagana EM, Tzanakakis G, Nikitovic D. The Landscape of Small Leucine-Rich Proteoglycan Impact on Cancer Pathogenesis with a Focus on Biglycan and Lumican. Cancers (Basel) 2023; 15:3549. [PMID: 37509212 PMCID: PMC10377491 DOI: 10.3390/cancers15143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer development is a multifactorial procedure that involves changes in the cell microenvironment and specific modulations in cell functions. A tumor microenvironment contains tumor cells, non-malignant cells, blood vessels, cells of the immune system, stromal cells, and the extracellular matrix (ECM). The small leucine-rich proteoglycans (SLRPs) are a family of nineteen proteoglycans, which are ubiquitously expressed among mammalian tissues and especially abundant in the ECM. SLRPs are divided into five canonical classes (classes I-III, containing fourteen members) and non-canonical classes (classes IV-V, including five members) based on their amino-acid structural sequence, chromosomal organization, and functional properties. Variations in both the protein core structure and glycosylation status lead to SLRP-specific interactions with cell membrane receptors, cytokines, growth factors, and structural ECM molecules. SLRPs have been implicated in the regulation of cancer growth, motility, and invasion, as well as in cancer-associated inflammation and autophagy, highlighting their crucial role in the processes of carcinogenesis. Except for the class I SLRP decorin, to which an anti-tumorigenic role has been attributed, other SLPRs' roles have not been fully clarified. This review will focus on the functions of the class I and II SLRP members biglycan and lumican, which are correlated to various aspects of cancer development.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Tzanakakis
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
11
|
Gesteira TF, Verma S, Coulson-Thomas VJ. Small leucine rich proteoglycans: Biology, function and their therapeutic potential in the ocular surface. Ocul Surf 2023; 29:521-536. [PMID: 37355022 PMCID: PMC11092928 DOI: 10.1016/j.jtos.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Small leucine rich proteoglycans (SLRPs) are the largest family of proteoglycans, with 18 members that are subdivided into five classes. SLRPs are small in size and can be present in tissues as glycosylated and non-glycosylated proteins, and the most studied SLRPs include decorin, biglycan, lumican, keratocan and fibromodulin. SLRPs specifically bind to collagen fibrils, regulating collagen fibrillogenesis and the biomechanical properties of tissues, and are expressed at particularly high levels in fibrous tissues, such as the cornea. However, SLRPs are also very active components of the ECM, interacting with numerous growth factors, cytokines and cell surface receptors. Therefore, SLRPs regulate major cellular processes and have a central role in major fundamental biological processes, such as maintaining corneal homeostasis and transparency and regulating corneal wound healing. Over the years, mutations and/or altered expression of SLRPs have been associated with various corneal diseases, such as congenital stromal corneal dystrophy and cornea plana. Recently, there has been great interest in harnessing the various functions of SLRPs for therapeutic purposes. In this comprehensive review, we describe the structural features and the related functions of SLRPs, and how these affect the therapeutic potential of SLRPs, with special emphasis on the use of SLRPs for treating ocular surface pathologies.
Collapse
Affiliation(s)
| | - Sudhir Verma
- College of Optometry, University of Houston, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | | |
Collapse
|
12
|
Sato M, Maishi N, Hida Y, Yanagawa-Matsuda A, Alam MT, Sakakibara-Konishi J, Nam JM, Onodera Y, Konno S, Hida K. Angiogenic inhibitor pre-administration improves the therapeutic effects of immunotherapy. Cancer Med 2023; 12:9760-9773. [PMID: 36808261 PMCID: PMC10166916 DOI: 10.1002/cam4.5696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/01/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
In lung cancer, immune checkpoint inhibitors (ICIs) are often inadequate for tumor growth inhibition. Angiogenic inhibitors (AIs) are required to normalize tumor vasculature for improved immune cell infiltration. However, in clinical practice, ICIs and cytotoxic antineoplastic agents are simultaneously administered with an AI when tumor vessels are abnormal. Therefore, we examined the effects of pre-administering an AI for lung cancer immunotherapy in a mouse lung cancer model. Using DC101, an anti-vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody, a murine subcutaneous Lewis lung cancer (LLC) model was used to determine the timing of vascular normalization. Microvessel density (MVD), pericyte coverage, tissue hypoxia, and CD8-positive cell infiltration were analyzed. The effects of an ICI and paclitaxel after DC101 pre-administration were investigated. On Day 3, increased pericyte coverage and alleviated tumor hypoxia represented the highest vascular normalization. CD8+ T-cell infiltration was also highest on Day 3. When combined with an ICI, DC101 pre-administration significantly reduced PD-L1 expression. When combined with an ICI and paclitaxel, only DC101 pre-administration significantly inhibited tumor growth, but simultaneous administration did not. AI pre-administration, and not simultaneous administration, may increase the therapeutic effects of ICIs due to improved immune cell infiltration.
