1
|
Garcia CJC, Grisetti L, Tiribelli C, Pascut D. The ncRNA-AURKA Interaction in Hepatocellular Carcinoma: Insights into Oncogenic Pathways, Therapeutic Opportunities, and Future Challenges. Life (Basel) 2024; 14:1430. [PMID: 39598228 PMCID: PMC11595987 DOI: 10.3390/life14111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a major public health concern and ranks among the leading cancer-related mortalities globally. Due to the frequent late-stage diagnosis of HCC, therapeutic options remain limited. Emerging evidence highlights the critical role of non-coding RNAs (ncRNAs) in the regulation of Aurora kinase A (AURKA), one of the key hub genes involved in several key cancer pathways. Indeed, the dysregulated interaction between ncRNAs and AURKA contributes to tumor development, progression, and therapeutic resistance. This review delves into the interplay between ncRNAs and AURKA and their role in hepatocarcinogenesis. Recent findings underscore the involvement of the ncRNAs and AURKA axis in tumor development and progression. Furthermore, this review also discusses the clinical significance of targeting ncRNA-AURKA axes, offering new perspectives that could lead to innovative therapeutic strategies aimed at improving outcomes for HCC patients.
Collapse
Affiliation(s)
- Clarissa Joy C. Garcia
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
- Department of Life Sciences, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Luca Grisetti
- National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy
| | - Claudio Tiribelli
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| | - Devis Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato—ONLUS, 34149 Trieste, Italy
| |
Collapse
|
2
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. Advances in molecular function of UPF1 in Cancer. Arch Biochem Biophys 2024; 756:109989. [PMID: 38621446 DOI: 10.1016/j.abb.2024.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
It is known that more than 10 % of genetic diseases are caused by a mutation in protein-coding mRNA (premature termination codon; PTC). mRNAs with an early stop codon are degraded by the cellular surveillance process known as nonsense-mediated mRNA decay (NMD), which prevents the synthesis of C-terminally truncated proteins. Up-frameshift-1 (UPF1) has been reported to be involved in the downregulation of various cancers, and low expression of UPF1 was shown to correlate with poor prognosis. It is known that UPF1 is a master regulator of nonsense-mediated mRNA decay (NMD). UPF1 may also function as an E3 ligase and degrade target proteins without using mRNA decay mechanisms. Increasing evidence indicates that UPF1 could serve as a good biomarker for cancer diagnosis and treatment for future therapeutic applications. Long non-coding RNAs (lncRNAs) have the ability to bind different proteins and regulate gene expression; this role in cancer cells has already been identified by different studies. This article provides an overview of the aberrant expression of UPF1, its functional properties, and molecular processes during cancer for clinical applications in cancer. We also discussed the interactions of lncRNA with UPF1 for cell growth during tumorigenesis.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000, Prishtina, Republic of Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200, Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185, Rome, Italy.
