1
|
Nasrine A, Mohanto S, Narayana S, Ahmed MG. Enhanced pharmacokinetic approach for anastrozole in macromolecule-based silk fibroin nanoparticles incorporated in situ injectables for estrogen-positive breast cancer therapy. J Drug Target 2025:1-28. [PMID: 39754343 DOI: 10.1080/1061186x.2024.2449486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
Breast cancer (BC) is a substantial reason for cancer-related mortality among women across the globe. Anastrozole (ANS) is an effective orally administered hormonal therapy for estrogen+ (ER+) BC treatment. However, several side effects and pharmacokinetic limitations restricted its uses in BC treatment. Therefore, this study developed an in situ gelling injectable-loaded silk fibroin (SF)-ANS NPs, which offers sustained drug release and improved pharmacokinetic properties compared to conventional oral formulations. The optimized in situ gel (ISG) incorporated SF-ANS-NPs were developed, and the pharmacokinetic parameters were accessed in subcutaneous administration of NMU-induced Wistar albino rats. The results demonstrated that SF-ANS-NP-ISG exhibited a significantly higher Cmax, Tmax, and AUC compared to pure ANS suspension. In addition, tumor multiplicity (1.40 ± 0.66), tumor latency (75 ± 9.2 days), and incidence rate (90 ± 2.1%) were recorded, and post-treatment analysis reported a marked reduction in tumor volume and weight compared to positive control within 90 days of a single dose. The SF-ANS-NP-ISG treated group's histopathological assessment indicated a low-grade carcinoma, reduced epithelial hyperplasia, and haemorrhage in mammary tumor tissues compared to positive control. Thus, the SF-ANS-NPs-ISG investigated to overcome the pharmacokinetic limitations of ANS further exhibited targeted delivery and bioavailability compared to conventional techniques.
Collapse
Affiliation(s)
- Arfa Nasrine
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Harohalli, Kanakpura Road, Bangalore, Karnataka, 562112, India
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| |
Collapse
|
2
|
Yilmaz A, Ari Yuka S. The role of ceRNAs in breast cancer microenvironmental regulation and therapeutic implications. J Mol Med (Berl) 2025; 103:33-49. [PMID: 39641797 DOI: 10.1007/s00109-024-02503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
The tumor microenvironment, which is the tailored physiological milieu of heterogeneous cancer cell populations surrounded by stromal and immune cells as well as extracellular matrix components, is a leading modulator of critical cancer hallmarks and one of the most significant prognostic indicators in breast cancer. In the last few decades, with the discovery of the interactions of ncRNAs with diverse cellular molecules, considerable emphasis has been devoted to understanding their direct and indirect roles in specific functions in breast cancer. Collectively, all of these have revealed that the competitive action of protein-coding RNAs and ncRNAs such as circRNAs and lncRNAs, which have a shared affinity for miRNAs, play a vital role in the molecular regulation of breast cancer. This phenomenon, termed as competing endogenous RNAs (ceRNAs), facilitates modeling the microenvironment through intercellular shuttles. Microenvironment ceRNA interactions have emerged as a frontier in the deep understanding of the complex mechanisms of breast cancer. In this review, we first discuss cellular ceRNAs in four key biological processes critical for microenvironmental regulation in breast cancer tissues: hypoxia, angiogenesis, immune regulations, and ECM remodeling. Further, we draw a complete portrait of microenvironment regulation by cell-to-cell cross-talk of shuttled ceRNAs and offer a framework of potential applications and challenges in overcoming the aggressive phenotype of the breast cancer microenvironment.
