1
|
Li C, Krishnan S, Zhang M, Hu D, Meng D, Riedelsberger J, Dougherty L, Xu K, Piñeros MA, Cheng L. Alternative Splicing Underpins the ALMT9 Transporter Function for Vacuolar Malic Acid Accumulation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310159. [PMID: 38514904 PMCID: PMC11165477 DOI: 10.1002/advs.202310159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Vacuolar malic acid accumulation largely determines fruit acidity, a key trait for the taste and flavor of apple and other fleshy fruits. Aluminum-activated malate transporter 9 (ALMT9/Ma1) underlies a major genetic locus, Ma, for fruit acidity in apple, but how the protein transports malate across the tonoplast is unclear. Here, it is shown that overexpression of the coding sequence of Ma1 (Ma1α) drastically decreases fruit acidity in "Royal Gala" apple, leading to uncovering alternative splicing underpins Ma1's function. Alternative splicing generates two isoforms: Ma1β is 68 amino acids shorter with much lower expression than the full-length protein Ma1α. Ma1β does not transport malate itself but interacts with the functional Ma1α to form heterodimers, creating synergy with Ma1α for malate transport in a threshold manner (When Ma1β/Ma1α ≥ 1/8). Overexpression of Ma1α triggers feedback inhibition on the native Ma1 expression via transcription factor MYB73, decreasing the Ma1β level well below the threshold that leads to significant reductions in Ma1 function and malic acid accumulation in fruit. Overexpression of Ma1α and Ma1β or genomic Ma1 increases both isoforms proportionally and enhances fruit malic acid accumulation. These findings reveal an essential role of alternative splicing in ALMT9-mediated malate transport underlying apple fruit acidity.
Collapse
Affiliation(s)
- Chunlong Li
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhan430070China
| | | | - Mengxia Zhang
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dagang Hu
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Dong Meng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Janin Riedelsberger
- Center for Bioinformatics, Simulation and Modeling, Department of Bioinformatics, Faculty of EngineeringUniversity of TalcaTalca3460000Chile
| | - Laura Dougherty
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment StationCornell UniversityGenevaNY14456USA
| | - Miguel A. Piñeros
- Plant Biology Section, School of Integrative Plant Science and Robert W. Holley Center for Agriculture and HealthUSDA‐ARS Cornell UniversityIthacaNY14853USA
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| |
Collapse
|
2
|
Hu DG, Marri S, Hulin JA, Ansaar R, Mackenzie PI, McKinnon RA, Meech R. Activation of Cryptic Donor Splice Sites within the UDP-Glucuronosyltransferase (UGT)1A First-Exon Region Generates Variant Transcripts That Encode UGT1A Proteins with Truncated Aglycone-Binding Domains. Drug Metab Dispos 2024; 52:526-538. [PMID: 38565302 DOI: 10.1124/dmd.123.001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The human UDP-glucuronosyltransferases (UGTs) have crucial roles in metabolizing and clearing numerous small lipophilic compounds. The UGT1A locus generates nine UGT1A mRNAs, 65 spliced transcripts, and 34 circular RNAs. In this study, our analysis of published UGT-RNA capture sequencing (CaptureSeq) datasets identified novel splice junctions that predict 24 variant UGT1A transcripts derived from ligation of exon 2 to unique sequences within the UGT1A first-exon region using cryptic donor splice sites. Of these variants, seven (1A1_n1, 1A3_n3, 1A4_n4, 1A5_n1, 1A8_n2, 1A9_n2, 1A10_n7) are predicted to encode UGT1A proteins with truncated aglycone-binding domains. We assessed their expression profiles and deregulation in cancer using four RNA sequencing (RNA-Seq) datasets of paired normal and cancerous drug-metabolizing tissues from large patient cohorts. Variants were generally coexpressed with their canonical counterparts with a higher relative abundance in tumor than in normal tissues. Variants showed tissue-specific expression with high interindividual variability but overall low abundance. However, 1A8_n2 showed high abundance in normal and cancerous colorectal tissues, with levels that approached or surpassed canonical 1A8 mRNA levels in many samples. We cloned 1A8_n2 and showed expression of the predicted protein (1A8_i3) in human embryonic kidney (HEK)293T cells. Glucuronidation assays with 4-methylumbelliferone (4MU) showed that 1A8_i3 had no activity and was unable to inhibit the activity of 1A8_i1 protein. In summary, the activation of cryptic donor splice sites within the UGT1A first-exon region expands the UGT1A transcriptome and proteome. The 1A8_n2 cryptic donor splice site is highly active in colorectal tissues, representing an important cis-regulatory element that negatively regulates the function of the UGT1A8 gene through pre-mRNA splicing. SIGNIFICANT STATEMENT: The UGT1A locus generates nine canonical mRNAs, 65 alternately spliced transcripts, and 34 different circular RNAs. The present study reports a series of novel UDP-glucuronosyltransferase (UGT)1A variants resulting from use of cryptic donor splice sites in both normal and cancerous tissues, several of which are predicted to encode variant UGT1A proteins with truncated aglycone-binding domains. Of these, 1A8_n2 shows exceptionally high abundance in colorectal tissues, highlighting its potential role in the first-pass metabolism in gut through the glucuronidation pathway.
Collapse
Affiliation(s)
- Dong Gui Hu
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Shashikanth Marri
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Julie-Ann Hulin
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Radwan Ansaar
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Peter I Mackenzie
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Ross A McKinnon
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Robyn Meech
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| |
Collapse
|
3
|
Jones EF, Haldar A, Oza VH, Lasseigne BN. Quantifying transcriptome diversity: a review. Brief Funct Genomics 2024; 23:83-94. [PMID: 37225889 PMCID: PMC11484519 DOI: 10.1093/bfgp/elad019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Following the central dogma of molecular biology, gene expression heterogeneity can aid in predicting and explaining the wide variety of protein products, functions and, ultimately, heterogeneity in phenotypes. There is currently overlapping terminology used to describe the types of diversity in gene expression profiles, and overlooking these nuances can misrepresent important biological information. Here, we describe transcriptome diversity as a measure of the heterogeneity in (1) the expression of all genes within a sample or a single gene across samples in a population (gene-level diversity) or (2) the isoform-specific expression of a given gene (isoform-level diversity). We first overview modulators and quantification of transcriptome diversity at the gene level. Then, we discuss the role alternative splicing plays in driving transcript isoform-level diversity and how it can be quantified. Additionally, we overview computational resources for calculating gene-level and isoform-level diversity for high-throughput sequencing data. Finally, we discuss future applications of transcriptome diversity. This review provides a comprehensive overview of how gene expression diversity arises, and how measuring it determines a more complete picture of heterogeneity across proteins, cells, tissues, organisms and species.
