1
|
Foong YH, Caldwell B, Thorvaldsen JL, Krapp C, Mesaros CA, Zhou W, Kohli RM, Bartolomei MS. TET1 displays catalytic and non-catalytic functions in the adult mouse cortex. Epigenetics 2024; 19:2374979. [PMID: 38970823 PMCID: PMC11229741 DOI: 10.1080/15592294.2024.2374979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.
Collapse
Affiliation(s)
- Yee Hoon Foong
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Blake Caldwell
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Joanne L. Thorvaldsen
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Christopher Krapp
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
| | - Clementina A. Mesaros
- Translational Biomarkers Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| | - Rahul M. Kohli
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Smilow Center for Translational Research, Philadelphia, PA, USA
- Penn Epigenetics Institute, Smilow Center for Translational Rsearch, Philadelphia, PA, USA
| |
Collapse
|
2
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
3
|
Kong Y, Ji J, Zhan X, Yan W, Liu F, Ye P, Wang S, Tai J. Tet1-mediated 5hmC regulates hippocampal neuroinflammation via wnt signaling as a novel mechanism in obstructive sleep apnoea leads to cognitive deficit. J Neuroinflammation 2024; 21:208. [PMID: 39169375 PMCID: PMC11340128 DOI: 10.1186/s12974-024-03189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is a sleep-disordered breathing characterized by intermittent hypoxia (IH) that may cause cognitive dysfunction. However, the impact of IH on molecular processes involved in cognitive function remains unclear. METHODS C57BL / 6 J mice were exposed to either normoxia (control) or IH for 6 weeks. DNA hydroxymethylation was quantified by hydroxymethylated DNA immunoprecipitation (hMeDIP) sequencing. ten-eleven translocation 1 (Tet1) was knocked down by lentivirus. Specifically, cognitive function was assessed by behavioral experiments, pathological features were assessed by HE staining, the hippocampal DNA hydroxymethylation was examined by DNA dot blot and immunohistochemical staining, while the Wnt signaling pathway and its downstream effects were studied using qRT-PCR, immunofluorescence staining, and Luminex liquid suspension chip analysis. RESULTS IH mice showed pathological changes and cognitive dysfunction in the hippocampus. Compared with the control group, IH mice exhibited global DNA hydroxylmethylation in the hippocampus, and the expression of three hydroxylmethylases increased significantly. The Wnt signaling pathway was activated, and the mRNA and 5hmC levels of Wnt3a, Ccnd2, and Prickle2 were significantly up-regulated. Further caused downstream neurogenesis abnormalities and neuroinflammatory activation, manifested as increased expression of IBA1 (a marker of microglia), GFAP (a marker of astrocytes), and DCX (a marker of immature neurons), as well as a range of inflammatory cytokines (e.g. TNFa, IL3, IL9, and IL17A). After Tet1 knocked down, the above indicators return to normal. CONCLUSION Activation of Wnt signaling pathway by hippocampal Tet1 is associated with cognitive dysfunction induced by IH.
Collapse
Affiliation(s)
- Yaru Kong
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Jie Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaojun Zhan
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Weiheng Yan
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Fan Liu
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China
- Graduate School of Peking Union Medical College, Beijing, 100730, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Pengfei Ye
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jun Tai
- Children's Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100020, China.
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Paediatrics, Beijing, 100020, China.
| |
Collapse
|
4
|
Kakani P, Dhamdhere SG, Pant D, Joshi R, Mishra J, Samaiya A, Shukla S. Hypoxia-induced CTCF promotes EMT in breast cancer. Cell Rep 2024; 43:114367. [PMID: 38900639 DOI: 10.1016/j.celrep.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Cancer cells experiencing hypoxic stress employ epithelial-mesenchymal transition (EMT) to undergo metastasis through rewiring of the chromatin landscape, epigenetics, and importantly, gene expression. Here, we showed that hypoxia modulates the epigenetic landscape on CTCF promoter and upregulates its expression. Hypoxia-driven epigenetic regulation, specifically DNA demethylation mediated by TET2, is a prerequisite for CTCF induction. Mechanistically, in hypoxic conditions, Hypoxia-inducible factor 1-alpha (HIF1α) binds to the unmethylated CTCF promoter, causing transcriptional upregulation. Further, we uncover the pivotal role of CTCF in promoting EMT as loss of CTCF abrogated invasiveness of hypoxic breast cancer cells. These findings highlight the functional contribution of HIF1α-CTCF axis in promoting EMT in hypoxic breast cancer cells. Lastly, CTCF expression is alleviated and the potential for EMT is diminished when the HIF1α binding is particularly disrupted through the dCas9-DNMT3A system-mediated maintenance of DNA methylation on the CTCF promoter. This axis may offer a unique therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Parik Kakani
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Deepak Pant
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Rushikesh Joshi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Jharna Mishra
- Department of Pathology, Bansal Hospital, Bhopal, Madhya Pradesh 462016, India
| | - Atul Samaiya
- Department of Surgical Oncology, Bansal Hospital, Bhopal, Madhya Pradesh 462016, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India.
| |
Collapse
|
5
|
Bittel AJ, Chen YW. DNA Methylation in the Adaptive Response to Exercise. Sports Med 2024; 54:1419-1458. [PMID: 38561436 DOI: 10.1007/s40279-024-02011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Emerging evidence published over the past decade has highlighted the role of DNA methylation in skeletal muscle function and health, including as an epigenetic transducer of the adaptive response to exercise. In this review, we aim to synthesize the latest findings in this field to highlight: (1) the shifting understanding of the genomic localization of altered DNA methylation in response to acute and chronic aerobic and resistance exercise in skeletal muscle (e.g., promoter, gene bodies, enhancers, intergenic regions, un-annotated regions, and genome-wide methylation); (2) how these global/regional methylation changes relate to transcriptional activity following exercise; and (3) the factors (e.g., individual demographic or genetic features, dietary, training history, exercise parameters, local epigenetic characteristics, circulating hormones) demonstrated to alter both the pattern of DNA methylation after exercise, and the relationship between DNA methylation and gene expression. Finally, we discuss the changes in non-CpG methylation and 5-hydroxymethylation after exercise, as well as the importance of emerging single-cell analyses to future studies-areas of increasing focus in the field of epigenetics. We anticipate that this review will help generate a framework for clinicians and researchers to begin developing and testing exercise interventions designed to generate targeted changes in DNA methylation as part of a personalized exercise regimen.
Collapse
Affiliation(s)
- Adam J Bittel
- Research Center for Genetic Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Science, 111 Michigan Ave NW, Washington, DC, 20010, USA
- Department of Integrative Systems Biology, Institute for Biomedical Sciences, The George Washington University, 2121 I St NW, Washington, DC, 20052, USA
| |
Collapse
|
6
|
Yu R, Hang Y, Tsai HI, Wang D, Zhu H. Iron metabolism: backfire of cancer cell stemness and therapeutic modalities. Cancer Cell Int 2024; 24:157. [PMID: 38704599 PMCID: PMC11070091 DOI: 10.1186/s12935-024-03329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Cancer stem cells (CSCs), with their ability of self-renewal, unlimited proliferation, and multi-directional differentiation, contribute to tumorigenesis, metastasis, recurrence, and resistance to conventional therapy and immunotherapy. Eliminating CSCs has long been thought to prevent tumorigenesis. Although known to negatively impact tumor prognosis, research revealed the unexpected role of iron metabolism as a key regulator of CSCs. This review explores recent advances in iron metabolism in CSCs, conventional cancer therapies targeting iron biochemistry, therapeutic resistance in these cells, and potential treatment options that could overcome them. These findings provide important insights into therapeutic modalities against intractable cancers.
Collapse
Affiliation(s)
- Rong Yu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China
| | - Yinhui Hang
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, 212001, China.
- Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
7
|
Bowman WS, Schmidt RJ, Sanghar GK, Thompson GR, Ji H, Zeki AA, Haczku A. "Air That Once Was Breath" Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation - "Climate Change, Allergy and Immunology" Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int Arch Allergy Immunol 2024; 185:600-616. [PMID: 38452750 PMCID: PMC11487202 DOI: 10.1159/000536578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.
Collapse
Affiliation(s)
- Willis S. Bowman
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, Sacramento, CA, USA
| | - Gursharan K. Sanghar
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - George R. Thompson
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Hong Ji
- UC Davis Lung Center, University of California, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
8
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
9
|
Lee SCES, Pyo AHA, Koritzinsky M. Longitudinal dynamics of the tumor hypoxia response: From enzyme activity to biological phenotype. SCIENCE ADVANCES 2023; 9:eadj6409. [PMID: 37992163 PMCID: PMC10664991 DOI: 10.1126/sciadv.adj6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Kaplánek R, Kejík Z, Hajduch J, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hosnedlová B, Hromádka R, Dytrych P, Novotný P, Abramenko N, Antonyová V, Hoskovec D, Babula P, Masařík M, Martásek P, Jakubek M. TET protein inhibitors: Potential and limitations. Biomed Pharmacother 2023; 166:115324. [PMID: 37598475 DOI: 10.1016/j.biopha.2023.115324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023] Open
Abstract
TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.
Collapse
Affiliation(s)
- Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Božena Hosnedlová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Róbert Hromádka
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Novotný
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
11
|
Yang Q, Dang H, Liu J, Wang X, Wang J, Lan X, Ji M, Xing M, Hou P. Hypoxia switches TET1 from being tumor-suppressive to oncogenic. Oncogene 2023; 42:1634-1648. [PMID: 37020036 PMCID: PMC10181935 DOI: 10.1038/s41388-023-02659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/07/2023]
Abstract
The classical oxidizing enzymatic activity of Ten Eleven Translocation 1 (TET1) and its tumor suppressor role are well known. Here, we find that high TET1 expression is associated with poor patient survival in solid cancers often having hypoxia, which is inconsistent with its tumor suppressor role. Through a series of in vitro and in vivo studies, using thyroid cancer as a model, we demonstrate that TET1 plays a tumor suppressor function in normoxia and, surprisingly, an oncogenic function in hypoxia. Mechanistically, TET1 mediates HIF1α-p300 interaction by acting as a co-activator of HIF1α to promote CK2B transcription under hypoxia, which is independent of its enzymatic activity; CK2 activates the AKT/GSK3β signaling pathway to promote oncogenesis. Activated AKT/GSK3β signaling in turn maintains HIF1α at elevated levels by preventing its K48-linked ubiquitination and degradation, creating a feedback loop to enhance the oncogenicity of TET1 in hypoxia. Thus, this study uncovers a novel oncogenic mechanism in which TET1 promotes oncogenesis and cancer progression through a non-enzymatic interaction between TET1 and HIF1α in hypoxia, providing novel therapeutic targeting implications for cancer.
