1
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
2
|
Da W, Song Z, Liu X, Wang Y, Wang S, Ma J. The role of TET2 in solid tumors and its therapeutic potential: a comprehensive review. Clin Transl Oncol 2024; 26:2156-2165. [PMID: 38598002 DOI: 10.1007/s12094-024-03478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Indeed, tumors are a significant health concern worldwide, and understanding the underlying mechanisms of tumor development is crucial for effective prevention and treatment. Epigenetics, which refers to changes in gene expression that are not caused by alterations in the DNA sequence itself, plays a critical role in the entire process of tumor development. It goes without saying that the effect of methylation on tumors is a significant aspect of epigenetics. Among the methylation modifications, DNA methylation is an important part, which plays a regulatory role in tumor-related genes. Ten-eleven translocation 2 (TET2) is a highly influential protein involved in the modification of DNA methylation. Its primary role is associated with the suppression of tumor development, making it a significant player in cancer research. However, TET2 is frequently mentioned in hematological diseases, its role in solid tumors has received little attention. Studying the changes of TET2 in solid tumors and the regulatory mechanism will facilitate its investigation as a clinical target for targeted therapy and may also provide directions for clinical treatment of malignant tumors.
Collapse
Affiliation(s)
- Wenxin Da
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Ziyu Song
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Xiaodong Liu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Yahui Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Xuefu Road No. 301, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
4
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Lee J, Lee D, Kim HP, Kim TY, Bang D. EBS-seq: enrichment-based method for accurate analysis of 5-hydroxymethylcytosine at single-base resolution. Clin Epigenetics 2023; 15:34. [PMID: 36859282 PMCID: PMC9979530 DOI: 10.1186/s13148-023-01451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/18/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND A growing body of research has emphasized 5-hydroxymethylcytosine (5hmC) as an important epigenetic mark. High-resolution methods to detect 5hmC require high sequencing depth and are therefore expensive. Many studies have used enrichment-based methods to detect 5hmC; however, conventional enrichment-based methods have limited resolution. To overcome these limitations, we developed EBS-seq, a cost-efficient method for 5hmC detection with single-base resolution that combines the advantages of high-resolution methods and enrichment-based methods. RESULTS EBS-seq uses selective labeling of 5hmC, deamination of cytosine and 5-methylcytosine, pull-down of labeled 5hmC, and C-to-T conversion during DNA amplification. Using this method, we profiled 5hmC in HEK293T cells and two colorectal cancer samples. Compared with conventional enrichment-based 5hmC detection, EBS-seq improved 5hmC signals by localizing them at single-base resolution. Furthermore, EBS-seq was able to determine 5hmC levels in CpG-dense regions where distortion of signals can occur, such as CpG islands and CpG shores. Comparing EBS-seq and conventional high-resolution 5hmC detection by ACE-seq, we showed that EBS-seq is more effective at finding 5hmC sites. Using EBS-seq, we found strong associations between gene expression and gene-body 5hmC content in both HEK293T cells and colorectal cancer samples. CONCLUSIONS EBS-seq is a reliable and cost-efficient method for 5hmC detection because it simultaneously enriches 5hmC-containing DNA fragments and localizes 5hmC signals at single-base resolution. This method is a promising choice for 5hmC detection in challenging clinical samples with low 5hmC levels, such as cancer tissues.
Collapse
Affiliation(s)
- Jaywon Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Dongin Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | | | - Tae-You Kim
- IMBdx, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea.
| |
Collapse
|
6
|
Hydroxymethylation profile of cell-free DNA is a biomarker for early colorectal cancer. Sci Rep 2022; 12:16566. [PMID: 36195648 PMCID: PMC9532421 DOI: 10.1038/s41598-022-20975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Early detection of cancer will improve survival rates. The blood biomarker 5-hydroxymethylcytosine has been shown to discriminate cancer. In a large covariate-controlled study of over two thousand individual blood samples, we created, tested and explored the properties of a 5-hydroxymethylcytosine-based classifier to detect colorectal cancer (CRC). In an independent validation sample set, the classifier discriminated CRC samples from controls with an area under the receiver operating characteristic curve (AUC) of 90% (95% CI [87, 93]). Sensitivity was 55% at 95% specificity. Performance was similar for early stage 1 (AUC 89%; 95% CI [83, 94]) and late stage 4 CRC (AUC 94%; 95% CI [89, 98]). The classifier could detect CRC even when the proportion of tumor DNA in blood was undetectable by other methods. Expanding the classifier to include information about cell-free DNA fragment size and abundance across the genome led to gains in sensitivity (63% at 95% specificity), with similar overall performance (AUC 91%; 95% CI [89, 94]). We confirm that 5-hydroxymethylcytosine can be used to detect CRC, even in early-stage disease. Therefore, the inclusion of 5-hydroxymethylcytosine in multianalyte testing could improve sensitivity for the detection of early-stage cancer.
Collapse
|
7
|
Huang J, Zhou M, Zhang H, Fang Y, Chen G, Wen J, Liu L. Characterization of the mechanism of Scutellaria baicalensis on reversing radio-resistance in colorectal cancer. Transl Oncol 2022; 24:101488. [PMID: 35872478 PMCID: PMC9307497 DOI: 10.1016/j.tranon.2022.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/09/2022] Open
Abstract
Scutellaria baicalensis (SB) has been shown to improve the therapeutic effects of colorectal cancer (CRC) and perform well for reversing radio-resistance in different cancers. However, its potential function and mechanism related to radio-resistance in CRC has not been explored. A radio-resistant human CRC cell line (HCT116R) was applied. A network pharmacological analysis was performed to reveal the potential mechanism of SB for reversing radio-resistance in CRC, and computational pathological analysis was applied to indicate the clinicopathological significance of the key targets. Then, our hypothesis was further verified by molecular docking. The network pharmacology analysis showed that wogonin is the key compound of SB for reversing the radio-resistance of CRC. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the genes for SB that reverse radio-resistance in CRC are mainly involved in steroid hormone biosynthesis. An enrichment analysis pointed out that Sulfotransferase family 2B member 1 (SULT2B1) is a potentially vital gene. SULT2B1 was demonstrated as being highly expressed in CRC and upregulated in radio-resistant rectal tissues or cell lines. A CCK-8 and clone formation test showed that the viability and clone formation ability of HCT116R were significantly decreased by wogonin combined with radiotherapy, compared to radiotherapy alone. By contrast, flow cytometry revealed that the apoptosis of HCT116R was significantly increased when wogonin treatment combined with radiotherapy, compared with radiotherapy alone. Molecular docking verification indicated that SULT2B1 and wogonin have a good binding ability. Taken together, SULT2B1 may be the potential drug target in treating radio-resistant CRC. Wogonin may be the core compound of SB for reversing radio-resistance in CRC by targeting SULT2B1.
Collapse
Affiliation(s)
- Jinmei Huang
- Department of Drug Toxicology, College of Pharmacy of Guangxi Medical University, Nanning 530021, PR China.
| | - Ming Zhou
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, PR China.
| | - Huan Zhang
- Department of Pharmacy, Wuhan Pulmonary Hospital, Wuhan, PR China.
| | - Yeying Fang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - Jiaying Wen
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| | - LiMin Liu
- Department of Drug Toxicology, College of Pharmacy of Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
8
|
Xu S, Liu D, Cui M, Zhang Y, Zhang Y, Guo S, Zhang H. Identification of Hub Genes for Early Diagnosis and Predicting Prognosis in Colon Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1893351. [PMID: 35774271 PMCID: PMC9239823 DOI: 10.1155/2022/1893351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
Colon adenocarcinoma (COAD) is among the most common digestive system malignancies worldwide, and its pathogenesis and gene signatures remain unclear. This study explored the genetic characteristics and molecular mechanisms underlying colon cancer development. Three gene expression data sets were obtained from the Gene Expression Omnibus (GEO) database. GEO2R was used to determine differentially expressed genes (DEGs) between COAD and normal tissues. Then, the intersection of the data sets was obtained. Metascape was used to perform the functional enrichment analyses. Next, STRING was used to build protein-protein interaction (PPI) networks. Hub genes were identified and analysed using Cytoscape. Next, survival analysis and expression analysis of the hub genes were performed. ROC curve analysis was performed for further test of the diagnostic efficacy. Finally, alterations in the hub genes were predicted and analysed by cBioPortal. Altogether, 436 DEGs were detected. The DEGs were mainly enriched in cell cycle phase transition, nuclear division, meiotic nuclear division, and cytokinesis. Based on PPI networks, 20 hub genes were selected. Among them, 6 hub genes (CCNB1, CCNA2, AURKA, NCAPG, DLGAP5, and CENPE) showed significant prognostic value in colon cancer (P < 0.05), while 5 hub genes (CDK1, CCNB1, CCNA2, MAD2L1, and DLGAP5) were associated with early colon cancer diagnosis and ROC curve analysis showed good diagnostic accuracy. In conclusion, integrated bioinformatics analysis was used to identify hub genes that reveal the potential mechanism of carcinogenesis and progression of colon cancer. The hub genes might be novel biomarkers for early diagnosis, treatment, and prognosis of colon cancer.