Collapse
Affiliation(s)
- Mineyoshi Sato
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.,Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Advanced Robotic and Endoscopic Surgery, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Aya Yanagawa-Matsuda
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mohammad Towfik Alam
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Jun Sakakibara-Konishi
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Faculty of Dental Medicine and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Furumido J, Maishi N, Yanagawa-Matsuda A, Kikuchi H, Matsumoto R, Osawa T, Abe T, Matsuno Y, Shinohara N, Hida Y, Hida K. Stroma biglycan expression can be a prognostic factor in prostate cancers. Int J Urol 2023; 30:147-154. [PMID: 36305810 DOI: 10.1111/iju.15080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study analyzes the relationship between biglycan expression in prostate cancer and clinicopathological parameters to clarify the potential link between biglycan and prognosis and progression to castration-resistant prostate cancer (CRPC). METHODS We retrospectively analyzed 60 cases of prostate cancer patients who underwent robot-assisted laparoscopic radical prostatectomy in Hokkaido University Hospital. RESULTS Biglycan was expressed in the tumor stroma but not in tumor cells. There was no significant relationship with biochemical recurrence (p = 0.5237), but the expression of biglycan was 36.1% in the group with progression to CRPC. This indicates a significant relationship with progression to CRPC (p = 0.0182). Furthermore, the expression of biglycan-positive blood vessels was significantly higher (15.9%) in the group with biochemical recurrence than in the group without biochemical recurrence (8.5%) (p = 0.0169). The biglycan-positive vessels were 28.6% in the group with progression to CRPC, which was significantly higher than that in the group without progression to CRPC (p < 0.0001). CONCLUSION This is the first study to show that stroma biglycan is a useful prognostic factor for prostate cancer.
Collapse
Affiliation(s)
- Jun Furumido
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Hokkaido, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Aya Yanagawa-Matsuda
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Hiroshi Kikuchi
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ryuji Matsumoto
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takahiro Osawa
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Takashige Abe
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Hokkaido, Japan.,Department of Advanced Robotic and Endoscopic Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Sorvina A, Antoniou M, Esmaeili Z, Kochetkova M. Unusual Suspects: Bone and Cartilage ECM Proteins as Carcinoma Facilitators. Cancers (Basel) 2023; 15:cancers15030791. [PMID: 36765749 PMCID: PMC9913341 DOI: 10.3390/cancers15030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The extracellular matrix (ECM) is the complex three-dimensional network of fibrous proteins and proteoglycans that constitutes an essential part of every tissue to provide support for normal tissue homeostasis. Tissue specificity of the ECM in its topology and structure supports unique biochemical and mechanical properties of each organ. Cancers, like normal tissues, require the ECM to maintain multiple processes governing tumor development, progression and spread. A large body of experimental and clinical evidence has now accumulated to demonstrate essential roles of numerous ECM components in all cancer types. Latest findings also suggest that multiple tumor types express, and use to their advantage, atypical ECM components that are not found in the cancer tissue of origin. However, the understanding of cancer-specific expression patterns of these ECM proteins and their exact roles in selected tumor types is still sketchy. In this review, we summarize the latest data on the aberrant expression of bone and cartilage ECM proteins in epithelial cancers and their specific functions in the pathogenesis of carcinomas and discuss future directions in exploring the utility of this selective group of ECM components as future drug targets.
Collapse
|
15
|
Thiesen AP, Mielczarski B, Savaris RF. Deep learning neural network image analysis of immunohistochemical protein expression reveals a significantly reduced expression of biglycan in breast cancer. PLoS One 2023; 18:e0282176. [PMID: 36972253 PMCID: PMC10042358 DOI: 10.1371/journal.pone.0282176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
New breast cancer biomarkers have been sought for better tumor characterization and treatment. Among these putative markers, there is Biglycan (BGN). BGN is a class I small leucine-rich proteoglycan family of proteins characterized by a protein core with leucine-rich repeats. The objective of this study is to compare the protein expression of BGN in breast tissue with and without cancer, using immunohistochemical technique associated with digital histological score (D-HScore) and supervised deep learning neural networks (SDLNN). In this case-control study, 24 formalin-fixed, paraffin-embedded tissues were obtained for analysis. Normal (n = 9) and cancerous (n = 15) tissue sections were analyzed by immunohistochemistry using BGN monoclonal antibody (M01-Abnova) and 3,3'-Diaminobenzidine (DAB) as the chromogen. Photomicrographs of the slides were analysed with D-HScore, using arbitrary DAB units. Another set (n = 129) with higher magnification without ROI selection, was submitted to the inceptionV3 deep neural network image embedding recognition model. Next, supervised neural network analysis, using stratified 20 fold cross validation, with 200 hidden layers, ReLu activation, and regularization at α = 0.0001 were applied for SDLNN. The sample size was calculated for a minimum of 7 cases and 7 controls, having a power = 90%, an α error = 5%, and a standard deviation of 20, to identify a decrease from the average of 40 DAB units (control) to 4 DAB units in cancer. BGN expression in DAB units [median (range)] was 6.2 (0.8 to 12.4) and 27.31 (5.3 to 81.7) in cancer and normal breast tissue, respectively, using D-HScore (p = 0.0017, Mann-Whitney test). SDLNN classification accuracy was 85.3% (110 out of 129; 95%CI = 78.1% to 90.3%). BGN protein expression is reduced in breast cancer tissue, compared to normal tissue.