| |
Collapse
|
3
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07491-8. [PMID: 37702834 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Peng L, Wang Y, Luo J, Liu Y, Wang F. miR-128-3p increases the radiosensitivity in nasopharyngeal carcinoma via regulating vascular endothelial growth factor C. Pathol Res Pract 2023; 249:154768. [PMID: 37639953 DOI: 10.1016/j.prp.2023.154768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE This study aims to investigate the role of miR-128-3p in the radiosensitivity of nasopharyngeal carcinoma (NPC) and its underlying mechanism. METHODS 6-10B cells were transfected with miR-128-3p mimic, pcDNA-VEGFC, and the corresponding negative control. C666-1 cells were transfected with miR-128-3p inhibitor, sh-VEGFC, and the corresponding negative control. RT-qPCR was used to determine the miR-128-3p and VEGFC mRNA expression level. Dual-luciferase assay was used to investigate the relationship between miR-128-3p and VEGFC. The protein levels of VEGFC, H2AX, γ-H2AX, p-P50, p-P65, p-IκB, and the apoptosis markers Bcl-2, caspase3, caspase9, and Bax were detected by Western blot. The proliferation activity was detected by CCK-8, and cell DNA damage was assessed by comet assay. The apoptosis rate was detected by flow cytometry. The growth of NPC in vivo was observed in mice through xenotransplantation. TUNEL staining was used to detect cell apoptosis in tumor tissues. RESULTS miR-128-3p was targeted and was negatively regulated with VEGFC. Overexpression of miR-128-3p or knockdown VEGFC significantly inhibited the proliferation of 6-10B and C666-1 cells, induced DNA damage and apoptosis and promoted the radiosensitivity of cells. Knocking down miR-128-3p or up-regulated VEGFC promoted the proliferation of C666-1 and 6-10B cells, reduced cell DNA damage and apoptosis, and enhanced cell resistance to radiotherapy. Overexpression of miR-128-3p reversed the effect of VEGFC on 6-10B cells and inhibited P50/P65/IKB signal pathway. In vivo, experiments in mice confirmed that miR-128-3p significantly inhibited NPC proliferation and promoted DNA damage and apoptosis by targeting VEGFC. CONCLUSION The miR-128-3p pathway is a novel therapy target to overcome radiation resistance in NPC.
Collapse
Affiliation(s)
- Lisha Peng
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yong Wang
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jie Luo
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yan Liu
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Feng Wang
- Department of Radiotherapy, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
5
|
Arafat M, Sperling R. Crosstalk between Long Non-Coding RNA and Spliceosomal microRNA as a Novel Biomarker for Cancer. Noncoding RNA 2023; 9:42. [PMID: 37624034 PMCID: PMC10459839 DOI: 10.3390/ncrna9040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Non-coding RNAs (ncRNAs) play diverse roles in regulating cellular processes and have been implicated in pathological conditions, including cancer, where interactions between ncRNAs play a role. Relevant here are (i) microRNAs (miRNAs), mainly known as negative regulators of gene expression in the cytoplasm. However, identification of miRNAs in the nucleus suggested novel nuclear functions, and (ii) long non-coding RNA (lncRNA) regulates gene expression at multiple levels. The recent findings of miRNA in supraspliceosomes of human breast and cervical cancer cells revealed new candidates of lncRNA targets. Here, we highlight potential cases of crosstalk between lncRNA and supraspliceosomal miRNA expressed from the same genomic region, having complementary sequences. Through RNA:RNA base pairing, changes in the level of one partner (either miRNA or lncRNA), as occur in cancer, could affect the level of the other, which might be involved in breast and cervical cancer. An example is spliceosomal mir-7704 as a negative regulator of the oncogenic lncRNA HAGLR. Because the expression of spliceosomal miRNA is cell-type-specific, the list of cis-interacting lncRNA:spliceosomal miRNA presented here is likely just the tip of the iceberg, and such interactions are likely relevant to additional cancers. We thus highlight the potential of lncRNA:spliceosomal miRNA interactions as novel targets for cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Maram Arafat
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ruth Sperling
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Luo Z, Ding E, Yu L, Wang W, Guo Q, Li X, Wang Y, Li T, Zhang Y, Zhang X. Identification of hub necroptosis-related lncRNAs for prognosis prediction of esophageal carcinoma. Aging (Albany NY) 2023; 15:204763. [PMID: 37263709 DOI: 10.18632/aging.204763] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Necroptosis is a newly identified programmed cell death associated with the biological process of various cancers, including esophageal carcinoma (ESCA). Meanwhile, the dysregulation of long non-coding RNAs (lncRNAs) is greatly implicated in ESCA progression and necroptosis regulation. However, the lncRNAs involved in regulating necroptosis in ESCA are still unclear. In this study, we aim to explore the expression profile of necroptosis-related lncRNAs (NRLs), and evaluate their roles in ESCA prognosis and treatment. In the present study, 198 differentially expressed NRLs were identified between the ESCA and adjacent normal tissues through screening the data extracted from the Cancer Genome Atlas (TCGA) database. And, a prognostic panel consisting of 6 NRLs was constructed using the LASSO algorithm and multivariate Cox regression analysis. The ESCA patients with high risks had a markedly reduced survival time and higher mortality prevalence. Moreover, C-index of 6 NRLs-panel was superior to 48 published prognostic models based on lncRNAs or mRNAs for ESCA. There were significant differences between the high-risk and low-risk groups in tumor-related pathways, genetic mutations, and drug sensitivity responses. In vitro analysis revealed that inhibition of PVT1 impeded the proliferation, migration, and colony formation of ESCA cells, increased the expressions of p-RIP1 and p-MLKL and promoted necroptosis. By contrast, PVT1 overexpression resulted in a decrease in necroptotic cell death events, thus promoting tumor progression. Collectively, the established 6-NRLs panel was a promising biomarker for the prognostic prediction of ESCA. Moreover, our current findings provided potential targets for individualized therapy for ESCA patients.