Collapse
Affiliation(s)
- Alper Yilmaz
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Selcen Ari Yuka
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, 07425, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| |
Collapse
|
3
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Wang MH, Liu ZH, Zhang HX, Liu HC, Ma LH. Hsa_circRNA_000166 accelerates breast cancer progression via the regulation of the miR-326/ELK1 and miR-330-5p/ELK1 axes. Ann Med 2024; 56:2424515. [PMID: 39529543 PMCID: PMC11559033 DOI: 10.1080/07853890.2024.2424515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSES To probe the expression, clinical significance, roles, and molecular mechanisms of circRNA_000166 in breast cancer (BC). METHODS Clinical tissue samples were gathered from 84 BC patients who underwent surgery at the Affiliated Hospital of Chengde Medical College. Clinical data were obtained from medical records and postoperative follow-up. Expression levels of circRNA_000166, miR-326, miR-330-5p, and ELK1 mRNA in BC tissues and cells were measured by qRT-PCR, and ELK1 protein levels were assessed by WB. Pearson's correlation analysis evaluated the interrelationships between these RNAs in clinical samples. Luciferase reporter assays verified the interactions between miR-326/miR-330-5p and circRNA_000166, as well as between miR-326/miR-330-5p and ELK1. Cell proliferation, migration, and apoptosis were examined using CCK-8, colony formation, transwell, and flow cytometry assays, respectively. RESULTS CircRNA_000166 was highly expressed in BC tissues and inversely correlated with miR-326/miR-330-5p levels but positively with ELK1 mRNA levels. ELK1 mRNA also inversely associated with miR-326/miR-330-5p levels in BC tissues. Importantly, our findings demonstrated that circRNA_000166 targets miR-326 and miR-330-5p, while ELK1 is the target of miR-326 and miR-330-5p in BC cells. CircRNA_000166 levels positively correlated with tumour size, TNM stage, histological grade, and lymph node metastasis, and negatively associated with postoperative progression-free survival (PFS) and overall survival (OS) in BC patients. CircRNA_000166 was also highly expressed in BC cells, and knockdown of circRNA_000166 reduced proliferation and migration, and increased apoptosis via miR-326/ELK1 and miR-330-5p/ELK1 pathways in vitro. CONCLUSION CircRNA_000166 enhances BC progression through miR-326/ELK1 and miR-330-5p/ELK1 pathways and shows potential as a biomarker for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Ming-Hui Wang
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zi-Hui Liu
- Department of Pathology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Hong-Xu Zhang
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Han-Cheng Liu
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Li-Hui Ma
- Department of Breast Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
5
|
Pan Q, Ma D, Xiao Y, Ji K, Wu J. Transcriptional regulation of DLGAP5 by AR suppresses p53 signaling and inhibits CD8 +T cell infiltration in triple-negative breast cancer. Transl Oncol 2024; 49:102081. [PMID: 39182361 PMCID: PMC11387711 DOI: 10.1016/j.tranon.2024.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a challenging subtype with unclear biological mechanisms. Recently, the transcription factor androgen receptor (AR) and its regulation of the DLGAP5 gene have gained attention in TNBC pathogenesis. In this study, we found a positive correlation between high AR expression and TNBC cell proliferation and growth. Furthermore, we confirmed DLGAP5 as a critical downstream regulator of AR with high expression in TNBC tissues. Knockdown of DLGAP5 significantly inhibited TNBC cell proliferation, migration, and invasion. AR was observed to directly bind to the DLGAP5 promoter, enhancing its transcriptional activity and suppressing the activation of the p53 signaling pathway. In vivo experiments further validated that downregulation of AR or DLGAP5 inhibited tumor growth and enhanced CD8+T cell infiltration. This study highlights the crucial roles of AR and DLGAP5 in TNBC growth and immune cell infiltration. Taken together, AR inhibits the p53 signaling pathway by promoting DLGAP5 expression, thereby impacting CD8+T cell infiltration in TNBC.
Collapse
Affiliation(s)
- Qing Pan
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Dachang Ma
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Yi Xiao
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Kun Ji
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Jun Wu
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Li R, Ji Y, Ye R, Tang G, Wang W, Chen C, Yang Q. Potential therapies for non-coding RNAs in breast cancer. Front Oncol 2024; 14:1452666. [PMID: 39372872 PMCID: PMC11449682 DOI: 10.3389/fonc.2024.1452666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Breast cancer (BC) is one of the frequent tumors that seriously endanger the physical and mental well-being in women with strong heterogeneity, and its pathogenesis involves multiple risk factors. Depending on the type of BC, hormonal therapy, targeted therapy, and immunotherapy are the current systemic treatment options along with conventional chemotherapy. Despite significant progress in understanding BC pathogenesis and therapeutic options, there is still a need to identify new therapeutic targets and develop more effective treatments. According to recent sequencing and profiling studies, non-coding (nc) RNAs genes are deregulated in human cancers via deletion, amplification, abnormal epigenetic, or transcriptional regulation, and similarly, the expression of many ncRNAs is altered in breast cancer cell lines and tissues. The ability of single ncRNAs to regulate the expression of multiple downstream gene targets and related pathways provides a theoretical basis for studying them for cancer therapeutic drug development and targeted delivery. Therefore, it is far-reaching to explore the role of ncRNAs in tumor development and their potential as therapeutic targets. Here, our review outlines the potential of two major ncRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) as diagnostic and prognostic biomarkers as well as targets for new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruyin Ye
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Wenrui Wang
- Department of Life Sciences, Bengbu Medical University, Bengbu, Anhui, China
| | - Changjie Chen
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Qingling Yang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
7
|