Collapse
Affiliation(s)
- Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Hui Dang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jiaxin Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xingye Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jingyuan Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xinhui Lan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Mingzhao Xing
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, PR China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
12
|
Yfantis A, Mylonis I, Chachami G, Nikolaidis M, Amoutzias GD, Paraskeva E, Simos G. Transcriptional Response to Hypoxia: The Role of HIF-1-Associated Co-Regulators. Cells 2023; 12:cells12050798. [PMID: 36899934 PMCID: PMC10001186 DOI: 10.3390/cells12050798] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The Hypoxia Inducible Factor 1 (HIF-1) plays a major role in the cellular response to hypoxia by regulating the expression of many genes involved in adaptive processes that allow cell survival under low oxygen conditions. Adaptation to the hypoxic tumor micro-environment is also critical for cancer cell proliferation and therefore HIF-1 is also considered a valid therapeutical target. Despite the huge progress in understanding regulation of HIF-1 expression and activity by oxygen levels or oncogenic pathways, the way HIF-1 interacts with chromatin and the transcriptional machinery in order to activate its target genes is still a matter of intense investigation. Recent studies have identified several different HIF-1- and chromatin-associated co-regulators that play important roles in the general transcriptional activity of HIF-1, independent of its expression levels, as well as in the selection of binding sites, promoters and target genes, which, however, often depends on cellular context. We review here these co-regulators and examine their effect on the expression of a compilation of well-characterized HIF-1 direct target genes in order to assess the range of their involvement in the transcriptional response to hypoxia. Delineating the mode and the significance of the interaction between HIF-1 and its associated co-regulators may offer new attractive and specific targets for anticancer therapy.
Collapse
Affiliation(s)
- Angelos Yfantis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence:
| |
Collapse
|
13
|
Zhao YX, Yang Z, Ma LB, Wang F, Wang Y, Xiang C. HIF1A overexpression predicts the high lymph node metastasis risk and indicates a poor prognosis in papillary thyroid cancer. Heliyon 2023; 9:e14714. [PMID: 36994412 PMCID: PMC10040699 DOI: 10.1016/j.heliyon.2023.e14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Objective To investigate the value of Hypoxia-inducible factor 1 A (HIF1A) in predicting lymph node metastasis (LNM) stage and clinical outcomes of papillary thyroid cancer (PTC) patients. Materials and methods The HIF1A gene expression analysis in PTC was performed by bioinformatics approaches followed by evaluating its protein level using immunohistochemistry analysis. The role of HIF1A in predicting the LNM stage was evaluated by logistic regression analysis, nomogram construction, and receiver operating characteristic (ROC) analysis. We performed survival analyses to determine its prognostic value. Enrichment analysis was conducted, and immune cell infiltration and stromal content were evaluated to examine the underlying mechanism of HIF1A in PTC. Results HIF1A transcription and protein levels were significantly high in PTC tissue (P < 0.05). Its overexpression predicted high LNM risk and unfavorable prognosis for PTC patients (P < 0.05). Cox regression analysis revealed HIF1A as an independent prognostic biomarker for the disease-free interval (DFI) (P < 0.01). In addition, HIF1A was positively related to tumor-suppressive immunity but was negatively correlated with anti-tumor immunity. HIF1A upregulation was also associated with increased stromal content. Conclusions HIF1A overexpression is an independent predictor for worse DFI in PTC. The HIF1A expression may affect the prognosis of PTC patients through immune- and stroma-related pathways. Our study provides new insight into the role of HIF1A in PTC biology and clinical management.
Collapse
Affiliation(s)
- Yong-xun Zhao
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
- Corresponding author. The Seventh Department of General Surgery, the First Hospital of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou 730000, Gansu, China.
| | - Ze Yang
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li-bin Ma
- The Seventh Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Fang Wang
- The Pathology Department, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yong Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Xiang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
- Corresponding author. Department of Thyroid Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, No.88, Jiefang Road, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
14
|
Hsu KW, Lai JCY, Chang JS, Peng PH, Huang CH, Lee DY, Tsai YC, Chung CJ, Chang H, Chang CH, Chen JL, Pang ST, Hao Z, Cui XL, He C, Wu KJ. METTL4-mediated nuclear N6-deoxyadenosine methylation promotes metastasis through activating multiple metastasis-inducing targets. Genome Biol 2022; 23:249. [PMID: 36461076 PMCID: PMC9716733 DOI: 10.1186/s13059-022-02819-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND DNA N6-methyldeoxyadenosine (6mA) is rarely present in mammalian cells and its nuclear role remains elusive. RESULTS Here we show that hypoxia induces nuclear 6mA modification through a DNA methyltransferase, METTL4, in hypoxia-induced epithelial-mesenchymal transition (EMT) and tumor metastasis. Co-expression of METTL4 and 6mA represents a prognosis marker for upper tract urothelial cancer patients. By RNA sequencing and 6mA chromatin immunoprecipitation-exonuclease digestion followed by sequencing, we identify lncRNA RP11-390F4.3 and one novel HIF-1α co-activator, ZMIZ1, that are co-regulated by hypoxia and METTL4. Other genes involved in hypoxia-mediated phenotypes are also regulated by 6mA modification. Quantitative chromatin isolation by RNA purification assay shows the occupancy of lncRNA RP11-390F4.3 on the promoters of multiple EMT regulators, indicating lncRNA-chromatin interaction. Knockdown of lncRNA RP11-390F4.3 abolishes METTL4-mediated tumor metastasis. We demonstrate that ZMIZ1 is an essential co-activator of HIF-1α. CONCLUSIONS We show that hypoxia results in enriched 6mA levels in mammalian tumor cells through METTL4. This METTL4-mediated nuclear 6mA deposition induces tumor metastasis through activating multiple metastasis-inducing genes. METTL4 is characterized as a potential therapeutic target in hypoxic tumors.
Collapse
Affiliation(s)
- Kai-Wen Hsu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan ,Research Center for Cancer Biology, Taipei, Taiwan ,grid.254145.30000 0001 0083 6092Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 404 Taiwan
| | - Joseph Chieh-Yu Lai
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan ,grid.254145.30000 0001 0083 6092Institute of Biomedical Sciences, China Medical University, Taichung, 404 Taiwan
| | - Jeng-Shou Chang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan
| | - Ching-Hui Huang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan
| | - Der-Yen Lee
- grid.254145.30000 0001 0083 6092Institute of Integrated Medicine, China Medical University, Taichung, 404 Taiwan
| | | | - Chi-Jung Chung
- grid.254145.30000 0001 0083 6092Department of Health Risk Management, College of Public Health, China Medical University, Taichung, 404 Taiwan
| | - Han Chang
- grid.411508.90000 0004 0572 9415Department of Pathology, China Medical University Hospital, Taichung, 404 Taiwan
| | - Chao-Hsiang Chang
- grid.411508.90000 0004 0572 9415Department of Urology, China Medical University Hospital, Taichung, 404 Taiwan
| | - Ji-Lin Chen
- grid.278247.c0000 0004 0604 5314Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei, 112 Taiwan
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333 Taiwan
| | - Ziyang Hao
- grid.170205.10000 0004 1936 7822Departments of Chemistry & Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA ,grid.24696.3f0000 0004 0369 153XSchool of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069 China
| | - Xiao-Long Cui
- grid.170205.10000 0004 1936 7822Departments of Chemistry & Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA
| | - Chuan He
- grid.170205.10000 0004 1936 7822Departments of Chemistry & Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA ,grid.170205.10000 0004 1936 7822Howard Hughes Medical Institute, The University of Chicago, 929 E. 57th St., Chicago, IL 60637 USA
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, No. 15, Wenhua 1st Road, Gueishan Dist., Taoyuan, 333 Taiwan
| |
Collapse
|
15
|
Karagiota A, Kanoura A, Paraskeva E, Simos G, Chachami G. Pyruvate dehydrogenase phosphatase 1 (PDP1) stimulates HIF activity by supporting histone acetylation under hypoxia. FEBS J 2022; 290:2165-2179. [PMID: 36453802 DOI: 10.1111/febs.16694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Cancer cells, when exposed to the hypoxic tumour microenvironment, respond by activating hypoxia-inducible factors (HIFs). HIF-1 mediates extensive metabolic re-programming, and expression of HIF-1α, its oxygen-regulated subunit, is associated with poor prognosis in cancer. Here we analyse the role of pyruvate dehydrogenase phosphatase 1 (PDP1) in the regulation of HIF-1 activity. PDP1 is a key hormone-regulated metabolic enzyme that dephosphorylates and activates pyruvate dehydrogenase (PDH), thereby stimulating the conversion of pyruvate into acetyl-CoA. Silencing of PDP1 down-regulated HIF transcriptional activity and the expression of HIF-dependent genes, including that of PDK1, the kinase that phosphorylates and inactivates PDH, opposing the effects of PDP1. Inversely, PDP1 stimulation enhanced HIF activity under hypoxia. Alteration of PDP1 levels or activity did not have an effect on HIF-1α protein levels, nuclear accumulation or interaction with its partners ARNT and NPM1. However, depletion of PDP-1 decreased histone H3 acetylation of HIF-1 target gene promoters and inhibited binding of HIF-1 to the respective hypoxia-response elements (HREs) under hypoxia. Furthermore, the decrease of HIF transcriptional activity upon PDP1 depletion could be reversed by treating the cells with acetate, as an exogenous source of acetyl-CoA, or the histone deacetylase (HDAC) inhibitor trichostatin A. These data suggest that the PDP1/PDH/HIF-1/PDK1 axis is part of a homeostatic loop which, under hypoxia, preserves cellular acetyl-CoA production to a level sufficient to sustain chromatin acetylation and transcription of hypoxia-inducible genes.
Collapse
Affiliation(s)
- Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece.,Laboratory of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece
| | - Amalia Kanoura
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece.,Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece
| |
Collapse
|
16
|
von Knebel Doeberitz N, Paech D, Sturm D, Pusch S, Turcan S, Saunthararajah Y. Changing paradigms in oncology: Toward noncytotoxic treatments for advanced gliomas. Int J Cancer 2022; 151:1431-1446. [PMID: 35603902 PMCID: PMC9474618 DOI: 10.1002/ijc.34131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Glial-lineage malignancies (gliomas) recurrently mutate and/or delete the master regulators of apoptosis p53 and/or p16/CDKN2A, undermining apoptosis-intending (cytotoxic) treatments. By contrast to disrupted p53/p16, glioma cells are live-wired with the master transcription factor circuits that specify and drive glial lineage fates: these transcription factors activate early-glial and replication programs as expected, but fail in their other usual function of forcing onward glial lineage-maturation-late-glial genes have constitutively "closed" chromatin requiring chromatin-remodeling for activation-glioma-genesis disrupts several epigenetic components needed to perform this work, and simultaneously amplifies repressing epigenetic machinery instead. Pharmacologic inhibition of repressing epigenetic enzymes thus allows activation of late-glial genes and terminates glioma self-replication (self-replication = replication without lineage-maturation), independent of p53/p16/apoptosis. Lineage-specifying master transcription factors therefore contrast with p53/p16 in being enriched in self-replicating glioma cells, reveal a cause-effect relationship between aberrant epigenetic repression of late-lineage programs and malignant self-replication, and point to specific epigenetic targets for noncytotoxic glioma-therapy.