Collapse
Affiliation(s)
- Shuo Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Mingming Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Yao Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Yu Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Shiqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| |
Collapse
|
9
|
Zhang J, Kuang L, Li Y, Wang Q, Xu H, Liu J, Zhou X, Li Y, Zhang B. Metformin Regulates TET2 Expression to Inhibit Endometrial Carcinoma Proliferation: A New Mechanism. Front Oncol 2022; 12:856707. [PMID: 35480097 PMCID: PMC9035737 DOI: 10.3389/fonc.2022.856707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives To investigate the relationship between TET2 expression and endometrial cancer’s clinicopathological features and prognosis, and the effect of metformin on TET2 and 5hmC levels in endometrial cancer cells. Methods The clinical significance of TET2 expression in endometrial carcinoma was analyzed from TCGA public database. Eighty-eight patients with endometrial cancer and 20 patients with normal proliferative endometrium were enrolled in this study. TET2 and 5hmC were respectively detected by Immunohistochemistry and ELISA in endometrial tissues. Kaplan-Meier and Cox proportional hazard regression models were used to analyze relationships between TET2 and 5hmC and the overall survival of EC patients. Endometrial cell proliferation was assessed after TET2 gene knockdown. Western blotting and real-time PCR were used to detect the effect of metformin on TET2 expression and to explore whether AMPK is involved in metformin-mediated TET2 regulation. Results The clinical significance of expression of TET2 in endometrial cancer from TCGA public database confirmed that TET2 expression was significantly down-regulated in cancer samples and TET2 expression was also significantly different among different histopathological samples and TET2 is down-regulated in advanced, high-grade, and relapsed endometrial carcinoma tissues(P<0.05). Immunohistochemical analysis showed that TET2 and 5hmC levels were significantly lower in endometrial adenocarcinoma(P<0.05). TET2 expression was correlated with the degree of EC differentiation (P < 0.05). 5hmC levels were associated with clinical stage, differentiation, the depth of myometrial invasion, and lymph node metastasis (P < 0.05). The mean survival time of patients with negative staining for TET2 and 5hmC was shorter than that of patients with positive staining for both markers (P<0.05). Multivariate Cox regression analysis showed that TET2 expression was an independent risk factor for prognosis in patients with endometrial adenocarcinoma (HR = 14.520, 95% CI was 1.From 060 to 198.843, P = 0.045). siRNA-mediated TET2 knockdown increased the proliferation of EC cells. Metformin increased the levels of TET2 and 5hmC in EC cells. AMPK was involved in the regulation of TET2 by metformin. Conclusions TET2 may play an important role in EC development and may be a prognostic marker. Moreover, TET2 may be involved in a novel mechanism by which metformin inhibits EC cell proliferation.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Lei Kuang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Yanyu Li
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Hui Xu
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Jianwei Liu
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yang Li
- Xuzhou Institute of Medical Science, Xuzhou, China
- *Correspondence: Bei Zhang, ; Yang Li,
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Bei Zhang, ; Yang Li,
| |
Collapse
|
10
|
Besaratinia A, Caceres A, Tommasi S. DNA Hydroxymethylation in Smoking-Associated Cancers. Int J Mol Sci 2022; 23:2657. [PMID: 35269796 PMCID: PMC8910185 DOI: 10.3390/ijms23052657] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
5-hydroxymethylcytosine (5-hmC) was first detected in mammalian DNA five decades ago. However, it did not take center stage in the field of epigenetics until 2009, when ten-eleven translocation 1 (TET1) was found to oxidize 5-methylcytosine to 5-hmC, thus offering a long-awaited mechanism for active DNA demethylation. Since then, a remarkable body of research has implicated DNA hydroxymethylation in pluripotency, differentiation, neural system development, aging, and pathogenesis of numerous diseases, especially cancer. Here, we focus on DNA hydroxymethylation in smoking-associated carcinogenesis to highlight the diagnostic, therapeutic, and prognostic potentials of this epigenetic mark. We describe the significance of 5-hmC in DNA demethylation, the importance of substrates and cofactors in TET-mediated DNA hydroxymethylation, the regulation of TETs and related genes (isocitrate dehydrogenases, fumarate hydratase, and succinate dehydrogenase), the cell-type dependency and genomic distribution of 5-hmC, and the functional role of 5-hmC in the epigenetic regulation of transcription. We showcase examples of studies on three major smoking-associated cancers, including lung, bladder, and colorectal cancers, to summarize the current state of knowledge, outstanding questions, and future direction in the field.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA; (A.C.); (S.T.)
| | | | | |
Collapse
|
11
|
Wang L, Zhu H, Sun W, Liang L, Li H, Han C, Huang W, Zhao B, Peng P, Qin M, Shi L, Mo Y, Huang J. Low expression of bestrophin-2 is associated with poor prognosis in colon cancer. Gene 2021; 813:146117. [PMID: 34902511 DOI: 10.1016/j.gene.2021.146117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES The purpose of this research was to confirm the prognostic value of bestrophin-2 (BEST2), one of the hub genes in colon cancer, via bioinformatics analysis and validation in public databases and immunohistochemistry detection. METHODS The GEO2R online tool and Venn diagram software were utilized to identify differentially expressed genes (DEGs) from expression profiles, including GSE20916, GSE44861 and GSE74602, from the Gene Expression Omnibus (GEO). The overall survival (OS) and disease-free survival (DFS) of colon cancer patients from The Cancer Genome Atlas (TCGA) were analyzed through Kaplan-Meier survival curves. Verification of the significance of BEST2 in colon cancer was based on TCGA, Genotype Tissue Expression (GTEx) and 10 datasets from GEO. BEST2 expression was detected with immunohistochemistry (IHC) in 330 colon tissue samples on microarrays including 165 colon cancerand 165 adjacent normal tissues. For further validation, comprehensive analysis from tissue microarrays and multiple datasets was performed by the summarizing of receiver operating characteristic (SROC) curves and the standard mean differences (SMDs). BEST2 expression in various kinds of colon cancer tissues and cell lines in the context of pancancer was obtained from the Expression Atlas database. The CBioPortal database was queried to identify BEST2 gene alterations and mutation status in colon cancer. Correlated genes (CEGs) with BEST2 and DEGs from public database data were assembled for functional and pathway enrichment analysis. RESULTS We identified 85 DEGs from the three datasets and screened out BEST2 as a prognostic predictor via the TCGA database. Colon cancer patients with high expression of BEST2 had better survival than patients with low BEST2 (HR = 0.5, P = 0.006) as shown in Kaplan-Meier survival curves in GEPIA. In all, 1463 colon cancer tissues and 1023 colon normal tissues were gathered via public databases as well as in-house tissue microarrays. The comprehensiveexpression analysis suggested low-expression of BEST2 in colon cancer (SMD = -2.48, 95% CI [-3.15- -1.80]) and the notable efficacy of BEST2 expression in differentiating colon cancer from noncancer samples (AUC = 0.97). Gene alteration status of BEST2 occurred in 5% of colon cancer cases, mostly missense mutations and deep deletions. Genes positively correlated with BEST2 and DEGs primarily aggregated in pathways such as anion absorption, digestive juice secretion, cAMP signaling and so on (P < 0.05). CONCLUSION Ampleevidencesupportsthe role of BEST2 in distinguishing colon cancer from normal tissues in this research. Low expression of BEST2 is correlated with a shorter OS, which implies that BEST2 can be employed as a potential biomarker and therapeutictarget in colon cancer.
Collapse
Affiliation(s)
- Li Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Huawei Zhu
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Weiliang Sun
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Li Liang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Hui Li
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Chenglong Han
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Wenfeng Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Bi Zhao
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Peng Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Mengbin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Ling Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Yueqing Mo
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| | - Jiean Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, 166 Daxuedong Road, Nanning 530000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
12
|
Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer. Biomolecules 2021; 11:biom11101406. [PMID: 34680038 PMCID: PMC8533383 DOI: 10.3390/biom11101406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/30/2023] Open
Abstract
Cellular metabolism alterations have been recognized as one of the most predominant hallmarks of colorectal cancers (CRCs). It is precisely regulated by many oncogenic signaling pathways in all kinds of regulatory levels, including transcriptional, post-transcriptional, translational and post-translational levels. Among these regulatory factors, epigenetics play an essential role in the modulation of cellular metabolism. On the one hand, epigenetics can regulate cellular metabolism via directly controlling the transcription of genes encoding metabolic enzymes of transporters. On the other hand, epigenetics can regulate major transcriptional factors and signaling pathways that control the transcription of genes encoding metabolic enzymes or transporters, or affecting the translation, activation, stabilization, or translocation of metabolic enzymes or transporters. Interestingly, epigenetics can also be controlled by cellular metabolism. Metabolites not only directly influence epigenetic processes, but also affect the activity of epigenetic enzymes. Actually, both cellular metabolism pathways and epigenetic processes are controlled by enzymes. They are highly intertwined and are essential for oncogenesis and tumor development of CRCs. Therefore, they are potential therapeutic targets for the treatment of CRCs. In recent years, both epigenetic and metabolism inhibitors are studied for clinical use to treat CRCs. In this review, we depict the interplay between epigenetics and cellular metabolism in CRCs and summarize the underlying molecular mechanisms and their potential applications for clinical therapy.
Collapse
|
13
|
DNA 5-hydroxymethylcytosine in pediatric central nervous system tumors may impact tumor classification and is a positive prognostic marker. Clin Epigenetics 2021; 13:176. [PMID: 34538273 PMCID: PMC8451154 DOI: 10.1186/s13148-021-01156-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
Background Nucleotide-specific 5-hydroxymethylcytosine (5hmC) remains understudied in pediatric central nervous system (CNS) tumors. 5hmC is abundant in the brain, and alterations to 5hmC in adult CNS tumors have been reported. However, traditional approaches to measure DNA methylation do not distinguish between 5-methylcytosine (5mC) and its oxidized counterpart 5hmC, including those used to build CNS tumor DNA methylation classification systems. We measured 5hmC and 5mC epigenome-wide at nucleotide resolution in glioma, ependymoma, and embryonal tumors from children, as well as control pediatric brain tissues using tandem bisulfite and oxidative bisulfite treatments followed by hybridization to the Illumina Methylation EPIC Array that interrogates over 860,000 CpG loci.
Results Linear mixed effects models adjusted for age and sex tested the CpG-specific differences in 5hmC between tumor and non-tumor samples, as well as between tumor subtypes. Results from model-based clustering of tumors was used to test the relation of cluster membership with patient survival through multivariable Cox proportional hazards regression. We also assessed the robustness of multiple epigenetic CNS tumor classification methods to 5mC-specific data in both pediatric and adult CNS tumors. Compared to non-tumor samples, tumors were hypohydroxymethylated across the epigenome and tumor 5hmC localized to regulatory elements crucial to cell identity, including transcription factor binding sites and super-enhancers. Differentially hydroxymethylated loci among tumor subtypes tended to be hypermethylated and disproportionally found in CTCF binding sites and genes related to posttranscriptional RNA regulation, such as DICER1. Model-based clustering results indicated that patients with low 5hmC patterns have poorer overall survival and increased risk of recurrence. Our results suggest 5mC-specific data from OxBS-treated samples impacts methylation-based tumor classification systems giving new opportunities for further refinement of classifiers for both pediatric and adult tumors. Conclusions We identified that 5hmC localizes to super-enhancers, and genes commonly implicated in pediatric CNS tumors were differentially hypohydroxymethylated. We demonstrated that distinguishing methylation and hydroxymethylation is critical in identifying tumor-related epigenetic changes. These results have implications for patient prognostication, considerations of epigenetic therapy in CNS tumors, and for emerging molecular neuropathology classification approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01156-9.
Collapse
|
14
|
Bray JK, Dawlaty MM, Verma A, Maitra A. Roles and Regulations of TET Enzymes in Solid Tumors. Trends Cancer 2021; 7:635-646. [PMID: 33468438 DOI: 10.1016/j.trecan.2020.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 01/09/2023]
Abstract
The mechanisms governing the methylome profile of tumor suppressors and oncogenes have expanded with the discovery of oxidized states of 5-methylcytosine (5mC). Ten-eleven translocation (TET) enzymes are a family of dioxygenases that iteratively catalyze 5mC oxidation and promote cytosine demethylation, thereby creating a dynamic global and local methylation landscape. While the catalytic function of TET enzymes during stem cell differentiation and development have been well studied, less is known about the multifaceted roles of TET enzymes during carcinogenesis. This review outlines several tiers of TET regulation and overviews how TET deregulation promotes a cancer phenotype. Defining the tissue-specific and context-dependent roles of TET enzymes will deepen our understanding of the epigenetic perturbations that promote or inhibit carcinogenesis.