Zheng D, Chen W, Peng J, Huang X, Zhang S, Zhuang Y. Hsa_circ_0007590/PTBP1 complex reprograms glucose metabolism by reducing the stability of m 6A-modified PTEN mRNA in pancreatic ductal adenocarcinoma. Cancer Gene Ther 2024; 31:1090-1102. [PMID: 38802551 DOI: 10.1038/s41417-024-00786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The role of circular RNAs (circRNAs) in glucose metabolism in pancreatic duct adenocarcinoma (PDAC) remains elusive. Through RNA sequencing of cells cultured under conditions of glucose deprivation, we identified hsa_circ_0007590. Sanger sequencing and RNase R and Act D treatments were performed to confirm the circular RNA features of hsa_circ_0007590. RNA in situ hybridization (RNA-ISH) and quantitative reverse transcription PCR (qRT-PCR) were used to estimate hsa_circ_0007590 expression in PDAC clinical specimens and cell lines. hsa_circ_0007590 expression was higher in PDAC patients and closely related to the clinicopathological characteristics of the disease. Cytoplasm‒nuclear fractionation and FISH assays demonstrated that hsa_circ_0007590 was located in the nucleus. Gain-of-function and loss-of-function assays were performed to assess the biological behaviors of PDAC cells. Seahorse XF assays were performed to validate the Warburg effect. hsa_circ_0007590 facilitated the proliferation, migration, and invasion of PDAC cells and promoted the Warburg effect. Mass spectrometry, RNA pulldown, RNA immunoprecipitation (RIP), RNA m6A quantification, m6A dot blot, MeRIP, and Western blotting were conducted to investigate the detailed mechanism through which hsa_circ_0007590 produces these effects. Mechanistically, hsa_circ_0007590 targeted PTBP1 and increased the expression of the m6A reader protein YTHDF2, leading to PTEN mRNA degradation and PI3K/AKT/mTOR pathway activation. Overall, hsa_circ_0007590, which targets PTBP1, reprograms glucose metabolism by attenuating the stability of m6A-modified PTEN mRNA and holds potential promise as a therapeutic target for PDAC.
Collapse
Affiliation(s)
- Dandan Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China
- Doctor of Excellence Program (DEP), The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Wenying Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Juanfei Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Xianxian Huang
- Gastrointestinal Endoscopy Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, People's Republic of China
| | - Shineng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China.
| | - Yanyan Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People's Republic of China.
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People's Republic of China.
| |
Collapse
|
8
|
Mou J, Li C, Zheng Q, Meng X, Tang H. Research progress in tumor angiogenesis and drug resistance in breast cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0515. [PMID: 38940663 PMCID: PMC11271221 DOI: 10.20892/j.issn.2095-3941.2023.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer treatments, via exacerbation of tumor hypoxia, decreased effective drug concentrations within tumors, and immune-related mechanisms. Antiangiogenic therapy can counteract these breast cancer resistance factors by promoting tumor vascular normalization. The combination of antiangiogenic therapy with chemotherapy, targeted therapy, or immunotherapy has emerged as a promising approach for overcoming drug resistance in breast cancer. This review examines the mechanisms associated with angiogenesis and the interactions among tumor angiogenesis, the hypoxic tumor microenvironment, drug distribution, and immune mechanisms in breast cancer. Furthermore, this review provides a comprehensive summary of specific antiangiogenic drugs, and relevant studies assessing the reversal of drug resistance in breast cancer. The potential mechanisms underlying these interventions are discussed, and prospects for the clinical application of antiangiogenic therapy to overcome breast cancer treatment resistance are highlighted.
Collapse
Affiliation(s)
- Jiancheng Mou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310053, China
| | - Chenhong Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310053, China
| | - Qinghui Zheng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310053, China
| | - Xuli Meng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310053, China
| | - Hongchao Tang
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310053, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou 310053, China
| |
Collapse
|
9
|
Liu Y, Dong L, Ma J, Chen L, Fang L, Wang Z. The prognostic genes model of breast cancer drug resistance based on single-cell sequencing analysis and transcriptome analysis. Clin Exp Med 2024; 24:113. [PMID: 38795164 PMCID: PMC11127859 DOI: 10.1007/s10238-024-01372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Breast cancer (BC) represents a multifaceted malignancy, with escalating incidence and mortality rates annually. Chemotherapy stands as an indispensable approach for treating breast cancer, yet drug resistance poses a formidable challenge. Through transcriptome data analysis, we have identified two sets of genes exhibiting differential expression in this context. Furthermore, we have confirmed the overlap between these genes and those associated with exosomes, which were subsequently validated in cell lines. The investigation screened the identified genes to determine prognostic markers for BC and utilized them to formulate a prognostic model. The disparities in prognosis and immunity between the high- and low-risk groups were validated using the test dataset. We have discerned different BC subtypes based on the expression levels of prognostic genes in BC samples. Variations in prognosis, immunity, and drug sensitivity among distinct subtypes were examined. Leveraging data from single-cell sequencing and prognostic gene expression, the AUCell algorithm was employed to score individual cell clusters and analyze the pathways implicated in high-scoring groups. Prognostic genes (CCT4, CXCL13, MTDH, PSMD2, and RAB27A) were subsewoquently validated using RT-qPCR. Consequently, we have established a model for predicting prognosis in breast cancer that hinges on drug resistance and ERGs. Furthermore, we have evaluated the prognostic value of this model. The genes identified as prognostic markers can now serve as a reference for precise treatment of this condition.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Lun Dong
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Linghui Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China.