Collapse
Affiliation(s)
| | - Daniel Paech
- Division of RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of NeuroradiologyBonn University HospitalBonnGermany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ) HeidelbergHeidelbergGermany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Department of Pediatric Oncology, Hematology & ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Stefan Pusch
- Department of NeuropathologyInstitute of Pathology, Ruprecht‐Karls‐University HeidelbergHeidelbergGermany
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sevin Turcan
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology ResearchTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
17
|
Analysis of genome and methylation changes in Chinese indigenous chickens over time provides insight into species conservation. Commun Biol 2022; 5:952. [PMID: 36097156 PMCID: PMC9467985 DOI: 10.1038/s42003-022-03907-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Conservation of natural resources is a vital and challenging task. Numerous animal genetic resources have been effectively conserved worldwide. However, the effectiveness of conservation programmes and the variation information of species have rarely been evaluated. Here, we performed whole-genome and whole-genome bisulfite sequencing of 90 Chinese indigenous chickens, which belonged to the Tibetan, Wenchang and Bian chicken breeds, and have been conserved under different conservation programmes. We observed that low genetic diversity and high DNA methylation variation occurs during ex situ in vivo conservation, while higher genetic diversity and differentiation occurs during in situ conservation. Further analyses revealed that most DNA methylation signatures are unique within ex situ in vivo conservation. Moreover, a high proportion of differentially methylated regions is found in genomic selection regions, suggesting a link between the effects of genomic variation and DNA methylation. Altogether our findings provide valuable information about genetic and DNA methylation variations during different conservation programmes, and hold practical relevance for species conservation. Comparisons of genomic and methylomic changes during the conservation of indigenous chicken breeds in China provide insight into conservation programmes for these breeds and their adaptations to unique environments.
Collapse
|
18
|
Fu YL, Wu YH, Cao DH, Jia ZF, Shen A, Jiang J, Cao XY. Increased 5-hydroxymethylcytosine is a favorable prognostic factor of Helicobacter pylori-negative gastric cancer patients. World J Gastrointest Oncol 2022; 14:1295-1306. [PMID: 36051102 PMCID: PMC9305580 DOI: 10.4251/wjgo.v14.i7.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Most gastric cancer (GC) patients are diagnosed at middle or late stage because the symptoms in early stage are obscure, which causes higher mortality rates of GC. Helicobacter pylori (H. pylori) was identified as a class I carcinogen and leads to aberrant DNA methylation/hydroxymethylation. 5-hydroxymethylcytosine (5-hmC) plays complex roles in gene regulation of tumorigenesis and can be considered as an activating epigenetic mark of hydroxymethylation.
AIM To explore the association between 5-hmC levels and the progression and prognosis of GC patients with or without H. pylori infection.
METHODS A retrospective cohort study was conducted to estimate the predicted value of 5-hmC level in the progression and prognosis of GC patients with different H. pylori infection status. A total of 144 GC patients were recruited.
RESULTS The levels of 5-hmC were significantly decreased in tumor tissues (0.076 ± 0.048) compared with the matched control tissues (0.110 ± 0.057, P = 0.001). A high level of 5-hmC was an independent significant favorable predictor of overall survival in GC patients (hazard ratio = 0.61, 95% confidence interval: 0.38-0.98, P = 0.040), the H. pylori-negative GC subgroup (hazard ratio = 0.30, 95% confidence interval: 0.13-0.68, P = 0.004) and the GC patients with TNM stage Ⅰ or Ⅱ (hazard ratio = 0.32, 95% confidence interval: 0.13-0.77, P = 0.011).
CONCLUSION Increased 5-hmC is a favorable prognostic factor in GC, especially for H. pylori-negative subgroups.
Collapse
Affiliation(s)
- Ying-Li Fu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Yan-Hua Wu
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Hui Cao
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Zhi-Fang Jia
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Ao Shen
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing Jiang
- Division of Clinical Research, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Xue-Yuan Cao
- Department of Gastric and Colorectal Surgery, The First Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
19
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
20
|
Jia S, Wei G, Bono J, Pan Z, Zheng B, Wang B, Adaralegbe A, Tenorio C, Bekker A, Tao YX. TET1 overexpression attenuates paclitaxel-induced neuropathic pain through rescuing K 2p1.1 expression in primary sensory neurons of male rats. Life Sci 2022; 297:120486. [PMID: 35304127 PMCID: PMC8976761 DOI: 10.1016/j.lfs.2022.120486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
AIMS Paclitaxel-induced downregulation of two-pore domain K+ channel 1.1 (K2p1.1) caused by increasing DNA methylation within its gene promoter in the dorsal root ganglion (DRG) contributes to neuropathic pain. Given that ten-eleven translocation methylcytosine dioxygenase 1 (TET1) promotes DNA demethylation and gene transcription, the present study investigated whether DRG overexpression of TET1 produces an antinociceptive effect on the paclitaxel-induced nociceptive hypersensitivity. MAIN METHODS TET1 was overexpressed in the DRG through unilateral microinjection of the herpes simplex virus expressing full-length Tet1 mRNA into the fourth and fifth lumbar DRGs of male rats. Behavioral tests were carried out to examine the effect of this overexpression on the paclitaxel-induced nociceptive hypersensitivity. Western blot analysis, chromatin immunoprecipitation assay and 5-hydroxymethylcytosine detection assay were performed to assess the levels of TET1/K2p1.1, 5-methylcytosine and 5-hydroxymethylcytosine, respectively. KEY FINDINGS DRG overexpression of TET1 mitigated the paclitaxel-induced mechanical allodynia, heat hyperalgesia and cold hyperalgesia on the ipsilateral side during the development and maintenance periods. Locomotor function or basal (acute) responses to mechanical, heat or cold stimuli were not affected. Mechanistically, DRG overexpression of TET1 rescued the expression of K2p1.1 by blocking the paclitaxel-induced increase in the level of 5-methylcytosine and correspondingly reversing the paclitaxel-induced decreases in the amount of 5-hydroxymethylcytosine within the K2p1.1 promoter region in the microinjected DRGs of male rats. SIGNIFICANCE Our findings suggest that DRG overexpression of TET1 alleviated chemotherapy-induced neuropathic pain likely through rescuing DRG K2p1.1 expression. Our findings may provide a potential avenue for the management of this disorder.
Collapse
Affiliation(s)
- Shushan Jia
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Guihua Wei
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jamie Bono
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA,Rutgers School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103, USA
| | - Zhiqiang Pan
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Bixin Zheng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Bing Wang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Adejuyigbe Adaralegbe
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Christopher Tenorio
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark NJ07103, USA; Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark NJ07103, USA.
| |
Collapse
|
21
|
Devin J, Cañeque T, Lin YL, Mondoulet L, Veyrune JL, Abouladze M, Garcia De Paco E, Karmous Gadacha O, Cartron G, Pasero P, Bret C, Rodriguez R, Moreaux J. Targeting Cellular Iron Homeostasis with Ironomycin in Diffuse Large B-cell Lymphoma. Cancer Res 2022; 82:998-1012. [PMID: 35078814 PMCID: PMC9359736 DOI: 10.1158/0008-5472.can-21-0218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/14/2021] [Accepted: 01/21/2022] [Indexed: 01/19/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common hematological malignancy. Although more than half of patients with DLBCL achieve long-term remission, the majority of remaining patients succumb to the disease. As abnormal iron homeostasis is implicated in carcinogenesis and the progression of many tumors, we searched for alterations in iron metabolism in DLBCL that could be exploited to develop novel therapeutic strategies. Analysis of the iron metabolism gene expression profile of large cohorts of patients with DLBCL established the iron score (IS), a gene expression-based risk score enabling identification of patients with DLBCL with a poor outcome who might benefit from a suitable targeted therapy. In a panel of 16 DLBCL cell lines, ironomycin, a promising lysosomal iron-targeting small molecule, inhibited DLBCL cell proliferation at nanomolar concentrations compared with typical iron chelators. Ironomycin also induced significant cell growth inhibition, ferroptosis, and autophagy. Ironomycin treatment resulted in accumulation of DNA double-strand breaks, delayed progression of replication forks, and increased RPA2 phosphorylation, a marker of replication stress. Ironomycin significantly reduced the median number of viable primary DLBCL cells of patients without major toxicity for nontumor cells from the microenvironment and presented low toxicity in hematopoietic progenitors compared with conventional treatments. Significant synergistic effects were also observed by combining ironomycin with doxorubicin, BH3 mimetics, BTK inhibitors, or Syk inhibitors. Altogether, these data demonstrate that a subgroup of high-risk patients with DLBCL can be identified with the IS that can potentially benefit from targeting iron homeostasis. SIGNIFICANCE Iron homeostasis represents a potential therapeutic target for high-risk patients with DLBCL that can be targeted with ironomycin to induce cell death and to sensitize tumor cells to conventional treatments.