Collapse
Affiliation(s)
- Emma F Jones
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anisha Haldar
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishal H Oza
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brittany N Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Steward RA, Pruisscher P, Roberts KT, Wheat CW. Genetic constraints in genes exhibiting splicing plasticity in facultative diapause. Heredity (Edinb) 2024; 132:142-155. [PMID: 38291272 PMCID: PMC10923799 DOI: 10.1038/s41437-024-00669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Phenotypic plasticity is produced and maintained by processes regulating the transcriptome. While differential gene expression is among the most important of these processes, relatively little is known about other sources of transcriptional variation. Previous work suggests that alternative splicing plays an extensive and functionally unique role in transcriptional plasticity, though plastically spliced genes may be more constrained than the remainder of expressed genes. In this study, we explore the relationship between expression and splicing plasticity, along with the genetic diversity in those genes, in an ecologically consequential polyphenism: facultative diapause. Using 96 samples spread over two tissues and 10 timepoints, we compare the extent of differential splicing and expression between diapausing and direct developing pupae of the butterfly Pieris napi. Splicing differs strongly between diapausing and direct developing trajectories but alters a smaller and functionally unique set of genes compared to differential expression. We further test the hypothesis that among these expressed loci, plastically spliced genes are likely to experience the strongest purifying selection to maintain seasonally plastic phenotypes. Genes with unique transcriptional changes through diapause consistently had the lowest nucleotide diversity, and this effect was consistently stronger among genes that were differentially spliced compared to those with just differential expression through diapause. Further, the strength of negative selection was higher in the population expressing diapause every generation. Our results suggest that maintenance of the molecular mechanisms involved in diapause progression, including post-transcriptional modifications, are highly conserved and likely to experience genetic constraints, especially in northern populations of P. napi.
Collapse
Affiliation(s)
- Rachel A Steward
- Zoology Department, Stockholm University, Stockholm, Sweden.
- Biology Department, Lund University, Lund, Sweden.
| | - Peter Pruisscher
- Zoology Department, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
5
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
6
|
Yan Z, Fang Q, Song J, Yang L, Xiao S, Wang J, Ye G. A serpin gene from a parasitoid wasp disrupts host immunity and exhibits adaptive alternative splicing. PLoS Pathog 2023; 19:e1011649. [PMID: 37695779 PMCID: PMC10513286 DOI: 10.1371/journal.ppat.1011649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/21/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Alternative splicing (AS) is a major source of protein diversity in eukaryotes, but less is known about its evolution compared to gene duplication (GD). How AS and GD interact is also largely understudied. By constructing the evolutionary trajectory of the serpin gene PpSerpin-1 (Pteromalus puparum serpin 1) in parasitoids and other insects, we found that both AS and GD jointly contribute to serpin protein diversity. These two processes are negatively correlated and show divergent features in both protein and regulatory sequences. Parasitoid wasps exhibit higher numbers of serpin protein/domains than nonparasitoids, resulting from more GD but less AS in parasitoids. The potential roles of AS and GD in the evolution of parasitoid host-effector genes are discussed. Furthermore, we find that PpSerpin-1 shows an exon expansion of AS compared to other parasitoids, and that several isoforms are involved in the wasp immune response, have been recruited to both wasp venom and larval saliva, and suppress host immunity. Overall, our study provides an example of how a parasitoid serpin gene adapts to parasitism through AS, and sheds light on the differential features of AS and GD in the evolution of insect serpins and their associations with the parasitic life strategy.
Collapse
Affiliation(s)
- Zhichao Yan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiqiang Song
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023:10.1038/s41423-023-01032-x. [PMID: 37198402 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
8
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534370. [PMID: 37034741 PMCID: PMC10081249 DOI: 10.1101/2023.03.29.534370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.
Collapse
Affiliation(s)
- S García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - E K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - M Grant-Peters
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - J W Brenton
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A L Gil-Martínez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Verge Genomics, South San Francisco, CA, 94080, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA , 21205
| | - M Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
9
|
Olivieri J, Salzman J. Analysis of RNA processing directly from spatial transcriptomics data reveals previously unknown regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532412. [PMID: 36993757 PMCID: PMC10054993 DOI: 10.1101/2023.03.13.532412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Technical advances have led to an explosion in the amount of biological data available in recent years, especially in the field of RNA sequencing. Specifically, spatial transcriptomics (ST) datasets, which allow each RNA molecule to be mapped to the 2D location it originated from within a tissue, have become readily available. Due to computational challenges, ST data has rarely been used to study RNA processing such as splicing or differential UTR usage. We apply the ReadZS and the SpliZ, methods developed to analyze RNA process in scRNA-seq data, to analyze spatial localization of RNA processing directly from ST data for the first time. Using Moran's I metric for spatial autocorrelation, we identify genes with spatially regulated RNA processing in the mouse brain and kidney, re-discovering known spatial regulation in Myl6 and identifying previously-unknown spatial regulation in genes such as Rps24, Gng13, Slc8a1, Gpm6a, Gpx3, ActB, Rps8, and S100A9. The rich set of discoveries made here from commonly used reference datasets provides a small taste of what can be learned by applying this technique more broadly to the large quantity of Visium data currently being created.
Collapse
Affiliation(s)
- Julia Olivieri
- Department of Computer Science, University of the Pacific
| | - Julia Salzman
- Department of Biological Data Science, Stanford University
- Department of Biochemistry, Stanford University
| |
Collapse
|
10
|
Lin S, Xu H, Qin L, Pang M, Wang Z, Gu M, Zhang L, Zhao C, Hao X, Zhang Z, Ding W, Ren J, Huang J. UHRF1/DNMT1–MZF1 axis-modulated intragenic site-specific CpGI methylation confers divergent expression and opposing functions of PRSS3 isoforms in lung cancer. Acta Pharm Sin B 2023; 13:2086-2106. [DOI: 10.1016/j.apsb.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 02/05/2023] [Indexed: 04/09/2023] Open
|
11
|
Horn T, Gosliga A, Li C, Enculescu M, Legewie S. Position-dependent effects of RNA-binding proteins in the context of co-transcriptional splicing. NPJ Syst Biol Appl 2023; 9:1. [PMID: 36653378 PMCID: PMC9849329 DOI: 10.1038/s41540-022-00264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/08/2022] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing is an important step in eukaryotic mRNA pre-processing which increases the complexity of gene expression programs, but is frequently altered in disease. Previous work on the regulation of alternative splicing has demonstrated that splicing is controlled by RNA-binding proteins (RBPs) and by epigenetic DNA/histone modifications which affect splicing by changing the speed of polymerase-mediated pre-mRNA transcription. The interplay of these different layers of splicing regulation is poorly understood. In this paper, we derived mathematical models describing how splicing decisions in a three-exon gene are made by combinatorial spliceosome binding to splice sites during ongoing transcription. We additionally take into account the effect of a regulatory RBP and find that the RBP binding position within the sequence is a key determinant of how RNA polymerase velocity affects splicing. Based on these results, we explain paradoxical observations in the experimental literature and further derive rules explaining why the same RBP can act as inhibitor or activator of cassette exon inclusion depending on its binding position. Finally, we derive a stochastic description of co-transcriptional splicing regulation at the single-cell level and show that splicing outcomes show little noise and follow a binomial distribution despite complex regulation by a multitude of factors. Taken together, our simulations demonstrate the robustness of splicing outcomes and reveal that quantitative insights into kinetic competition of co-transcriptional events are required to fully understand this important mechanism of gene expression diversity.
