1
|
D’Addabbo P, Cohen-Fultheim R, Twersky I, Fonzino A, Silvestris DA, Prakash A, Mazzacuva PL, Vizcaino JA, Green A, Sweeney B, Yates A, Lussi Y, Luo J, Martin MJ, Eisenberg E, Levanon EY, Pesole G, Picardi E. REDIportal: toward an integrated view of the A-to-I editing. Nucleic Acids Res 2025; 53:D233-D242. [PMID: 39588754 PMCID: PMC11701558 DOI: 10.1093/nar/gkae1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
A-to-I RNA editing is the most common non-transient epitranscriptome modification. It plays several roles in human physiology and has been linked to several disorders. Large-scale deep transcriptome sequencing has fostered the characterization of A-to-I editing at the single nucleotide level and the development of dedicated computational resources. REDIportal is a unique and specialized database collecting ∼16 million of putative A-to-I editing sites designed to face the current challenges of epitranscriptomics. Its running version has been enriched with sites from the TCGA project (using data from 31 studies). REDIportal provides an accurate, sustainable and accessible tool enriched with interconnections with widespread ELIXIR core resources such as Ensembl, RNAcentral, UniProt and PRIDE. Additionally, REDIportal now includes information regarding RNA editing in putative double-stranded RNAs, relevant for the immune-related roles of editing, as well as an extended catalog of recoding events. Finally, we report a reliability score per site calculated using a deep learning model trained using a huge collection of positive and negative instances. REDIportal is available at http://srv00.recas.ba.infn.it/atlas/.
Collapse
Affiliation(s)
- Pietro D’Addabbo
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Roni Cohen-Fultheim
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 52900, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Itamar Twersky
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 52900, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Adriano Fonzino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Domenico Alessandro Silvestris
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Ananth Prakash
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Pietro Luca Mazzacuva
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, via Amendola 122/O, 70126, Bari, Italy
| | - Juan Antonio Vizcaino
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Andrew Green
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Blake Sweeney
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Andy Yates
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Yvonne Lussi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Jie Luo
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Maria-Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Eli Eisenberg
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 699781, Israel
| | - Erez Y Levanon
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 52900, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, via Amendola 122/O, 70126, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, National Research Council, via Amendola 122/O, 70126, Bari, Italy
| |
Collapse
|
2
|
Zhou X, Liu H, Hou F, Zheng ZQ, Cao X, Wang Q, Jiang W. REMR: Identification of RNA Editing-mediated MiRNA Regulation in Cancers. Comput Struct Biotechnol J 2024; 23:3418-3429. [PMID: 39386942 PMCID: PMC11462282 DOI: 10.1016/j.csbj.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Dysregulation of adenosine-to-inosine (A-to-I) RNA editing has been implicated in cancer progression. However, a comprehensive understanding of how A-to-I RNA editing is incorporated into miRNA regulation to modulate gene expression in cancer remains unclear, given the lack of effective identification methods. To this end, we introduced an information theory-based algorithm named REMR to systematically identify 12,006 A-to-I RNA editing-mediated miRNA regulatory triplets (RNA editing sites, miRNAs, and genes) across ten major cancer types based on multi-omics profiling data from The Cancer Genome Atlas (TCGA). Through analyses of functional enrichment, transcriptional regulatory networks, and protein-protein interaction (PPI) networks, we showed that RNA editing-mediated miRNA regulation potentially affects critical cancer-related functions, such as apoptosis, cell cycle, drug resistance, and immunity. Furthermore, triplets can serve as biomarkers for classifying cancer subtypes with distinct prognoses or drug responses, highlighting the clinical relevance of such regulation. In addition, an online resource (http://www.jianglab.cn/REMR/) was constructed to support the convenient retrieval of our findings. In summary, our study systematically dissected the RNA editing-mediated miRNA regulations, thereby providing a valuable resource for understanding the mechanism of RNA editing as an epitranscriptomic regulator in cancer.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Haizhou Liu
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Fei Hou
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Zong-Qing Zheng
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350209, China
| | - Xinyu Cao
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
3
|
Yang Q, Li X. Pan-cancer analysis of ADAR1 with its prognostic relevance in low-grade glioma. Immunobiology 2024; 229:152855. [PMID: 39340957 DOI: 10.1016/j.imbio.2024.152855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
ADAR1, known as the primary enzyme for adenosine-to-inosine RNA editing, has recently been implicated in cancer development through both RNA editing-dependent and -independent pathways. These discoveries suggest that ADAR1's functions may extend beyond our current understanding. A pan-cancer analysis offers a unique opportunity to identify both common and distinct mechanisms across various cancers, thereby advancing personalized medicine. Low-grade glioma (LGG), characterized by a diverse group of tumor cells, presents a challenge in risk stratification, leading to significant variations in treatment approaches. Recently discovered molecular alterations in LGG have helped to refine the stratification of of these tumors and offered novel targets for predicting likely outcomes. This study aims to provide a detailed analysis of ADAR mRNA across multiple cancers, emphasizing its prognostic significance in LGG. We observed inconsistent mRNA and consistent protein expression patterns of ADAR1/ADAR in pan-cancer analyses that across tumor types. ADAR mRNA expression did not always correlate with ADAR1 protein expression. Nevertheless, the transcript levels correlated significantly with genetic alterations, tumor mutation burden, microsatellite instability, overall survival, recurrence-free survival, immune marker presence, immune infiltration, and the survival of patients undergoing immunotherapy in select cancers. Furthermore, ADAR and its top 50 associated genes were primarily involved in mRNA-related events, as identified through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Utilizing the Cox proportional hazards model, we developed a 3-gene signature (ADAR, HNRNPK, and SMG7), which effectively stratified patients into high- and low-risk groups, with high-risk patients exhibiting poorer overall survival, higher tumor grades, and a greater number of non-codeletions. Overall, this signature was inversely related to immune infiltration across cancers. Transcription factor SPI1 and miR-206, potential upstream regulators of the signature genes, were closely linked to patient survival in LGG. The promoter regions of these genes were hypermethylated, further associating them with patient outcomes. Additionally, these genes displayed consistent drug susceptibility patterns. In conclusion, our findings reveal multiple aspects of ADAR1's role in cancer and underscore its prognostic value in LGG, offering insights into potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qin Yang
- Puai Medical College, Shaoyang University, Shaoyang, Hunan, China.
| | - Xin Li
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
5
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Bortoletto E, Rosani U. Bioinformatics for Inosine: Tools and Approaches to Trace This Elusive RNA Modification. Genes (Basel) 2024; 15:996. [PMID: 39202357 PMCID: PMC11353476 DOI: 10.3390/genes15080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Inosine is a nucleotide resulting from the deamination of adenosine in RNA. This chemical modification process, known as RNA editing, is typically mediated by a family of double-stranded RNA binding proteins named Adenosine Deaminase Acting on dsRNA (ADAR). While the presence of ADAR orthologs has been traced throughout the evolution of metazoans, the existence and extension of RNA editing have been characterized in a more limited number of animals so far. Undoubtedly, ADAR-mediated RNA editing plays a vital role in physiology, organismal development and disease, making the understanding of the evolutionary conservation of this phenomenon pivotal to a deep characterization of relevant biological processes. However, the lack of direct high-throughput methods to reveal RNA modifications at single nucleotide resolution limited an extended investigation of RNA editing. Nowadays, these methods have been developed, and appropriate bioinformatic pipelines are required to fully exploit this data, which can complement existing approaches to detect ADAR editing. Here, we review the current literature on the "bioinformatics for inosine" subject and we discuss future research avenues in the field.