Collapse
Affiliation(s)
- Ana Paula Thiesen
- Universidade Federal do Rio Grande do Sul, Postgraduate Program in Health Science: Surgical Sciences, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Mielczarski
- Department of Obstetrics and Gynecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Francalacci Savaris
- Universidade Federal do Rio Grande do Sul, Postgraduate Program in Health Science: Surgical Sciences, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Obstetrics and Gynecology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Furukawa N, Stearns V, Santa-Maria CA, Popel AS. The tumor microenvironment and triple-negative breast cancer aggressiveness: shedding light on mechanisms and targeting. Expert Opin Ther Targets 2022; 26:1041-1056. [PMID: 36657483 PMCID: PMC10189896 DOI: 10.1080/14728222.2022.2170779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
INTRODUCTION In contrast to other breast cancer subtypes, there are currently limited options of targeted therapies for triple-negative breast cancer (TNBC). Immense research has demonstrated that not only cancer cells but also stromal cells and immune cells in the tumor microenvironment (TME) play significant roles in the progression of TNBC. It is thus critical to understand the components of the TME of TNBC and the interactions between the various cell populations. AREAS COVERED The components of the TME of TNBC identified by single-cell technologies are reviewed. Furthermore, the molecular interactions between the cells and the potential therapeutic targets contributing to the progression of TNBC are discussed. EXPERT OPINION Single-cell omics studies have contributed to the classification of cells in the TME and the identification of important cell types involved in the progression and the treatment of the tumor. The interactions between cancer cells and stromal cells/immune cells in the TME have led to the discovery of potential therapeutic targets. Experimental data with spatial and temporal resolution will further boost the understanding of the TME of TNBC.
Collapse
Affiliation(s)
- Natsuki Furukawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cesar A. Santa-Maria
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
17
|
Tan SY, Jing Q, Leung Z, Xu Y, Cheng LKW, Tam SST, Wu AR. Transcriptomic analysis of 3D vasculature-on-a-chip reveals paracrine factors affecting vasculature growth and maturation. LAB ON A CHIP 2022; 22:3885-3897. [PMID: 36093896 DOI: 10.1039/d2lc00570k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro models of vasculature are of great importance for modelling vascular physiology and pathology. However, there is usually a lack of proper spatial patterning of interacting heterotypic cells in conventional vasculature dish models, which might confound results between contact and non-contact interactions. We use a microfluidic platform with structurally defined separation between human microvasculature and fibroblasts to probe their dynamic, paracrine interactions. We also develop a novel, versatile technique to retrieve cells embedded in extracellular matrix from the microfluidic device for downstream transcriptomic analysis, and uncover growth factor and cytokine expression profiles associated with improved vasculature growth. Paired receptor-ligand analysis further reveals paracrine signaling molecules that could be supplemented into the medium for vasculatures models where fibroblast coculture is undesirable or infeasible. These findings also provide deeper insights into the molecular cues for more physiologically relevant vascular mimicry and vascularized organoid model for clinical applications such as drug screening and disease modeling.