Collapse
Affiliation(s)
- Timur Horn
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Alison Gosliga
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Congxin Li
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany
| | - Mihaela Enculescu
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- University of Stuttgart, Department of Systems Biology and Stuttgart Research Center Systems Biology (SRCSB), Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
12
|
García-Ruiz S, Gustavsson EK, Zhang D, Reynolds RH, Chen Z, Fairbrother-Browne A, Gil-Martínez AL, Botia JA, Collado-Torres L, Ryten M. IntroVerse: a comprehensive database of introns across human tissues. Nucleic Acids Res 2023; 51:D167-D178. [PMID: 36399497 PMCID: PMC9825543 DOI: 10.1093/nar/gkac1056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
Dysregulation of RNA splicing contributes to both rare and complex diseases. RNA-sequencing data from human tissues has shown that this process can be inaccurate, resulting in the presence of novel introns detected at low frequency across samples and within an individual. To enable the full spectrum of intron use to be explored, we have developed IntroVerse, which offers an extensive catalogue on the splicing of 332,571 annotated introns and a linked set of 4,679,474 novel junctions covering 32,669 different genes. This dataset has been generated through the analysis of 17,510 human control RNA samples from 54 tissues provided by the Genotype-Tissue Expression Consortium. IntroVerse has two unique features: (i) it provides a complete catalogue of novel junctions and (ii) each novel junction has been assigned to a specific annotated intron. This unique, hierarchical structure offers multiple uses, including the identification of novel transcripts from known genes and their tissue-specific usage, and the assessment of background splicing noise for introns thought to be mis-spliced in disease states. IntroVerse provides a user-friendly web interface and is freely available at https://rytenlab.com/browser/app/introverse.
Collapse
Affiliation(s)
- Sonia García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - David Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Regina H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Zhongbo Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Aine Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, WC2R 2LS, UK
| | - Ana Luisa Gil-Martínez
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
- Department of Information and Communications Engineering Faculty of Informatics, Espinardo Campus, University of Murcia, Murcia, 30100, Spain
| | - Juan A Botia
- Department of Information and Communications Engineering Faculty of Informatics, Espinardo Campus, University of Murcia, Murcia, 30100, Spain
| | | | - Mina Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, WC1N 1EH, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, WC1N 1EH, UK
| |
Collapse
|
13
|
The Heterochromatin protein 1 is a regulator in RNA splicing precision deficient in ulcerative colitis. Nat Commun 2022; 13:6834. [PMID: 36400769 PMCID: PMC9674647 DOI: 10.1038/s41467-022-34556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Defects in RNA splicing have been linked to human disorders, but remain poorly explored in inflammatory bowel disease (IBD). Here, we report that expression of the chromatin and alternative splicing regulator HP1γ is reduced in ulcerative colitis (UC). Accordingly, HP1γ gene inactivation in the mouse gut epithelium triggers IBD-like traits, including inflammation and dysbiosis. In parallel, we find that its loss of function broadly increases splicing noise, favoring the usage of cryptic splice sites at numerous genes with functions in gut biology. This results in the production of progerin, a toxic splice variant of prelamin A mRNA, responsible for the Hutchinson-Gilford Progeria Syndrome of premature aging. Splicing noise is also extensively detected in UC patients in association with inflammation, with progerin transcripts accumulating in the colon mucosa. We propose that monitoring HP1γ activity and RNA splicing precision can help in the management of IBD and, more generally, of accelerated aging.
Collapse
|
14
|
Han Y, Wennersten SA, Wright JM, Ludwig RW, Lau E, Lam MPY. Proteogenomics reveals sex-biased aging genes and coordinated splicing in cardiac aging. Am J Physiol Heart Circ Physiol 2022; 323:H538-H558. [PMID: 35930447 PMCID: PMC9448281 DOI: 10.1152/ajpheart.00244.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 01/24/2023]
Abstract
The risks of heart diseases are significantly modulated by age and sex, but how these factors influence baseline cardiac gene expression remains incompletely understood. Here, we used RNA sequencing and mass spectrometry to compare gene expression in female and male young adult (4 mo) and early aging (20 mo) mouse hearts, identifying thousands of age- and sex-dependent gene expression signatures. Sexually dimorphic cardiac genes are broadly distributed, functioning in mitochondrial metabolism, translation, and other processes. In parallel, we found over 800 genes with differential aging response between male and female, including genes in cAMP and PKA signaling. Analysis of the sex-adjusted aging cardiac transcriptome revealed a widespread remodeling of exon usage patterns that is largely independent from differential gene expression, concomitant with upstream changes in RNA-binding protein and splice factor transcripts. To evaluate the impact of the splicing events on cardiac proteoform composition, we applied an RNA-guided proteomics computational pipeline to analyze the mass spectrometry data and detected hundreds of putative splice variant proteins that have the potential to rewire the cardiac proteome. Taken together, the results here suggest that cardiac aging is associated with 1) widespread sex-biased aging genes and 2) a rewiring of RNA splicing programs, including sex- and age-dependent changes in exon usages and splice patterns that have the potential to influence cardiac protein structure and function. These changes contribute to the emerging evidence for considerable sexual dimorphism in the cardiac aging process that should be considered in the search for disease mechanisms.NEW & NOTEWORTHY Han et al. used proteogenomics to compare male and female mouse hearts at 4 and 20 mo. Sex-biased cardiac genes function in mitochondrial metabolism, translation, autophagy, and other processes. Hundreds of cardiac genes show sex-by-age interactions, that is, sex-biased aging genes. Cardiac aging is accompanied with a remodeling of exon usage in functionally coordinated genes, concomitant with differential expression of RNA-binding proteins and splice factors. These features represent an underinvestigated aspect of cardiac aging that may be relevant to the search for disease mechanisms.
Collapse
Grants
- R21-HL150456 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00-HL144829 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL127302 NHLBI NIH HHS
- R03-OD032666 HHS | NIH | NIH Office of the Director (OD)
- R01 HL141278 NHLBI NIH HHS
- F32 HL149191 NHLBI NIH HHS
- F32-HL149191 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00-HL127302 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R21 HL150456 NHLBI NIH HHS
- R03 OD032666 NIH HHS
- R00 HL144829 NHLBI NIH HHS
- R01-HL141278 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- University of Colorado
- University of Colorado School of Medicine, Anschutz Medical Campus
Collapse
Affiliation(s)
- Yu Han
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Sara A Wennersten
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Julianna M Wright
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - R W Ludwig
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Maggie P Y Lam
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
15
|
Tan JY, Marques AC. The activity of human enhancers is modulated by the splicing of their associated lncRNAs. PLoS Comput Biol 2022; 18:e1009722. [PMID: 35015755 PMCID: PMC8803168 DOI: 10.1371/journal.pcbi.1009722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/31/2022] [Accepted: 12/05/2021] [Indexed: 11/19/2022] Open
Abstract
Pervasive enhancer transcription is at the origin of more than half of all long noncoding RNAs in humans. Transcription of enhancer-associated long noncoding RNAs (elncRNA) contribute to their cognate enhancer activity and gene expression regulation in cis. Recently, splicing of elncRNAs was shown to be associated with elevated enhancer activity. However, whether splicing of elncRNA transcripts is a mere consequence of accessibility at highly active enhancers or if elncRNA splicing directly impacts enhancer function, remains unanswered. We analysed genetically driven changes in elncRNA splicing, in humans, to address this outstanding question. We showed that splicing related motifs within multi-exonic elncRNAs evolved under selective constraints during human evolution, suggesting the processing of these transcripts is unlikely to have resulted from transcription across spurious splice sites. Using a genome-wide and unbiased approach, we used nucleotide variants as independent genetic factors to directly assess the causal relationship that underpin elncRNA splicing and their cognate enhancer activity. We found that the splicing of most elncRNAs is associated with changes in chromatin signatures at cognate enhancers and target mRNA expression. We provide evidence that efficient and conserved processing of enhancer-associated elncRNAs contributes to enhancer activity. Most, if not all, active enhancers are transcribed, giving rise to a plethora of transcripts, including enhancer-associated long noncoding RNAs (elncRNAs). Changes in elncRNA levels impacts cognate enhancer activity. Recently splicing of elncRNA has also been found to associate with enhancer activity. Whether this associations reflects a contribution of elncRNA splicing to increased enhancer activity or else is simply the consequence of increased chromatin accessibility that promotes transcriptional elongation and allows for spurious splicing events remains unknown. We show that natural selection has acted, at the species and population level, to preserve DNA elements required for frequent and efficient elncRNA splicing Importantly, using a genome-wide and unbiased statistical population genomics approach, we demonstrate that elncRNA splicing is associated with cognate enhancer function, contributing to chromatin status and enhancer activity. Our results provides strong evidence that efficient elncRNA splicing contributes to enhancer activity genome-wide.