Collapse
Affiliation(s)
| | - Umberto Rosani
- Department of Biology, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
7
|
Kaur R, Wetmore SD. Is Metal Stabilization of the Leaving Group Required or Can Lysine Facilitate Phosphodiester Bond Cleavage in Nucleic Acids? A Computational Study of EndoV. J Chem Inf Model 2024; 64:944-959. [PMID: 38253321 DOI: 10.1021/acs.jcim.3c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Endonuclease V (EndoV) is a single-metal-dependent enzyme that repairs deaminated DNA nucleobases in cells by cleaving the phosphodiester bond, and this enzyme has proven to be a powerful tool in biotechnology and medicine. The catalytic mechanism used by EndoV must be understood to design new disease detection and therapeutic solutions and further exploit the enzyme in interdisciplinary applications. This study has used a mixed molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) approach to compare eight distinct catalytic pathways and provides the first proposed mechanism for bacterial EndoV. The calculations demonstrate that mechanisms involving either direct or indirect metal coordination to the leaving group of the substrate previously proposed for other nucleases are unlikely for EndoV, regardless of the general base (histidine, aspartate, and substrate phosphate moiety). Instead, distinct catalytic pathways are characterized for EndoV that involve K139 stabilizing the leaving group, a metal-coordinated water stabilizing the transition structure, and either H214 or a substrate phosphate group activating the water nucleophile. In silico K139A and H214A mutational results support the newly proposed roles of these residues. Although this is a previously unseen combination of general base, general acid, and metal-binding architecture for a one-metal-dependent endonuclease, our proposed catalytic mechanisms are fully consistent with experimental kinetic, structural, and mutational data. In addition to substantiating a growing body of literature, suggesting that one metal is enough to catalyze P-O bond cleavage in nucleic acids, this new fundamental understanding of the catalytic function will promote the exploration of new and improved applications of EndoV.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
8
|
Wang Y, Zhao J, Wu J, Liu J, Wang Y, Xu T, Zhang M, Zhuang M, Zou L, Sun W, Han P, Song X. Genome-wide perturbations of A-to-I RNA editing dysregulated circular RNAs promoting the development of cervical cancer. Comput Biol Med 2023; 166:107546. [PMID: 37826952 DOI: 10.1016/j.compbiomed.2023.107546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Cervical cancer, the second most common female malignant tumor, seriously threatens women's health and lives. Despite the availability of the HPV vaccine, effective treatment options for cervical cancer are still lacking. New research perspectives now clarify that RNA editing dysregulation and changes in circRNA expression are jointly involved in disease pathogenesis, so molecular changes associated with circRNA and RNA editing may provide clues for the development of new therapeutic strategies for cervical cancer. In this study, we designed a series of pipelines to identify and analyze dysregulated RNA editing events in circRNAs. Our findings indicate a decrease in A-to-I RNA editing levels in cervical cancer compared to normal tissues, and editing may influence the back-splicing process of circRNAs through structural modifications of Alu elements. Moreover, our research reveals that RNA editing could modulate circRNA biogenesis by influencing RNA binding protein (RBP) binding on a transcriptome-wide scale, as well as influence the expression and coding potential of circRNAs. Importantly, we identified three RNA editing sites that could serve as potential biomarkers. In summary, our study presents a comprehensive landscape of RNA editing perturbations in circRNAs, providing new insights into the complex relationship between RNA editing and circRNA dysregulation in cervical cancer.
Collapse
Affiliation(s)
- Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Yixuan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Tianyi Xu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minhui Zhuang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Lingxiao Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Wei Sun
- Department of Gynecology and Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Ping Han
- Department of Gynecology and Obstetrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
9
|
Tassinari V, La Rosa P, Guida E, Colopi A, Caratelli S, De Paolis F, Gallo A, Cenciarelli C, Sconocchia G, Dolci S, Cesarini V. Contribution of A-to-I RNA editing, M6A RNA Methylation, and Alternative Splicing to physiological brain aging and neurodegenerative diseases. Mech Ageing Dev 2023; 212:111807. [PMID: 37023929 DOI: 10.1016/j.mad.2023.111807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Aging is a physiological and progressive phenomenon in all organisms' life cycle, characterized by the accumulation of degenerative processes triggered by several alterations within molecular pathways. These changes compromise cell fate, resulting in the loss of functions in tissues throughout the body, including the brain. Physiological brain aging has been linked to structural and functional alterations, as well as to an increased risk of neurodegenerative diseases. Post-transcriptional RNA modifications modulate mRNA coding properties, stability, translatability, expanding the coding capacity of the genome, and are involved in all cellular processes. Among mRNA post-transcriptional modifications, the A-to-I RNA editing, m6A RNA Methylation and Alternative Splicing play a critical role in all the phases of a neuronal cell life cycle and alterations in their mechanisms of action significantly contribute to aging and neurodegeneration. Here we review our current understanding of the contribution of A-to-I RNA editing, m6A RNA Methylation, and Alternative Splicing to physiological brain aging process and neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Tassinari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy; European Center for Brain Research, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Ambra Colopi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Francesca De Paolis
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Angela Gallo
- RNA Editing Lab., Oncohaematology Department, Cellular and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giuseppe Sconocchia
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy.
| |
Collapse
|
10
|
Rosenthal JJC, Eisenberg E. Extensive Recoding of the Neural Proteome in Cephalopods by RNA Editing. Annu Rev Anim Biosci 2023; 11:57-75. [PMID: 36790891 DOI: 10.1146/annurev-animal-060322-114534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The coleoid cephalopods have the largest brains, and display the most complex behaviors, of all invertebrates. The molecular and cellular mechanisms that underlie these remarkable advancements remain largely unexplored. Early molecular cloning studies of squid ion channel transcripts uncovered an unusually large number of A→I RNA editing sites that recoded codons. Further cloning of other neural transcripts showed a similar pattern. The advent of deep-sequencing technologies and the associated bioinformatics allowed the mapping of RNA editing events across the entire neural transcriptomes of various cephalopods. The results were remarkable: They contained orders of magnitude more recoding editing sites than any other taxon. Although RNA editing sites are abundant in most multicellular metazoans, they rarely recode. In cephalopods, the majority of neural transcripts are recoded. Recent studies have focused on whether these events are adaptive, as well as other noncanonical aspects of cephalopod RNA editing.