Collapse
Affiliation(s)
- Zhengdong Luo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - E Ding
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenwu Wang
- Hangzhou Lin’an District Fourth People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Qining Guo
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xinyang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yifeng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Tingting Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
7
|
Taheriazam A, Bayanzadeh SD, Heydari Farahani M, Mojtabavi S, Zandieh MA, Gholami S, Heydargoy MH, Jamali Hondori M, Kangarloo Z, Behroozaghdam M, Khorrami R, Sheikh Beig Goharrizi MA, Salimimoghadam S, Rashidi M, Hushmandi K, Entezari M, Hashemi M. Non-coding RNA-based therapeutics in cancer therapy: An emphasis on Wnt/β-catenin control. Eur J Pharmacol 2023; 951:175781. [PMID: 37179043 DOI: 10.1016/j.ejphar.2023.175781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/22/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Non-coding RNA transcripts are RNA molecules that have mainly regulatory functions and they do not encode proteins. microRNAs (miRNAs), lncRNAs and circRNAs are major types of this family and these epigenetic factors participate in disease pathogenesis, especially cancer that their abnormal expression may lead to cancer progression. miRNAs and lncRNAs possess a linear structure, whereas circRNAs possess ring structures and high stability. Wnt/β-catenin is an important factor in cancer with oncogenic function and it can increase growth, invasion and therapy resistance in tumors. Wnt upregulation occurs upon transfer of β-catenin to nucleus. Interaction of ncRNAs with Wnt/β-catenin signaling can determine tumorigenesis. Wnt upregulation is observed in cancers and miRNAs are able to bind to 3'-UTR of Wnt to reduce its level. LncRNAs can directly/indirectly regulate Wnt and in indirect manner, lncRNAs sponge miRNAs. CircRNAs are new emerging regulators of Wnt and by its stimulation, they increase tumor progression. CircRNA/miRNA axis can affect Wnt and carcinogenesis. Overall, interaction of ncRNAs with Wnt can determine proliferation rate, migration ability and therapy response of cancers. Furthermore, ncRNA/Wnt/β-catenin axis can be utilized as biomarker in cancer and for prognostic applications in patients.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e Kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Heydargoy
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Microbiology, Shahr-e Ghods Branch, Azad Islamic University, Tehran, Iran
| | - Maryam Jamali Hondori
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Kangarloo
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Khadka VS, Nasu M, Deng Y, Jijiwa M. Circulating microRNA Biomarker for Detecting Breast Cancer in High-Risk Benign Breast Tumors. Int J Mol Sci 2023; 24:7553. [PMID: 37108716 PMCID: PMC10142546 DOI: 10.3390/ijms24087553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
High-risk benign breast tumors are known to develop breast cancer at high rates. However, it is still controversial whether they should be removed during diagnosis or followed up until cancer development becomes evident. Therefore, this study sought to identify circulating microRNAs (miRNAs) that could serve as detection markers of cancers arising from high-risk benign tumors. Small RNA-seq was performed using plasma samples collected from patients with early-stage breast cancer (CA) and high-risk (HB), moderate-risk (MB), and no-risk (Be) benign breast tumors. Proteomic profiling of CA and HB plasma was performed to investigate the underlying functions of the identified miRNAs. Our findings revealed that four miRNAs, hsa-mir-128-3p, hsa-mir-421, hsa-mir-130b-5p, and hsa-mir-28-5p, were differentially expressed in CA vs. HB and had diagnostic power to discriminate CA from HB with AUC scores greater than 0.7. Enriched pathways based on the target genes of these miRNAs indicated their association with IGF-1. Furthermore, the Ingenuity Pathway Analysis performed on the proteomic data revealed that the IGF-1 signaling pathway was significantly enriched in CA vs. HB. In conclusion, these findings suggest that these miRNAs could potentially serve as biomarkers for detecting early-stage breast cancer from high-risk benign tumors by monitoring IGF signaling-induced malignant transformation.