Collapse
Affiliation(s)
- Julie K Bray
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Amit Verma
- Albert Einstein College of Medicine, New York City, NY, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Kim H, Kang Y, Li Y, Chen L, Lin L, Johnson ND, Zhu D, Robinson MH, McSwain L, Barwick BG, Yuan X, Liao X, Zhao J, Zhang Z, Shu Q, Chen J, Allen EG, Kenney AM, Castellino RC, Van Meir EG, Conneely KN, Vertino PM, Jin P, Li J. Ten-eleven translocation protein 1 modulates medulloblastoma progression. Genome Biol 2021; 22:125. [PMID: 33926529 PMCID: PMC8082834 DOI: 10.1186/s13059-021-02352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant pediatric brain tumor that originates in the cerebellum and brainstem. Frequent somatic mutations and deregulated expression of epigenetic regulators in MB highlight the substantial role of epigenetic alterations. 5-hydroxymethylcytosine (5hmC) is a highly abundant cytosine modification in the developing cerebellum and is regulated by ten-eleven translocation (TET) enzymes. RESULTS We investigate the alterations of 5hmC and TET enzymes in MB and their significance to cerebellar cancer formation. We show total abundance of 5hmC is reduced in MB, but identify significant enrichment of MB-specific 5hmC marks at regulatory regions of genes implicated in stem-like properties and Nanog-binding motifs. While TET1 and TET2 levels are high in MBs, only knockout of Tet1 in the smoothened (SmoA1) mouse model attenuates uncontrolled proliferation, leading to a favorable prognosis. The pharmacological Tet1 inhibition reduces cell viability and platelet-derived growth factor signaling pathway-associated genes. CONCLUSIONS These results together suggest a potential key role of 5hmC and indicate an oncogenic nature for TET1 in MB tumorigenesis, suggesting it as a potential therapeutic target for MBs.
Collapse
Affiliation(s)
- Hyerim Kim
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Li Chen
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Li Lin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas D Johnson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dan Zhu
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - M Hope Robinson
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Leon McSwain
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinbin Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiang Shu
- The Children's Hospital and Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianjun Chen
- Department of Systems Biology and Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, 91010, USA
| | - Emily G Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna M Kenney
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Robert C Castellino
- Department of Pediatric Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Erwin G Van Meir
- Laboratory of Molecular Neuro-Oncology, Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Paula M Vertino
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Jian Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hydrocephalus Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
16
|
Wu SL, Zhang X, Chang M, Huang C, Qian J, Li Q, Yuan F, Sun L, Yu X, Cui X, Jiang J, Cui M, Liu Y, Wu HW, Liang ZY, Wang X, Niu Y, Tong WM, Jin F. Genome-wide 5-hydroxymethylcytosine Profiling Analysis Identifies MAP7D1 as A Novel Regulator of Lymph Node Metastasis in Breast Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:64-79. [PMID: 33716151 PMCID: PMC8498923 DOI: 10.1016/j.gpb.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/07/2019] [Accepted: 05/31/2019] [Indexed: 11/28/2022]
Abstract
Although DNA 5-hydroxymethylcytosine (5hmC) is recognized as an important epigenetic mark in cancer, its precise role in lymph node metastasis remains elusive. In this study, we investigated how 5hmC associates with lymph node metastasis in breast cancer. Accompanying with high expression of TET1 and TET2 proteins, large numbers of genes in the metastasis-positive primary tumors exhibit higher 5hmC levels than those in the metastasis-negative primary tumors. In contrast, the TET protein expression and DNA 5hmC decrease significantly within the metastatic lesions in the lymph nodes compared to those in their matched primary tumors. Through genome-wide analysis of 8 sets of primary tumors, we identified 100 high-confidence metastasis-associated 5hmC signatures, and it is found that increased levels of DNA 5hmC and gene expression of MAP7D1 associate with high risk of lymph node metastasis. Furthermore, we demonstrate that MAP7D1, regulated by TET1, promotes tumor growth and metastasis. In conclusion, the dynamic 5hmC profiles during lymph node metastasis suggest a link between DNA 5hmC and lymph node metastasis. Meanwhile, the role of MAP7D1 in breast cancer progression suggests that the metastasis-associated 5hmC signatures are potential biomarkers to predict the risk for lymph node metastasis, which may serve as diagnostic and therapeutic targets for metastatic breast cancer.
Collapse
Affiliation(s)
- Shuang-Ling Wu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China; Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaoyi Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Mengqi Chang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Changcai Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jun Qian
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Fang Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China
| | - Lihong Sun
- Center for Experimental Animal Research, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Beijing 100005, China
| | - Xinmiao Yu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Xinmiao Cui
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Jiayi Jiang
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Mengyao Cui
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Ye Liu
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Huan-Wen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences. Beijing 100005, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences. Beijing 100005, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, Beijing 100005, China; Center for Experimental Animal Research, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College. Beijing 100005, China.
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
17
|
Zhao F, Zhang ZW, Zhang J, Zhang S, Zhang H, Zhao C, Chen Y, Luo L, Tong WM, Li C, Niu Y, Liu P. Loss of 5-Hydroxymethylcytosine as an Epigenetic Signature That Correlates With Poor Outcomes in Patients With Medulloblastoma. Front Oncol 2021; 11:603686. [PMID: 33718152 PMCID: PMC7945595 DOI: 10.3389/fonc.2021.603686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma, as the most common malignant brain tumor in children, exhibits highly dysregulated DNA methylation. The novel epigenetic marker—5-hydroxymethylcytosine (5hmC) plays essential role in gene regulation during brain development and in brain tumors. However, the biological and clinical implications of 5hmC in medulloblastoma are still unclear. Here, we detected global 5hmC levels in two independent medulloblastoma patient cohorts (discovery cohort: n = 81; validation cohort: n = 171) using ultra-high performance liquid chromatography-tandem mass spectrometry analysis. Immunohistochemistry was used to identify the cell proliferation and expression of Ten-eleven translocation 1 and 2 (TET1/2). The prognostic impacts of covariates on progression-free survival (PFS) and overall survival (OS) were evaluated using multivariate Cox hazards regression models. We observed that global 5hmC levels were decreased in medulloblastomas compared to normal cerebellums (P < 0.001). Multivariate analysis showed that low global 5hmC levels correlated with poor PFS and OS rates (discovery cohort: PFS: P = 0.003, OS: P = 0.002; validation cohort: PFS: P = 0.0002, OS: P = 0.001). Immunohistochemistry showed an inverse correlation between 5hmC score and Ki-67 index (r = -0.747, P < 0.0001). Moreover, 5hmC score in MB samples was associated with nuclear expression of TET1 (r = -0.419, P = 0.003) and TET2 (r = -0.399, P = 0.005) proteins. Our study demonstrates that loss of 5hmC is an epigenetic biomarker in medulloblastomas. Our results indicate that 5hmC could be a candidate prognostic indicator for improving survival prediction of risk stratification in patients with medulloblastoma.
Collapse
Affiliation(s)
- Fu Zhao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhi-Wei Zhang
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Shun Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chi Zhao
- Department of Neuro-Oncology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Luo
- Department of Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunde Li
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.,Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Xiao Z, Wu W, Wu C, Li M, Sun F, Zheng L, Liu G, Li X, Yun Z, Tang J, Yu Y, Luo S, Sun W, Feng X, Cheng Q, Tao X, Wu S, Tao J. 5-Hydroxymethylcytosine signature in circulating cell-free DNA as a potential diagnostic factor for early-stage colorectal cancer and precancerous adenoma. Mol Oncol 2020; 15:138-150. [PMID: 33107199 PMCID: PMC7782095 DOI: 10.1002/1878-0261.12833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/25/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Approximately 85% colorectal cancers (CRCs) are thought to evolve through the adenoma‐to‐carcinoma sequence associated with specific molecular alterations, including the 5‐hydroxymethylcytosine (5hmC) signature in circulating cell‐free DNA (cfDNA). To explore colorectal disease progression and evaluate the use of cfDNA as a potential diagnostic factor for CRC screening, here, we performed genome‐wide 5hmC profiling in plasma cfDNA and tissue genomic DNA (gDNA) acquired from 101 samples (63 plasma and 38 tissues), collected from 21 early‐stage CRC patients, 21 AD patients, and 21 healthy controls (HC). The gDNA and cfDNA 5hmC signatures identified in gene bodies and promoter regions in CRC and AD groups were compared with those in HC group. All the differential 5hmC‐modified regions (DhMRs) were gathered into four clusters: Disease‐enriched, AD‐enriched, Disease‐lost, and AD‐lost, with no overlap. AD‐related clusters, AD‐enriched and AD‐lost, displayed the unique 5hmC signals in AD patients. Disease‐enriched and Disease‐lost clusters indicated the general 5hmC changes when colorectal lesions occurred. Cancer patients with a confirmable adenoma history segmentally gathered in AD‐enriched clusters. KEGG functional enrichment and GO analyses determined distinct differential 5hmC‐modified profiles in cfDNA of HC individuals, AD, and CRC patients. All patients had comprehensive 5hmC signatures where Disease‐enriched and Disease‐lost DhMR clusters demonstrated similar epigenetic modifications, while AD‐enriched and AD‐lost DhMR clusters indicated complicated subpopulations in adenoma. Analysis of CRC patients with adenoma history showed exclusive 5hmC‐gain characteristics, consistent with the ‘parallel’ evolution hypothesis in adenoma, either developed through the adenoma‐to‐carcinoma sequence or not. These findings deepen our understanding of colorectal disease and suggest that the 5hmC modifications of different pathological subtypes (cancer patients with or without adenoma history) could be used to screen early‐stage CRC and assess adenoma malignancy with large‐scale follow‐up studies in the future.
Collapse
Affiliation(s)
- ZeWen Xiao
- Department of GastroenterologyHarbin Medical University Cancer HospitalChina
| | - Wendy Wu
- Berry Oncology CorporationFuzhouChina
| | - Chunlong Wu
- Department of Endoscopic RoomHarbin Medical University Cancer HospitalChina
| | - Man Li
- Department of Endoscopic RoomHarbin Medical University Cancer HospitalChina
| | | | - Lu Zheng
- Berry Oncology CorporationFuzhouChina
| | | | | | - Zhiyuan Yun
- Department of VIP WardHarbin Medical University Cancer HospitalChina
| | - Jiebing Tang
- Department of GastroenterologyHarbin Medical University Cancer HospitalChina
| | - Yang Yu
- Department of GastroenterologyHarbin Medical University Cancer HospitalChina
| | - Shengnan Luo
- Department of GastroenterologyHarbin Medical University Cancer HospitalChina
| | - Wenji Sun
- Department of GastroenterologyHarbin Medical University Cancer HospitalChina
| | - Xiaohong Feng
- Department of GastroenterologyHarbin Medical University Cancer HospitalChina
| | - Qian Cheng
- Department of GastroenterologyHarbin Medical University Cancer HospitalChina
| | - Xue Tao
- Department of HematologyHarbin Medical University Cancer HospitalChina
| | | | - Ji Tao
- Department of GastroenterologyHarbin Medical University Cancer HospitalChina
| |
Collapse
|
19
|
Madhu B, Uribe-Lewis S, Bachman M, Murrell A, Griffiths JR. Apc Min/+ tumours and normal mouse small intestines show linear metabolite concentration and DNA cytosine hydroxymethylation gradients from pylorus to colon. Sci Rep 2020; 10:13616. [PMID: 32788746 PMCID: PMC7423954 DOI: 10.1038/s41598-020-70579-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Topographical variations of metabolite concentrations have been reported in the duodenum, jejunum and ileum of the small intestine, and in human intestinal tumours from those regions, but there are no published metabolite concentrations measurements correlated with linear position in the mouse small intestine or intestinal tumours. Since DNA methylation dynamics are influenced by metabolite concentrations, they too could show linear anatomical variation. We measured metabolites by HR-MAS 1H NMR spectroscopy and DNA cytosine modifications by LC/MS, in normal small intestines of C57BL/6J wild-type mice, and in normal and tumour samples from ApcMin/+ mice. Wild-type mouse intestines showed approximately linear, negative concentration gradations from the pylorus (i.e. the junction with the stomach) of alanine, choline compounds, creatine, leucine and valine. ApcMin/+ mouse tumours showed negative choline and valine gradients, but a positive glycine gradient. 5-Hydroxymethylcytosine showed a positive gradient in the tumours. The linear gradients we found along the length of the mouse small intestine and in tumours contrast with previous reports of discrete concentration changes in the duodenum, jejunum and ileum. To our knowledge, this is also the first report of a systematic measurement of global levels of DNA cytosine modification in wild-type and ApcMin/+ mouse small intestine.