Collapse
Affiliation(s)
- Jennifer Yihong Tan
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- * E-mail: (JYT); (ACM)
| | - Ana Claudia Marques
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- * E-mail: (JYT); (ACM)
| |
Collapse
|
16
|
Giaretta A. Stochasticity in transcriptional, splicing and translational regulations in time and frequency domains. Biosystems 2022; 212:104595. [DOI: 10.1016/j.biosystems.2021.104595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 11/02/2022]
|
17
|
Dankó B, Szikora P, Pór T, Szeifert A, Sebestyén E. SplicingFactory-splicing diversity analysis for transcriptome data. Bioinformatics 2021; 38:384-390. [PMID: 34499147 PMCID: PMC8722757 DOI: 10.1093/bioinformatics/btab648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Alternative splicing contributes to the diversity of RNA found in biological samples. Current tools investigating patterns of alternative splicing check for coordinated changes in the expression or relative ratio of RNA isoforms where specific isoforms are up- or down-regulated in a condition. However, the molecular process of splicing is stochastic and changes in RNA isoform diversity for a gene might arise between samples or conditions. A specific condition can be dominated by a single isoform, while multiple isoforms with similar expression levels can be present in a different condition. These changes might be the result of mutations, drug treatments or differences in the cellular or tissue environment. Here, we present a tool for the characterization and analysis of RNA isoform diversity using isoform level expression measurements. RESULTS We developed an R package called SplicingFactory, to calculate various RNA isoform diversity metrics, and compare them across conditions. Using the package, we tested the effect of RNA-seq quantification tools, quantification uncertainty, gene expression levels and isoform numbers on the isoform diversity calculation. We analyzed a set of CD34+ hematopoietic stem cells and myelodysplastic syndrome samples and found a set of genes whose isoform diversity change is associated with SF3B1 mutations. AVAILABILITY AND IMPLEMENTATION The SplicingFactory package is freely available under the GPL-3.0 license from Bioconductor for the Windows, MacOS and Linux operating systems (https://www.bioconductor.org/packages/release/bioc/html/SplicingFactory.html). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Benedek Dankó
- Department of Genetics, Eötvös Loránd University, Budapest H-1053, Hungary
| | - Péter Szikora
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest H-1085, Hungary
| | - Tamás Pór
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest H-1085, Hungary
| | - Alexa Szeifert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest H-1083, Hungary
| | | |
Collapse
|
18
|
Dasari K, Somarelli JA, Kumar S, Townsend JP. The somatic molecular evolution of cancer: Mutation, selection, and epistasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:56-65. [PMID: 34364910 DOI: 10.1016/j.pbiomolbio.2021.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Cancer progression has been attributed to somatic changes in single-nucleotide variants, copy-number aberrations, loss of heterozygosity, chromosomal instability, epistatic interactions, and the tumor microenvironment. It is not entirely clear which of these changes are essential and which are ancillary to cancer. The dynamic nature of cancer evolution in a patient can be illuminated using several concepts and tools from classical evolutionary biology. Neutral mutation rates in cancer cells are calculable from genomic data such as synonymous mutations, and selective pressures are calculable from rates of fixation occurring beyond the expectation by neutral mutation and drift. However, these cancer effect sizes of mutations are complicated by epistatic interactions that can determine the likely sequence of gene mutations. In turn, longitudinal phylogenetic analyses of somatic cancer progression offer an opportunity to identify key moments in cancer evolution, relating the timing of driver mutations to corresponding landmarks in the clinical timeline. These analyses reveal temporal aspects of genetic and phenotypic change during tumorigenesis and across clinical timescales. Using a related framework, clonal deconvolution, physical locations of clones, and their phylogenetic relations can be used to infer tumor migration histories. Additionally, genetic interactions with the tumor microenvironment can be analyzed with longstanding approaches applied to organismal genotype-by-environment interactions. Fitness landscapes for cancer evolution relating to genotype, phenotype, and environment could enable more accurate, personalized therapeutic strategies. An understanding of the trajectories underlying the evolution of neoplasms, primary, and metastatic tumors promises fundamental advances toward accurate and personalized predictions of therapeutic response.
Collapse
Affiliation(s)
| | | | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, and Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Jeffrey P Townsend
- Yale College, New Haven, CT, USA; Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA; Yale Cancer Center, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Barile M, Imaz-Rosshandler I, Inzani I, Ghazanfar S, Nichols J, Marioni JC, Guibentif C, Göttgens B. Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation. Genome Biol 2021; 22:197. [PMID: 34225769 PMCID: PMC8258993 DOI: 10.1186/s13059-021-02414-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Single-cell technologies are transforming biomedical research, including the recent demonstration that unspliced pre-mRNA present in single-cell RNA-Seq permits prediction of future expression states. Here we apply this RNA velocity concept to an extended timecourse dataset covering mouse gastrulation and early organogenesis. RESULTS Intriguingly, RNA velocity correctly identifies epiblast cells as the starting point, but several trajectory predictions at later stages are inconsistent with both real-time ordering and existing knowledge. The most striking discrepancy concerns red blood cell maturation, with velocity-inferred trajectories opposing the true differentiation path. Investigating the underlying causes reveals a group of genes with a coordinated step-change in transcription, thus violating the assumptions behind current velocity analysis suites, which do not accommodate time-dependent changes in expression dynamics. Using scRNA-Seq analysis of chimeric mouse embryos lacking the major erythroid regulator Gata1, we show that genes with the step-changes in expression dynamics during erythroid differentiation fail to be upregulated in the mutant cells, thus underscoring the coordination of modulating transcription rate along a differentiation trajectory. In addition to the expected block in erythroid maturation, the Gata1-chimera dataset reveals induction of PU.1 and expansion of megakaryocyte progenitors. Finally, we show that erythropoiesis in human fetal liver is similarly characterized by a coordinated step-change in gene expression. CONCLUSIONS By identifying a limitation of the current velocity framework coupled with in vivo analysis of mutant cells, we reveal a coordinated step-change in gene expression kinetics during erythropoiesis, with likely implications for many other differentiation processes.
Collapse
Affiliation(s)
- Melania Barile
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| | - Isabella Inzani
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Cambridge, CB2 0QQ UK
| | - Shila Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
| | - Jennifer Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY UK
| | - John C. Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, CB10 1SD UK
| | - Carolina Guibentif
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AW UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW UK
| |
Collapse
|
20
|
Cheng C, Liu L, Bao Y, Yi J, Quan W, Xue Y, Sun L, Zhang Y. SUVA: splicing site usage variation analysis from RNA-seq data reveals highly conserved complex splicing biomarkers in liver cancer. RNA Biol 2021; 18:157-171. [PMID: 34152934 DOI: 10.1080/15476286.2021.1940037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most of the current alternative splicing (AS) analysis tools are powerless to analyse complex splicing. To address this, we developed SUVA (Splice sites Usage Variation Analysis) that decomposes complex splicing events into five types of splice junction pairs. By analysing real and simulated data, SUVA showed higher sensitivity and accuracy in detecting AS events than the compared methods. Notably, SUVA detected extensive complex AS events and screened out 69 highly conserved and dominant AS events associated with cancer. The cancer-associated complex AS events in FN1 and the co-regulated RNA-binding proteins were significantly correlated with patient survival.