Collapse
Affiliation(s)
- Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, Woods Hole, Massachusetts, USA;
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Meduri E, Breeze C, Marando L, Richardson SE, Huntly BJ. The RNA editing landscape in acute myeloid leukemia reveals associations with disease mutations and clinical outcome. iScience 2022; 25:105622. [PMID: 36465109 PMCID: PMC9713371 DOI: 10.1016/j.isci.2022.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/18/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Several studies have documented aberrant RNA editing patterns across multiple tumors across large patient cohorts from The Cancer Genome Atlas (TCGA). However, studies on understanding the role of RNA editing in acute myeloid leukemia (AML) have been limited to smaller sample sizes. Using high throughput transcriptomic data from the TCGA, we demonstrated higher levels of editing as a predictor of poor outcome within the AML patient samples. Moreover, differential editing patterns were observed across individual AML genotypes. We also could demonstrate a negative association between the degree of editing and mRNA abundance for some transcripts, identifying the potential regulatory potential of RNA-editing in altering gene expression in AML. Further edQTL analysis suggests potential cis-regulatory mechanisms in RNA editing variation. Our work suggests a functional and regulatory role of RNA editing in the pathogenesis of AML and we extended our analysis to gain insight into the factors influencing altered levels of editing.
Collapse
Affiliation(s)
- Eshwar Meduri
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Charles Breeze
- UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Ludovica Marando
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| | - Simon E. Richardson
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| | - Brian J.P. Huntly
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
12
|
Abstract
RNA editing is a widespread molecular phenomenon occurring in a variety of organisms. In humans, it mainly involves the deamination of adenosine to inosine (A-to-I) in double-stranded RNAs by ADAR enzymes. A-to-I RNA editing has been investigated in different tissues as well as in diverse experimental and pathological conditions. By contrast, its biological role in single cells has not been explored in depth. Recent methodologies for cell sorting in combination with deep sequencing technologies have enabled the study of eukaryotic transcriptomes at single cell resolution, paving the way to the profiling of their epitranscriptomic dynamics.Here we describe a step-by-step protocol to detect and characterize A-to-I events occurring in publicly available single-cell RNAseq experiments from human alpha and beta pancreatic cells.
Collapse
Affiliation(s)
- Adriano Fonzino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.
| |
Collapse
|
13
|
ADAR2 Protein Is Associated with Overall Survival in GBM Patients and Its Decrease Triggers the Anchorage-Independent Cell Growth Signature. Biomolecules 2022; 12:biom12081142. [PMID: 36009036 PMCID: PMC9405742 DOI: 10.3390/biom12081142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Epitranscriptomic mechanisms, such as A-to-I RNA editing mediated by ADAR deaminases, contribute to cancer heterogeneity and patients’ stratification. ADAR enzymes can change the sequence, structure, and expression of several RNAs, affecting cancer cell behavior. In glioblastoma, an overall decrease in ADAR2 RNA level/activity has been reported. However, no data on ADAR2 protein levels in GBM patient tissues are available; and most data are based on ADARs overexpression experiments. Methods: We performed IHC analysis on GBM tissues and correlated ADAR2 levels and patients’ overall survival. We silenced ADAR2 in GBM cells, studied cell behavior, and performed a gene expression/editing analysis. Results: GBM tissues do not all show a low/no ADAR2 level, as expected by previous studies. Although, different amounts of ADAR2 protein were observed in different patients, with a low level correlating with a poor patient outcome. Indeed, reducing the endogenous ADAR2 protein in GBM cells promotes cell proliferation and migration and changes the cell’s program to an anchorage-independent growth mode. In addition, deep-seq data and bioinformatics analysis indicated multiple RNAs are differently expressed/edited upon siADAR2. Conclusion: ADAR2 protein is an important deaminase in GBM and its amount correlates with patient prognosis.
Collapse
|
14
|
ADAR3 activates NF-κB signaling and promotes glioblastoma cell resistance to temozolomide. Sci Rep 2022; 12:13362. [PMID: 35922651 DOI: 10.1038/s41598-022-17559-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022] Open
Abstract
The RNA binding protein ADAR3 is expressed exclusively in the brain and reported to have elevated expression in tumors of patients suffering from glioblastoma compared to adjacent brain tissue. Yet, other studies have indicated that glioblastoma tumors exhibit hemizygous deletions of the genomic region encompassing ADAR3 (10p15.3). As the molecular and cellular consequences of altered ADAR3 expression are largely unknown, here we directly examined the impacts of elevated ADAR3 in a glioblastoma cell line model. Transcriptome-wide sequencing revealed 641 differentially expressed genes between control and ADAR3-expressing U87-MG glioblastoma cells. A vast majority of these genes belong to pathways involved in glioblastoma progression and are regulated by NF-κB signaling. Biochemical and molecular analysis indicated that ADAR3-expressing U87-MG cells exhibit increased NF-κB activation, and treatment with an NF-κB inhibitor abrogated the impacts of ADAR3 on gene expression. Similarly, we found that increased cell survival of ADAR3-expressing cells to temozolomide, the preferred chemotherapeutic for glioblastoma, was due to increased NF-κB activity. Aberrant constitutive NF-κB activation is a common event in glioblastoma and can impact both tumor progression and resistance to treatment. Our results suggest that elevated ADAR3 promotes NF-κB activation and a gene expression program that provides a growth advantage to glioblastoma cells.
Collapse
|
15
|
Raghava Kurup R, Oakes EK, Manning AC, Mukherjee P, Vadlamani P, Hundley HA. RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS. J Biol Chem 2022; 298:102267. [PMID: 35850307 PMCID: PMC9418441 DOI: 10.1016/j.jbc.2022.102267] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Members of the ADAR family of double-stranded RNA–binding proteins regulate one of the most abundant RNA modifications in humans, the deamination of adenosine to inosine. Several transcriptome-wide studies have been carried out to identify RNA targets of the active deaminases ADAR1 and ADAR2. However, our understanding of ADAR3, the brain-specific deaminase-deficient ADAR family member, is limited to a few transcripts. In this study, we identified over 3300 transcripts bound by ADAR3 and observed that binding of ADAR3 correlated with reduced editing of over 400 sites in the glioblastoma transcriptome. We further investigated the impact of ADAR3 on gene regulation of the transcript that encodes MAVS, an essential protein in the innate immune response pathway. We observed reduced editing in the MAVS 3′ UTR in cells expressing increased ADAR3 or reduced ADAR1 suggesting ADAR3 acts as a negative regulator of ADAR1-mediated editing. While neither ADAR1 knockdown or ADAR3 overexpression affected MAVS mRNA expression, we demonstrate increased ADAR3 expression resulted in upregulation of MAVS protein expression. In addition, we created a novel genetic mutant of ADAR3 that exhibited enhanced RNA binding and MAVS upregulation compared with wildtype ADAR3. Interestingly, this ADAR3 mutant no longer repressed RNA editing, suggesting ADAR3 has a unique regulatory role beyond altering editing levels. Altogether, this study provides the first global view of ADAR3-bound RNAs in glioblastoma cells and identifies both a role for ADAR3 in repressing ADAR1-mediated editing and an RNA-binding dependent function of ADAR3 in regulating MAVS expression.