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- National Engineering Research Center of Ultrasound Medicine, Chongqing, 401121, China.
| |
Collapse
|
10
|
Ye S, Chen S, Yang X, Lei X. Drug resistance in breast cancer is based on the mechanism of exocrine non-coding RNA. Discov Oncol 2024; 15:138. [PMID: 38691224 PMCID: PMC11063018 DOI: 10.1007/s12672-024-00993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Breast cancer (BC) ranks first among female malignant tumors and involves hormonal changes and genetic as well as environmental risk factors. In recent years, with the improvement of medical treatment, a variety of therapeutic approaches for breast cancer have emerged and have strengthened to accommodate molecular diversity. However, the primary way to improve the effective treatment of breast cancer patients is to overcome treatment resistance. Recent studies have provided insights into the mechanisms of resistance to exosome effects in BC. Exosomes are membrane-bound vesicles secreted by both healthy and malignant cells that facilitate intercellular communication. Specifically, exosomes released by tumor cells transport their contents to recipient cells, altering their properties and promoting oncogenic components, ultimately resulting in drug resistance. As important coordinators, non-coding RNAs (ncRNAs) are involved in this process and are aberrantly expressed in various human cancers. Exosome-derived ncRNAs, including microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have emerged as crucial components in understanding drug resistance in breast cancer. This review provides insights into the mechanism of exosome-derived ncRNAs in breast cancer drug resistance, thereby suggesting new strategies for the treatment of BC.
Collapse
Affiliation(s)
- Simin Ye
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Shiyu Chen
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH, Algehainy N, Alanazi MA, Abou-Samra AB, Kumar R, Al-Shabeeb Akil AS, Macha MA, Mir R, Bhat AA. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther 2024; 9:27. [PMID: 38311623 PMCID: PMC10838959 DOI: 10.1038/s41392-024-01735-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.
Collapse
Affiliation(s)
- Mudasir A Kumar
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Sadaf K Baba
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Sara Al Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad A Alanazi
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Kashmir, 192122, India
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
12
|
Chang Y, Gao X, Jiang Y, Wang J, Liu L, Yan J, Huang G, Yang H. Alpha-hederin reprograms multi-miRNAs activity and overcome small extracellular vesicles-mediated paclitaxel resistance in NSCLC. Front Pharmacol 2024; 15:1257941. [PMID: 38362150 PMCID: PMC10867254 DOI: 10.3389/fphar.2024.1257941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Background: Small extracellular vesicles (sEVs) mediate intercellular communication in the tumor microenvironment (TME) and contribute to the malignant transformation of tumors, including unrestricted growth, metastasis, or therapeutic resistance. However, there is a lack of agents targeting sEVs to overcome or reverse tumor chemotherapy resistance through sEVs-mediated TME reprogramming. Methods: The paclitaxel (PTX)-resistant A549T cell line was used to explore the inhibitory effect of alpha-hederin on impeding the transmission of chemoresistance in non-small cell lung cancer (NSCLC) through the small extracellular vesicles (sEVs) pathway. This investigation utilized the CCK-8 assay and flow cytometry. Transcriptomics, Western blot, oil red O staining, and targeted metabolomics were utilized to evaluate the impact of alpha-hederin on the expression of signaling pathways associated with chemoresistance transmission in NSCLC cells before and after treatment. In vivo molecular imaging and immunohistochemistry were conducted to assess how alpha-hederin influences the transmission of chemoresistance through the sEVs pathway. RT-PCR was employed to examine the expression of miRNA and lncRNA in response to alpha-hederin treatment. Results: The resistance to PTX chemotherapy in A549T cells was overcome by alpha-hederin through its dependence on sEV secretion. However, the effectiveness of alpha-hederin was compromised when vesicle secretion was blocked by the GW4869 inhibitor. Transcriptomic analysis for 463 upregulated genes in recipient cells exposed to A549T-derived sEVs revealed that these sEVs enhanced TGFβ signaling and unsaturated fatty acid synthesis pathways. Alpha-hederin inhibited 15 types of unsaturated fatty acid synthesis by reducing the signaling activity of the sEVs-mediated TGFβ/SMAD2 pathway. Further, we observed that alpha-hederin promoted the production of three microRNAs (miRNAs, including miR-21-5p, miR-23a-3p, and miR-125b-5p) and the sorting to sEVs in A549T cells. These miRNAs targeted the TGFβ/SMADs signaling activity in sEVs-recipient cells and sensitized them to the PTX therapy. Conclusion: Our finding demonstrated that alpha-hederin could sensitize PTX-resistant NSCLC cells by sEV-mediated multiple miRNAs accumulation, and inhibiting TGFβ/SMAD2 pathways in recipient cells.