Collapse
Affiliation(s)
- Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Qiuyu Jing
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ziuwin Leung
- Department of Electrical and Computer Engineering, Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H3G1M8, Canada
| | - Ying Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Lily Kwan Wai Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong S.A.R., China
| |
Collapse
|
18
|
Zahedi S, Carvalho AS, Ejtehadifar M, Beck HC, Rei N, Luis A, Borralho P, Bugalho A, Matthiesen R. Assessment of a Large-Scale Unbiased Malignant Pleural Effusion Proteomics Study of a Real-Life Cohort. Cancers (Basel) 2022; 14:cancers14184366. [PMID: 36139528 PMCID: PMC9496668 DOI: 10.3390/cancers14184366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Pleural effusion (PE) occurs as a consequence of various pathologies. Malignant effusion due to lung cancer is one of the most frequent causes. A method for accurate differentiation of malignant from benign PE is an unmet clinical need. Proteomics profiling of PE has shown promising results. However, mass spectrometry (MS) analysis typically involves the tedious elimination of abundant proteins before analysis, and clinical annotation of proteomics profiled cohorts is limited. This study compares the proteomes of malignant PE and nonmalignant PE, identifies lung cancer malignant markers in agreement with other studies, and identifies markers strongly associated with patient survival. Abstract Background: Pleural effusion (PE) is common in advanced-stage lung cancer patients and is related to poor prognosis. Identification of cancer cells is the standard method for the diagnosis of a malignant PE (MPE). However, it only has moderate sensitivity. Thus, more sensitive diagnostic tools are urgently needed. Methods: The present study aimed to discover potential protein targets to distinguish malignant pleural effusion (MPE) from other non-malignant pathologies. We have collected PE from 97 patients to explore PE proteomes by applying state-of-the-art liquid chromatography-mass spectrometry (LC-MS) to identify potential biomarkers that correlate with immunohistochemistry assessment of tumor biopsy or with survival data. Functional analyses were performed to elucidate functional differences in PE proteins in malignant and benign samples. Results were integrated into a clinical risk prediction model to identify likely malignant cases. Sensitivity, specificity, and negative predictive value were calculated. Results: In total, 1689 individual proteins were identified by MS-based proteomics analysis of the 97 PE samples, of which 35 were diagnosed as malignant. A comparison between MPE and benign PE (BPE) identified 58 differential regulated proteins after correction of the p-values for multiple testing. Furthermore, functional analysis revealed an up-regulation of matrix intermediate filaments and cellular movement-related proteins. Additionally, gene ontology analysis identified the involvement of metabolic pathways such as glycolysis/gluconeogenesis, pyruvate metabolism and cysteine and methionine metabolism. Conclusion: This study demonstrated a partial least squares regression model with an area under the curve of 98 and an accuracy of 0.92 when evaluated on the holdout test data set. Furthermore, highly significant survival markers were identified (e.g., PSME1 with a log-rank of 1.68 × 10−6).
Collapse
Affiliation(s)
- Sara Zahedi
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Mostafa Ejtehadifar
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Hans C. Beck
- Department of Clinical Biochemistry, Odense University Hospital, 5000 Odense, Denmark
| | - Nádia Rei
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Ana Luis
- Hospital CUF Descobertas, CUF Oncologia, 1998-018 Lisbon, Portugal
| | - Paula Borralho
- Hospital CUF Descobertas, CUF Oncologia, 1998-018 Lisbon, Portugal
| | - António Bugalho
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
- Hospital CUF Descobertas, CUF Oncologia, 1998-018 Lisbon, Portugal
- Correspondence: (A.B.); (R.M.)
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
- Correspondence: (A.B.); (R.M.)
| |
Collapse
|
19
|
Yu L, Maishi N, Akahori E, Hasebe A, Takeda R, Yanagawa Matsuda A, Hida Y, Nam JM, Onodera Y, Kitagawa Y, Hida K. The oral bacterium Streptococcus mutans promotes tumor metastasis by inducing vascular inflammation. Cancer Sci 2022; 113:3980-3994. [PMID: 35997541 DOI: 10.1111/cas.15538] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Recent studies have demonstrated a relationship between oral bacteria and systemic inflammation. Endothelial cells (ECs), which line blood vessels, control the opening and closing of the vascular barrier and contribute to hematogenous metastasis; however, the role of oral bacteria-induced vascular inflammation in tumor metastasis remains unclear. In this study, we examined the phenotypic changes in vascular ECs following Streptococcus mutans (S. mutans) stimulation in vitro and in vivo. The expression of molecules associated with vascular inflammation and barrier-associated adhesion was analyzed. Tumor metastasis was evaluated after intravenous injection of S. mutans in murine breast cancer hematogenous metastasis model. The results indicated that S. mutans invaded the ECs accompanied by inflammation and NF-κB activation. S. mutans exposure potentially disrupts endothelial integrity by decreasing VE-cadherin expression. The migration and adhesion of tumor cells were enhanced in S. mutans-stimulated ECs. Furthermore, S. mutans-induced lung vascular inflammation promoted breast cancer cell metastasis to the lungs in vivo. The results indicate that oral bacteria promote tumor metastasis through vascular inflammation and disruption of vascular barrier function. Improving oral hygiene in patients with cancer is of great significance in preventing postoperative pneumonia and tumor metastasis.