Collapse
Affiliation(s)
| | - Eimile K Oakes
- Department of Biology, Indiana University, Bloomington IN 47405, USA
| | - Aidan C Manning
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Priyanka Mukherjee
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington IN 47405, USA
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington IN 47405, USA.
| |
Collapse
|
16
|
Lin SH, Chen SCC. RNA Editing in Glioma as a Sexually Dimorphic Prognostic Factor That Affects mRNA Abundance in Fatty Acid Metabolism and Inflammation Pathways. Cells 2022; 11:cells11071231. [PMID: 35406793 PMCID: PMC8997934 DOI: 10.3390/cells11071231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
RNA editing alters the nucleotide sequence and has been associated with cancer progression. However, little is known about its prognostic and regulatory roles in glioma, one of the most common types of primary brain tumors. We characterized and analyzed RNA editomes of glioblastoma and isocitrate dehydrogenase mutated (IDH-MUT) gliomas from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas (CGGA). We showed that editing change during glioma progression was another layer of molecular alterations and that editing profiles predicted the prognosis of glioblastoma and IDH-MUT gliomas in a sex-dependent manner. Hyper-editing was associated with poor survival in females but better survival in males. Moreover, noncoding editing events impacted mRNA abundance of the host genes. Genes associated with inflammatory response (e.g., EIF2AK2, a key mediator of innate immunity) and fatty acid oxidation (e.g., acyl-CoA oxidase 1, the rate-limiting enzyme in fatty acid β-oxidation) were editing-regulated and associated with glioma progression. The above findings were further validated in CGGA samples. Establishment of the prognostic and regulatory roles of RNA editing in glioma holds promise for developing editing-based therapeutic strategies against glioma progression. Furthermore, sexual dimorphism at the epitranscriptional level highlights the importance of developing sex-specific treatments for glioma.
Collapse
|
17
|
Karagianni K, Pettas S, Christoforidou G, Kanata E, Bekas N, Xanthopoulos K, Dafou D, Sklaviadis T. A Systematic Review of Common and Brain-Disease-Specific RNA Editing Alterations Providing Novel Insights into Neurological and Neurodegenerative Disease Manifestations. Biomolecules 2022; 12:biom12030465. [PMID: 35327657 PMCID: PMC8946084 DOI: 10.3390/biom12030465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
RNA editing contributes to transcriptome diversification through RNA modifications in relation to genome-encoded information (RNA–DNA differences, RDDs). The deamination of Adenosine (A) to Inosine (I) or Cytidine (C) to Uridine (U) is the most common type of mammalian RNA editing. It occurs as a nuclear co- and/or post-transcriptional event catalyzed by ADARs (Adenosine deaminases acting on RNA) and APOBECs (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like genes). RNA editing may modify the structure, stability, and processing of a transcript. This review focuses on RNA editing in psychiatric, neurological, neurodegenerative (NDs), and autoimmune brain disorders in humans and rodent models. We discuss targeted studies that focus on RNA editing in specific neuron-enriched transcripts with well-established functions in neuronal activity, and transcriptome-wide studies, enabled by recent technological advances. We provide comparative editome analyses between human disease and corresponding animal models. Data suggest RNA editing to be an emerging mechanism in disease development, displaying common and disease-specific patterns. Commonly edited RNAs represent potential disease-associated targets for therapeutic and diagnostic values. Currently available data are primarily descriptive, calling for additional research to expand global editing profiles and to provide disease mechanistic insights. The potential use of RNA editing events as disease biomarkers and available tools for RNA editing identification, classification, ranking, and functional characterization that are being developed will enable comprehensive analyses for a better understanding of disease(s) pathogenesis and potential cures.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Spyros Pettas
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Georgia Christoforidou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Eirini Kanata
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| | - Nikolaos Bekas
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
| | - Konstantinos Xanthopoulos
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (S.P.); (G.C.); (N.B.)
- Correspondence:
| | - Theodoros Sklaviadis
- Neurodegenerative Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.K.); (K.X.); (T.S.)
| |
Collapse
|
18
|
Gabay O, Shoshan Y, Kopel E, Ben-Zvi U, Mann TD, Bressler N, Cohen-Fultheim R, Schaffer AA, Roth SH, Tzur Z, Levanon EY, Eisenberg E. Landscape of adenosine-to-inosine RNA recoding across human tissues. Nat Commun 2022; 13:1184. [PMID: 35246538 PMCID: PMC8897444 DOI: 10.1038/s41467-022-28841-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/27/2022] [Indexed: 12/18/2022] Open
Abstract
RNA editing by adenosine deaminases changes the information encoded in the mRNA from its genomic blueprint. Editing of protein-coding sequences can introduce novel, functionally distinct, protein isoforms and diversify the proteome. The functional importance of a few recoding sites has been appreciated for decades. However, systematic methods to uncover these sites perform poorly, and the full repertoire of recoding in human and other mammals is unknown. Here we present a new detection approach, and analyze 9125 GTEx RNA-seq samples, to produce a highly-accurate atlas of 1517 editing sites within the coding region and their editing levels across human tissues. Single-cell RNA-seq data shows protein recoding contributes to the variability across cell subpopulations. Most highly edited sites are evolutionary conserved in non-primate mammals, attesting for adaptation. This comprehensive set can facilitate understanding of the role of recoding in human physiology and diseases. Gabay et al. provide a highly-accurate atlas of recoding by A-to-I RNA editing in human, profiled across tissues and cell subpopulations. Most highly edited sites are evolutionary conserved in non-primate mammals, attesting for adaptation.
Collapse
Affiliation(s)
- Orshay Gabay
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yoav Shoshan
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eli Kopel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Udi Ben-Zvi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Tomer D Mann
- Tel Aviv Sourasky Medical Center and Sackler school of medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Bressler
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Roni Cohen-Fultheim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Amos A Schaffer
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Ziv Tzur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel. .,The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
19
|
Jiang L, Hao Y, Shao C, Wu Q, Prager BC, Gimple RC, Sulli G, Kim LJ, Zhang G, Qiu Z, Zhu Z, Fu XD, Rich JN. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J Clin Invest 2022; 132:143397. [PMID: 35133980 PMCID: PMC8920333 DOI: 10.1172/jci143397] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, containing GBM stem cells (GSCs) that contribute to therapeutic resistance and relapse. Exposing potential GSC vulnerabilities may provide therapeutic strategies against GBM. Here, we interrogated the role of Adenosine-to-Inosine (A-to-I) RNA editing mediated by ADAR1 (adenosine deaminase acting on RNA 1) in GSCs and found that both ADAR1 and global RNA editomes were elevated in GSCs compared to normal neural stem cells (NSCs). ADAR1 inactivation or blocking the upstream JAK/STAT pathway through TYK2 inhibition impaired GSC self-renewal and stemness. Downstream of ADAR1, RNA editing of the 3'UTR of GM2A, a key ganglioside catabolism activator, proved to be critical, as interfering with ganglioside catabolism showed similar functional impact on GSCs as ADAR1 disruption. These findings reveal RNA editing links ganglioside catabolism to GSC self-renewal and stemness, exposing a potential vulnerability of GBM for therapeutic intervention.