Collapse
Affiliation(s)
- Basetti Madhu
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Santiago Uribe-Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Martin Bachman
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.,Discovery Science and Technology, Medicines Discovery Catapult, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Adele Murrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.,Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
20
|
Wang A, Deng S, Chen X, Yu C, Du Q, Wu Y, Chen G, Hu L, Hu C, Li Y. miR-29a-5p/STAT3 Positive Feedback Loop Regulates TETs in Colitis-Associated Colorectal Cancer. Inflamm Bowel Dis 2020; 26:524-533. [PMID: 31750910 DOI: 10.1093/ibd/izz281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Interleukin (IL)-6/signal transducers and activators of transcription 3 (STAT3) signaling plays an important role in the development of colitis-associated colorectal cancer (CAC). The mechanism of CAC formation remains unclear, and the relationship between miRNAs and the IL-6/STAT3 signaling pathway in the development of CAC is not well understood. In this study, we investigated the relationship between miR-29a-5p and the IL-6/STAT3 signaling pathway in the development of CAC and alterations in 10-11 translocations (TETs) regulated by this network. METHODS miR-29a-5p was screened in a CAC mouse model by high-throughput microarray analysis and investigated in human colorectal cancer tissue samples and colon cell lines by quantitative reverse transcription polymerase chain reaction (Q-RTPCR). The expression of miR-29a and TETs was detected by Q-RTPCR, and the expression of STAT3/P-STAT3 and TET3 was detected via Western blot assay. The expression of TET1 and 5-hydroxymethylcytosine (5hmC) was detected through immunofluorescence. RESULTS Our results showed that miR-29a-5p was significantly upregulated and was accompanied by STAT3 activation in the colon tissues of CAC mouse and human colorectal cancer tissues, as compared with normal colon tissues. In contrast, the levels of TETs and 5hmC were decreased. In vitro, overexpression of miR-29a-5p in colonic cell lines (HCT-116 and IEC-6) and RAW264.7 cells increased STAT3 expression, but decreased that of TET3, TET1, and 5hmC. miR-29a-5p downregulation in HCT-116 and IEC-6 cell lines could rescue the expression of STAT3 and TET3. Notably, STAT3 activation induced by IL-6 upregulated miR-29a-5p expression and reduced TET expression in vitro, although STAT3 inhibitor treatment downregulated miR-29a-5p expression, which was induced by IL-6. CONCLUSIONS Our studies showed that tumor development occurred with inflammation. The miR-29a-5p/STAT3 signaling axis could play an important role in the development of CAC, and the miR-29a-5p/STAT3 positive feedback loop may amplify the effects of inflammation, lead to decreased levels of TET and 5hmC, and eventually lead to the development of CAC.
Collapse
Affiliation(s)
- Aiping Wang
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Deng
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xi Chen
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chang Yu
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qun Du
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanli Wu
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gang Chen
- School of Traditional Chinese Materia Medical, Shenyang Pharmaceutical University, Shenyang, China
| | - Ling Hu
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chenxia Hu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
21
|
Morin A, Goncalves J, Moog S, Castro-Vega LJ, Job S, Buffet A, Fontenille MJ, Woszczyk J, Gimenez-Roqueplo AP, Letouzé E, Favier J. TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2α-Driven Mesenchymal Transition. Cell Rep 2020; 30:4551-4566.e7. [DOI: 10.1016/j.celrep.2020.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
|
22
|
Roquid KAR, Alcantara KMM, Garcia RL. Identification and validation of mRNA 3'untranslated regions of DNMT3B and TET3 as novel competing endogenous RNAs of the tumor suppressor PTEN. Int J Oncol 2020; 56:544-558. [PMID: 31894272 PMCID: PMC6959461 DOI: 10.3892/ijo.2019.4947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
PTEN inactivation is a frequent event in oncogenesis. Multiple regulatory mechanisms such as promoter hypermethylation, antisense regulation, histone modifications, targeting by microRNAs (miRNAs/miRs) and regulation by transcription factors have all been shown to affect the tumor suppressor functions of PTEN. More recently, the functional involvement of competing endogenous RNAs (ceRNAs) in miRNA‑dependent and coding‑independent regulation of genes shed light on the highly nuanced control of PTEN expression. The present study has identified and validated DNA methyltransferase 3β (DNMT3B) and TET methylcytosine dioxygenase 3 (TET3) as novel ceRNAs of PTEN, with which they share multiple miRNAs, in HCT116 colorectal cancer cells. miR‑4465 was identified and characterized as a miRNA that directly targets and regulates all 3 transcripts via their 3'untranslated regions (3'UTRs) through a combination of luciferase reporter assays, abrogation of miRNA response elements (MREs) via site‑directed mutagenesis, target protection of MREs with locked nucleic acids, RT‑qPCR assays and western blot analysis. Competitive miRNA sequestration was demonstrated upon reciprocal 3'UTR overexpression and siRNA‑mediated knockdown of their respective transcripts. Overexpression of DNMT3B or TET3 3'UTR promoted apoptosis and decreased migratory capacity, potentially because of shared miRNA sequestration and subsequent activation of PTEN expression. Knockdown of TET3 and DNMT3B decoupled their protein‑coding from miRNA‑dependent, coding‑independent functions. Furthermore, the findings suggested that the phenotypic outcome of ceRNAs is dictated largely by the number of shared miRNAs, and predictably, by the existence of other ceRNA networks in which they participate. Taken together, the findings of the present study identified DNMT3B and TET3 as novel ceRNAs of PTEN that may impact its dose‑sensitive tumor suppressive function.
Collapse
Affiliation(s)
- Kenneth Anthony R. Roquid
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Hesse, Germany
| | - Krizelle Mae M. Alcantara
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines Diliman, Quezon City, Metro Manila 1101, Philippines
| |
Collapse
|
23
|
Uribe-Lewis S, Carroll T, Menon S, Nicholson A, Manasterski PJ, Winton DJ, Buczacki SJA, Murrell A. 5-hydroxymethylcytosine and gene activity in mouse intestinal differentiation. Sci Rep 2020; 10:546. [PMID: 31953501 PMCID: PMC6969059 DOI: 10.1038/s41598-019-57214-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Cytosine hydroxymethylation (5hmC) in mammalian DNA is the product of oxidation of methylated cytosines (5mC) by Ten-Eleven-Translocation (TET) enzymes. While it has been shown that the TETs influence 5mC metabolism, pluripotency and differentiation during early embryonic development, the functional relationship between gene expression and 5hmC in adult (somatic) stem cell differentiation is still unknown. Here we report that 5hmC levels undergo highly dynamic changes during adult stem cell differentiation from intestinal progenitors to differentiated intestinal epithelium. We profiled 5hmC and gene activity in purified mouse intestinal progenitors and differentiated progeny to identify 43425 differentially hydroxymethylated regions and 5325 differentially expressed genes. These differentially marked regions showed both losses and gains of 5hmC after differentiation, despite lower global levels of 5hmC in progenitor cells. In progenitors, 5hmC did not correlate with gene transcript levels, however, upon differentiation the global increase in 5hmC content showed an overall positive correlation with gene expression level as well as prominent associations with histone modifications that typify active genes and enhancer elements. Our data support a gene regulatory role for 5hmC that is predominant over its role in controlling DNA methylation states.
Collapse
Affiliation(s)
- Santiago Uribe-Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University New York, New York, NY, 10065, USA
| | - Suraj Menon
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Anna Nicholson
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Piotr J Manasterski
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Simon J A Buczacki
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Addenbrookes Biomedical Campus, Cambridge, CB2 0AF, UK
| | - Adele Murrell
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
24
|
Li P, Gan Y, Qin S, Han X, Cui C, Liu Z, Zhou J, Gu L, Lu ZM, Zhang B, Deng D. DNA hydroxymethylation increases the susceptibility of reactivation of methylated P16 alleles in cancer cells. Epigenetics 2019; 15:618-631. [PMID: 31790633 DOI: 10.1080/15592294.2019.1700004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is well established that 5-methylcytosine (5mC) in genomic DNA of mammalian cells can be oxidized into 5-hydroxymethylcytosine (5hmC) and other derivates by DNA dioxygenase TETs. While conversion of 5mC to 5hmC plays an important role in active DNA demethylation through further oxidation steps, a certain proportion of 5hmCs remain in the genome. Although 5hmCs contribute to the flexibility of chromatin and protect bivalent promoters from hypermethylation, the direct effect of 5hmCs on gene transcription is unknown. In this present study, we have engineered a zinc-finger protein-based P16-specific DNA dioxygenase (P16-TET) to induce P16 hydroxymethylation and demethylation in cancer cells. Our results demonstrate, for the first time, that although the hydroxymethylated P16 alleles retain transcriptionally inactive, hydroxymethylation could increase the susceptibility of reactivation of methylated P16 alleles.
Collapse
Affiliation(s)
- Paiyun Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Ying Gan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Sisi Qin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Xiao Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Chenghua Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Zhe-Ming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute , Beijing, China
| |
Collapse
|
25
|
Amirkhah R, Naderi-Meshkin H, Shah JS, Dunne PD, Schmitz U. The Intricate Interplay between Epigenetic Events, Alternative Splicing and Noncoding RNA Deregulation in Colorectal Cancer. Cells 2019; 8:cells8080929. [PMID: 31430887 PMCID: PMC6721676 DOI: 10.3390/cells8080929] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) results from a transformation of colonic epithelial cells into adenocarcinoma cells due to genetic and epigenetic instabilities, alongside remodelling of the surrounding stromal tumour microenvironment. Epithelial-specific epigenetic variations escorting this process include chromatin remodelling, histone modifications and aberrant DNA methylation, which influence gene expression, alternative splicing and function of non-coding RNA. In this review, we first highlight epigenetic modulators, modifiers and mediators in CRC, then we elaborate on causes and consequences of epigenetic alterations in CRC pathogenesis alongside an appraisal of the complex feedback mechanisms realized through alternative splicing and non-coding RNA regulation. An emphasis in our review is put on how this intricate network of epigenetic and post-transcriptional gene regulation evolves during the initiation, progression and metastasis formation in CRC.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
| | - Hojjat Naderi-Meshkin
- Nastaran Center for Cancer Prevention (NCCP), Mashhad 9185765476, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture Research (ACECR), Khorasan Razavi Branch, Mashhad 9177949367, Iran
| | - Jaynish S Shah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia.