Collapse
Affiliation(s)
| | | | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA; (V.S.K.); (M.N.)
| |
Collapse
|
9
|
Mechanisms of Long Non-Coding RNA in Breast Cancer. Int J Mol Sci 2023; 24:ijms24054538. [PMID: 36901971 PMCID: PMC10002950 DOI: 10.3390/ijms24054538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The landscape of pervasive transcription in eukaryotic genomes has made space for the identification of thousands of transcripts that are difficult to frame in a specific functional category. A new class has been broadly named as long non-coding RNAs (lncRNAs) and shortly defined as transcripts that are longer than 200 nucleotides with no or limited coding potential. So far, about 19,000 lncRNAs genes have been annotated in the human genome (Gencode 41), nearly matching the number of protein-coding genes. A key scientific priority is the functional characterization of lncRNAs, a major challenge in molecular biology that has encouraged many high-throughput efforts. LncRNA studies have been stimulated by the enormous clinical potential that these molecules promise and have been based on the characterization of their expression and functional mechanisms. In this review, we illustrate some of these mechanisms as they have been pictured in the context of breast cancer.
Collapse
|
10
|
Ledesma-Pacheco SJ, Uriostegui-Pena AG, Rodriguez-Jacinto E, Gomez-Hernandez E, Estrada-Meza C, Banerjee A, Pathak S, Ruiz-Manriquez LM, Duttaroy AK, Paul S. Regulatory mechanisms of microRNAs in endocrine disorders and their therapeutic potential. Front Genet 2023; 14:1137017. [PMID: 36896239 PMCID: PMC9989203 DOI: 10.3389/fgene.2023.1137017] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNA molecules capable of regulating gene expression at the post-transcriptional level either by translational inhibition or mRNA degradation and have recently been importantly related to the diagnosis and prognosis of the most relevant endocrine disorders. The endocrine system comprises various highly vascularized ductless organs regulating metabolism, growth and development, and sexual function. Endocrine disorders constitute the fifth principal cause of death worldwide, and they are considered a significant public health problem due to their long-term effects and negative impact on the patient's quality of life. Over the last few years, miRNAs have been discovered to regulate various biological processes associated with endocrine disorders, which could be advantageous in developing new diagnostic and therapeutic tools. The present review aims to provide an overview of the most recent and significant information regarding the regulatory mechanism of miRNAs during the development of the most relevant endocrine disorders, including diabetes mellitus, thyroid diseases, osteoporosis, pituitary tumors, Cushing's syndrome, adrenal insufficiency and multiple endocrine neoplasia, and their potential implications as disease biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Antara Banerjee
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chennai, India
| | - Luis M. Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
- Tecnologico de Monterrey, Escuela de Medicina, Monterrey, Mexico
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| |
Collapse
|
11
|
Staszewski J, Lazarewicz N, Konczak J, Migdal I, Maciaszczyk-Dziubinska E. UPF1-From mRNA Degradation to Human Disorders. Cells 2023; 12:cells12030419. [PMID: 36766761 PMCID: PMC9914065 DOI: 10.3390/cells12030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Up-frameshift protein 1 (UPF1) plays the role of a vital controller for transcripts, ready to react in the event of an incorrect translation mechanism. It is well known as one of the key elements involved in mRNA decay pathways and participates in transcript and protein quality control in several different aspects. Firstly, UPF1 specifically degrades premature termination codon (PTC)-containing products in a nonsense-mediated mRNA decay (NMD)-coupled manner. Additionally, UPF1 can potentially act as an E3 ligase and degrade target proteins independently from mRNA decay pathways. Thus, UPF1 protects cells against the accumulation of misfolded polypeptides. However, this multitasking protein may still hide many of its functions and abilities. In this article, we summarize important discoveries in the context of UPF1, its involvement in various cellular pathways, as well as its structural importance and mutational changes related to the emergence of various pathologies and disease states. Even though the state of knowledge about this protein has significantly increased over the years, there are still many intriguing aspects that remain unresolved.