Collapse
Affiliation(s)
- Li Jiang
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Yajing Hao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Qiulian Wu
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Briana C Prager
- Stem Cell Biology, Cleveland Clinic, Cleveland, United States of America
| | - Ryan C Gimple
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Gabriele Sulli
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Leo Jk Kim
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Guoxin Zhang
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Zhixin Qiu
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Zhe Zhu
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Jeremy N Rich
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
20
|
Muronetz VI, Pozdyshev DV, Medvedeva MV, Sevostyanova IA. Potential Effect of Post-Transcriptional Substitutions of Tyrosine for Cysteine Residues on Transformation of Amyloidogenic Proteins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:170-178. [PMID: 35508908 DOI: 10.1134/s0006297922020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The review considers the reasons and consequences of post-transcriptional tyrosine substitutions for cysteine residues. Main attention is paid to the Tyr/Cys substitutions that arise during gene expression in bacterial systems at the stage of protein translation as a result of misrecognition of the similar mRNA codons. Notably, translation errors generally occur relatively rarely - from 10-4 to 10-3 errors per codon for E. coli cells, but in some cases the error rate increases significantly. For example, this is typical for certain pairs of codons, when the culture conditions change or in the presence of antibiotics. Thus, with overproduction of the recombinant human alpha-synuclein in E. coli cells, the content of the mutant form with the replacement of Tyr136 (UAC codon) with a cysteine residue (UGC codon) can reach 50%. Possible reasons for the increased production of alpha-synuclein with the Tyr136Cys substitution are considered, as well as consequences of the presence of mutant forms in preparations of amyloidogenic proteins when studying their pathological transformation in vitro. A separate section is devoted to the Tyr/Cys substitutions occurring due to mRNA editing by adenosine deaminases, which is typical for eukaryotic organisms, and the possible role of this process in the amyloid transformation of proteins associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis V Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria V Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina A Sevostyanova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
21
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
22
|
Hwang T, Kim S, Chowdhury T, Yu HJ, Kim KM, Kang H, Won JK, Park SH, Shin JH, Park CK. Genome-wide perturbations of Alu expression and Alu-associated post-transcriptional regulations distinguish oligodendroglioma from other gliomas. Commun Biol 2022; 5:62. [PMID: 35042936 PMCID: PMC8766575 DOI: 10.1038/s42003-022-03011-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
AbstractAlu is a primate-specific repeat element in the human genome and has been increasingly appreciated as a regulatory element in many biological processes. But the appreciation of Alu has been limited in tumorigenesis, especially for brain tumor. To investigate the relevance of Alu to the gliomagenesis, we studied Alu element-associated post-transcriptional processes and the RNA expression of the element by performing RNA-seq for a total of 41 pairs of neurotypical and diverse glioma brain tissues. We find that A-to-I editing and circular RNA levels, as well as Alu RNA expression, are decreased overall in gliomas, compared to normal tissue. Interestingly, grade 2 oligodendrogliomas are least affected in A-to-I editing and circular RNA levels among gliomas, whereas they have a higher proportion of down-regulated Alu subfamilies, compared to the other gliomas. These findings collectively imply a unique pattern of Alu-associated transcriptomes in grade 2 oligodendroglioma, providing an insight to gliomagenesis from the perspective of an evolutionary genetic element.
Collapse
|
23
|
Amweg A, Tusup M, Cheng P, Picardi E, Dummer R, Levesque MP, French LE, Guenova E, Läuchli S, Kundig T, Mellett M, Pascolo S. The A to I editing landscape in melanoma and its relation to clinical outcome. RNA Biol 2022; 19:996-1006. [PMID: 35993275 PMCID: PMC9415457 DOI: 10.1080/15476286.2022.2110390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
RNA editing refers to non-transient RNA modifications that occur after transcription and prior to translation by the ribosomes. RNA editing is more widespread in cancer cells than in non-transformed cells and is associated with tumorigenesis of various cancer tissues. However, RNA editing can also generate neo-antigens that expose tumour cells to host immunosurveillance. Global RNA editing in melanoma and its relevance to clinical outcome currently remain poorly characterized. The present study compared RNA editing as well as gene expression in tumour cell lines from melanoma patients of short or long metastasis-free survival, patients relapsing or not after immuno- and targeted therapy and tumours harbouring BRAF or NRAS mutations. Overall, our results showed that NTRK gene expression can be a marker of resistance to BRAF and MEK inhibition and gives some insights of candidate genes as potential biomarkers. In addition, this study revealed an increase in Adenosine-to-Inosine editing in Alu regions and in non-repetitive regions, including the hyperediting of the MOK and DZIP3 genes in relapsed tumour samples during targeted therapy and of the ZBTB11 gene in NRAS mutated melanoma cells. Therefore, RNA editing could be a promising tool for identifying predictive markers, tumour neoantigens and targetable pathways that could help in preventing relapses during immuno- or targeted therapies.
Collapse
Affiliation(s)
- Austeja Amweg
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Marina Tusup
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany.,Dr. Philip Frost, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland.,Department of Dermatology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Severin Läuchli
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Thomas Kundig
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland.,Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| |
Collapse
|
24
|
Ansell BRE, Thomas SN, Bonelli R, Munro JE, Freytag S, Bahlo M. A survey of RNA editing at single-cell resolution links interneurons to schizophrenia and autism. RNA (NEW YORK, N.Y.) 2021; 27:1482-1496. [PMID: 34535545 PMCID: PMC8594476 DOI: 10.1261/rna.078804.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Conversion of adenosine to inosine in RNA by ADAR enzymes, termed "RNA editing," is essential for healthy brain development. Editing is dysregulated in neuropsychiatric diseases, but has not yet been investigated at scale at the level of individual neurons. We quantified RNA editing sites in nuclear transcriptomes of 3055 neurons from six cortical regions of a neurotypical female donor, and found 41,930 sites present in at least ten nuclei. Most sites were located within Alu repeats in introns or 3' UTRs, and approximately 80% were cataloged in public RNA editing databases. We identified 9285 putative novel editing sites, 29% of which were also detectable in unrelated donors. Intersection with results from bulk RNA-seq studies provided cell-type and spatial context for 1730 sites that are differentially edited in schizophrenic brain donors, and 910 such sites in autistic donors. Autism-related genes were also enriched with editing sites predicted to modify RNA structure. Inhibitory neurons showed higher overall transcriptome editing than excitatory neurons, and the highest editing rates were observed in the frontal cortex. We used generalized linear models to identify differentially edited sites and genes between cell types. Twenty nine genes were preferentially edited in excitatory neurons, and 43 genes were edited more heavily in inhibitory neurons, including RBFOX1, its target genes, and genes in the autism-associated Prader-Willi locus (15q11). The abundance of SNORD115/116 genes from locus 15q11 was positively associated with editing activity across the transcriptome. We contend that insufficient editing of autism-related genes in inhibitory neurons may contribute to the specific perturbation of those cells in autism.