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia.
| |
Collapse
|
26
|
Slynko A, Benner A. Statistical methods for classification of 5hmC levels based on the Illumina Inifinium HumanMethylation450 (450k) array data, under the paired bisulfite (BS) and oxidative bisulfite (oxBS) treatment. PLoS One 2019; 14:e0218103. [PMID: 31194780 PMCID: PMC6563990 DOI: 10.1371/journal.pone.0218103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
Abstract
Hydroxymethylcytosine (5hmC) methylation is a well-known epigenetic mark that is involved in gene regulation and may impact genome stability. To investigate a possible role of 5hmC in cancer development and progression, one must be able to detect and quantify its level first. In this paper, we address the issue of 5hmC detection at a single base resolution, starting with consideration of the well-established 5hmC measure Δβ and, in particular, with an analysis of its properties, both analytically and empirically. Then we propose several alternative hydroxymethylation measures and compare their properties with those of Δβ. In the absence of a gold standard, the (pairwise) resemblance of those 5hmC measures to Δβ is characterized by means of a similarity analysis and relative accuracy analysis. All results are illustrated on matched healthy and cancer tissue data sets as derived by means of bisulfite (BS) and oxidative bisulfite converting (oxBS) procedures.
Collapse
Affiliation(s)
- Alla Slynko
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada
- * E-mail:
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
27
|
Fernandez AF, Bayón GF, Sierra MI, Urdinguio RG, Toraño EG, García MG, Carella A, López V, Santamarina P, Pérez RF, Belmonte T, Tejedor JR, Cobo I, Menendez P, Mangas C, Ferrero C, Rodrigo L, Astudillo A, Ortea I, Cueto Díaz S, Rodríguez-Gonzalez P, García Alonso JI, Mollejo M, Meléndez B, Domínguez G, Bonilla F, Fraga MF. Loss of 5hmC identifies a new type of aberrant DNA hypermethylation in glioma. Hum Mol Genet 2019; 27:3046-3059. [PMID: 29878202 DOI: 10.1093/hmg/ddy214] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/29/2018] [Indexed: 01/13/2023] Open
Abstract
Aberrant DNA hypermethylation is a hallmark of cancer although the underlying molecular mechanisms are still poorly understood. To study the possible role of 5-hydroxymethylcytosine (5hmC) in this process we analyzed the global and locus-specific genome-wide levels of 5hmC and 5-methylcytosine (5mC) in human primary samples from 12 non-tumoral brains and 53 gliomas. We found that the levels of 5hmC identified in non-tumoral samples were significantly reduced in gliomas. Strikingly, hypo-hydroxymethylation at 4627 (9.3%) CpG sites was associated with aberrant DNA hypermethylation and was strongly enriched in CpG island shores. The DNA regions containing these CpG sites were enriched in H3K4me2 and presented a different genuine chromatin signature to that characteristic of the genes classically aberrantly hypermethylated in cancer. As this 5mC gain is inversely correlated with loss of 5hmC and has not been identified with classical sodium bisulfite-based technologies, we conclude that our data identifies a novel 5hmC-dependent type of aberrant DNA hypermethylation in glioma.
Collapse
Affiliation(s)
| | | | | | - Rocio G Urdinguio
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Oviedo, Spain
| | - Estela G Toraño
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Oviedo, Spain
| | - Maria G García
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Oviedo, Spain
| | - Antonella Carella
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Oviedo, Spain
| | - Virginia López
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Oviedo, Spain
| | - Pablo Santamarina
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Oviedo, Spain
| | - Raúl F Pérez
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Oviedo, Spain
| | - Thalía Belmonte
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA.,Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Oviedo, Spain
| | | | - Isabel Cobo
- Institute of Oncology of Asturias (IUOPA), ISPA-HUCA.,Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, Barcelona, Spain
| | - Pablo Menendez
- Department of Biomedicine, School of Medicine, Josep Carreras Leukemia Research Institute, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Centro de Investigacion Biomedica en Red en Cancer CIBER-ONC, ISCIII, Barcelona, Spain
| | | | | | - Luis Rodrigo
- Department of Gastroenterology, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Aurora Astudillo
- Department of Pathology, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ignacio Ortea
- Proteomics Unit, IMIBIC, Maimonides Institute for Biomedical Research, Córdoba, Spain
| | | | | | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de la Salud, Avd. Barber 30, Toledo 45005, Spain
| | - Bárbara Meléndez
- Department of Pathology, Hospital Virgen de la Salud, Avd. Barber 30, Toledo 45005, Spain
| | - Gemma Domínguez
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro, Majadahonda, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Felix Bonilla
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro, Majadahonda, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Universidad de Oviedo, Principado de Asturias, Oviedo, Spain
| |
Collapse
|
28
|
Daniūnaitė K, Jarmalaitė S, Kriukienė E. Epigenomic technologies for deciphering circulating tumor DNA. Curr Opin Biotechnol 2019; 55:23-29. [DOI: 10.1016/j.copbio.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023]
|
29
|
Wang J, Sahengbieke S, Xu X, Zhang L, Xu X, Sun L, Deng Q, Wang D, Chen D, Pan Y, Liu Z, Yu S. Gene expression analyses identify a relationship between stanniocalcin 2 and the malignant behavior of colorectal cancer. Onco Targets Ther 2018; 11:7155-7168. [PMID: 30425508 PMCID: PMC6203107 DOI: 10.2147/ott.s167780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the main causes of cancer-related death worldwide. Stanniocalcin 2 (STC2), a secreted glycoprotein, has been suggested to exert various functions in progression of many cancers. However, the precise biological role in CRC is not fully understood. Therefore, this study based on several public datasets aims at investigating the roles of STC2 in CRC. Methods We used The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to evaluate the STC2 expression and its clinical significance in CRC. Cell migration and invasion by STC2 overexpression and knockdown were assessed using Transwell migration and Matrigel invasion assays. We next performed RNAseq analysis on SW480 cells with or without STC2 overexpression. Differentially expressed genes were selected by using fold-change >5 and P-value <0.05. Results In this study, we found that STC2 level was significantly higher in CRC than that in adjacent noncancerous tissues from TCGA and GEO. Tumors with high mRNA levels of STC2 were more common in patients with rectal cancer, left-sided CRC, advanced T-stage (T3-T4), positive lymph node involvement and advanced AJCC-stage (III-IV) from TCGA. STC2 displayed the negative correlation with the expressions of epithelial cell markers, while it was positively correlated with the expressions of mesenchymal cell markers, MMPs and the epithelial-mesenchymal transition (EMT)-related transcriptional factors. Furthermore, we found that STC2 promoted cell migration and invasion in vitro. And a group of differentially expressed genes, which were modulated by STC2, were identified from RNAseq analyses. Conclusion Our study demonstrates that STC2 is overexpressed in CRC compared with normal tissues, and promotes CRC cell migration and invasion. Our data suggest that STC2 may be used as a potential biomarker for clinical application and target therapy in future.
Collapse
Affiliation(s)
- Jian Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| | - Sana Sahengbieke
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaoping Xu
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lei Zhang
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiaoming Xu
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lifeng Sun
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| | - Qun Deng
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| | - Da Wang
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| | - Dong Chen
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuan Pan
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Zhaohui Liu
- Department of Anorectal Surgery, Yuhang District First People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shaojun Yu
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China,
| |
Collapse
|
30
|
Zhang J, Han X, Gao C, Xing Y, Qi Z, Liu R, Wang Y, Zhang X, Yang YG, Li X, Sun B, Tian X. 5-Hydroxymethylome in Circulating Cell-free DNA as A Potential Biomarker for Non-small-cell Lung Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:187-199. [PMID: 30010036 PMCID: PMC6076378 DOI: 10.1016/j.gpb.2018.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Non-small-cell lung cancer (NSCLC), the most common type of lung cancer accounting for 85% of the cases, is often diagnosed at advanced stages owing to the lack of efficient early diagnostic tools. 5-Hydroxymethylcytosine (5hmC) signatures in circulating cell-free DNA (cfDNA) that carries the cancer-specific epigenetic patterns may represent the valuable biomarkers for discriminating tumor and healthy individuals, and thus could be potentially useful for NSCLC diagnosis. Here, we employed a sensitive and reliable method to map genome-wide 5hmC in the cfDNA of Chinese NSCLC patients and detected a significant 5hmC gain in both the gene bodies and promoter regions in the blood samples from tumor patients compared with healthy controls. Specifically, we identified six potential biomarkers from 66 patients and 67 healthy controls (mean decrease accuracy >3.2, P < 3.68E−19) using machine-learning-based tumor classifiers with high accuracy. Thus, the unique signature of 5hmC in tumor patient’s cfDNA identified in our study may provide valuable information in facilitating the development of new diagnostic and therapeutic modalities for NSCLC.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Xiao Han
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunchun Gao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Xing
- Physical Examination Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Qi
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ruijuan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Yun-Gui Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Baofa Sun
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
31
|
Dziaman T, Gackowski D, Guz J, Linowiecka K, Bodnar M, Starczak M, Zarakowska E, Modrzejewska M, Szpila A, Szpotan J, Gawronski M, Labejszo A, Liebert A, Banaszkiewicz Z, Klopocka M, Foksinski M, Marszalek A, Olinski R. Characteristic profiles of DNA epigenetic modifications in colon cancer and its predisposing conditions-benign adenomas and inflammatory bowel disease. Clin Epigenetics 2018; 10:72. [PMID: 29875879 PMCID: PMC5977551 DOI: 10.1186/s13148-018-0505-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/17/2018] [Indexed: 01/10/2023] Open
Abstract
Background Active demethylation of 5-methyl-2'-deoxycytidine (5-mdC) in DNA occurs by oxidation to 5-(hydroxymethyl)-2'-deoxycytidine (5-hmdC) and further oxidation to 5-formyl-2'-deoxycytidine (5-fdC) and 5-carboxy-2'-deoxycytidine (5-cadC), and is carried out by enzymes of the ten-eleven translocation family (TETs 1, 2, 3). Decreased level of epigenetic DNA modifications in cancer tissue may be a consequence of reduced activity/expression of TET proteins. To determine the role of epigenetic DNA modifications in colon cancer development, we analyzed their levels in normal colon and various colonic pathologies. Moreover, we determined the expressions of TETs at mRNA and protein level.The study included material from patients with inflammatory bowel disease (IBD), benign polyps (AD), and colorectal cancer (CRC). The levels of epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in examined tissues were determined by means of isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS). The expressions of TET mRNA were measured with RT-qPCR, and the expressions of TET proteins were determined immunohistochemically. Results IBD was characterized by the highest level of 8-oxodG among all analyzed tissues, as well as by a decrease in 5-hmdC and 5-mdC levels (at a midrange between normal colon and CRC). AD had the lowest levels of 5-hmdC and 5-mdC of all examined tissues and showed an increase in 8-oxodG and 5-(hydroxymethyl)-2'-deoxyuridine (5-hmdU) levels. CRC was characterized by lower levels of 5-hmdC and 5-mdC, the lowest level of 5-fdC among all analyzed tissues, and relatively high content of 5-cadC. The expression of TET1 mRNA in CRC and AD was significantly weaker than in IBD and normal colon. Furthermore, CRC and AD showed significantly lower levels of TET2 and AID mRNA than normal colonic tissue. Conclusions Our findings suggest that a complex relationship between aberrant pattern of DNA epigenetic modification and cancer development does not depend solely on the transcriptional status of TET proteins, but also on the characteristics of premalignant/malignant cells. This study showed for the first time that the examined colonic pathologies had their unique epigenetic marks, distinguishing them from each other, as well as from normal colonic tissue. A decrease in 5-fdC level may be a characteristic feature of largely undifferentiated cancer cells.