Collapse
Affiliation(s)
- Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Tatiana Cañeque
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | | | - Jean-Luc Veyrune
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Matthieu Abouladze
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elvira Garcia De Paco
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Ouissem Karmous Gadacha
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Caroline Bret
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,University of Montpellier, UFR Medicine, Montpellier, France.,Corresponding Authors: Jerome Moreaux, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337903; Fax: 33(0)467337036; E-mail: ; Raphaël Rodriguez, Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris, France. Phone: 33-0-448482191; E-mail: ; and Caroline Bret, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337031; Fax: 33-0-467337036; E-mail:
| | - Raphaël Rodriguez
- Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France; PSL Université, Paris, France; CNRS UMR 3666, Paris, France; INSERM U1143, Paris, France.,Corresponding Authors: Jerome Moreaux, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337903; Fax: 33(0)467337036; E-mail: ; Raphaël Rodriguez, Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris, France. Phone: 33-0-448482191; E-mail: ; and Caroline Bret, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337031; Fax: 33-0-467337036; E-mail:
| | - Jerome Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France.,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France.,University of Montpellier, UFR Medicine, Montpellier, France.,Institut Universitaire de France (IUF), Paris, France.,Corresponding Authors: Jerome Moreaux, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337903; Fax: 33(0)467337036; E-mail: ; Raphaël Rodriguez, Chemical Biology of Cancer Laboratory, Institut Curie, 26 rue d'Ulm, 75248 Paris, France. Phone: 33-0-448482191; E-mail: ; and Caroline Bret, Department of Biological Hematology, Hôpital Saint-Eloi - CHRU de Montpellier, 80, av. Augustin Fliche, 34295 Montpellier Cedex 5, IGH - Institute of Human Genetics, CNRS UMR-UM 9002, Montpellier, France. Phone: 33-0-467337031; Fax: 33-0-467337036; E-mail:
| |
Collapse
|
22
|
Zhang D, You Y, Xu Y, Cheng Q, Xiao Z, Chen T, Shi C, Luo L. Facile synthesis of near-infrared responsive on-demand oxygen releasing nanoplatform for precise MRI-guided theranostics of hypoxia-induced tumor chemoresistance and metastasis in triple negative breast cancer. J Nanobiotechnology 2022; 20:104. [PMID: 35246149 PMCID: PMC8896283 DOI: 10.1186/s12951-022-01294-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Hypoxia is an important factor that contributes to chemoresistance and metastasis in triple negative breast cancer (TNBC), and alleviating hypoxia microenvironment can enhance the anti-tumor efficacy and also inhibit tumor invasion. METHODS A near-infrared (NIR) responsive on-demand oxygen releasing nanoplatform (O2-PPSiI) was successfully synthesized by a two-stage self-assembly process to overcome the hypoxia-induced tumor chemoresistance and metastasis. We embedded drug-loaded poly (lactic-co-glycolic acid) cores into an ultrathin silica shell attached with paramagnetic Gd-DTPA to develop a Magnetic Resonance Imaging (MRI)-guided NIR-responsive on-demand drug releasing nanosystem, where indocyanine green was used as a photothermal converter to trigger the oxygen and drug release under NIR irradiation. RESULTS The near-infrared responsive on-demand oxygen releasing nanoplatform O2-PPSiI was chemically synthesized in this study by a two-stage self-assembly process, which could deliver oxygen and release it under NIR irradiation to relieve hypoxia, improving the therapeutic effect of chemotherapy and suppressed tumor metastasis. This smart design achieves the following advantages: (i) the O2 in this nanosystem can be precisely released by an NIR-responsive silica shell rupture; (ii) the dynamic biodistribution process of O2-PPSiI was monitored in real-time and quantitatively analyzed via sensitive MR imaging of the tumor; (iii) O2-PPSiI could alleviate tumor hypoxia by releasing O2 within the tumor upon NIR laser excitation; (iv) The migration and invasion abilities of the TNBC tumor were weakened by inhibiting the process of EMT as a result of the synergistic therapy of NIR-triggered O2-PPSiI. CONCLUSIONS Our work proposes a smart tactic guided by MRI and presents a valid approach for the reasonable design of NIR-responsive on-demand drug-releasing nanomedicine systems for precise theranostics in TNBC.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- The Shunde Affiliated Hospital, Jinan University, Foshan, 528300, China
| | - Yuanyuan You
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yuan Xu
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qingqing Cheng
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Tianfeng Chen
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, Guangdong, People's Republic of China.
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
23
|
Besaratinia A, Caceres A, Tommasi S. DNA Hydroxymethylation in Smoking-Associated Cancers. Int J Mol Sci 2022; 23:2657. [PMID: 35269796 PMCID: PMC8910185 DOI: 10.3390/ijms23052657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
5-hydroxymethylcytosine (5-hmC) was first detected in mammalian DNA five decades ago. However, it did not take center stage in the field of epigenetics until 2009, when ten-eleven translocation 1 (TET1) was found to oxidize 5-methylcytosine to 5-hmC, thus offering a long-awaited mechanism for active DNA demethylation. Since then, a remarkable body of research has implicated DNA hydroxymethylation in pluripotency, differentiation, neural system development, aging, and pathogenesis of numerous diseases, especially cancer. Here, we focus on DNA hydroxymethylation in smoking-associated carcinogenesis to highlight the diagnostic, therapeutic, and prognostic potentials of this epigenetic mark. We describe the significance of 5-hmC in DNA demethylation, the importance of substrates and cofactors in TET-mediated DNA hydroxymethylation, the regulation of TETs and related genes (isocitrate dehydrogenases, fumarate hydratase, and succinate dehydrogenase), the cell-type dependency and genomic distribution of 5-hmC, and the functional role of 5-hmC in the epigenetic regulation of transcription. We showcase examples of studies on three major smoking-associated cancers, including lung, bladder, and colorectal cancers, to summarize the current state of knowledge, outstanding questions, and future direction in the field.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA; (A.C.); (S.T.)
| | | | | |
Collapse
|
24
|
Yan J, Huang YJ, Huang QY, Liu PX, Wang CS. Transcriptional activation of S100A2 expression by HIF-1α via binding to the hypomethylated hypoxia response elements in HCC cells. Mol Carcinog 2022; 61:494-507. [PMID: 35107180 DOI: 10.1002/mc.23393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers. Dysregulation of S100A2 has recently been found in many cancers including HCC. However, its regulatory mechanism in HCC remains poorly understood, especially in hypoxia. In this study, we found that S100A2 is upregulated and correlated with the clinicopathological features of HCC patients. Moreover, the elevated S100A2 showed worse overall survival. Functionally, S100A2 inhibition decreased the proliferation and migration of HepG2 cells. Interestingly, we found that HIF-1α directly binds to hypoxia response elements (HREs) of the S100A2 promoter region. S100A2 expression could be induced in an HIF-1α-dependent manner under hypoxia. Furthermore, S100A2 silencing significantly suppressed HCC cell proliferation and invasion under hypoxia. Mechanistically, pyrosequencing results showed that the hypomethylation status of CpG located in the HRE at the S100A2 promoter was correlated with S100A2 induction. Additionally, HIF-1α- mediated S100A2 activation was associated with TET2-related epigenetic inactivation. TET2 was enriched in the HRE of the S100A2 promoter in HepG2 cells. Finally, S100A2 methylation-related genes and pathways were analyzed. We found that the methylation of S100A2 is correlated with ANXA2, PPP1R15A, and FOS, which include in a hypoxia-related gene set from the GSEA database. Moreover, some EMT-related genes are associated with the methylation of S100A2 in HCC. Conclusively, our study thus uncovered a novel mechanism showing that hypoxia/HIF-1α signaling associated with DNA methylation enhances S100A2 expression in HCC. S100A2 may be useful as a target for facilitating novel diagnostic and therapeutic strategies in liver cancer.
Collapse
Affiliation(s)
- Jia Yan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ya Jun Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qing Yu Huang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Peng Xia Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Chang Shan Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China.,College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
25
|
Abstract
Hypoxia is defined as a cellular stress condition caused by a decrease in oxygen below physiologically normal levels. Cells in the core of a rapidly growing solid tumor are faced with the challenge of inadequate supply of oxygen through the blood, owing to improper vasculature inside the tumor. This hypoxic microenvironment inside the tumor initiates a gene expression program that alters numerous signaling pathways, allowing the cancer cell to eventually evade adverse conditions and attain a more aggressive phenotype. A multitude of studies covering diverse aspects of gene regulation has tried to uncover the mechanisms involved in hypoxia-induced tumorigenesis. The role of epigenetics in executing widespread and dynamic changes in gene expression under hypoxia has been gaining an increasing amount of support in recent years. This chapter discusses, in detail, various epigenetic mechanisms driving the cellular response to hypoxia in cancer.
Collapse
Affiliation(s)
- Deepak Pant
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Srinivas Abhishek Mutnuru
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sanjeev Shukla
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
26
|
Xu L, Zhou Y, Chen L, Bissessur AS, Chen J, Mao M, Ju S, Chen L, Chen C, Li Z, Zhang X, Chen F, Cao F, Wang L, Wang Q. Deoxyribonucleic Acid 5-Hydroxymethylation in Cell-Free Deoxyribonucleic Acid, a Novel Cancer Biomarker in the Era of Precision Medicine. Front Cell Dev Biol 2021; 9:744990. [PMID: 34957093 PMCID: PMC8703110 DOI: 10.3389/fcell.2021.744990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant methylation has been regarded as a hallmark of cancer. 5-hydroxymethylcytosine (5hmC) is recently identified as the ten-eleven translocase (ten-eleven translocase)-mediated oxidized form of 5-methylcytosine, which plays a substantial role in DNA demethylation. Cell-free DNA has been introduced as a promising tool in the liquid biopsy of cancer. There are increasing evidence indicating that 5hmC in cell-free DNA play an active role during carcinogenesis. However, it remains unclear whether 5hmC could surpass classical markers in cancer detection, treatment, and prognosis. Here, we systematically reviewed the recent advances in the clinic and basic research of DNA 5-hydroxymethylation in cancer, especially in cell-free DNA. We further discuss the mechanisms underlying aberrant 5hmC patterns and carcinogenesis. Synergistically, 5-hydroxymethylation may act as a promising biomarker, unleashing great potential in early cancer detection, prognosis, and therapeutic strategies in precision oncology.
Collapse
Affiliation(s)
- Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixin Zhou
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Lijie Chen
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Abdul Saad Bissessur
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jida Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoqin Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Feilin Cao
- Department of Thyroid and Breast Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Luqiao, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Kawai T, Richards JS, Shimada M. Large-scale DNA demethylation occurs in proliferating ovarian granulosa cells during mouse follicular development. Commun Biol 2021; 4:1334. [PMID: 34824385 PMCID: PMC8617273 DOI: 10.1038/s42003-021-02849-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
During ovarian follicular development, granulosa cells proliferate and progressively differentiate to support oocyte maturation and ovulation. To determine the underlying links between proliferation and differentiation in granulosa cells, we determined changes in 1) the expression of genes regulating DNA methylation and 2) DNA methylation patterns, histone acetylation levels and genomic DNA structure. In response to equine chorionic gonadotropin (eCG), granulosa cell proliferation increased, DNA methyltransferase (DNMT1) significantly decreased and Tet methylcytosine dioxygenase 2 (TET2) significantly increased in S-phase granulosa cells. Comprehensive MeDIP-seq analyses documented that eCG treatment decreased methylation of promoter regions in approximately 40% of the genes in granulosa cells. The expression of specific demethylated genes was significantly increased in association with specific histone modifications and changes in DNA structure. These epigenetic processes were suppressed by a cell cycle inhibitor. Based on these results, we propose that the timing of sequential epigenetic events is essential for progressive, stepwise changes in granulosa cell differentiation.