Collapse
Affiliation(s)
- Brendan Robert E Ansell
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville 3052, Victoria, Australia
| | - Simon N Thomas
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville 3052, Victoria, Australia
| | - Roberto Bonelli
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville 3052, Victoria, Australia
| | - Jacob E Munro
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville 3052, Victoria, Australia
| | - Saskia Freytag
- Molecular Medicine Division, Harry Perkins Institute of Medical Research, Nedlands 6009, Western Australia, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville 3052, Victoria, Australia
| |
Collapse
|
25
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:cancers13215491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.)
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Correspondence: (A.Z.); (M.B.)
| |
Collapse
|
26
|
Jimeno S, Prados-Carvajal R, Fernández-Ávila MJ, Silva S, Silvestris DA, Endara-Coll M, Rodríguez-Real G, Domingo-Prim J, Mejías-Navarro F, Romero-Franco A, Jimeno-González S, Barroso S, Cesarini V, Aguilera A, Gallo A, Visa N, Huertas P. ADAR-mediated RNA editing of DNA:RNA hybrids is required for DNA double strand break repair. Nat Commun 2021; 12:5512. [PMID: 34535666 PMCID: PMC8448848 DOI: 10.1038/s41467-021-25790-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The maintenance of genomic stability requires the coordination of multiple cellular tasks upon the appearance of DNA lesions. RNA editing, the post-transcriptional sequence alteration of RNA, has a profound effect on cell homeostasis, but its implication in the response to DNA damage was not previously explored. Here we show that, in response to DNA breaks, an overall change of the Adenosine-to-Inosine RNA editing is observed, a phenomenon we call the RNA Editing DAmage Response (REDAR). REDAR relies on the checkpoint kinase ATR and the recombination factor CtIP. Moreover, depletion of the RNA editing enzyme ADAR2 renders cells hypersensitive to genotoxic agents, increases genomic instability and hampers homologous recombination by impairing DNA resection. Such a role of ADAR2 in DNA repair goes beyond the recoding of specific transcripts, but depends on ADAR2 editing DNA:RNA hybrids to ease their dissolution.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| | - Rosario Prados-Carvajal
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - María Jesús Fernández-Ávila
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Sonia Silva
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Domenico Alessandro Silvestris
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Martín Endara-Coll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Guillermo Rodríguez-Real
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Judit Domingo-Prim
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Moirai Biodesign SL, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Fernando Mejías-Navarro
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Amador Romero-Franco
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Silvia Jimeno-González
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Sonia Barroso
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Valeriana Cesarini
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Andrés Aguilera
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| |
Collapse
|
27
|
Knutson SD, Arthur RA, Johnston HR, Heemstra JM. Direct Immunodetection of Global A-to-I RNA Editing Activity with a Chemiluminescent Bioassay. Angew Chem Int Ed Engl 2021; 60:17009-17017. [PMID: 33979483 PMCID: PMC8562906 DOI: 10.1002/anie.202102762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Adenosine-to-inosine (A-to-I) editing is a conserved eukaryotic RNA modification that contributes to development, immune response, and overall cellular function. Here, we utilize Endonuclease V (EndoV), which binds specifically to inosine in RNA, to develop an EndoV-linked immunosorbency assay (EndoVLISA) as a rapid, plate-based chemiluminescent method for measuring global A-to-I editing signatures in cellular RNA. We first optimize and validate our assay with chemically synthesized oligonucleotides. We then demonstrate rapid detection of inosine content in treated cell lines, demonstrating equivalent performance against current standard RNA-seq approaches. Lastly, we deploy our EndoVLISA for profiling differential A-to-I RNA editing signatures in normal and diseased human tissue, illustrating the utility of our platform as a diagnostic bioassay. Together, the EndoVLISA method is cost-effective, straightforward, and utilizes common laboratory equipment, offering a highly accessible new approach for studying A-to-I editing. Moreover, the multi-well plate format makes this the first assay amenable for direct high-throughput quantification of A-to-I editing for applications in disease detection and drug development.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, GA, 30322, USA
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory University, 101 Woodruff Cir., Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - H Richard Johnston
- Emory Integrated Computational Core, Emory University, 101 Woodruff Cir., Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, 1515 Dickey Dr., Atlanta, GA, 30322, USA
| |
Collapse
|
28
|
Direct Immunodetection of Global A‐to‐I RNA Editing Activity with a Chemiluminescent Bioassay. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Wang C, Huang M, Chen C, Li Y, Qin N, Ma Z, Fan J, Gong L, Zeng H, Yang L, Xu X, Zhou J, Dai J, Jin G, Hu Z, Ma H, Tan F, Shen H. Identification of A-to-I RNA editing profiles and their clinical relevance in lung adenocarcinoma. SCIENCE CHINA-LIFE SCIENCES 2021; 65:19-32. [PMID: 34050895 DOI: 10.1007/s11427-020-1928-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/03/2021] [Indexed: 12/24/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a widespread posttranscriptional modification that has been shown to play an important role in tumorigenesis. Here, we evaluated a total of 19,316 RNA editing sites in the tissues of 80 lung adenocarcinoma (LUAD) patients from our Nanjing Lung Cancer Cohort (NJLCC) and 486 LUAD patients from the TCGA database. The global RNA editing level was significantly increased in tumor tissues and was highly heterogeneous across patients. The high RNA editing level in tumors was attributed to both RNA (ADAR1 expression) and DNA alterations (mutation load). Consensus clustering on RNA editing sites revealed a new molecular subtype (EC3) that was associated with the poorest prognosis of LUAD patients. Importantly, the new classification was independent of classic molecular subtypes based on gene expression or DNA methylation. We further proposed a simplified model including eight RNA editing sites to accurately distinguish the EC3 subtype in our patients. The model was further validated in the TCGA dataset and had an area under the curve (AUC) of the receiver operating characteristic curve of 0.93 (95%CI: 0.91-0.95). In addition, we found that LUAD cell lines with the EC3 subtype were sensitive to four chemotherapy drugs. These findings highlighted the importance of RNA editing events in the tumorigenesis of LUAD and provided insight into the application of RNA editing in the molecular subtyping and clinical treatment of cancer.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Mingtao Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zijian Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jingyi Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liu Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xianfeng Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
30
|
Malik TN, Doherty EE, Gaded VM, Hill TM, Beal PA, Emeson RB. Regulation of RNA editing by intracellular acidification. Nucleic Acids Res 2021; 49:4020-4036. [PMID: 33721028 PMCID: PMC8053123 DOI: 10.1093/nar/gkab157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The hydrolytic deamination of adenosine-to-inosine (A-to-I) by RNA editing is a widespread post-transcriptional modification catalyzed by the adenosine deaminase acting on RNA (ADAR) family of proteins. ADAR-mediated RNA editing modulates cellular pathways involved in innate immunity, RNA splicing, RNA interference, and protein recoding, and has been investigated as a strategy for therapeutic intervention of genetic disorders. Despite advances in basic and translational research, the mechanisms regulating RNA editing are poorly understood. Though several trans-acting regulators of editing have been shown to modulate ADAR protein expression, previous studies have not identified factors that modulate ADAR catalytic activity. Here, we show that RNA editing increases upon intracellular acidification, and that these effects are predominantly explained by both enhanced ADAR base-flipping and deamination rate at acidic pH. We also show that the extent of RNA editing increases with the reduction in pH associated with conditions of cellular hypoxia.