Collapse
Affiliation(s)
- Jacek Staszewski
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Correspondence: (J.S.); (E.M.-D.)
| | - Natalia Lazarewicz
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Institute of Genetics and Development of Rennes, CNRS UMR 6290, University of Rennes 1, 35000 Rennes, France
| | - Julia Konczak
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Iwona Migdal
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Correspondence: (J.S.); (E.M.-D.)
| |
Collapse
|
12
|
Budi HS, Younus LA, Lafta MH, Parveen S, Mohammad HJ, Al-qaim ZH, Jawad MA, Parra RMR, Mustafa YF, Alhachami FR, Karampoor S, Mirzaei R. The role of miR-128 in cancer development, prevention, drug resistance, and immunotherapy. Front Oncol 2023; 12:1067974. [PMID: 36793341 PMCID: PMC9923359 DOI: 10.3389/fonc.2022.1067974] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence has revealed that microRNA (miRNA) expression is dysregulated in cancer, and they can act as either oncogenes or suppressors under certain conditions. Furthermore, some studies have discovered that miRNAs play a role in cancer cell drug resistance by targeting drug-resistance-related genes or influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this regard, the abnormal expression of miRNA-128 (miR-128) has been found in various human malignancies, and its verified target genes are essential in cancer-related processes, including apoptosis, cell propagation, and differentiation. This review will discuss the functions and processes of miR-128 in multiple cancer types. Furthermore, the possible involvement of miR-128 in cancer drug resistance and tumor immunotherapeutic will be addressed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laith A. Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn, Hayyan Medical University, Al Najaf Al Ashraf, Iraq
| | | | - Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Wu T, Li X, Yan G, Tan Z, Zhao D, Liu S, Wang H, Xiang Y, Chen W, Lu H, Liao X, Li Y, Lu Z. LncRNA BCAR4 promotes migration, invasion, and chemo-resistance by inhibiting miR-644a in breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:14. [PMID: 36627684 PMCID: PMC9830721 DOI: 10.1186/s13046-022-02588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Metastasis and drug resistance of breast cancer have become a barrier to treating patients successfully. Long noncoding RNAs (lncRNAs) are known as vital players in cancer development and progression. METHODS: The RT-qPCR were used to detect the gene expression. Colony formation assay, would healing assay, and transwell assay were performed to investigate oncogenic functions of cells. CCK8 assay was used to detect the cell viability. Western blot was applied to detect the protein level. Dual-luciferase reporter assay was used to determine the relationship between molecules. Mouse orthotopic xenograft tumor models were established to evaluate the effects of BCAR4 on tumor growth and metastasis in vivo. RESULTS: LncRNA BCAR4 was significantly increased in breast cancer patients' tissues and plasma and upregulated in breast cancer cell lines. BCAR4 upregulation was correlated with the TNM stages and decreased after surgical removal of breast tumors. Silencing of BCAR4 suppressed breast cancer cell colony formation, migration, invasion, and xenograft tumor growth and promoted chemo-sensitivity. Mechanistically, BCAR4 facilitates breast cancer migration and invasion via the miR-644a-CCR7 axis of the MAPK pathway. BCAR4 promotes ABCB1 expression indirectly by binding to and down-regulating miR-644a to induce chemo-resistance in breast cancer. CONCLUSIONS Our findings provide insights into the oncogenic role of BCAR4 and implicate BCAR4 as a potential diagnostic biomarker and a promising therapeutic agent to suppress metastasis and inhibit chemo-resistance of breast cancer.