Collapse
Affiliation(s)
- Tomasz Dziaman
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland.,7Department of Clinical Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Karlowicza 24, 85-095 Bydgoszcz, Poland
| | - Daniel Gackowski
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Jolanta Guz
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Kinga Linowiecka
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Magdalena Bodnar
- 2Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland.,6Department of Otolaryngology and Laryngeal Oncology, K. Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Marta Starczak
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Ewelina Zarakowska
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Martyna Modrzejewska
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Anna Szpila
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Justyna Szpotan
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maciej Gawronski
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Anna Labejszo
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Ariel Liebert
- 4Department of Vascular Diseases and Internal Medicine, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Zbigniew Banaszkiewicz
- 3Department of Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Klopocka
- 4Department of Vascular Diseases and Internal Medicine, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Marek Foksinski
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Andrzej Marszalek
- 2Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland.,5Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | - Ryszard Olinski
- 1Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Torun, Poland.,7Department of Clinical Biochemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Karlowicza 24, 85-095 Bydgoszcz, Poland
| |
Collapse
|
32
|
Maupetit-Mehouas S, Court F, Bourgne C, Guerci-Bresler A, Cony-Makhoul P, Johnson H, Etienne G, Rousselot P, Guyotat D, Janel A, Hermet E, Saugues S, Berger J, Arnaud P, Berger MG. DNA methylation profiling reveals a pathological signature that contributes to transcriptional defects of CD34 + CD15 - cells in early chronic-phase chronic myeloid leukemia. Mol Oncol 2018; 12:814-829. [PMID: 29575763 PMCID: PMC5983208 DOI: 10.1002/1878-0261.12191] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/07/2018] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Despite the high efficiency of tyrosine kinase inhibitors (TKI), some patients with chronic myeloid leukemia (CML) will display residual disease that can become resistant to treatment, indicating intraclonal heterogeneity in chronic‐phase CML (CP‐CML). To determine the basis of this heterogeneity, we conducted the first exhaustive characterization of the DNA methylation pattern of sorted CP‐CML CD34+CD15− (immature) and CD34−CD15+ (mature) cells at diagnosis (prior to any treatment) and compared it to that of CD34+CD15− and CD34−CD15+ cells isolated from healthy donors (HD). In both cell types, we identified several hundreds of differentially methylated regions (DMRs) showing DNA methylation changes between CP‐CML and HD samples, with only a subset of them in common between CD34+CD15− and CD34−CD15+ cells. This suggested DNA methylation variability within the same CML clone. We also identified 70 genes that could be aberrantly repressed upon hypermethylation and 171 genes that could be aberrantly expressed upon hypomethylation of some of these DMRs in CP‐CML cells, among which 18 and 81, respectively, were in CP‐CML CD34+CD15− cells only. We then validated the DNA methylation and expression defects of selected candidate genes. Specifically, we identified GAS2, a candidate oncogene, as a new example of gene the hypomethylation of which is associated with robust overexpression in CP‐CML cells. Altogether, we demonstrated that DNA methylation abnormalities exist at early stages of CML and can affect the transcriptional landscape of malignant cells. These observations could lead to the development of combination treatments with epigenetic drugs and TKI for CP‐CML.
Collapse
Affiliation(s)
- Stéphanie Maupetit-Mehouas
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France.,Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Franck Court
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Céline Bourgne
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Agnès Guerci-Bresler
- Hématologie Clinique, CHRU Nancy, Hôpitaux de Brabois, Vandoeuvre-lès-Nancy, France
| | | | - Hyacinthe Johnson
- Institut d'Hématologie de Basse Normandie, CHU de Caen, Caen Cedex 9, France
| | - Gabriel Etienne
- Hématologie Clinique, Institut Bergonié, Bordeaux Cedex, France
| | - Philippe Rousselot
- Centre Hospitalier de Versailles, service d'Hématologie et d'Oncologie, Le Chesney, France
| | - Denis Guyotat
- Département d'Hématologie, Institut de Cancérologie Lucien Neuwirth, Saint-Priest-en-Jarez, France
| | - Alexandre Janel
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Eric Hermet
- Hématologie Clinique Adulte, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Sandrine Saugues
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,CRB-Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Juliette Berger
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,CRB-Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| | - Philippe Arnaud
- GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Marc G Berger
- Hématologie Biologique, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,Equipe d'Accueil 7453 CHELTER, Université Clermont Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France.,CRB-Auvergne, CHU Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand Cedex 1, France
| |
Collapse
|
33
|
The Progress of Methylation Regulation in Gene Expression of Cervical Cancer. Int J Genomics 2018; 2018:8260652. [PMID: 29850477 PMCID: PMC5926518 DOI: 10.1155/2018/8260652] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer is one of the most common gynecological tumors in females, which is closely related to high-rate HPV infection. Methylation alteration is a type of epigenetic decoration that regulates the expression of genes without changing the DNA sequence, and it is essential for the progression of cervical cancer in pathogenesis while reflecting the prognosis and therapeutic sensitivity in clinical practice. Hydroxymethylation has been discovered in recent years, thus making 5-hmC, the more stable marker, attract more attention in the field of methylation research. As markers of methylation, 5-hmC and 5-mC together with 5-foC and 5-caC draw the outline of the reversible cycle, and 6-mA takes part in the methylation of RNA, especially mRNA. Furthermore, methylation modification participates in ncRNA regulation and histone decoration. In this review, we focus on recent advances in the understanding of methylation regulation in the process of cervical cancer, as well as HPV and CIN, to identify the significant impact on the prospect of overcoming cervical cancer.
Collapse
|
34
|
Chen Y, Hong T, Wang S, Mo J, Tian T, Zhou X. Epigenetic modification of nucleic acids: from basic studies to medical applications. Chem Soc Rev 2018; 46:2844-2872. [PMID: 28352906 DOI: 10.1039/c6cs00599c] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The epigenetic modification of nucleic acids represents one of the most significant areas of study in the field of nucleic acids because it makes gene regulation more complex and heredity more complicated, thus indicating its profound impact on aspects of heredity, growth, and diseases. The recent characterization of epigenetic modifications of DNA and RNA using chemical labelling strategies has promoted the discovery of these modifications, and the newly developed single-base or single-cell resolution mapping strategies have enabled large-scale epigenetic studies in eukaryotes. Due to these technological breakthroughs, several new epigenetic marks have been discovered that have greatly extended the scope and impact of epigenetic modifications in nucleic acids over the past few years. Because epigenetics is reversible and susceptible to environmental factors, it could potentially be a promising direction for clinical medicine research. In this review, we have comprehensively discussed how these epigenetic marks are involved in disease, including the pathogenesis, prevention, diagnosis and treatment of disease. These findings have revealed that the epigenetic modification of nucleic acids has considerable significance in various areas from methodology to clinical medicine and even in biomedical applications.
Collapse
Affiliation(s)
- Yuqi Chen
- College of Chemistry and Molecular Sciences, Institute of Advanced Studies, Key Laboratory of Biomedical Polymers of Ministry of Education, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Hubei, Wuhan 430072, P. R. China.
| | | | | | | | | | | |
Collapse
|
35
|
Bezerra Salomão K, Cruzeiro GAV, Bonfim-Silva R, Geron L, Ramalho F, Pinto Saggioro F, Serafini LN, Antunes Moreno D, de Paula Queiroz RG, Dos Santos Aguiar S, Cardinalli I, Yunes JA, Brandalise SR, Brassesco MS, Scrideli CA, Gonzaga Tone L. Reduced hydroxymethylation characterizes medulloblastoma while TET and IDH genes are differentially expressed within molecular subgroups. J Neurooncol 2018; 139:33-42. [PMID: 29582271 DOI: 10.1007/s11060-018-2845-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Medulloblastoma (MB) is an embryonal tumour that originates from genetic deregulation of cerebellar developmental pathways and is classified into 4 molecular subgroups: SHH, WNT, group 3, and group 4. Hydroxymethylation levels progressively increases during cerebellum development suggesting a possibility of deregulation in MB pathogenesis. The aim of this study was to investigate global hydroxymethylation levels and changes in TET and IDH gene expression in MB samples compared to control cerebellum samples. METHODS The methods utilized were qRT-PCR for gene expression, dot-blot and immunohistochemistry for global hydroxymethylation levels and sequencing for the investigation of IDH mutations. RESULTS Our results show that global hydroxymethylation level was decreased in MB, and low 5hmC level was associated with the presence of metastasis. TET1 expression levels were decreased in the WNT subgroup, while TET3 expression levels were decreased in the SHH subgroup. Reduced TET3 expression levels were associated with the presence of events such as relapse and death. Higher expression of IDH1 was observed in MB group 3 samples, whereas no mutations were detected in exon 4 of IDH1 and IDH2. CONCLUSION These findings suggest that reduction of global hydroxymethylation levels, an epigenetic event, may be important for MB development and/or maintenance, representing a possible target in this tumour and indicating a possible interaction of TET and IDH genes with the developmental pathways specifically activated in the MB subgroups. These genes could be specific targets and markers for each subgroup.
Collapse
Affiliation(s)
- Karina Bezerra Salomão
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil. .,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil. .,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Ricardo Bonfim-Silva
- Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Lenisa Geron
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fernando Ramalho
- Department of Pathology, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fabiano Pinto Saggioro
- Department of Pathology, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luciano Neder Serafini
- Department of Pathology, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Daniel Antunes Moreno
- Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Izilda Cardinalli
- Boldrini Centre of Children, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - José Andres Yunes
- Boldrini Centre of Children, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | - Maria Sol Brassesco
- Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carlos Alberto Scrideli
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luiz Gonzaga Tone
- Department of Paediatrics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Department of Genetics, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.,Ribeirão Preto School of Medicine, University of São Paulo, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
36
|
Court F, Arnaud P. An annotated list of bivalent chromatin regions in human ES cells: a new tool for cancer epigenetic research. Oncotarget 2018; 8:4110-4124. [PMID: 27926531 PMCID: PMC5354816 DOI: 10.18632/oncotarget.13746] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
CpG islands (CGI) marked by bivalent chromatin in stem cells are believed to be more prone to aberrant DNA methylation in tumor cells. The robustness and genome-wide extent of this instructive program in different cancer types remain to be determined. To address this issue we developed a user-friendly approach to integrate the stem cell chromatin signature in customized DNA methylation analyses. We used publicly available ChIP-sequencing datasets of several human embryonic stem cell (hESC) lines to determine the extent of bivalent chromatin genome-wide. We then created annotated lists of high-confidence bivalent, H3K4me3-only and H3K27me3-only chromatin regions. The main features of bivalent regions included localization in CGI/promoters, depletion in retroelements and enrichment in specific histone modifications, including the poorly characterized H3K23me2 mark. Moreover, bivalent promoters could be classified in three clusters based on PRC2 and PolII complexes occupancy. Genes with bivalent promoters of the PRC2-defined cluster displayed the lowest expression upon differentiation. As proof-of-concept, we assessed the DNA methylation pattern of eight types of tumors and confirmed that aberrant cancer-associated DNA hypermethylation preferentially targets CGI characterized by bivalent chromatin in hESCs. We also found that such aberrant DNA hypermethylation affected particularly bivalent CGI/promoters associated with genes that tend to remain repressed upon differentiation. Strikingly, bivalent CGI were the most affected by aberrant DNA hypermethylation in both CpG Island Methylator Phenotype-positive (CIMP+) and CIMP-negative tumors, suggesting that, besides transcriptional silencing in the pre-tumorigenic cells, the bivalent chromatin signature in hESCs is a key determinant of the instructive program for aberrant DNA methylation.