Collapse
Affiliation(s)
- Chao Cheng
- ABLife BioBigData Institute, Wuhan, Hubei China.,Center for Genome Analysis, ABLife Inc., Wuhan, Hubei China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Weili Quan
- ABLife BioBigData Institute, Wuhan, Hubei China
| | - Yaqiang Xue
- ABLife BioBigData Institute, Wuhan, Hubei China
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, Hubei China.,Center for Genome Analysis, ABLife Inc., Wuhan, Hubei China
| |
Collapse
|
21
|
Bludau I, Frank M, Dörig C, Cai Y, Heusel M, Rosenberger G, Picotti P, Collins BC, Röst H, Aebersold R. Systematic detection of functional proteoform groups from bottom-up proteomic datasets. Nat Commun 2021; 12:3810. [PMID: 34155216 PMCID: PMC8217233 DOI: 10.1038/s41467-021-24030-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
To a large extent functional diversity in cells is achieved by the expansion of molecular complexity beyond that of the coding genome. Various processes create multiple distinct but related proteins per coding gene - so-called proteoforms - that expand the functional capacity of a cell. Evaluating proteoforms from classical bottom-up proteomics datasets, where peptides instead of intact proteoforms are measured, has remained difficult. Here we present COPF, a tool for COrrelation-based functional ProteoForm assessment in bottom-up proteomics data. It leverages the concept of peptide correlation analysis to systematically assign peptides to co-varying proteoform groups. We show applications of COPF to protein complex co-fractionation data as well as to more typical protein abundance vs. sample data matrices, demonstrating the systematic detection of assembly- and tissue-specific proteoform groups, respectively, in either dataset. We envision that the presented approach lays the foundation for a systematic assessment of proteoforms and their functional implications directly from bottom-up proteomic datasets.
Collapse
Affiliation(s)
- Isabell Bludau
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Max Frank
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Christian Dörig
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Yujia Cai
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Moritz Heusel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Division of Infection Medicine (BMC), Department of Clinical Sciences, Lund University, Lund, Sweden
| | - George Rosenberger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Columbia University, New York, NY, USA
| | - Paola Picotti
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Hannes Röst
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada.
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H. Alternative splicing during mammalian organ development. Nat Genet 2021; 53:925-934. [PMID: 33941934 PMCID: PMC8187152 DOI: 10.1038/s41588-021-00851-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022]
Abstract
Alternative splicing (AS) is pervasive in mammalian genomes, yet cross-species comparisons have been largely restricted to adult tissues and the functionality of most AS events remains unclear. We assessed AS patterns across pre- and postnatal development of seven organs in six mammals and a bird. Our analyses revealed that developmentally dynamic AS events, which are especially prevalent in the brain, are substantially more conserved than nondynamic ones. Cassette exons with increasing inclusion frequencies during development show the strongest signals of conserved and regulated AS. Newly emerged cassette exons are typically incorporated late in testis development, but those retained during evolution are predominantly brain specific. Our work suggests that an intricate interplay of programs controlling gene expression levels and AS is fundamental to organ development, especially for the brain and heart. In these regulatory networks, AS affords substantial functional diversification of genes through the generation of tissue- and time-specific isoforms from broadly expressed genes.
Collapse
Affiliation(s)
- Pavel V Mazin
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Philipp Khaitovich
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Margarida Cardoso-Moreira
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
- Evolutionary Developmental Biology Laboratory, The Francis Crick Institute, London, UK.
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
23
|
Pozo F, Martinez-Gomez L, Walsh TA, Rodriguez JM, Di Domenico T, Abascal F, Vazquez J, Tress ML. Assessing the functional relevance of splice isoforms. NAR Genom Bioinform 2021; 3:lqab044. [PMID: 34046593 PMCID: PMC8140736 DOI: 10.1093/nargab/lqab044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Alternative splicing of messenger RNA can generate an array of mature transcripts, but it is not clear how many go on to produce functionally relevant protein isoforms. There is only limited evidence for alternative proteins in proteomics analyses and data from population genetic variation studies indicate that most alternative exons are evolving neutrally. Determining which transcripts produce biologically important isoforms is key to understanding isoform function and to interpreting the real impact of somatic mutations and germline variations. Here we have developed a method, TRIFID, to classify the functional importance of splice isoforms. TRIFID was trained on isoforms detected in large-scale proteomics analyses and distinguishes these biologically important splice isoforms with high confidence. Isoforms predicted as functionally important by the algorithm had measurable cross species conservation and significantly fewer broken functional domains. Additionally, exons that code for these functionally important protein isoforms are under purifying selection, while exons from low scoring transcripts largely appear to be evolving neutrally. TRIFID has been developed for the human genome, but it could in principle be applied to other well-annotated species. We believe that this method will generate valuable insights into the cellular importance of alternative splicing.
Collapse
Affiliation(s)
- Fernando Pozo
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Martinez-Gomez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thomas A Walsh
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - José Manuel Rodriguez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Tomas Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Federico Abascal
- Somatic Evolution Group, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Jesús Vazquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michael L Tress
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
24
|
Findley AS, Monziani A, Richards AL, Rhodes K, Ward MC, Kalita CA, Alazizi A, Pazokitoroudi A, Sankararaman S, Wen X, Lanfear DE, Pique-Regi R, Gilad Y, Luca F. Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions. eLife 2021; 10:e67077. [PMID: 33988505 PMCID: PMC8248987 DOI: 10.7554/elife.67077] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic effects on gene expression and splicing can be modulated by cellular and environmental factors; yet interactions between genotypes, cell type, and treatment have not been comprehensively studied together. We used an induced pluripotent stem cell system to study multiple cell types derived from the same individuals and exposed them to a large panel of treatments. Cellular responses involved different genes and pathways for gene expression and splicing and were highly variable across contexts. For thousands of genes, we identified variable allelic expression across contexts and characterized different types of gene-environment interactions, many of which are associated with complex traits. Promoter functional and evolutionary features distinguished genes with elevated allelic imbalance mean and variance. On average, half of the genes with dynamic regulatory interactions were missed by large eQTL mapping studies, indicating the importance of exploring multiple treatments to reveal previously unrecognized regulatory loci that may be important for disease.