Collapse
Affiliation(s)
- Tangwei Wu
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Xiaoyi Li
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Ge Yan
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Zheqiong Tan
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Dan Zhao
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Shuiyi Liu
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Hui Wang
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Yuan Xiang
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China
| | - Weiqun Chen
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Hongda Lu
- grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| | - Xinghua Liao
- grid.412787.f0000 0000 9868 173XInstitute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, Hubei 430081 People’s Republic of China
| | - Yong Li
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.39382.330000 0001 2160 926XDepartment of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Zhongxin Lu
- grid.33199.310000 0004 0368 7223Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014 China ,grid.257143.60000 0004 1772 1285College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China ,grid.257143.60000 0004 1772 1285School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065 China ,grid.33199.310000 0004 0368 7223Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China ,grid.33199.310000 0004 0368 7223Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 China
| |
Collapse
|
14
|
Singh J, Sangwan N, Chauhan A, Avti PK. Integrative Expression, Survival Analysis and Cellular miR-2909 Molecular Interplay in MRN Complex Check Point Sensor Genes (MRN-CSG) Involved in Breast Cancer. Clin Breast Cancer 2022; 22:e850-e862. [PMID: 36220723 DOI: 10.1016/j.clbc.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Breast cancer, an emerging global challenge, is evidenced by recent studies of miRNAs involvement in DNA repair gene variants (MRE11, RAD50, and NBN as checkpoint sensor genes (CSG) - MRN-CSG). The identification of various mutations in MRN-CSG and their interactions with miRNAs is still not understood. The emerging studies of miR-2909 involvement in other cancers led us to explore its role as molecular mechanistic marker in breast cancer. MATERIALS AND METHODS The genomic and proteomic data of MRN-CSG of breast cancer patients (8426 samples) was evaluated to identify the mutation types linked with the patient's survival rate. Additionally, molecular, 3D-structural and functional analysis was performed to identify miR-2909 as regulator of MRN-CSG. RESULTS The genomic and proteomic data analysis shows genetic alterations with majority of missense mutations [RAD50 (0.7%), MRE11 (1.5%), and NBN (11%)], though with highest MRE11 mRNA expression in invasive ductal breast carcinoma as compared to other breast cancer types. The Kaplan-Meier survival curves suggest higher survival rate for unaltered groups as compared to the altered group. Network analysis and disease association of miR-2909 and MRN-CSG shows strong interactions with other partners. The molecular hybridization between miR-2909-RAD50 and miR-2909-MRE11 complexes showed thermodynamically stable structures. Further, argonaute protein, involved in RNA silencing, docking studies with miR-MRE11-mRNA and miR-RAD50-mRNA hybridized complexes showed strong binding affinity. CONCLUSION The results suggest that miR-2909 forms strong thermodynamically stable molecular hybridized complexes with MRE11 and RAD50 mRNAs which further strongly interacts with argonaute protein to show potential molecular mechanistic role in breast cancer.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, 160012
| | - Namrata Sangwan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, 160012
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, 160012
| | - Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India, 160012.
| |
Collapse
|
15
|
Chen J, Sun M, Huang L, Fang Y. The Long noncoding RNA LINC00200 Promotes the Malignant Progression of MYCN-Amplified Neuroblastoma via Binding to Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) to Enhance the Stability of of Zic family member 2 (ZIC2) mRNA. Pathol Res Pract 2022; 237:154059. [DOI: 10.1016/j.prp.2022.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022]
|