Collapse
Affiliation(s)
- Tomoko Kawai
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Masayuki Shimada
- Laboratory of Reproductive Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
28
|
Zhang C, Zhong T, Li Y, Li X, Yuan X, Liu L, Wu W, Wu J, Wu Y, Liang R, Xie X, Kang C, Liu Y, Lai Z, Xiao J, Tang Z, Jin R, Wang Y, Xiao Y, Zhang J, Li J, Liu Q, Sun Z, Zhong J. The hepatic AMPK-TET1-SIRT1 axis regulates glucose homeostasis. eLife 2021; 10:70672. [PMID: 34738906 PMCID: PMC8592569 DOI: 10.7554/elife.70672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) is involved in multiple biological functions in cell development, differentiation, and transcriptional regulation. Tet1 deficient mice display the defects of murine glucose metabolism. However, the role of TET1 in metabolic homeostasis keeps unknown. Here, our finding demonstrates that hepatic TET1 physically interacts with silent information regulator T1 (SIRT1) via its C-terminal and activates its deacetylase activity, further regulating the acetylation-dependent cellular translocalization of transcriptional factors PGC-1α and FOXO1, resulting in the activation of hepatic gluconeogenic gene expression that includes PPARGC1A, G6PC, and SLC2A4. Importantly, the hepatic gluconeogenic gene activation program induced by fasting is inhibited in Tet1 heterozygous mice livers. The adenosine 5'-monophosphate-activated protein kinase (AMPK) activators metformin or AICAR-two compounds that mimic fasting-elevate hepatic gluconeogenic gene expression dependent on in turn activation of the AMPK-TET1-SIRT1 axis. Collectively, our study identifies TET1 as a SIRT1 coactivator and demonstrates that the AMPK-TET1-SIRT1 axis represents a potential mechanism or therapeutic target for glucose metabolism or metabolic diseases.
Collapse
Affiliation(s)
- Chunbo Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China.,School of Pharmacy, Nanchang University, Nanchang, China
| | - Tianyu Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Yuan
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Linlin Liu
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weilin Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jing Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Ye Wu
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Rui Liang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Chuanchuan Kang
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuwen Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhonghong Lai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jianbo Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhixian Tang
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Riqun Jin
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yongwei Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qian Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
29
|
Nickel chloride regulates ANGPTL4 via the HIF-1α-mediated TET1 expression in lung cells. Toxicol Lett 2021; 352:17-25. [PMID: 34571076 DOI: 10.1016/j.toxlet.2021.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
Angiopoietin-like protein 4 (ANGPTL4) is a hypoxia-induced gene, and its high expression is associated with poor prognosis and promotion of tumour progression in several cancers. Some studies reported that ANGPTL4 is affected by epigenetic regulation. Our previous results demonstrated that ANGPTL4 is highly expressed in most lung cancer cell lines than in normal cell lines and is upregulated by HIF-1α accumulation under NiCl2 exposure. The accurate role of ANGPTL4 and its methylation status caused by nickel in the lung carcinogenesis is not fully explored yet. In this study, we found that ANGPTL4 and HIF-1α in lung adenocarcinoma (LUAD) tissues were significantly upregulated compared with those in normal tissues in The Cancer Genome Atlas (TCGA) cohort (p < 0.001). The ANGPTL4 expression was statistically correlated to advanced stage (p = 0.019) and N value (p = 0.002). The Kaplan-Meier analysis revealed that ANGPTL4 and HIF-1α expression levels were independently associated with the 5-year survival of patients with LUAD in TCGA database and immunohistochemistry staining. In vitro experiments indicated that ANGPTL4 was upregulated by the demethylation agent. The methylation-specific PCR and bisulfite sequencing assessed the methylation status of the ANGPTL4 promoter, and results showed that NiCl2-treated cells had low ANGPTL4 methylation status. We further demonstrated that the DNA demethylase, TET1, was significantly increased under NiCl2 exposure. The knockdown of TET1 expression repressed the NiCl2-induced ANGPTL4. We also showed that nickel-induced TET1 was stimulated by HIF-1α. Our work established ANGPTL4 as a potential oncogene that contributes to lung cancer progression and nickel-elicited carcinogenesis.
Collapse
|
30
|
Jiang L, Wang J, Wang K, Wang H, Wu Q, Yang C, Yu Y, Ni P, Zhong Y, Song Z, Xie E, Hu R, Min J, Wang F. RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation. Blood 2021; 138:689-705. [PMID: 33895792 PMCID: PMC8394904 DOI: 10.1182/blood.2020008986] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Ferroportin (FPN), the body's sole iron exporter, is essential for maintaining systemic iron homeostasis. In response to either increased iron or inflammation, hepatocyte-secreted hepcidin binds to FPN, inducing its internalization and subsequent degradation. However, the E3 ubiquitin ligase that underlies FPN degradation has not been identified. Here, we report the identification and characterization of a novel mechanism involving the RNF217-mediated degradation of FPN. A combination of 2 different E3 screens revealed that the Rnf217 gene is a target of Tet1, mediating the ubiquitination and subsequent degradation of FPN. Interestingly, loss of Tet1 expression causes an accumulation of FPN and an impaired response to iron overload, manifested by increased iron accumulation in the liver together with decreased iron in the spleen and duodenum. Moreover, we found that the degradation and ubiquitination of FPN could be attenuated by mutating RNF217. Finally, using 2 conditional knockout mouse lines, we found that knocking out Rnf217 in macrophages increases splenic iron export by stabilizing FPN, whereas knocking out Rnf217 in intestinal cells appears to increase iron absorption. These findings suggest that the Tet1-RNF217-FPN axis regulates iron homeostasis, revealing new therapeutic targets for FPN-related diseases.
Collapse
Affiliation(s)
- Li Jiang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| | - Jiaming Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| | - Qian Wu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Yu
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Ni
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueyang Zhong
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijun Song
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Enjun Xie
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China; and
| |
Collapse
|
31
|
Adipose Tissue Hypoxia Correlates with Adipokine Hypomethylation and Vascular Dysfunction. Biomedicines 2021; 9:biomedicines9081034. [PMID: 34440238 PMCID: PMC8394952 DOI: 10.3390/biomedicines9081034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/10/2023] Open
Abstract
Obesity is characterized by the accumulation of dysfunctional adipose tissues, which predisposes to cardiometabolic diseases. Our previous in vitro studies demonstrated a role of hypoxia in inducing adipokine hypomethylation in adipocytes. We sought to examine this mechanism in visceral adipose tissues (VATs) from obese individuals and its correlation with cardiometabolic risk factors. We propose an involvement of the hypoxia-inducible factor, HIF1α, and the DNA hydroxymethylase, TET1. Blood samples and VAT biopsies were obtained from obese and non-obese subjects (n = 60 each) having bariatric and elective surgeries, respectively. The analyses of VAT showed lower vascularity, and higher levels of HIF1α and TET1 proteins in the obese subjects than controls. Global hypomethylation and hydroxymethylation were observed in VAT from obese subjects along with promoter hypomethylation of several pro-inflammatory adipokines. TET1 protein was enriched near the promotor of the hypomethylated adipokines. The average levels of adipokine methylation correlated positively with vascularity and arteriolar vasoreactivity and negatively with protein levels of HIF1α and TET1 in corresponding VAT samples, serum and tissue inflammatory markers, and other cardiometabolic risk factors. These findings suggest a role for adipose tissue hypoxia in causing epigenetic alterations, which could explain the increased production of adipocytokines and ultimately, vascular dysfunction in obesity.
Collapse
|
32
|
Bray JK, Dawlaty MM, Verma A, Maitra A. Roles and Regulations of TET Enzymes in Solid Tumors. Trends Cancer 2021; 7:635-646. [PMID: 33468438 DOI: 10.1016/j.trecan.2020.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 01/09/2023]
Abstract
The mechanisms governing the methylome profile of tumor suppressors and oncogenes have expanded with the discovery of oxidized states of 5-methylcytosine (5mC). Ten-eleven translocation (TET) enzymes are a family of dioxygenases that iteratively catalyze 5mC oxidation and promote cytosine demethylation, thereby creating a dynamic global and local methylation landscape. While the catalytic function of TET enzymes during stem cell differentiation and development have been well studied, less is known about the multifaceted roles of TET enzymes during carcinogenesis. This review outlines several tiers of TET regulation and overviews how TET deregulation promotes a cancer phenotype. Defining the tissue-specific and context-dependent roles of TET enzymes will deepen our understanding of the epigenetic perturbations that promote or inhibit carcinogenesis.
Collapse
Affiliation(s)
- Julie K Bray
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Amit Verma
- Albert Einstein College of Medicine, New York City, NY, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
33
|
Integrated bioinformatics analysis revealed the regulation of angiogenesis by tumor cells in hepatocellular carcinoma. Biosci Rep 2021; 41:229066. [PMID: 34151937 PMCID: PMC8252189 DOI: 10.1042/bsr20210126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/09/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality, metastasis accounts for most of the cases. Angiogenesis plays an important role in cancer metastasis, but how tumor cells affect the function of endothelial cells by dictating their microRNA (miRNA) expression remains largely unknown. Differentially expressed miRNAs (DEMs) were identified through dataset downloaded from the Gene Expression Omnibus (GEO) database and analyzed by GEO2R. We then used online tools to obtain potential targets of candidate miRNAs and functional enrichment analysis, as well as the protein-protein interaction (PPI). Finally, the function of miR-302c-3p was validated through in vitro assay. In the current study, we found that HCC cells altered miRNA expression profiles of human umbilical vein endothelial cells (HUVECs) and miR-302c-3p was the most down-regulated miRNA in HUVECs when they were co-cultured with HCC-LM3 cells. Functional enrichment analysis of the candidate targets revealed that these genes were involved in epigenetic regulation of gene expression, in particular, cytosine methylation. In addition, PPI network demonstrated distinct roles of genes targeted by miR-302c-3p. Importantly, inhibition of angiogenesis, migration and permeability by the most down-regulated miR-302c-3p in HUVECs was confirmed in vitro. These findings brought us novel insight into the regulation of angiogenesis by HCC cells and provided potential targets for the development of therapeutic strategies.
Collapse
|
34
|
Peng PH, Lai JCY, Chang JS, Hsu KW, Wu KJ. Induction of epithelial-mesenchymal transition (EMT) by hypoxia-induced lncRNA RP11-367G18.1 through regulating the histone 4 lysine 16 acetylation (H4K16Ac) mark. Am J Cancer Res 2021; 11:2618-2636. [PMID: 34249418 PMCID: PMC8263649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023] Open
Abstract
Hypoxia activates various long noncoding RNAs (lncRNAs) to induce the epithelial-mesenchymal transition (EMT) and tumor metastasis. The hypoxia/HIF-1α-regulated lncRNAs that also regulate a specific histone mark and promote EMT and metastasis have not been identified. We performed RNA-sequencing dataset analysis to search for such lncRNAs and lncRNA RP11-367G18.1 was the hypoxia-induced lncRNA with the highest hazard ratio. High expression of lncRNA RP11-367G18.1 is correlated with a worse survival of head and neck cancer patients. We further showed that lncRNA RP11-367G18.1 is induced by hypoxia and directly regulated by HIF-1α in cell lines. Overexpression of lncRNA RP11-367G18.1 induces the EMT and increases the in vitro migration and invasion and in vivo metastatic activity. Knockdown experiments showed that lncRNA RP11-367G18.1 plays an essential role in hypoxia-induced EMT. LncRNA RP11-367G18.1 specifically regulates the histone 4 lysine 16 acetylation (H4K16Ac) mark that is located on the promoters of two "core" EMT regulators, Twist1 and SLUG, and VEGF genes. These results indicate that lncRNA RP11-367G18.1 regulates the deposition of H4K16Ac on the promoters of target genes to activate their expression. This report identifies lncRNA RP11-367G18.1 as a key player in regulating the histone mark H4K16Ac through which activates downstream target genes to mediate hypoxia-induced EMT.