Collapse
Affiliation(s)
- Franck Court
- CNRS-UMR 6293, Clermont-Ferrand, 63001, France.,INSERM-U1103, Clermont-Ferrand, 63001, France.,Université Clermont Auvergne, GReD Laboratory, Clermont-Ferrand, 63000, France
| | - Philippe Arnaud
- CNRS-UMR 6293, Clermont-Ferrand, 63001, France.,INSERM-U1103, Clermont-Ferrand, 63001, France.,Université Clermont Auvergne, GReD Laboratory, Clermont-Ferrand, 63000, France
| |
Collapse
|
37
|
Smeets E, Lynch AG, Prekovic S, Van den Broeck T, Moris L, Helsen C, Joniau S, Claessens F, Massie CE. The role of TET-mediated DNA hydroxymethylation in prostate cancer. Mol Cell Endocrinol 2018; 462:41-55. [PMID: 28870782 DOI: 10.1016/j.mce.2017.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/30/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Ten-eleven translocation (TET) proteins are recently characterized dioxygenases that regulate demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine and further derivatives. The recent finding that 5hmC is also a stable and independent epigenetic modification indicates that these proteins play an important role in diverse physiological and pathological processes such as neural and tumor development. Both the genomic distribution of (hydroxy)methylation and the expression and activity of TET proteins are dysregulated in a wide range of cancers including prostate cancer. Up to now it is still unknown how changes in TET and 5(h)mC profiles are related to the pathogenesis of prostate cancer. In this review, we explore recent advances in the current understanding of how TET expression and function are regulated in development and cancer. Furthermore, we look at the impact on 5hmC in prostate cancer and the potential underlying mechanisms. Finally, we tried to summarize the latest techniques for detecting and quantifying global and locus-specific 5hmC levels of genomic DNA.
Collapse
Affiliation(s)
- E Smeets
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - A G Lynch
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - S Prekovic
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - T Van den Broeck
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Urology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - L Moris
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Urology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - C Helsen
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - S Joniau
- Department of Urology, University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - F Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - C E Massie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
|
39
|
Liang J, Yang F, Zhao L, Bi C, Cai B. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases. Oncotarget 2018; 7:48813-48831. [PMID: 27183914 PMCID: PMC5217052 DOI: 10.18632/oncotarget.9281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Gene expression is the prerequisite of proteins. Diverse stimuli result in alteration of gene expression profile by base substitution for quite a long time. However, during the past decades, accumulating studies proved that bases modification is involved in this process. CpG islands (CGIs) are DNA fragments enriched in CpG repeats which mostly locate in promoters. They are frequently modified, methylated in most conditions, thereby suggesting a role of methylation in profiling gene expression. DNA methylation occurs in many conditions, such as cancer, embryogenesis, nervous system diseases etc. Recently, 5-hydroxymethylcytosine (5hmC), the product of 5-methylcytosine (5mC) demethylation, is emerging as a novel demethylation marker in many disorders. Consistently, conversion of 5mC to 5hmC has been proved in many studies. Here, we reviewed recent studies concerning demethylation via 5hmC conversion in several conditions and progress of therapeutics-associated with it in clinic. We aimed to unveil its physiological and pathological significance in diseases and to provide insight into its clinical application potential.
Collapse
Affiliation(s)
- Jing Liang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Fan Yang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Liang Zhao
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Chongwei Bi
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Benzhi Cai
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China.,Institute of Clinical Pharmacy and Medicine, Academics of Medical Sciences of Heilongjiang Province, Harbin, China
| |
Collapse
|
40
|
Andersen GB, Tost J. A Summary of the Biological Processes, Disease-Associated Changes, and Clinical Applications of DNA Methylation. Methods Mol Biol 2018; 1708:3-30. [PMID: 29224136 DOI: 10.1007/978-1-4939-7481-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation at cytosines followed by guanines, CpGs, forms one of the multiple layers of epigenetic mechanisms controlling and modulating gene expression through chromatin structure. It closely interacts with histone modifications and chromatin remodeling complexes to form the local genomic and higher-order chromatin landscape. DNA methylation is essential for proper mammalian development, crucial for imprinting and plays a role in maintaining genomic stability. DNA methylation patterns are susceptible to change in response to environmental stimuli such as diet or toxins, whereby the epigenome seems to be most vulnerable during early life. Changes of DNA methylation levels and patterns have been widely studied in several diseases, especially cancer, where interest has focused on biomarkers for early detection of cancer development, accurate diagnosis, and response to treatment, but have also been shown to occur in many other complex diseases. Recent advances in epigenome engineering technologies allow now for the large-scale assessment of the functional relevance of DNA methylation. As a stable nucleic acid-based modification that is technically easy to handle and which can be analyzed with great reproducibility and accuracy by different laboratories, DNA methylation is a promising biomarker for many applications.
Collapse
Affiliation(s)
- Gitte Brinch Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
41
|
Olinski R, Gackowski D, Cooke MS. Endogenously generated DNA nucleobase modifications source, and significance as possible biomarkers of malignant transformation risk, and role in anticancer therapy. Biochim Biophys Acta Rev Cancer 2017; 1869:29-41. [PMID: 29128527 DOI: 10.1016/j.bbcan.2017.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/26/2023]
Abstract
The DNA of all living cells undergoes continuous structural and chemical alteration, which may be derived from exogenous sources, or endogenous, metabolic pathways, such as cellular respiration, replication and DNA demethylation. It has been estimated that approximately 70,000 DNA lesions may be generated per day in a single cell, and this has been linked to a wide variety of diseases, including cancer. However, it is puzzling why potentially mutagenic DNA modifications, occurring at a similar level in different organs/tissue, may lead to organ/tissue specific cancers, or indeed non-malignant disease - what is the basis for this differential response? We suggest that it is perhaps the precise location of damage, within the genome, that is a key factor. Finally, we draw attention to the requirement for reliable methods for identification and quantification of DNA adducts/modifications, and stress the need for these assays to be fully validated. Once these prerequisites are satisfied, measurement of DNA modifications may be helpful as a clinical parameter for treatment monitoring, risk group identification and development of prevention strategies.
Collapse
Affiliation(s)
- Ryszard Olinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-095 Bydgoszcz, Poland.
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85-095 Bydgoszcz, Poland
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Modesto A. Maidique Campus, AHC5 355 11200 SW 8th Street, Miami, FL 33199, United States; Biomolecular Sciences Institute, Florida International University, United States
| |
Collapse
|
42
|
Tian YP, Lin AF, Gan MF, Wang H, Yu D, Lai C, Zhang DD, Zhu YM, Lai MD. Global changes of 5-hydroxymethylcytosine and 5-methylcytosine from normal to tumor tissues are associated with carcinogenesis and prognosis in colorectal cancer *. J Zhejiang Univ Sci B 2017; 18:747-756. [PMCID: PMC5611546 DOI: 10.1631/jzus.b1600314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/26/2016] [Indexed: 08/07/2023]
Abstract
Aberrant DNA methylation has raised widespread attention in tumorigenesis. In this study, we aimed to investigate the changes of global DNA methylation and hydroxymethylation from normal to tumor tissues in colorectal cancer (CRC) and their association with the prognosis. The levels of genomic 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) in cancerous tissues were significantly lower than those in corresponding adjacent normal tissues. The genomic levels of 5mC were significantly positively correlated with 5hmC in normal and cancerous tissues (all P <0.05). The ratio of 5mC in cancerous tissues to matched normal tissues (C/N-5mC) was also significantly positively correlated with the ratio of 5hmC in cancerous tissues to matched normal tissues (C/N-5hmC) (P =0.01). The 5mC levels and C/N-5mC ratios decreased with age (all P <0.05). Higher 5mC and 5hmC levels were found in rectal than in colon tissues (all P <0.05). High levels of 5mC in cancerous tissues and high C/N-5hmC ratios were each associated with lymph node metastasis (all P <0.05). Survival analysis indicated that the C/N-5mC ratio (P =0.04) is an independent protective factor for overall survival. The data showed that patients with a combination of high C/N-5hmC and low C/N-5mC ratios tended to have a worse prognosis (P <0.01). Our findings showed that the C/N-5mC ratio may be an independent prognostic factor for CRC outcome. Patients with both a high C/N-5hmC ratio and a low C/N-5mC ratio exhibited the worst survival, suggesting that 5mC and 5hmC can be used as critical markers in tumorigenesis and prognosis estimation.
Collapse
Affiliation(s)
- Yi-ping Tian
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
- Pathology Department, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Ai-fen Lin
- Medical Research Center /Human Tissue Bank, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Mei-fu Gan
- Department of Pathology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai 317000, China
| | - Hao Wang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Dan Yu
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Chong Lai
- Department of Urology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dan-dan Zhang
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| | - Yi-min Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Mao-de Lai
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
43
|
López V, Fernández A, Fraga M. The role of 5-hydroxymethylcytosine in development, aging and age-related diseases. Ageing Res Rev 2017; 37:28-38. [PMID: 28499883 DOI: 10.1016/j.arr.2017.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/24/2022]
Abstract
DNA methylation at the fifth position of cytosines (5mC) represents a major epigenetic modification in mammals. The recent discovery of 5-hydroxymethylcytosine (5hmC), resulting from 5mC oxidation, is redefining our view of the epigenome, as multiple studies indicate that 5hmC is not simply an intermediate of DNA demethylation, but a genuine epigenetic mark that may play an important functional role in gene regulation. Currently, the availability of platforms that discriminates between the presence of 5mC and 5hmC at single-base resolution is starting to shed light on the functions of 5hmC. In this review, we provide an overview of the genomic distribution of 5hmC, and examine recent findings on the role of this mark and the potential consequences of its misregulation during three fundamental biological processes: cell differentiation, cancer and aging.