Collapse
Affiliation(s)
- Anthony S Findley
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Allison L Richards
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Katherine Rhodes
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Michelle C Ward
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Cynthia A Kalita
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | | | - Sriram Sankararaman
- Department of Computer Science, UCLALos AngelesUnited States
- Department of Human Genetics, UCLALos AngelesUnited States
- Department of Computational Medicine, UCLALos AngelesUnited States
| | - Xiaoquan Wen
- Department of Biostatistics, University of MichiganAnn ArborUnited States
| | - David E Lanfear
- Center for Individualized and Genomic Medicine Research, Henry Ford HospitalDetroitUnited States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State UniversityDetroitUnited States
| | - Yoav Gilad
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State UniversityDetroitUnited States
| |
Collapse
|
25
|
Kawalerski RR, Leach SD, Escobar-Hoyos LF. Pancreatic cancer driver mutations are targetable through distant alternative RNA splicing dependencies. Oncotarget 2021; 12:525-533. [PMID: 33796221 PMCID: PMC7984828 DOI: 10.18632/oncotarget.27901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer, has one of the highest case fatality rates of all known solid malignancies. Over the past decade, several landmark studies have established mutations in KRAS and TP53 as the predominant drivers of PDAC pathogenesis and therapeutic resistance, though treatment options for PDACs and other tumors with these mutations remain extremely limited. Hampered by late tumor discovery and diagnosis, clinicians are often faced with using aggressive and non-specific chemotherapies to treat advanced disease. Clinically meaningful responses to targeted therapy are often limited to the minority of patients with susceptible PDACs, and immunotherapies have routinely encountered roadblocks in effective activation of tumor-infiltrating immune cells. Alternative RNA splicing (ARS) has recently gained traction in the PDAC literature as a field from which we may better understand and treat complex mechanisms of PDAC initiation, progression, and therapeutic resistance. Here, we review PDAC pathogenesis as it relates to fundamental ARS biology, with an extension to implications for PDAC patient clinical management.
Collapse
Affiliation(s)
- Ryan R. Kawalerski
- Medical Scientist Training Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven D. Leach
- Departments of Molecular and Systems Biology, Surgery, and Medicine, Dartmouth Geisel School of Medicine and Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - Luisa F. Escobar-Hoyos
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06513, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06513, USA
- Department of Pathology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
26
|
Wagner RE, Frye M. Noncanonical functions of the serine-arginine-rich splicing factor (SR) family of proteins in development and disease. Bioessays 2021; 43:e2000242. [PMID: 33554347 DOI: 10.1002/bies.202000242] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Members of the serine/arginine (SR)-rich protein family of splicing factors play versatile roles in RNA processing steps and are often essential for normal development. Dynamic changes in RNA processing and turnover allow fast cellular adaptions to a changing microenvironment and thereby closely cooperate with transcription factor networks that establish cell identity within tissues. SR proteins play fundamental roles in the processing of pre-mRNAs by regulating constitutive and alternative splicing. More recently, SR proteins have also been implicated in other aspects of RNA metabolism such as mRNA stability, transport and translation. The- emerging noncanonical functions highlight the multifaceted functions of these SR proteins and identify them as important coordinators of gene expression programmes. Accordingly, most SR proteins are essential for normal cell function and their misregulation contributes to human diseases such as cancer.
Collapse
Affiliation(s)
- Rebecca E Wagner
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Michaela Frye
- German Cancer Research Center - Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Abstract
Males and females of the same species share the majority of their genomes, yet they are frequently exposed to conflicting selection pressures. Gene regulation is widely assumed to resolve these conflicting sex-specific selection pressures, and although there has been considerable focus on elucidating the role of gene expression level in sex-specific adaptation, other regulatory mechanisms have been overlooked. Alternative splicing enables different transcripts to be generated from the same gene, meaning that exons which have sex-specific beneficial effects can in theory be retained in the gene product, whereas exons with detrimental effects can be skipped. However, at present, little is known about how sex-specific selection acts on broad patterns of alternative splicing. Here, we investigate alternative splicing across males and females of multiple bird species. We identify hundreds of genes that have sex-specific patterns of splicing and establish that sex differences in splicing are correlated with phenotypic sex differences. Additionally, we find that alternatively spliced genes have evolved rapidly as a result of sex-specific selection and suggest that sex differences in splicing offer another route to sex-specific adaptation when gene expression level changes are limited by functional constraints. Overall, our results shed light on how a diverse transcriptional framework can give rise to the evolution of phenotypic sexual dimorphism.
Collapse
Affiliation(s)
- Thea F Rogers
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Daniela H Palmer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Plotz G, Lopez-Garcia LA, Brieger A, Zeuzem S, Biondi RM. Alternative AKT2 splicing produces protein lacking the hydrophobic motif regulatory region. PLoS One 2020; 15:e0242819. [PMID: 33253205 PMCID: PMC7703976 DOI: 10.1371/journal.pone.0242819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Three AKT serine/threonine kinase isoforms (AKT1/AKT2/AKT3) mediate proliferation, metabolism, differentiation and anti-apoptotic signals. AKT isoforms are activated downstream of PI3-kinase and also by PI3-kinase independent mechanisms. Mutations in the lipid phosphatase PTEN and PI3-kinase that increase PIP3 levels increase AKT signaling in a large proportion of human cancers. AKT and other AGC kinases possess a regulatory mechanism that relies on a conserved hydrophobic motif (HM) C-terminal to the catalytic core. In AKT, the HM is contiguous to the serine 473 and two other newly discovered (serine 477 and tyrosine 479) regulatory phosphorylation sites. In AKT genes, this regulatory HM region is encoded in the final exon. We identified a splice variant of AKT2 (AKT2-13a), which contains an alternative final exon and lacks the HM regulatory site. We validated the presence of mRNA for this AKT2-13a splice variant in different tissues, and the presence of AKT2-13a protein in extracts from HEK293 cells. When overexpressed in HEK293 cells, AKT2-13a is phosphorylated at the activation loop and at the zipper/turn motif phosphorylation sites but has reduced specific activity. Analysis of the human transcriptome corresponding to other AGC kinases revealed that all three AKT isoforms express alternative transcripts lacking the HM regulatory motif, which was not the case for SGK1-3, S6K1-2, and classical, novel and atypical PKC isoforms. The transcripts of splice variants of Akt1-3 excluding the HM regulatory region could lead to expression of deregulated forms of AKT.
Collapse
Affiliation(s)
- Guido Plotz
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinik Frankfurt, Frankfurt, Germany
| | - Laura A Lopez-Garcia
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Brieger
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinik Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinik Frankfurt, Frankfurt, Germany
| | - Ricardo M Biondi
- Biomedizinisches Forschungslabor, Medizinische Klinik 1, Universitätsklinik Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| |
Collapse
|
29
|
Wegner KM, Lokmer A, John U. Genomic and Transcriptomic Differentiation of Independent Invasions of the Pacific Oyster Crassostrea gigas. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.567049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
30
|
Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, Cloos J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat 2020; 53:100728. [PMID: 33070093 DOI: 10.1016/j.drup.2020.100728] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gerrit Jansen
- Amsterdam Immunology and Rheumatology Center, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
31
|
Lee D, Park Y, Kim S. Towards multi-omics characterization of tumor heterogeneity: a comprehensive review of statistical and machine learning approaches. Brief Bioinform 2020; 22:5896573. [PMID: 34020548 DOI: 10.1093/bib/bbaa188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
The multi-omics molecular characterization of cancer opened a new horizon for our understanding of cancer biology and therapeutic strategies. However, a tumor biopsy comprises diverse types of cells limited not only to cancerous cells but also to tumor microenvironmental cells and adjacent normal cells. This heterogeneity is a major confounding factor that hampers a robust and reproducible bioinformatic analysis for biomarker identification using multi-omics profiles. Besides, the heterogeneity itself has been recognized over the years for its significant prognostic values in some cancer types, thus offering another promising avenue for therapeutic intervention. A number of computational approaches to unravel such heterogeneity from high-throughput molecular profiles of a tumor sample have been proposed, but most of them rely on the data from an individual omics layer. Since the heterogeneity of cells is widely distributed across multi-omics layers, methods based on an individual layer can only partially characterize the heterogeneous admixture of cells. To help facilitate further development of the methodologies that synchronously account for several multi-omics profiles, we wrote a comprehensive review of diverse approaches to characterize tumor heterogeneity based on three different omics layers: genome, epigenome and transcriptome. As a result, this review can be useful for the analysis of multi-omics profiles produced by many large-scale consortia. Contact:sunkim.bioinfo@snu.ac.kr.