Collapse
Affiliation(s)
- Li Yu
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.,Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Erika Akahori
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Hasebe
- Oral Molecular Microbiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Takeda
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.,Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Aya Yanagawa Matsuda
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Deguchi A, Maru Y. Inflammation-associated premetastatic niche formation. Inflamm Regen 2022; 42:22. [PMID: 35780158 PMCID: PMC9250732 DOI: 10.1186/s41232-022-00208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Metastasis remains the leading cause of cancer-related death. In 1889, Stephen Paget originally proposed the theory "seed-and-soil." Both cancer cell-intrinsic properties ("seed") and fertile microenvironment ("soil") are essential for metastasis formation. To date, accumulating evidences supported the theory using mouse models. The formation of a premetastatic niche has been widely accepted as an accel for metastasis. Similar to tumor microenvironment, various types of cells, such as immune cells, endothelial cells, and fibroblasts are involved in premetastatic niche formation. We have discovered that primary tumors hijack Toll-like receptor 4 (TLR4) signaling to establish a premetastatic niche in the lung by utilizing the endogenous ligands. In this review, we discuss the mechanisms that underlie inflammation-associated premetastatic niche formation upon metastasis, focusing especially on myeloid cells and macrophages as the cells executing and mediating complicated processes.
Collapse
Affiliation(s)
- Atsuko Deguchi
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Yoshiro Maru
- Department of Pharmacology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
21
|
Tsumita T, Maishi N, Annan DAM, Towfik MA, Matsuda A, Onodera Y, Nam JM, Hida Y, Hida K. The oxidized-LDL/LOX-1 axis in tumor endothelial cells enhances metastasis by recruiting neutrophils and cancer cells. Int J Cancer 2022; 151:944-956. [PMID: 35608341 DOI: 10.1002/ijc.34134] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/07/2022]
Abstract
Epidemiological relationships between cancer and cardiovascular diseases have been reported, but a molecular basis remains unclear. Some proteoglycans that strongly bind low-density-lipoprotein (LDL) are abundant both in atherosclerotic regions and in high metastatic-tumor tissue. LDL retention is crucial for the initiation of atherosclerosis, although its contribution to malignancy of cancer is not known. In this study, we show the importance of the accumulation of LDL in tumor metastasis. We demonstrated that high metastatic-tumor tissue contains high amounts of LDL and forms more oxidized LDL (ox-LDL). Interestingly, lectin-like ox-LDL receptor 1 (LOX-1), a receptor for ox-LDL and a recognized key molecule for cardiovascular diseases, was highly expressed in tumor endothelial cells (TECs). Neutrophils are important for ox-LDL formation. Since we observed the accumulation and activation of neutrophils in HM-tumors, we evaluated the involvement of LOX-1 in neutrophil migration and activation. LOX-1 induced neutrophil migration via CCL2 secretion from TECs, which was enhanced by ox-LDL. Finally, we show genetic manipulation of LOX-1 expression in TECs or tumor stroma tended to reduce lung metastasis. Thus, the LOX-1/ox-LDL axis in TECs may lead to the formation of a high metastatic-tumor microenvironment via attracting neutrophils. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Takuya Tsumita
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- JSPS Research Fellow for Young Scientists, Tokyo, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Dorcas Akuba-Muhyia Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
- Accra College of Medicine, Accra, Ghana
- West African Genetic Medicine Centre, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mohammad Alam Towfik
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Aya Matsuda
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering (GCB), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
22
|
Subbarayan K, Massa C, Leisz S, Steven A, Bethmann D, Biehl K, Wickenhauser C, Seliger B. Biglycan as a potential regulator of tumorgenicity and immunogenicity in K-RAS-transformed cells. Oncoimmunology 2022; 11:2069214. [PMID: 35529675 PMCID: PMC9067524 DOI: 10.1080/2162402x.2022.2069214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix component biglycan (BGN) plays an essential role in various physiological and pathophysiological processes. A deficient BGN expression associated with reduced immunogenicity was found in HER-2/neu-overexpressing cells. To determine whether BGN is suppressed by oncogene-driven regulatory networks, the expression and function of BGN was analyzed in murine and human BGNlow/BGNhigh K-RASG12V-transformed model systems as well as in different patients' datasets of colorectal carcinoma (CRC) lesions. K-RAS-mutated CRC tissues expressed low BGN mRNA and protein levels when compared to normal colon epithelial cells, which was associated with a reduced patients' survival. Transfection of BGN in murine and human BGNlow K-RAS-expressing cells resulted in a reduced growth and migration of BGNhigh vs BGNlow K-RAS cells. In addition, increased MHC class I surface antigens as a consequence of an enhanced antigen processing machinery component expression was found upon restoration of BGN, which was confirmed by RNA-sequencing of BGNlow vs. BGNhigh K-RAS models. Furthermore, a reduced tumor formation of BGNhigh versus BGNlow K-RAS-transformed fibroblasts associated with an enhanced MHC class I expression and an increased frequency of tumor-infiltrating lymphocytes in tumor lesions was found. Our data provide for the first time an inverse link between BGN and K-RAS expression in murine and human K-RAS-overexpressing models and CRC lesions associated with altered growth properties, reduced immunogenicity and worse patients' outcome. Therefore, reversion of BGN might be a novel therapeutic option for K-RAS-associated malignancies.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniel Bethmann