Collapse
Affiliation(s)
- Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at LinkouTaoyuan 333, Taiwan
| | | | - Jeng-Shou Chang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at LinkouTaoyuan 333, Taiwan
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, Inst. of New Drug Development, China Medical UniversityTaichung 404, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at LinkouTaoyuan 333, Taiwan
- Institute of Cellular and Organismic Biology, Academia SinicaTaipei 115, Taiwan
- Inst. of Clinical Medical Sciences, Chang Gung UniversityTaoyuan 333, Taiwan
| |
Collapse
|
35
|
Katebi A, Ramirez D, Lu M. Computational systems-biology approaches for modeling gene networks driving epithelial-mesenchymal transitions. COMPUTATIONAL AND SYSTEMS ONCOLOGY 2021; 1:e1021. [PMID: 34164628 PMCID: PMC8219219 DOI: 10.1002/cso2.1021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important biological process through which epithelial cells undergo phenotypic transitions to mesenchymal cells by losing cell-cell adhesion and gaining migratory properties that cells use in embryogenesis, wound healing, and cancer metastasis. An important research topic is to identify the underlying gene regulatory networks (GRNs) governing the decision making of EMT and develop predictive models based on the GRNs. The advent of recent genomic technology, such as single-cell RNA sequencing, has opened new opportunities to improve our understanding about the dynamical controls of EMT. In this article, we review three major types of computational and mathematical approaches and methods for inferring and modeling GRNs driving EMT. We emphasize (1) the bottom-up approaches, where GRNs are constructed through literature search; (2) the top-down approaches, where GRNs are derived from genome-wide sequencing data; (3) the combined top-down and bottom-up approaches, where EMT GRNs are constructed and simulated by integrating bioinformatics and mathematical modeling. We discuss the methodologies and applications of each approach and the available resources for these studies.
Collapse
Affiliation(s)
- Ataur Katebi
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
| | - Daniel Ramirez
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Mingyang Lu
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Wu SL, Zhang X, Chang M, Huang C, Qian J, Li Q, Yuan F, Sun L, Yu X, Cui X, Jiang J, Cui M, Liu Y, Wu HW, Liang ZY, Wang X, Niu Y, Tong WM, Jin F. Genome-wide 5-hydroxymethylcytosine Profiling Analysis Identifies MAP7D1 as A Novel Regulator of Lymph Node Metastasis in Breast Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:64-79. [PMID: 33716151 PMCID: PMC8498923 DOI: 10.1016/j.gpb.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 11/28/2022]
Abstract
Although DNA 5-hydroxymethylcytosine (5hmC) is recognized as an important epigenetic mark in cancer, its precise role in lymph node metastasis remains elusive. In this study, we investigated how 5hmC associates with lymph node metastasis in breast cancer. Accompanying with high expression of TET1 and TET2 proteins, large numbers of genes in the metastasis-positive primary tumors exhibit higher 5hmC levels than those in the metastasis-negative primary tumors. In contrast, the TET protein expression and DNA 5hmC decrease significantly within the metastatic lesions in the lymph nodes compared to those in their matched primary tumors. Through genome-wide analysis of 8 sets of primary tumors, we identified 100 high-confidence metastasis-associated 5hmC signatures, and it is found that increased levels of DNA 5hmC and gene expression of MAP7D1 associate with high risk of lymph node metastasis. Furthermore, we demonstrate that MAP7D1, regulated by TET1, promotes tumor growth and metastasis. In conclusion, the dynamic 5hmC profiles during lymph node metastasis suggest a link between DNA 5hmC and lymph node metastasis. Meanwhile, the role of MAP7D1 in breast cancer progression suggests that the metastasis-associated 5hmC signatures are potential biomarkers to predict the risk for lymph node metastasis, which may serve as diagnostic and therapeutic targets for metastatic breast cancer.
Collapse
Affiliation(s)
- Shuang-Ling Wu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China; Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaoyi Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Mengqi Chang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Changcai Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jun Qian
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Fang Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Beijing 100005, China
| | - Xinmiao Yu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Xinmiao Cui
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Jiayi Jiang
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Mengyao Cui
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Ye Liu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Huan-Wen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences. Beijing 100005, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences. Beijing 100005, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China; Center for Experimental Animal Research, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Beijing 100005, China.
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
37
|
Tsiouplis NJ, Bailey DW, Chiou LF, Wissink FJ, Tsagaratou A. TET-Mediated Epigenetic Regulation in Immune Cell Development and Disease. Front Cell Dev Biol 2021; 8:623948. [PMID: 33520997 PMCID: PMC7843795 DOI: 10.3389/fcell.2020.623948] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidation products in DNA. The oxidized methylcytosines (oxi-mCs) facilitate DNA demethylation and are also novel epigenetic marks. TET loss-of-function is strongly associated with cancer; TET2 loss-of-function mutations are frequently observed in hematological malignancies that are resistant to conventional therapies. Importantly, TET proteins govern cell fate decisions during development of various cell types by activating a cell-specific gene expression program. In this review, we seek to provide a conceptual framework of the mechanisms that fine tune TET activity. Then, we specifically focus on the multifaceted roles of TET proteins in regulating gene expression in immune cell development, function, and disease.
Collapse
Affiliation(s)
- Nikolas James Tsiouplis
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
| | - David Wesley Bailey
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States.,University of North Carolina Center of Translational Immunology, Chapel Hill, NC, United States.,University of North Carolina Institute of Inflammatory Disease, Chapel Hill, NC, United States
| | - Lilly Felicia Chiou
- University of North Carolina Curriculum in Genetics and Molecular Biology, Chapel Hill, NC, United States
| | - Fiona Jane Wissink
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
| | - Ageliki Tsagaratou
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States.,University of North Carolina Center of Translational Immunology, Chapel Hill, NC, United States.,University of North Carolina Institute of Inflammatory Disease, Chapel Hill, NC, United States.,University of North Carolina Curriculum in Genetics and Molecular Biology, Chapel Hill, NC, United States.,University of North Carolina Department of Genetics, Chapel Hill, NC, United States.,University of North Carolina Department of Microbiology and Immunology, Chapel Hill, NC, United States
| |
Collapse
|
38
|
Matuleviciute R, Cunha PP, Johnson RS, Foskolou IP. Oxygen regulation of TET enzymes. FEBS J 2021; 288:7143-7161. [PMID: 33410283 DOI: 10.1111/febs.15695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Hypoxia has a significant impact on many physiological and pathological processes. Over the recent years, its role in modulation of epigenetic remodelling has also become clearer. In cancer, low oxygen environments and aberrant epigenomes often go hand in hand, and changes in DNA methylation are now commonly recognised as potential outcome indicators. TET (ten-eleven translocation) family enzymes are alpha-ketoglutarate-, iron- and oxygen-dependent DNA demethylases and are key players in these processes. Although TETs have historically been considered tumour suppressors, recent studies suggest that their functions in cancer might not be straightforward. Recently, inhibition of TETs has been reported to have positive impact in cancer immunotherapy and vaccination studies. This underlines the current interest in developing targeted pharmaceutical inhibitors of these enzymes. Here, we will survey the complexity of TET roles in cancer, and its hypoxic modulation, as well as highlight the potential of these enzymes as therapeutic targets.
Collapse
Affiliation(s)
- Rugile Matuleviciute
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Pedro P Cunha
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK.,Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solna, Sweden
| | - Iosifina P Foskolou
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK.,Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solna, Sweden
| |
Collapse
|
39
|
Meng L, Shi H, Wang Z, Fan M, Pang S, Lin R. The Gamma-glutamyltransferase gene of Helicobacter pylori can promote gastric carcinogenesis by activating Wnt signal pathway through up-regulating TET1. Life Sci 2021; 267:118921. [PMID: 33358913 DOI: 10.1016/j.lfs.2020.118921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023]
Abstract
AIMS Helicobacter pylori (Hp) infection plays an important role in the development of gastric cancer. Hp can secrete gamma-glutamyltransferase (GGT), however, the impact of GGT of Hp on the human gastric cells is not clear. Although it has been demonstrated that ten-eleven translocation 1 (TET1) is overexpressed in gastric cancer, the relationship between the GGT of Hp and TET1 has not been studied. The aim of this study was to explore the relationship between GGT and TET1, and the role of TET1 in the development of gastric cancer induced by Hp was also explored. MATERIALS AND METHODS The correlation between TET1 and prognosis of gastric adenoma cancer was analyzed by bioinformatics. The GGT gene of Hp26695 was knocked out by electroporation with plasmid to construct the GGT knockout strain of Hp (Hp-KS-1). The shTET1 lentivirus transfected GES-1, MGC-803 and SGC-7901 cell lines were constructed. The biological characteristics of the three kind of cells were detected. KEY FINDINGS TET1 was overexpressed in gastric tissues of Hp infected patients and mice. Bioinformatics analysis showed that in patients with gastric cancer, higher TET1 expression would result in poorer prognosis. The GGT gene of Hp can lead to overexpression of TET1 in GES-1, MGC-803 and SGC-7901 cells, along with the activation of Wnt/β-catenin signaling pathway, and then promoting tumorigenesis. After silencing TET1, the Wnt/β-catenin signaling pathway which was activated by GGT of Hp was inhibited. SIGNIFICANCE GGT of Helicobacter pylori can promote gastric carcinogenesis by activating Wnt/β-catenin signaling pathway trough up-regulating TET1.