Collapse
Affiliation(s)
- Dohoon Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Youngjune Park
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| | - Sun Kim
- Bioinformatics Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
32
|
Bludau I, Aebersold R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat Rev Mol Cell Biol 2020; 21:327-340. [PMID: 32235894 DOI: 10.1038/s41580-020-0231-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The ability of living systems to adapt to changing conditions originates from their capacity to change their molecular constitution. This is achieved by multiple mechanisms that modulate the quantitative composition and the diversity of the molecular inventory. Molecular diversification is particularly pronounced on the proteome level, at which multiple proteoforms derived from the same gene can in turn combinatorially form different protein complexes, thus expanding the repertoire of functional modules in the cell. The study of molecular and modular diversity and their involvement in responses to changing conditions has only recently become possible through the development of new 'omics'-based screening technologies. This Review explores our current knowledge of the mechanisms regulating functional diversification along the axis of gene expression, with a focus on the proteome and interactome. We explore the interdependence between different molecular levels and how this contributes to functional diversity. Finally, we highlight several recent techniques for studying molecular diversity, with specific focus on mass spectrometry-based analysis of the proteome and its organization into functional modules, and examine future directions for this rapidly growing field.
Collapse
Affiliation(s)
- Isabell Bludau
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland. .,Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
33
|
Giri R, Papadopoulos DK, Posadas DM, Potluri HK, Tomancak P, Mani M, Carthew RW. Ordered patterning of the sensory system is susceptible to stochastic features of gene expression. eLife 2020; 9:e53638. [PMID: 32101167 PMCID: PMC7064346 DOI: 10.7554/elife.53638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/25/2020] [Indexed: 01/23/2023] Open
Abstract
Sensory neuron numbers and positions are precisely organized to accurately map environmental signals in the brain. This precision emerges from biochemical processes within and between cells that are inherently stochastic. We investigated impact of stochastic gene expression on pattern formation, focusing on senseless (sens), a key determinant of sensory fate in Drosophila. Perturbing microRNA regulation or genomic location of sens produced distinct noise signatures. Noise was greatly enhanced when both sens alleles were present in homologous loci such that each allele was regulated in trans by the other allele. This led to disordered patterning. In contrast, loss of microRNA repression of sens increased protein abundance but not sensory pattern disorder. This suggests that gene expression stochasticity is a critical feature that must be constrained during development to allow rapid yet accurate cell fate resolution.
Collapse
Affiliation(s)
- Ritika Giri
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| | | | - Diana M Posadas
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hemanth K Potluri
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Pavel Tomancak
- Max Planck Institute of Cell Biology and GeneticsDresdenGermany
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
34
|
Abstract
High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.
Collapse
|
35
|
Annalora AJ, Marcus CB, Iversen PL. Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism. Drug Metab Dispos 2020; 48:272-287. [DOI: 10.1124/dmd.119.089102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022] Open
|
36
|
Kim M, Lee S, Lim S, Kim S. SpliceHetero: An information theoretic approach for measuring spliceomic intratumor heterogeneity from bulk tumor RNA-seq. PLoS One 2019; 14:e0223520. [PMID: 31644551 PMCID: PMC6808416 DOI: 10.1371/journal.pone.0223520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/23/2019] [Indexed: 01/19/2023] Open
Abstract
Motivation Intratumor heterogeneity (ITH) represents the diversity of cell populations that make up cancer tissue. The level of ITH in a tumor is usually measured by a genomic variation profile, such as copy number variation and somatic mutation. However, a recent study has identified ITH at the transcriptome level and suggested that ITH at gene expression levels is useful for predicting prognosis. Measuring ITH levels at the spliceome level is a natural extension. There are serious technical challenges in measuring spliceomic ITH (sITH) from bulk tumor RNA sequencing (RNA-seq) due to the complex splicing patterns. Results We propose an information-theoretic method to measure the sITH of bulk tumors to overcome the above challenges. This method has been extensively tested in experiments using synthetic data, xenograft tumor data, and TCGA pan-cancer data. As a result, we showed that sITH is closely related to cancer progression and clonal heterogeneity, along with clinically significant features such as cancer stage, survival outcome and PAM50 subtype. As far as we know, it is the first study to define ITH at the spliceome level. This method can greatly improve the understanding of cancer spliceome and has great potential as a diagnostic and prognostic tool.
Collapse
Affiliation(s)
- Minsu Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Sangseon Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
| | - Sangsoo Lim
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul, 08826, Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Korea
- Bioinformatics Institute, Seoul National University, Seoul, 08826, Korea
- * E-mail:
| |
Collapse
|
37
|
Hatje K, Mühlhausen S, Simm D, Kollmar M. The Protein-Coding Human Genome: Annotating High-Hanging Fruits. Bioessays 2019; 41:e1900066. [PMID: 31544971 DOI: 10.1002/bies.201900066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/07/2019] [Indexed: 12/19/2022]
Abstract
The major transcript variants of human protein-coding genes are annotated to a certain degree of accuracy combining manual curation, transcript data, and proteomics evidence. However, there is considerable disagreement on the annotation of about 2000 genes-they can be protein-coding, noncoding, or pseudogenes-and on the annotation of most of the predicted alternative transcripts. Pure transcriptome mapping approaches seem to be limited in discriminating functional expression from noise. These limitations have partially been overcome by dedicated algorithms to detect alternative spliced micro-exons and wobble splice variants. Recently, knowledge about splice mechanism and protein structure are incorporated into an algorithm to predict neighboring homologous exons, often spliced in a mutually exclusive manner. Predicted exons are evaluated by transcript data, structural compatibility, and evolutionary conservation, revealing hundreds of novel coding exons and splice mechanism re-assignments. The emerging human pan-genome is necessitating distinctive annotations incorporating differences between individuals and between populations.
Collapse
Affiliation(s)
- Klas Hatje
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstr. 124, 4070, Basel, Switzerland
| | - Stefanie Mühlhausen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Dominic Simm
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Goldschmidtstr. 7, 37077, Göttingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
38
|
Mudge JM, Jungreis I, Hunt T, Gonzalez JM, Wright JC, Kay M, Davidson C, Fitzgerald S, Seal R, Tweedie S, He L, Waterhouse RM, Li Y, Bruford E, Choudhary JS, Frankish A, Kellis M. Discovery of high-confidence human protein-coding genes and exons by whole-genome PhyloCSF helps elucidate 118 GWAS loci. Genome Res 2019; 29:2073-2087. [PMID: 31537640 PMCID: PMC6886504 DOI: 10.1101/gr.246462.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
The most widely appreciated role of DNA is to encode protein, yet the exact portion of the human genome that is translated remains to be ascertained. We previously developed PhyloCSF, a widely used tool to identify evolutionary signatures of protein-coding regions using multispecies genome alignments. Here, we present the first whole-genome PhyloCSF prediction tracks for human, mouse, chicken, fly, worm, and mosquito. We develop a workflow that uses machine learning to predict novel conserved protein-coding regions and efficiently guide their manual curation. We analyze more than 1000 high-scoring human PhyloCSF regions and confidently add 144 conserved protein-coding genes to the GENCODE gene set, as well as additional coding regions within 236 previously annotated protein-coding genes, and 169 pseudogenes, most of them disabled after primates diverged. The majority of these represent new discoveries, including 70 previously undetected protein-coding genes. The novel coding genes are additionally supported by single-nucleotide variant evidence indicative of continued purifying selection in the human lineage, coding-exon splicing evidence from new GENCODE transcripts using next-generation transcriptomic data sets, and mass spectrometry evidence of translation for several new genes. Our discoveries required simultaneous comparative annotation of other vertebrate genomes, which we show is essential to remove spurious ORFs and to distinguish coding from pseudogene regions. Our new coding regions help elucidate disease-associated regions by revealing that 118 GWAS variants previously thought to be noncoding are in fact protein altering. Altogether, our PhyloCSF data sets and algorithms will help researchers seeking to interpret these genomes, while our new annotations present exciting loci for further experimental characterization.