Collapse
Affiliation(s)
- Turnee N Malik
- Training Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Erin E Doherty
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Vandana M Gaded
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Theodore M Hill
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Ronald B Emeson
- Training Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
31
|
Destefanis E, Avşar G, Groza P, Romitelli A, Torrini S, Pir P, Conticello SG, Aguilo F, Dassi E. A mark of disease: how mRNA modifications shape genetic and acquired pathologies. RNA (NEW YORK, N.Y.) 2021; 27:367-389. [PMID: 33376192 PMCID: PMC7962492 DOI: 10.1261/rna.077271.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA modifications have recently emerged as a widespread and complex facet of gene expression regulation. Counting more than 170 distinct chemical modifications with far-reaching implications for RNA fate, they are collectively referred to as the epitranscriptome. These modifications can occur in all RNA species, including messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). In mRNAs the deposition, removal, and recognition of chemical marks by writers, erasers and readers influence their structure, localization, stability, and translation. In turn, this modulates key molecular and cellular processes such as RNA metabolism, cell cycle, apoptosis, and others. Unsurprisingly, given their relevance for cellular and organismal functions, alterations of epitranscriptomic marks have been observed in a broad range of human diseases, including cancer, neurological and metabolic disorders. Here, we will review the major types of mRNA modifications and editing processes in conjunction with the enzymes involved in their metabolism and describe their impact on human diseases. We present the current knowledge in an updated catalog. We will also discuss the emerging evidence on the crosstalk of epitranscriptomic marks and what this interplay could imply for the dynamics of mRNA modifications. Understanding how this complex regulatory layer can affect the course of human pathologies will ultimately lead to its exploitation toward novel epitranscriptomic therapeutic strategies.
Collapse
Affiliation(s)
- Eliana Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| | - Gülben Avşar
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Paula Groza
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Antonia Romitelli
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Serena Torrini
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Department of Medical Biotechnologies, Università di Siena, 53100 Siena, Italy
| | - Pınar Pir
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Silvestro G Conticello
- The EPITRAN COST Action Consortium, COST Action CA16120
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesca Aguilo
- The EPITRAN COST Action Consortium, COST Action CA16120
- Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
- The EPITRAN COST Action Consortium, COST Action CA16120
| |
Collapse
|
32
|
Mansi L, Tangaro MA, Lo Giudice C, Flati T, Kopel E, Schaffer AA, Castrignanò T, Chillemi G, Pesole G, Picardi E. REDIportal: millions of novel A-to-I RNA editing events from thousands of RNAseq experiments. Nucleic Acids Res 2021; 49:D1012-D1019. [PMID: 33104797 PMCID: PMC7778987 DOI: 10.1093/nar/gkaa916] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
RNA editing is a relevant epitranscriptome phenomenon able to increase the transcriptome and proteome diversity of eukaryotic organisms. ADAR mediated RNA editing is widespread in humans in which millions of A-to-I changes modify thousands of primary transcripts. RNA editing has pivotal roles in the regulation of gene expression or modulation of the innate immune response or functioning of several neurotransmitter receptors. Massive transcriptome sequencing has fostered the research in this field. Nonetheless, different aspects of the RNA editing biology are still unknown and need to be elucidated. To support the study of A-to-I RNA editing we have updated our REDIportal catalogue raising its content to about 16 millions of events detected in 9642 human RNAseq samples from the GTEx project by using a dedicated pipeline based on the HPC version of the REDItools software. REDIportal now allows searches at sample level, provides overviews of RNA editing profiles per each RNAseq experiment, implements a Gene View module to look at individual events in their genic context and hosts the CLAIRE database. Starting from this novel version, REDIportal will start collecting non-human RNA editing changes for comparative genomics investigations. The database is freely available at http://srv00.recas.ba.infn.it/atlas/index.html.
Collapse
Affiliation(s)
- Luigi Mansi
- Department of Biosciences, Biotechnologies and Biopharmaceutics (DBBB), University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Marco Antonio Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Claudio Lo Giudice
- Department of Biosciences, Biotechnologies and Biopharmaceutics (DBBB), University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Tiziano Flati
- SCAI-Super Computing Applications and Innovation Department, CINECA, Via dei Tizii 6B, 00185 Rome, Italy
| | - Eli Kopel
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat Gan, Israel
| | - Amos Avraham Schaffer
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat Gan, Israel
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Via S. Camillo de Lellis 44, 01100 Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Via S. Camillo de Lellis 44, 01100 Viterbo, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Biopharmaceutics (DBBB), University of Bari, Via Orabona 4, 70125 Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 122/O, 70126 Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), 00136 Roma, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics (DBBB), University of Bari, Via Orabona 4, 70125 Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Amendola 122/O, 70126 Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), 00136 Roma, Italy
| |
Collapse
|
33
|
Tassinari V, Cesarini V, Tomaselli S, Ianniello Z, Silvestris DA, Ginistrelli LC, Martini M, De Angelis B, De Luca G, Vitiani LR, Fatica A, Locatelli F, Gallo A. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol 2021; 22:51. [PMID: 33509238 PMCID: PMC7842030 DOI: 10.1186/s13059-021-02271-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/14/2021] [Indexed: 01/15/2023] Open
Abstract
Background N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing are two of the most abundant RNA modification events affecting adenosines in mammals. Both these RNA modifications determine mRNA fate and play a pivotal role in tumor development and progression. Results Here, we show that METTL3, upregulated in glioblastoma, methylates ADAR1 mRNA and increases its protein level leading to a pro-tumorigenic mechanism connecting METTL3, YTHDF1, and ADAR1. We show that ADAR1 plays a cancer-promoting role independently of its deaminase activity by binding CDK2 mRNA, underlining the importance of ADARs as essential RNA-binding proteins for cell homeostasis as well as cancer progression. Additionally, we show that ADAR1 knockdown is sufficient to strongly inhibit glioblastoma growth in vivo. Conclusions Hence, our findings underscore METTL3/ADAR1 axis as a novel crucial pathway in cancer progression that connects m6A and A-to-I editing post-transcriptional events. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02271-9.