Collapse
Affiliation(s)
- Yuzhen Chang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuchen Jiang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jingyi Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Yan
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
13
|
邓 金, 潘 腾, 周 广, 高 悦, 彭 伟, 魏 玮, 吕 纯. [High expression of secretogranin II increases oxaliplatin resistance of colorectal cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1657-1664. [PMID: 37933640 PMCID: PMC10630195 DOI: 10.12122/j.issn.1673-4254.2023.10.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate the expression of secretogranin II (SCG2) in colorectal cancer (CRC) tissues and its impact on oxaliplatin resistance of CRC cells. METHODS We performed immunohistochemistry to detect the expression level of SCG2 on a tissue microarray containing 96 CRC and 84 adjacent tissues and analyzed the association of SCG2 expression with the clinical features of the CRC patients. SCG2 expression was also measured in DLD1 cells treated with oxaliplatin using immunoblotting and RT-qPCR analyses. The effects of SCG2 expression on oxaliplatin sensitivity and cell viability were evaluated in a DLD1 cell model of SCG2 knockout established using CRISPR-cas9 technique, and the expressions of apoptosis-related proteins were detected using Western blotting and RT-qPCR. We further examined SCG2 expression levels in an oxaliplatin-resistant DLD1 cell line and its parental DLD1 cells. RESULTS SCG2 expression was significantly increased in CRC tissues as compared with the adjacent tissues (1.932±0.816 vs 1), and the tumor tissues in advanced stages showed higher SCG2 expression levels. In DLD1 cells, treatment with oxaliplatin significantly increased SCG2 expression, and SCG2 knockout obviously increased oxaliplatin sensitivity of the cells and enhanced the expressions of apoptosis-related proteins. Compared with the parental cells, oxaliplatin-resistant DLD1 cells showed a significant increase of SCG2 expression by 3.901±0.471 folds. CONCLUSION SCG2 may serve as a risk gene in CRC, and its high expression increases oxaliplatin resistance of CRC cells.
Collapse
Affiliation(s)
- 金海 邓
- 北京大学基础医学院免疫学系;卫生部医学免疫学重点实验室;北京大学人类疾病基因研究中心,北京 100191Department of Immunology, School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology; Center for Human Disease Genomics, Peking University, Beijing 100191, China
- 湖南自兴智慧医疗科技有限公司,湖南 长沙 410221Hunan Zixing Intelligent Medical Technology Co., Ltd., Changsha 410221, China
| | - 腾 潘
- 天津医科大学肿瘤医院国家肿瘤临床医学研究中心;天津市"肿瘤防治"重点实验室;天津市恶性肿瘤临床医学研究中心,天津 300202Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin 300202, China
| | - 广林 周
- 深圳市龙岗区妇幼保健院//汕头大学医学院龙岗妇幼临床学院,广东 深圳 518172Department of Breast Surgery, Longgang District Maternity and Child Healthcare Hospital//Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen 518172, China
| | - 悦 高
- 湖南自兴智慧医疗科技有限公司,湖南 长沙 410221Hunan Zixing Intelligent Medical Technology Co., Ltd., Changsha 410221, China
| | - 伟雄 彭
- 湖南自兴智慧医疗科技有限公司,湖南 长沙 410221Hunan Zixing Intelligent Medical Technology Co., Ltd., Changsha 410221, China
| | - 玮 魏
- 上海市浦东新区浦南医院肿瘤科,上海 200120Department of Oncology, Punan Hospital of Pudong New District, Shanghai 200120, China
| | - 纯鑫 吕
- 上海市浦东新区浦南医院肿瘤科,上海 200120Department of Oncology, Punan Hospital of Pudong New District, Shanghai 200120, China
| |
Collapse
|