Collapse
Affiliation(s)
- Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Jose Manuel Gonzalez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - James C Wright
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Mike Kay
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stephen Fitzgerald
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Ruth Seal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom
| | - Susan Tweedie
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Liang He
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Yue Li
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Elspeth Bruford
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge CB2 0PT, United Kingdom
| | - Jyoti S Choudhary
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
39
|
de Jong TV, Moshkin YM, Guryev V. Gene expression variability: the other dimension in transcriptome analysis. Physiol Genomics 2019; 51:145-158. [DOI: 10.1152/physiolgenomics.00128.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transcriptome sequencing is a powerful technique to study molecular changes that underlie the differences in physiological conditions and disease progression. A typical question that is posed in such studies is finding genes with significant changes between sample groups. In this respect expression variability is regarded as a nuisance factor that is primarily of technical origin and complicates the data analysis. However, it is becoming apparent that the biological variation in gene expression might be an important molecular phenotype that can affect physiological parameters. In this review we explore the recent literature on technical and biological variability in gene expression, sources of expression variability, (epi-)genetic hallmarks, and evolutionary constraints in genes with robust and variable gene expression. We provide an overview of recent findings on effects of external cues, such as diet and aging, on expression variability and on other biological phenomena that can be linked to it. We discuss metrics and tools that were developed for quantification of expression variability and highlight the importance of future studies in this direction. To assist the adoption of expression variability analysis, we also provide a detailed description and computer code, which can easily be utilized by other researchers. We also provide a reanalysis of recently published data to highlight the value of the analysis method.
Collapse
Affiliation(s)
- Tristan V. de Jong
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Yuri M. Moshkin
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Abstract
Clonal hematopoiesis is a common, age-related process in which a somatically mutated hematopoietic precursor gives rise to a genetically distinct subpopulation in the blood. This phenomenon has been observed in populations across the globe and, while virtually non-existent in children is estimated to affect >10% of the 70-and-older age group. The mutations are thought to occur in stem cells, which makes them pre-cancerous, and precursors to cancer stem cells. Many of the genes most commonly mutated in clonal hematopoiesis are also recurrently mutated in leukemia, genes such as DNMT3A, TET2, ASXL1, JAK2, and TP53. However, between 40% and 60% of cases arise from the accumulation of what appear to be random mutations outside of known driver genes. Clonal hematopoiesis is frequently present in otherwise healthy individuals and may persist for many years. Though largely asymptomatic, carrying these somatic mutations confers a small but significantly increased risk of leukemic transformation, affecting 0.5-1% carriers per year; although most genes confer an increased risk of transformation, mutations in TP53 and U2AF1 appear to carry a particularly high risk for transformation. Additionally, a patient's history of prior treatment with cytotoxic chemotherapy and/or radiation are correlated with the development of clonal hematopoiesis; in the setting of chemotherapy treatment of solid tumors, hematopoietic mutations in TP53 and PPM1D appear to contribute to outgrowth of clones that may lead to subsequent malignancy. The presence of a clone also imparts a significantly increased risk of cardiovascular disease, which in some cases appears to be due to increased inflammation and atherosclerosis. Clonal hematopoiesis is correlated with several other diseases as well, including diabetes, chronic pulmonary disease, and aplastic anemia, with other associations probably yet to be uncovered.
Collapse
Affiliation(s)
- Alexander J Silver
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
41
|
Annalora AJ, Jozic M, Marcus CB, Iversen PL. Alternative splicing of the vitamin D receptor modulates target gene expression and promotes ligand-independent functions. Toxicol Appl Pharmacol 2018; 364:55-67. [PMID: 30552932 DOI: 10.1016/j.taap.2018.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
Alternative splicing modulates gene function by creating splice variants with alternate functions or non-coding RNA activity. Naturally occurring variants of nuclear receptor (NR) genes with dominant negative or gain-of-function phenotypes have been documented, but their cellular roles, regulation, and responsiveness to environmental stress or disease remain unevaluated. Informed by observations that class I androgen and estrogen receptor variants display ligand-independent signaling in human cancer tissues, we questioned whether the function of class II NRs, like the vitamin D receptor (VDR), would also respond to alternative splicing regulation. Artificial VDR constructs lacking exon 3 (Dex3-VDR), encoding part of the DNA binding domain (DBD), and exon 8 (Dex8-VDR), encoding part of the ligand binding domain (LBD), were transiently transfected into DU-145 cells and stably-integrated into Caco-2 cells to study their effect on gene expression and cell viability. Changes in VDR promoter signaling were monitored by the expression of target genes (e.g. CYP24A1, CYP3A4 and CYP3A5). Ligand-independent VDR signaling was observed in variants lacking exon 8, and a significant loss of gene suppressor function was documented for variants lacking exon 3. The gain-of-function behavior of the Dex8-VDR variant was recapitulated in vitro using antisense oligonucleotides (ASO) that induce the skipping of exon 8 in wild-type VDR. ASO targeting the splice acceptor site of exon 8 significantly stimulated ligand-independent VDR reporter activity and the induction of CYP24A1 above controls. These results demonstrate how alternative splicing can re-program NR gene function, highlighting novel mechanisms of toxicity and new opportunities for the use of splice-switching oligonucleotides (SSO) in precision medicine.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA.
| | - Marija Jozic
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA; LS Pharma, 884 Park St., Lebanon, OR 97355; USA
| |
Collapse
|
42
|
Jimenez M, Arechederra M, Ávila MA, Berasain C. Splicing alterations contributing to cancer hallmarks in the liver: central role of dedifferentiation and genome instability. Transl Gastroenterol Hepatol 2018; 3:84. [PMID: 30505971 DOI: 10.21037/tgh.2018.10.11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. HCCs are molecularly heterogeneous tumors, and this complexity is to a great extent responsible for their poor response to conventional and targeted therapies. In this review we summarize recent evidence indicating that imbalanced expression of mRNA splicing factors can be a relevant source for this heterogeneity. We also discuss how these alterations may play a driver role in hepatocarcinogenesis by impinging on the general hallmarks of cancer. Considering the natural history of HCC, we focused on two pathogenic features that are characteristic of liver tumors: chromosomal instability and phenotypic de-differentiation. We highlight mechanisms connecting splicing derangement with these two processes and the enabling capacities acquired by liver cells along their neoplastic transformation. A thorough understanding of the alterations in the splicing machinery may also help to identify new HCC biomarkers and to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Maddalen Jimenez
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
| | | | - Matías A Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| |
Collapse
|