Collapse
Affiliation(s)
- Lingjun Meng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeyu Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
40
|
Bao B, Teslow EA, Mitrea C, Boerner JL, Dyson G, Bollig-Fischer A. Role of TET1 and 5hmC in an Obesity-Linked Pathway Driving Cancer Stem Cells in Triple-Negative Breast Cancer. Mol Cancer Res 2020; 18:1803-1814. [PMID: 32913111 PMCID: PMC7718329 DOI: 10.1158/1541-7786.mcr-20-0359] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks expression of estrogen receptor, progesterone receptor, and the HER2 but is enriched with cancer stem cell-like cells (CSC). CSCs are the fraction of cancer cells recognized as the source of primary malignant tumors that also give rise to metastatic recurrence. 5-Hydroxymethylcytosine (5hmC) is a DNA epigenetic feature derived from 5-methylcytosine by action of tet methylcytosine dioxygenase enzymes (e.g., TET1); and although TET1 and 5hmC are required to maintain embryonic stem cells, the mechanism and role in CSCs remain unknown. Data presented in this report support the conclusion that TET1 and TET1-dependent 5hmC mediate hydrogen peroxide (H2O2)-dependent activation of a novel gene expression cascade driving self-renewal and expansion of CSCs in TNBC. Evidence presented also supports that the H2O2 affecting this pathway arises due to endogenous mechanisms-including downregulation of antioxidant enzyme catalase in TNBC cells-and by exogenous routes, such as systemic inflammation and oxidative stress coupled with obesity, a known risk factor for TNBC incidence and recurrence. IMPLICATIONS: This study elucidates a pathway dependent on H2O2 and linked to obesity-driven TNBC tumor-initiating CSCs; thus, it provides new understanding that may advance TNBC prevention and treatment strategies.
Collapse
Affiliation(s)
- Bin Bao
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Emily A Teslow
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Cristina Mitrea
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Julie L Boerner
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Greg Dyson
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Aliccia Bollig-Fischer
- Barbara Ann Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
41
|
Kouidou S, Malousi A, Andreou AZ. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: Triggering a Lethal Fight to Keep Control of the Ten-Eleven Translocase (TET)-Associated DNA Demethylation? Pathogens 2020; 9:E1006. [PMID: 33266135 PMCID: PMC7760189 DOI: 10.3390/pathogens9121006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The extended and diverse interference of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in multiple host functions and the diverse associated symptoms implicate its involvement in fundamental cellular regulatory processes. The activity of ten-eleven translocase 2 (TET2) responsible for selective DNA demethylation, has been recently identified as a regulator of endogenous virus inactivation and viral invasion, possibly by proteasomal deregulation of the TET2/TET3 activities. In a recent report, we presented a detailed list of factors that can be affected by TET activity, including recognition of zinc finger protein binding sites and bimodal promoters, by enhancing the flexibility of adjacent sequences. In this review, we summarize the TET-associated processes and factors that could account for SARS-CoV-2 diverse symptoms. Moreover, we provide a correlation for the observed virus-induced symptoms that have been previously associated with TET activities by in vitro and in vitro studies. These include early hypoxia, neuronal regulation, smell and taste development, liver, intestinal, and cardiomyocyte differentiation. Finally, we propose that the high mortality of SARS-CoV-2 among adult patients, the different clinical symptoms of adults compared to children, the higher risk of patients with metabolic deregulation, and the low mortality rates among women can all be accounted for by the complex balance of the three enzymes with TET activity, which is developmentally regulated. This activity is age-dependent, related to telomere homeostasis and integrity, and associated with X chromosome inactivation via (de)regulation of the responsible XIST gene expression.
Collapse
Affiliation(s)
- Sofia Kouidou
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Andigoni Malousi
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | |
Collapse
|
42
|
Kindrick JD, Mole DR. Hypoxic Regulation of Gene Transcription and Chromatin: Cause and Effect. Int J Mol Sci 2020; 21:E8320. [PMID: 33171917 PMCID: PMC7664190 DOI: 10.3390/ijms21218320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular responses to low oxygen (hypoxia) are fundamental to normal physiology and to the pathology of many common diseases. Hypoxia-inducible factor (HIF) is central to this by enhancing the transcriptional activity of many hundreds of genes. The cellular response to HIF is cell-type-specific and is largely governed by the pre-existing epigenetic landscape. Prior to activation, HIF-binding sites and the promoters of HIF-target genes are already accessible, in contact with each other through chromatin looping and display markers of activity. However, hypoxia also modulates the epigenetic environment, both in parallel to and as a consequence of HIF activation. This occurs through a combination of oxygen-sensitive changes in enzyme activity, transcriptional activation of epigenetic modifiers, and localized recruitment to chromatin by HIF and activated RNApol2. These hypoxic changes in the chromatin environment may both contribute to and occur as a consequence of transcriptional regulation. Nevertheless, they have the capacity to both modulate and extend the transcriptional response to hypoxia.
Collapse
Affiliation(s)
| | - David R. Mole
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FZ, UK;
| |
Collapse
|
43
|
Zhao Z, Zhang Z, Li J, Dong Q, Xiong J, Li Y, Lan M, Li G, Zhu B. Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. eLife 2020; 9:61965. [PMID: 33155547 PMCID: PMC7704108 DOI: 10.7554/elife.61965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transcriptional memory allows certain genes to respond to previously experienced signals more robustly. However, whether and how the key proinflammatory cytokine TNF-α mediates transcriptional memory are poorly understood. Using HEK293F cells as a model system, we report that sustained TNF-α stimulation induces transcriptional memory dependent on TET enzymes. The hypomethylated status of transcriptional regulatory regions can be inherited, facilitating NF-κB binding and more robust subsequent activation. A high initial methylation level and CpG density around κB sites are correlated with the functional potential of transcriptional memory modules. Interestingly, the CALCB gene, encoding the proven migraine therapeutic target CGRP, exhibits the best transcriptional memory. A neighboring primate-specific endogenous retrovirus stimulates more rapid, more strong, and at least 100-fold more sensitive CALCB induction in subsequent TNF-α stimulation. Our study reveals that TNF-α-mediated transcriptional memory is governed by active DNA demethylation and greatly sensitizes memory genes to much lower doses of inflammatory cues. Genes are the instruction manuals of life and contain the information needed to build the building blocks that keep cells alive. To read these instructions, cells use specific signals that activate genes. The process, known as gene expression, is tightly controlled and for the most part, fairly stable. But gene expression can be modified in various ways. Epigenetics is a broad term for describing reversible changes made to genes to switch them on and off. Sometimes, certain genes even develop a kind of ‘transcriptional memory’ where over time, their expression is enhanced and speeds up with repeated activation signals. But this may also have harmful effects. For example, the signalling molecule called tumour necrosis factor α (TNF-α) is an essential part of the immune system. But it is also implicated in chronic inflammatory diseases, such as rheumatoid arthritis. In these conditions, cell signalling pathways triggering inflammation are overactive. One possibility is that TNF-α could be inducing the transcriptional memory of certain genes, amplifying their expression. But little is known about which fraction of genes exhibits transcriptional memory, and what differentiates memory genes from genes with stable expression. Here, Zhao et al. treated cells grown in the laboratory with TNF-α to investigate its role in transcriptional memory and find out what epigenetic features might govern the process. The experiments showed that mimicking a sustained inflammation by stimulating TNF-α, triggered a transcriptional memory in some genes, and enabled them to respond to much lower levels of TNF-α on subsequent exposure. Zhao et al. also discovered that genes tagged with methyl groups are more likely to show transcriptional memory when stimulated by TNF-α. However, they also found that these groups must be removed to consolidate any transcriptional memory. This work shows how TNF-α influences can alter the expression of certain genes. It also suggests that transcriptional memory, stimulated by TNF-α, may be a possible mechanism underlying chronic inflammatory conditions. This could help future research in identifying more genes with transcriptional memory.
Collapse
Affiliation(s)
- Zuodong Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Dong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mengying Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
do Canto LM, Barros-Filho MC, Rainho CA, Marinho D, Kupper BEC, Begnami MDFDS, Scapulatempo-Neto C, Havelund BM, Lindebjerg J, Marchi FA, Baumbach J, Aguiar S, Rogatto SR. Comprehensive Analysis of DNA Methylation and Prediction of Response to NeoadjuvantTherapy in Locally Advanced Rectal Cancer. Cancers (Basel) 2020; 12:cancers12113079. [PMID: 33105711 PMCID: PMC7690383 DOI: 10.3390/cancers12113079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
The treatment for locally advanced rectal carcinomas (LARC) is based on neoadjuvant chemoradiotherapy (nCRT) and surgery, which results in pathological complete response (pCR) in up to 30% of patients. Since epigenetic changes may influence response to therapy, we aimed to identify DNA methylation markers predictive of pCR in LARC patients treated with nCRT. We used high-throughput DNA methylation analysis of 32 treatment-naïve LARC biopsies and five normal rectal tissues to explore the predictive value of differentially methylated (DM) CpGs. External validation was carried out with The Cancer Genome Atlas-Rectal Adenocarcinoma (TCGA-READ 99 cases). A classifier based on three-CpGs DM (linked to OBSL1, GPR1, and INSIG1 genes) was able to discriminate pCR from incomplete responders with high sensitivity and specificity. The methylation levels of the selected CpGs confirmed the predictive value of our classifier in 77 LARCs evaluated by bisulfite pyrosequencing. Evaluation of external datasets (TCGA-READ, GSE81006, GSE75546, and GSE39958) reproduced our results. As the three CpGs were mapped near to regulatory elements, we performed an integrative analysis in regions associated with predicted cis-regulatory elements. A positive and inverse correlation between DNA methylation and gene expression was found in two CpGs. We propose a novel predictive tool based on three CpGs potentially useful for pretreatment screening of LARC patients and guide the selection of treatment modality.
Collapse
Affiliation(s)
- Luisa Matos do Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- International Research Center–CIPE, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (M.C.B.-F.); (F.A.M.)
| | - Mateus Camargo Barros-Filho
- International Research Center–CIPE, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (M.C.B.-F.); (F.A.M.)
- Department of Head and Neck Surgery, Hospital das Clinicas HCFMUSP, Sao Paulo 01246-903, Brazil
| | - Cláudia Aparecida Rainho
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University (Unesp), Botucatu 18618-689, Brazil;
| | - Diogo Marinho
- Institute of Biological Psychiatry, Psykiatrisk Center Sct. Hans, 4000 Roskilde, Denmark;
| | - Bruna Elisa Catin Kupper
- Colorectal Cancer Service, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (B.E.C.K.); (S.A.J.)
| | | | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos – 14784-400, and Diagnósticos da América (DASA), Barueri 06455010, Brazil;
| | - Birgitte Mayland Havelund
- Department of Oncology, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark;
| | - Jan Lindebjerg
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark;
- Department of Pathology, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Fabio Albuquerque Marchi
- International Research Center–CIPE, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (M.C.B.-F.); (F.A.M.)
| | - Jan Baumbach
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany;
| | - Samuel Aguiar
- Colorectal Cancer Service, A.C. Camargo Cancer Center, Sao Paulo 04002-010, Brazil; (B.E.C.K.); (S.A.J.)