Collapse
|
44
|
Gilat N, Tabachnik T, Shwartz A, Shahal T, Torchinsky D, Michaeli Y, Nifker G, Zirkin S, Ebenstein Y. Single-molecule quantification of 5-hydroxymethylcytosine for diagnosis of blood and colon cancers. Clin Epigenetics 2017; 9:70. [PMID: 28725280 PMCID: PMC5512773 DOI: 10.1186/s13148-017-0368-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background The DNA modification 5-hydroxymethylcytosine (5hmC) is now referred to as the sixth base of DNA with evidence of tissue-specific patterns and correlation with gene regulation and expression. This epigenetic mark was recently reported as a potential biomarker for multiple types of cancer, but its application in the clinic is limited by the utility of recent 5hmC quantification assays. We use a recently developed, ultra-sensitive, fluorescence-based single-molecule method for global quantification of 5hmC in genomic DNA. The high sensitivity of the method gives access to precise quantification of extremely low 5hmC levels common in many cancers. Methods We assessed 5hmC levels in DNA extracted from a set of colon and blood cancer samples and compared 5hmC levels with healthy controls, in a single-molecule approach. Results Using our method, we observed a significantly reduced level of 5hmC in blood and colon cancers and could distinguish between colon tumor and colon tissue adjacent to the tumor based on the global levels of this molecular biomarker. Conclusions Single-molecule detection of 5hmC allows distinguishing between malignant and healthy tissue in clinically relevant and accessible tissue such as blood and colon. The presented method outperforms current commercially available quantification kits and may potentially be developed into a widely used, 5hmC quantification assay for research and clinical diagnostics. Furthermore, using this method, we confirm that 5hmC is a good molecular biomarker for diagnosing colon and various types of blood cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13148-017-0368-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noa Gilat
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tzlil Tabachnik
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Shwartz
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shahal
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dmitry Torchinsky
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yael Michaeli
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Nifker
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Zirkin
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
45
|
Hu H, Shu M, He L, Yu X, Liu X, Lu Y, Chen Y, Miao X, Chen X. Epigenomic landscape of 5-hydroxymethylcytosine reveals its transcriptional regulation of lncRNAs in colorectal cancer. Br J Cancer 2017; 116:658-668. [PMID: 28141796 PMCID: PMC5344292 DOI: 10.1038/bjc.2016.457] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/10/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND DNA methylation at the 5 position of cytosine (5mC) can be converted to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation family. The loss of global levels of 5hmC has been regarded as a hallmark in various cancers. 5-hydroxymethylcytosine is distributed at protein-coding gene bodies and promoters; however, the role and distribution of 5hmC at long non-coding RNAs (lncRNAs) is not clear. We investigated the distribution and regulatory roles of 5hmC for lncRNAs in colorectal cancer (CRC). METHODS We integrated genome-wide profiles of 5hmC, 5mC, transcriptome and histone marks in CRC patients and examined the 5hmC-based clinical outcomes in patients. RESULTS 5-hydroxymethylcytosine was distributed at lncRNA loci and positively correlated with lncRNA transcription. Dysreulated CRC lncRNAs were regulated by 5hmC directly or through abnormal activities of typical and super-enhancers and promoters modified by 5hmC. In addition, 5hmC was involved in long-range chromatin interactions at lncRNA loci. Finally, lncRNAs regulated by differential 5hmC marks were correlated with different clinical outcomes and tumour status in patients. CONCLUSIONS 5-hydroxymethylcytosine is critical in regulating the transcription of lncRNA and serve as novel biomarkers for clinical prognosis in CRC.
Collapse
Affiliation(s)
- Hanyang Hu
- Department of Laboratory Medicine, No. 161 Hospital of PLA, Wuhan 430010, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Maoguo Shu
- Departmemt of Plastic, Aesthetic and Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lin He
- Departmemt of Plastic, Aesthetic and Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xueyuan Yu
- Departmemt of Plastic, Aesthetic and Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiangyu Liu
- Departmemt of Plastic, Aesthetic and Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yalin Lu
- Department of Laboratory Medicine, No. 161 Hospital of PLA, Wuhan 430010, China
| | - Yinghong Chen
- Nursing Department, No. 161 Hospital of PLA, Wuhan 430010, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Chen
- Department of Laboratory Medicine, No. 161 Hospital of PLA, Wuhan 430010, China.,School of Basic Medical Science, Wuhan University, Wuhan, China
| |
Collapse
|
46
|
Johnson KC, Houseman EA, King JE, von Herrmann KM, Fadul CE, Christensen BC. 5-Hydroxymethylcytosine localizes to enhancer elements and is associated with survival in glioblastoma patients. Nat Commun 2016; 7:13177. [PMID: 27886174 PMCID: PMC5133638 DOI: 10.1038/ncomms13177] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
Glioblastomas exhibit widespread molecular alterations including a highly distorted epigenome. Here, we resolve genome-wide 5-methylcytosine and 5-hydroxymethylcytosine in glioblastoma through parallel processing of DNA with bisulfite and oxidative bisulfite treatments. We apply a statistical algorithm to estimate 5-methylcytosine, 5-hydroxymethylcytosine and unmethylated proportions from methylation array data. We show that 5-hydroxymethylcytosine is depleted in glioblastoma compared with prefrontal cortex tissue. In addition, the genomic localization of 5-hydroxymethylcytosine in glioblastoma is associated with features of dynamic cell-identity regulation such as tissue-specific transcription and super-enhancers. Annotation of 5-hydroxymethylcytosine genomic distribution reveal significant associations with RNA regulatory processes, immune function, stem cell maintenance and binding sites of transcription factors that drive cellular proliferation. In addition, model-based clustering results indicate that patients with low-5-hydroxymethylcytosine patterns have significantly poorer overall survival. Our results demonstrate that 5-hydroxymethylcytosine patterns are strongly related with transcription, localizes to disease-critical genes and are associated with patient prognosis.
Collapse
Affiliation(s)
- Kevin C Johnson
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA.,Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - E Andres Houseman
- Department of Biostatistics, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jessica E King
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA.,Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Katharine M von Herrmann
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA.,Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Camilo E Fadul
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Brock C Christensen
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA.,Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| |
Collapse
|
47
|
Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet 2016; 33:16-33. [PMID: 27889084 DOI: 10.1016/j.tig.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs), somatic cell nuclear transfer ESCs, and induced pluripotent stem cells (iPSCs) represent the most studied group of PSCs. Unlimited self-renewal without incurring chromosomal instability and pluripotency are essential for the potential use of PSCs in regenerative therapy. Telomere length maintenance is critical for the unlimited self-renewal, pluripotency, and chromosomal stability of PSCs. While telomerase has a primary role in telomere maintenance, alternative lengthening of telomere pathways involving recombination and epigenetic modifications are also required for telomere length regulation, notably in mouse PSCs. Telomere rejuvenation is part of epigenetic reprogramming to pluripotency. Insights into telomere reprogramming and maintenance in PSCs may have implications for understanding of aging and tumorigenesis. Here, I discuss the link between telomere elongation and homeostasis to the acquisition and maintenance of stem cell pluripotency, and their regulatory mechanisms by epigenetic modifications.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
48
|
Abstract
5′-hydroxymethylcytosine (5hmC) is a variant of the common covalent epigenetic modification of DNA 5′-methylcytosine (5mC). Although the presence of this modified base in mammalian DNA has been recognized for several decades, it has recently gained center stage as a suspected intermediate in enzymatic active demethylation of 5mC. The role of 5hmC remains elusive in spite of a large body of studies. It is proposed that 5hmC is a variant of the 5mC epigenetic signal and is involved in epigenetic regulation of gene function. Recent data support a role for 5hmC in the activation of lineage-specific enhancers.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology & Therapeutics, McGill University Medical School, 3655 Sir William Osler Promenade #1309, Montreal, QC, H3G 1Y6, Canada
| |
Collapse
|
49
|
Li X, Liu Y, Salz T, Hansen KD, Feinberg A. Whole-genome analysis of the methylome and hydroxymethylome in normal and malignant lung and liver. Genome Res 2016; 26:1730-1741. [PMID: 27737935 PMCID: PMC5131824 DOI: 10.1101/gr.211854.116] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
DNA methylation at the 5-position of cytosine (5mC) is an epigenetic modification that regulates gene expression and cellular plasticity in development and disease. The ten-eleven translocation (TET) gene family oxidizes 5mC to 5-hydroxymethylcytosine (5hmC), providing an active mechanism for DNA demethylation, and it may also provide its own regulatory function. Here we applied oxidative bisulfite sequencing to generate whole-genome DNA methylation and hydroxymethylation maps at single-base resolution in human normal liver and lung as well as paired tumor tissues. We found that 5hmC is significantly enriched in CpG island (CGI) shores while depleted in CGIs themselves, especially in active genes, which exhibit a bimodal distribution of 5hmC around CGI that corresponds to H3K4me1 modifications. Hydroxymethylation on promoters, gene bodies, and transcription termination regions (TTRs) showed strong positive correlation with gene expression within and across tissues, suggesting that 5hmC is a marker of active genes and could play a role in gene expression mediated by DNA demethylation. Comparative analysis of methylomes and hydroxymethylomes revealed that 5hmC is significantly enriched in both tissue-specific DMRs (t-DMRs) and cancer-specific DMRs (c-DMRs), and 5hmC is negatively correlated with methylation changes, especially in non-CGI-associated DMRs. These findings revealed novel reciprocity between epigenetic markers at CGI shores corresponding to differential gene expression in normal tissues and matching tumors. Overall, our study provided a comprehensive analysis of the interplay between the methylome, hydroxymethylome, and histone modifications during tumorigenesis.
Collapse
Affiliation(s)
- Xin Li
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yun Liu
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,The Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Fudan University, Shanghai, China, 200032.,Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China, 200032
| | - Tal Salz
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kasper D Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Andrew Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.,Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, Maryland 21205, USA.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
50
|
Liu D, Zhao C, Wang H. Glucosylation Mediated Rolling Circle Amplification Combined with a qPCR Assay for the Detection of 5-Hydroxymethylcytosine. ANAL SCI 2016; 32:963-8. [PMID: 27682401 DOI: 10.2116/analsci.32.963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The detection of 5-hydroxymethylcytosine (5hmC), a newly recognized epigenetic mark, is essential to its functional study. Here, an efficient and simple two-step-amplification method to detect 5hmC mediated by glucosylation is reported, which combines rolling circle amplification (RCA) and a quantitative polymerase chain reaction (qPCR). In the first step RCA, the glucosylated 5hmC (5ghmC), but not 5hmC, 5-methylcytosine (5mC) or cytosine (C) bases, could directly and specifically inhibit the activity of phi29 DNA polymerase, resulting in less RCA product compared to that using C-/5mC-/5hmC-containing templates. Then, the second step qPCR is adopted to test and verify the difference of the product quantity of 5ghmC-related RCA. The results show that the delta cycle threshold, ΔCt, obtained by subtracting the cycle threshold value (Ct) of C-related qPCR from that of each qPCR, of 5ghmC-related qPCR reaches 1.59 ± 0.03, significantly different from that of C-/5mC-/5hmC-related qPCR (-0.00 ± 0.09, 0.06 ± 0.08 and -0.02 ± 0.03, respectively). Meanwhile, a linear relationship is observed between the 5ghmC levels and the ΔCt values. This suggests that the strategy has a potential application for 5hmC detection and quantification.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
| | | | | |
Collapse
|