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
23
|
Maishi N, Sakurai Y, Hatakeyama H, Umeyama Y, Nakamura T, Endo R, Alam MT, Li C, Annan DAM, Kikuchi H, Morimoto H, Morimoto M, Akiyama K, Ohga N, Hida Y, Harashima H, Hida K. Novel antiangiogenic therapy targeting biglycan using tumor endothelial cell-specific liposomal siRNA delivery system. Cancer Sci 2022; 113:1855-1867. [PMID: 35266253 PMCID: PMC9128192 DOI: 10.1111/cas.15323] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
Tumor blood vessels play important roles in tumor progression and metastasis. Targeting tumor endothelial cells (TECs) is one of the strategies for cancer therapy. We previously reported that biglycan, a small leucine‐rich proteoglycan, is highly expressed in TECs. TECs utilize biglycan in an autocrine manner for migration and angiogenesis. Furthermore, TEC‐derived biglycan stimulates tumor cell migration in a paracrine manner leading to tumor cell intravasation and metastasis. In this study, we explored the therapeutic effect of biglycan inhibition in the TECs of renal cell carcinoma using an in vivo siRNA delivery system known as a multifunctional envelope‐type nanodevice (MEND), which contains a unique pH‐sensitive cationic lipid. To specifically deliver MEND into TECs, we incorporated cyclo(Arg–Gly–Asp–d–Phe–Lys) (cRGD) into MEND because αVβ3 integrin, a receptor for cRGD, is selective and highly expressed in TECs. We developed RGD‐MEND‐encapsulating siRNA against biglycan. First, we confirmed that MEND was delivered into OS‐RC‐2 tumor‐derived TECs and induced in vitro RNAi‐mediated gene silencing. MEND was then injected intravenously into OS‐RC‐2 tumor‐bearing mice. Flow cytometry analysis demonstrated that MEND was specifically delivered into TECs. Quantitative RT‐PCR indicated that biglycan was knocked down by biglycan siRNA‐containing MEND. Finally, we analyzed the therapeutic effect of biglycan silencing by MEND in TECs. Tumor growth was inhibited by biglycan siRNA‐containing MEND. Tumor microenvironmental factors such as fibrosis were also normalized using biglycan inhibition in TECs. Biglycan in TECs can be a novel target for cancer treatment.
Collapse
Affiliation(s)
- Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yu Sakurai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Membrane Transport and Drug Targeting Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroto Hatakeyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yui Umeyama
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mohammad Towfik Alam
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Cong Li
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Dorcas Akuba-Muhyia Annan
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hirofumi Morimoto
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiro Morimoto
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kosuke Akiyama
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Noritaka Ohga
- Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | | | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.,Department of Vascular Biology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
24
|
Briffa JF, Bevens W, Gravina S, Said JM, Wlodek ME. Pregnant biglycan knockout mice have altered cardiorenal adaptations and a shorter gestational length, but do not develop a pre-eclamptic phenotype. Placenta 2022; 119:52-62. [PMID: 35150975 DOI: 10.1016/j.placenta.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Pre-eclampsia complicates 4.6% of pregnancies and is linked to impaired placentation; likely due to dysregulated vasculogenesis/angiogenesis. Proteoglycans, such as biglycan, are located on the endothelial surface of fetal capillaries. Biglycan is reduced in the placenta of pregnancies complicated by fetal growth restriction and pre-eclampsia. Importantly, biglycan stimulates angiogenesis in numerous tissues. Therefore, this study investigated whether biglycan knockdown in mice results in a pre-eclamptic phenotype. METHODS Wild-type (WT) and Bgn-/- mice underwent cardiorenal measurements prior to and during pregnancy. One cohort of mice underwent post-mortem on gestational day 18 (E18) and another cohort underwent post-mortem on postnatal day 1 (PN1), with maternal and offspring tissues of relevance collected. RESULTS Bgn-/- dams had increased heart rate (+9%, p < 0.037) and reduced systolic (-11%, p < 0.001), diastolic (-15%, p < 0.001), and mean arterial (-12%, p < 0.001) pressures at all ages investigated compared to WT. Additionally, Bgn-/- dams had reduced urine flow rate (-64%, p < 0.001) as well as reduced urinary excretions (-49%, p < 0.004) during late gestation compared to WT. Bgn-/- pups had higher body weight (+8%, p = 0.004; E18 only) and a higher liver-to-brain weight ratio (+43%, p < 0.001). Placental weight was unaltered with only minor changes in vasculogenic and angiogenic gene abundances detected, which did not correlate to changes in protein expression. DISCUSSION This study demonstrated that total knockdown of biglycan is not associated with features of pre-eclampsia.