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark;
- Institute of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-7940-6669
| |
Collapse
|
45
|
Wang J, Yu Z, Wang J, Shen Y, Qiu J, Zhuang Z. LncRNA NUTM2A-AS1 positively modulates TET1 and HIF-1A to enhance gastric cancer tumorigenesis and drug resistance by sponging miR-376a. Cancer Med 2020; 9:9499-9510. [PMID: 33089970 PMCID: PMC7774746 DOI: 10.1002/cam4.3544] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNA NUTM2A‐AS1 has been shown to be dysregulated in non‐small cell lung carcinoma. To date, it is unclear whether NUTM2A‐AS1 plays a role in gastric cancer progression. The purpose of this study is to elucidate the molecular mechanism of the role of NUTM2A‐AS1 in gastric cancer. mRNA and protein levels were measured by RT‐qPCR and western blot methods. Invasion ability was examined by transwell assay. Cell viability was determined by MTT assay. Dual‐luciferase assay, RNA pull down, and RNA immunoprecipitation were used to confirm direct binding of between miR‐376a and NUTM2A‐AS1 or TET1. Xenografting tumor assay and TCGA analysis showed the contributory role of NUTM2A‐AS1 in vivo and human clinical setting. Our results suggested that NUTM2A‐AS1 promoted cell viability, invasion, and drug resistance of gastric cancer cells, which was largely rescued by miR‐376a. More interestingly, TET1 and HIF‐1A were negatively regulated by miR‐376a. TET1 could interact with HIF‐1A to modulate PD‐L1. Finally, we revealed that PD‐L1 was key to NUTM2A‐AS1‐ and miR‐376a‐mediated tumorigenesis and drug resistance. In summary, our conclusions facilitate us understand the underlying mechanism and develop novel treatment strategy for gastric cancer.
Collapse
Affiliation(s)
- Ji Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyang Yu
- Department of gynaecology and obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Department of General Surgery, The Fifth People's Hospital of Wujiang, Suzhou, China
| | - Yidan Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junlan Qiu
- Department of Oncology and Hematology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
46
|
Wu J, Li X, Huang H, Xia X, Zhang M, Fang X. TET1 may contribute to hypoxia-induced epithelial to mesenchymal transition of endometrial epithelial cells in endometriosis. PeerJ 2020; 8:e9950. [PMID: 32983650 PMCID: PMC7500323 DOI: 10.7717/peerj.9950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Background Endometriosis (EMs) is a non-malignant gynecological disease, whose pathogenesis remains to be clarified. Recent studies have found that hypoxia induces epithelial-mesenchymal transition (EMT) as well as epigenetic modification in EMs. However, the relationship between EMT and demethylation modification under hypoxia status in EMs remains unknown. Methods The expression of N-cadherin, E-cadherin and TET1 in normal endometria, eutopic endometria and ovarian endometriomas was assessed by immunohistochemistry and immunofluorescence double staining. 5-hmC was detected by fluorescence-based ELISA kit using a specific 5-hmC antibody. Overexpression and inhibition of TET1 or hypoxia-inducible factor 2α (HIF-2α) were performed by plasmid and siRNA transfection. The expression of HIF-2α, TET1 and EMT markers in Ishikawa (ISK) cells (widely used as endometrial epithelial cells) was evaluated by western blotting. The interaction of HIF-2α and TET1 was analyzed by chromatin immunoprecipitation. Results Demethylation enzyme TET1 (ten-eleven translocation1) was elevated in glandular epithelium of ovarian endometrioma, along with the activation of EMT (increased expression of N-cadherin, and decreased expression of E-cadherin) and global increase of epigenetic modification marker 5-hmC(5-hydroxymethylcytosine). Besides, endometriosis lesions had more TET1 and N-cadherin co-localized cells. Further study showed that ISK cells exhibited enhanced EMT, and increased expression of TET1 and HIF-2α under hypoxic condition. Hypoxia-induced EMT was partly regulated by TET1 and HIF-2α. HIF-2α inhibition mitigated TET1 expression changes provoked by hypoxia. Conclusions Hypoxia induces the expression of TET1 regulated by HIF-2α, thus may promote EMT in endometriosis.
Collapse
Affiliation(s)
- Jingni Wu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xidie Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongyan Huang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengmeng Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
47
|
Zhang M, Zhang K, Wang J, Liu Y, Liu G, Jin W, Wu S, Zhao X. Immunoprecipitation and mass spectrometry define TET1 interactome during oligodendrocyte differentiation. Cell Biosci 2020; 10:110. [PMID: 32974003 PMCID: PMC7493855 DOI: 10.1186/s13578-020-00473-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Ten-eleven translocation (TET) proteins, encoding dioxygenase for DNA hydroxymethylation, are important players in nervous system development and disease. In addition to their proverbial enzymatic role, TET proteins also possess non-enzymatic activity and function in multiple protein-protein interaction networks, which remains largely unknown during oligodendrocyte differentiation. To identify partners of TET1 in the myelinating cells, we performed proteome-wide analysis using co-immunoprecipitation coupled to mass spectrometry (IP-MS) in purified oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (mOLs), respectively. Following a stringent selection of MS data based on identification reliability and protein enrichment, we identified a core set of 1211 partners that specifically interact with TET1 within OPCs and OLs. Analysis of the biological process and pathways associated with TET1-interacting proteins indicates a significant enrichment of proteins involved in regulation of cellular protein localization, cofactor metabolic process and regulation of catabolic process, et al. We further validated TET1 interactions with selected partners. Overall, this comprehensive analysis of the endogenous TET1 interactome during oligodendrocyte differentiation suggest its novel mechanism in regulating oligodendrocyte homeostasis and provide comprehensive insight into the molecular pathways associated with TET1.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Kaixiang Zhang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Jian Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Yuming Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Guangxin Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Weilin Jin
- School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| | - Xianghui Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi China
| |
Collapse
|
48
|
Fan S, Wang J, Yu G, Rong F, Zhang D, Xu C, Du J, Li Z, Ouyang G, Xiao W. TET is targeted for proteasomal degradation by the PHD-pVHL pathway to reduce DNA hydroxymethylation. J Biol Chem 2020; 295:16299-16313. [PMID: 32963106 DOI: 10.1074/jbc.ra120.014538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/19/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoxia-inducible factors are heterodimeric transcription factors that play a crucial role in a cell's ability to adapt to low oxygen. The von Hippel-Lindau tumor suppressor (pVHL) acts as a master regulator of HIF activity, and its targeting of prolyl hydroxylated HIF-α for proteasomal degradation under normoxia is thought to be a major mechanism for pVHL tumor suppression and cellular response to oxygen. Whether pVHL regulates other targets through a similar mechanism is largely unknown. Here, we identify TET2/3 as novel targets of pVHL. pVHL induces proteasomal degradation of TET2/3, resulting in reduced global 5-hydroxymethylcytosine levels. Conserved proline residues within the LAP/LAP-like motifs of these two proteins are hydroxylated by the prolyl hydroxylase enzymes (PHD2/EGLN1 and PHD3/EGLN3), which is prerequisite for pVHL-mediated degradation. Using zebrafish as a model, we determined that global 5-hydroxymethylcytosine levels are enhanced in vhl-null, egln1a/b-double-null, and egln3-null embryos. Therefore, we reveal a novel function for the PHD-pVHL pathway in regulating TET protein stability and activity. These data extend our understanding of how TET proteins are regulated and provide new insight into the mechanisms of pVHL in tumor suppression.
Collapse
Affiliation(s)
- Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China; Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Juan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China; Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, China; Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
49
|
Chen Y, Liu M, Niu Y, Wang Y. Romance of the three kingdoms in hypoxia: HIFs, epigenetic regulators, and chromatin reprogramming. Cancer Lett 2020; 495:211-223. [PMID: 32931886 DOI: 10.1016/j.canlet.2020.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Hypoxia is a hallmark of cancer. To cope with hypoxic conditions, tumor cells alter their transcriptional profiles mainly through hypoxia-inducible factors (HIFs) and epigenetic reprogramming. Hypoxia, in part through HIF-dependent mechanisms, influences the expression or activity of epigenetic regulators to control epigenetic reprogramming, including DNA methylation and histone modifications, which regulate hypoxia-responsive gene expression in cells. Conversely, epigenetic regulators and chromatin architecture can modulate the expression, stability, or transcriptional activity of HIF. Understanding the complex networks between HIFs, epigenetic regulators, and chromatin reprogramming in response to hypoxia will provide insight into the fundamental mechanism of transcriptional adaptation to hypoxia, and may help identify novel targets for future therapies. In this review, we will discuss the comprehensive relationship between HIFs, epigenetic regulators, and chromatin reprogramming under hypoxic conditions.
Collapse
Affiliation(s)
- Yan Chen
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, 519000, China; School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Min Liu
- Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yanling Niu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
50
|
Damal Villivalam S, You D, Kim J, Lim HW, Xiao H, Zushin PJH, Oguri Y, Amin P, Kang S. TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis. Nat Commun 2020; 11:4313. [PMID: 32855402 PMCID: PMC7453011 DOI: 10.1038/s41467-020-18054-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 07/27/2020] [Indexed: 02/02/2023] Open
Abstract
It has been suggested that beige fat thermogenesis is tightly controlled by epigenetic regulators that sense environmental cues such as temperature. Here, we report that subcutaneous adipose expression of the DNA demethylase TET1 is suppressed by cold and other stimulators of beige adipocyte thermogenesis. TET1 acts as an autonomous repressor of key thermogenic genes, including Ucp1 and Ppargc1a, in beige adipocytes. Adipose-selective Tet1 knockout mice generated by using Fabp4-Cre improves cold tolerance and increases energy expenditure and protects against diet-induced obesity and insulin resistance. Moreover, the suppressive role of TET1 in the thermogenic gene regulation of beige adipocytes is largely DNA demethylase-independent. Rather, TET1 coordinates with HDAC1 to mediate the epigenetic changes to suppress thermogenic gene transcription. Taken together, TET1 is a potent beige-selective epigenetic breaker of the thermogenic gene program. Our findings may lead to a therapeutic strategy to increase energy expenditure in obesity and related metabolic disorders. Epigenetic regulators contribute to the modulation of adipose thermogenesis by sensing environmental cues and regulating gene expression in response. Here the authors report that a DNA demethylase TET1 mediates epigenetic changes to repress thermogenic genes in mouse adipose tissue.
Collapse
Affiliation(s)
- Sneha Damal Villivalam
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Dongjoo You
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jinse Kim
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Hee Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center Department of Pediatrics & Biomedical Informatics, University of Cincinnati, 3333 Burnet Ave. MLC 7024, Cincinnati, OH, 45229, USA
| | - Han Xiao
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Pete-James H Zushin
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Yasuo Oguri
- UCSF Diabetes Center, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Cell and Tissue Biology, University of California, San Francisco, CA, 94143, USA
| | - Pouya Amin
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|