Collapse
Affiliation(s)
- J F Briffa
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - W Bevens
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - S Gravina
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - J M Said
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, 3010, Australia; Maternal Fetal Medicine, Sunshine Hospital, Western Health, St Albans, VIC, 3021, Australia
| | - M E Wlodek
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
25
|
Tanaka M. Crosstalk of tumor stromal cells orchestrates invasion and spreading of gastric cancer. Pathol Int 2022; 72:219-233. [PMID: 35112770 DOI: 10.1111/pin.13211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
Tumors contain various stromal cells that support cancer progression. Some types of cancer, such as scirrhous gastric cancer, are characterized by large areas of fibrosis accompanied by cancer-associated fibroblasts (CAFs). Asporin (ASPN) is a small leucine-rich proteoglycan highly expressed in CAFs of various tumors. ASPN accelerates CAF migration and invasion, resulting in CAF-led cancer cell invasion. In addition, ASPN further upregulated the expression of genes specific to a characteristic subgroup of fibroblasts in tumors. These cells were preferentially located at the tumor periphery and could be generated by a unique mechanism involving the CAF-mediated education of normal fibroblasts (CEFs). In this review, we at first describe recent findings regarding the function of ASPN in the tumor microenvironment, as well as the mechanism involved in the generation of CEFs. CAFs are derived from heterogeneous origins besides resident normal fibroblasts. Among them, CAFs derived from mesothelial cells (mesothelial cell-derived CAF [MC-CAFs]) play pivotal roles in peritoneal carcinomatosis. We observed that MC-CAFs on the surfaces of organs also participate in tumor formation by infiltrating into the parenchyma, promoting local invasion by gastric cancers. This review also highlights the potential functions of macrophages in the formation of MC-CAFs in gastric cancers, by transfer the contents of cancer cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
26
|
He ZX, Zhao SB, Fang X, E JF, Fu HY, Song YH, Wu JY, Pan P, Gu L, Xia T, Liu YL, Li ZS, Wang SL, Bai Y. Prognostic and Predictive Value of BGN in Colon Cancer Outcomes and Response to Immunotherapy. Front Oncol 2022; 11:761030. [PMID: 35096572 PMCID: PMC8790701 DOI: 10.3389/fonc.2021.761030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Colon cancer is one of the most frequent malignancies and causes high mortality worldwide. Exploring the tumor-immune interactions in the tumor microenvironment and identifying new prognostic and therapeutic biomarkers will assist in decoding the novel mechanism of tumor immunotherapy. BGN is a typical extracellular matrix protein that was previously validated as a signaling molecule regulating multiple processes of tumorigenesis. However, its role in tumor immunity requires further investigation. Methods The differentially expressed genes in three GEO datasets were analyzed, and BGN was identified as the target gene by intersection analysis of PPIs. The relevance between clinical outcomes and BGN expression levels was evaluated using data from the GEO database, TCGA and tissue microarray of colon cancer samples. Univariable and multivariable Cox regression models were conducted for identifying the risk factors correlated with clinical prognosis of colon cancer patients. Next, the association between BGN expression levels and the infiltration of immune cells as well as the process of the immune response was analyzed. Finally, we predicted the immunotherapeutic response rates in the subgroups of low and high BGN expression by TIS score, ImmuCellAI and TIDE algorithms. Results BGN expression demonstrated a statistically significant upregulation in colon cancer tissues than in normal tissues. Elevated BGN was associated with shorter overall survival as well as unfavorable clinicopathological features, including tumor size, serosa invasion and length of hospitalization. Mechanistically, pathway enrichment and functional analysis demonstrated that BGN was positively correlated with immune and stromal scores in the TME and primarily involved in the regulation of immune response. Further investigation revealed that BGN was strongly expressed in the immunosuppressive phenotype and tightly associated with the infiltration of multiple immune cells in colon cancer, especially M2 macrophages and induced Tregs. Finally, we demonstrated that high BGN expression presented a better immunotherapeutic response in colon cancer patients. Conclusion BGN is an encouraging predictor of diagnosis, prognosis and immunotherapeutic response in patients with colon cancer. Assessment of BGN expression represents a novel approach with great promise for identifying patients who may potentially benefit from immunotherapy.
Collapse
Affiliation(s)
- Zi-Xuan He
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Xue Fang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Ji-Fu E
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Hong-Yu Fu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yi-Hang Song
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Jia-Yi Wu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Peng Pan
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Lun Gu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Tian Xia
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yi-Long Liu
- College of Basic Medicine Sciences, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| |
Collapse
|
27
|
Biglycan Promotes Cancer Stem Cell Properties, NFκB Signaling and Metastatic Potential in Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14020455. [PMID: 35053617 PMCID: PMC8773822 DOI: 10.3390/cancers14020455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Breast cancer stem cells (BCSCs) are a small sub-population of cells within tumors with high metastatic potential. We identified biglycan (BGN) as a prospective molecular target in BCSCs that regulates the aggressive phenotypes of these cells. These findings establish a foundation for the development of therapeutics against BGN to eliminate BCSCs and prevent metastatic breast cancer. Abstract It is a major challenge to treat metastasis due to the presence of heterogenous BCSCs. Therefore, it is important to identify new molecular targets and their underlying molecular mechanisms in various BCSCs to improve treatment of breast cancer metastasis. Here, we performed RNA sequencing on two distinct co-existing BCSC populations, ALDH+ and CD29hi CD61+ from PyMT mammary tumor cells and detected upregulation of biglycan (BGN) in these BCSCs. Genetic depletion of BGN reduced BCSC proportions and tumorsphere formation. Furthermore, BCSC associated aggressive traits such as migration and invasion were significantly reduced by depletion of BGN. Glycolytic and mitochondrial metabolic assays also revealed that BCSCs exhibited decreased metabolism upon loss of BGN. BCSCs showed decreased activation of the NFκB transcription factor, p65, and phospho-IκB levels upon BGN ablation, indicating regulation of NFκB pathway by BGN. To further support our data, we also characterized CD24−/CD44+ BCSCs from human luminal MCF-7 breast cancer cells. These CD24−/CD44+ BCSCs similarly exhibited reduced tumorigenic phenotypes, metabolism and attenuation of NFκB pathway after knockdown of BGN. Finally, loss of BGN in ALDH+ and CD29hi CD61+ BCSCs showed decreased metastatic potential, suggesting BGN serves as an important therapeutic target in BCSCs for treating metastasis of breast cancer.
Collapse
|
28
|
Diehl V, Huber LS, Trebicka J, Wygrecka M, Iozzo RV, Schaefer L. The Role of Decorin and Biglycan Signaling in Tumorigenesis. Front Oncol 2021; 11:801801. [PMID: 34917515 PMCID: PMC8668865 DOI: 10.3389/fonc.2021.801801] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex and adaptive nature of malignant neoplasm constitute a major challenge for the development of effective anti-oncogenic therapies. Emerging evidence has uncovered the pivotal functions exerted by the small leucine-rich proteoglycans, decorin and biglycan, in affecting tumor growth and progression. In their soluble forms, decorin and biglycan act as powerful signaling molecules. By receptor-mediated signal transduction, both proteoglycans modulate key processes vital for tumor initiation and progression, such as autophagy, inflammation, cell-cycle, apoptosis, and angiogenesis. Despite of their structural homology, these two proteoglycans interact with distinct cell surface receptors and thus modulate distinct signaling pathways that ultimately affect cancer development. In this review, we summarize growing evidence for the complex roles of decorin and biglycan signaling in tumor biology and address potential novel therapeutic implications.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Lisa Sophie Huber
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Member of the German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
29
|
Huang YF, Mizumoto S, Fujita M. Novel Insight Into Glycosaminoglycan Biosynthesis Based on Gene Expression Profiles. Front Cell Dev Biol 2021; 9:709018. [PMID: 34552927 PMCID: PMC8450405 DOI: 10.3389/fcell.2021.709018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate, except for hyaluronan that is a free polysaccharide, are covalently attached to core proteins to form proteoglycans. More than 50 gene products are involved in the biosynthesis of GAGs. We recently developed a comprehensive glycosylation mapping tool, GlycoMaple, for visualization and estimation of glycan structures based on gene expression profiles. Using this tool, the expression levels of GAG biosynthetic genes were analyzed in various human tissues as well as tumor tissues. In brain and pancreatic tumors, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be upregulated. In breast cancerous tissues, the pathways for biosynthesis of chondroitin and dermatan sulfate were predicted to be up- and down-regulated, respectively, which are consistent with biochemical findings published in the literature. In addition, the expression levels of the chondroitin sulfate-proteoglycan versican and the dermatan sulfate-proteoglycan decorin were up- and down-regulated, respectively. These findings may provide new insight into GAG profiles in various human diseases including cancerous tumors as well as neurodegenerative disease using GlycoMaple analysis.
Collapse
Affiliation(s)
- Yi-Fan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|