Collapse
Affiliation(s)
- Valentina Tassinari
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.,Present address: Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valeriana Cesarini
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.,Present address: Department of Biomedical Sciences, Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Sara Tomaselli
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome, Rome, Italy
| | | | - Lavinia Ceci Ginistrelli
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome, Rome, Italy
| | - Maurizio Martini
- Department of Women's, Children's and Public Health Studies, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy.,Department of Health Science and Public Health, Institute of Pathology, Largo F. vito 1, 00168, Rome, Italy
| | - Biagio De Angelis
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy
| | - Gabriele De Luca
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Lucia Ricci Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", La Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.,Department of Pediatrics, La Sapienza University of Rome, Rome, Italy
| | - Angela Gallo
- Oncohaematology Department, IRCCS Ospedale Pediatrico Bambino Gesu, Viale di San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
34
|
Gender and race interact to influence survival disparities in head and neck cancer. Oral Oncol 2020; 112:105093. [PMID: 33232879 DOI: 10.1016/j.oraloncology.2020.105093] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022]
Abstract
Gender and race disparities in head and neck squamous cell carcinoma (HSNCC) survival are independently well documented, but no prior studies have examined the joint effect of these factors on HSNCC outcomes. We aim to comprehensively estimate the effect of gender and race on overall survival in HNSCC. We constructed a retrospective cohort from the National Cancer Database for primary HNSCC of the larynx, hypopharynx, oral cavity, and oropharynx from 2010 to 2015. We used Kaplan-Meier curves and Cox proportional hazards regressions to calculate hazard ratios adjusting for treatment type, age, insurance, staging classifications, and comorbidities. Oral cavity cancer was significantly more common among Hispanic and White females compared to other sites. Female non-oropharyngeal HNSCC cases had better five-year overall survival than males (56.3% versus 54.4%, respectively), though Black females (52.8%) had poorer survival than both White (56.2%) and Hispanic (57.9%) males. There were significant differences in oropharyngeal cancer by HPV status. Notably, Black females with HPV-positive oropharyngeal OPSCC had far worse survival than any other race and gender group. These results persisted even when adjusting for potential mediating factors. Clearly gender is a significant prognosticator for HNSCC and has meaningful interactions with race. The distinct site distributions across gender and race reveal important insights into HNSCC among females. Taking into account these gender disparities while considering race is essential to providing appropriate care to head and neck patients and accurately counselling these individuals on prognosis and outcomes.
Collapse
|
35
|
De Novo A-to-I RNA Editing Discovery in lncRNA. Cancers (Basel) 2020; 12:cancers12102959. [PMID: 33066171 PMCID: PMC7650826 DOI: 10.3390/cancers12102959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Long non-coding RNAs are emerging as key regulators of gene expression at both transcriptional and translational levels, and their alterations (in expression or sequence) are linked to tumorigenesis and tumor progression. RNA editing has the unique ability to change the RNA sequence without altering the integrity or sequence of genomic DNA, with adenosine to inosine (A-to-I) RNA editing being the most common event in humans. With the ability to change the genetic information after transcription, RNA editing is an essential player in the transcriptome and proteome enrichment; however, when deregulated, it can contribute to cell transformation. In this article, we performed the first deep de novo editing survey in lncRNA, demonstrating that RNA editing is a pervasive phenomenon involving lncRNAs important in the brain and brain cancer. Our study will open a new field of research in which the interplay between lncRNA and RNA editing can add novel insights into cancer. Abstract Background: Adenosine to inosine (A-to-I) RNA editing is the most frequent editing event in humans. It converts adenosine to inosine in double-stranded RNA regions (in coding and non-coding RNAs) through the action of the adenosine deaminase acting on RNA (ADAR) enzymes. Long non-coding RNAs, particularly abundant in the brain, account for a large fraction of the human transcriptome, and their important regulatory role is becoming progressively evident in both normal and transformed cells. Results: Herein, we present a bioinformatic analysis to generate a comprehensive inosinome picture in long non-coding RNAs (lncRNAs), using an ad hoc index and searching for de novo editing events in the normal brain cortex as well as in glioblastoma, a highly aggressive human brain cancer. We discovered >10,000 new sites and 335 novel lncRNAs that undergo editing, never reported before. We found a generalized downregulation of editing at multiple lncRNA sites in glioblastoma samples when compared to the normal brain cortex. Conclusion: Overall, our study discloses a novel layer of complexity that controls lncRNAs in the brain and brain cancer.
Collapse
|
36
|
Tran SS, Zhou Q, Xiao X. Statistical inference of differential RNA-editing sites from RNA-sequencing data by hierarchical modeling. Bioinformatics 2020; 36:2796-2804. [PMID: 32003773 DOI: 10.1093/bioinformatics/btaa066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/29/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION RNA-sequencing (RNA-seq) enables global identification of RNA-editing sites in biological systems and disease. A salient step in many studies is to identify editing sites that statistically associate with treatment (e.g. case versus control) or covary with biological factors, such as age. However, RNA-seq has technical features that incumbent tests (e.g. t-test and linear regression) do not consider, which can lead to false positives and false negatives. RESULTS In this study, we demonstrate the limitations of currently used tests and introduce the method, RNA-editing tests (REDITs), a suite of tests that employ beta-binomial models to identify differential RNA editing. The tests in REDITs have higher sensitivity than other tests, while also maintaining the type I error (false positive) rate at the nominal level. Applied to the GTEx dataset, we unveil RNA-editing changes associated with age and gender, and differential recoding profiles between brain regions. AVAILABILITY AND IMPLEMENTATION REDITs are implemented as functions in R and freely available for download at https://github.com/gxiaolab/REDITs. The repository also provides a code example for leveraging parallelization using multiple cores.
Collapse
Affiliation(s)
| | - Qing Zhou
- Bioinformatics Interdepartmental Program.,Department of Statistics
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program.,Department of Integrative Biology and Physiology.,Molecular Biology Institute.,Institute for Quantitative and Computational Biology, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Patil V, Pal J, Mahalingam K, Somasundaram K. Global RNA editome landscape discovers reduced RNA editing in glioma: loss of editing of gamma-amino butyric acid receptor alpha subunit 3 (GABRA3) favors glioma migration and invasion. PeerJ 2020; 8:e9755. [PMID: 33062411 PMCID: PMC7531343 DOI: 10.7717/peerj.9755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background Gliomas are the most common and lethal type of intracranial tumors. With the current treatment regime, the median survival of patients with grade IV glioma (glioblastoma/GBM) remains at 14-16 months. RNA editing modifies the function and regulation of transcripts. The development of glial tumors may be caused by altered RNA editing events. Methods In this study, we uncover the global RNA editome landscape of glioma patients from RNA-seq data of control, lower grade glioma (LGG) and GBM samples (n = 1,083). Results A-to-I editing events were found to comprise 80% of the total editing events of which 96% were located in the Alu regions. The total RNA editing events were found to be reduced in glioma compared to control samples. More specifically, we found Gamma-aminobutyric acid type A receptor alpha3 (GABRA3) to be edited (c.1026 A-to-G; pI343M) in 73% (editing ratio 0.8) of control samples compared to LGG (28.96%; 0.47) and GBM (5.2%; 0.53) samples. GABRA3 transcript level was found to be downregulated in glioma compared to control in a grade-specific manner with GBMs having the lowest level of the transcript. Further, GABRA3 transcripts were observed to be higher in edited compared to unedited glioma samples. The transcript and protein levels of exogenously expressed gene were found to be higher for edited compared to unedited GABRA3 in glioma cells. Further, exogenously expressed edited GABRA3 inhibited migration and invasion of glioma cells efficiently but not the unedited GABRA3. Conclusion Collectively, our study discovered a reduction in RNA editing during glioma development. We further demonstrate that elevated RNA editing maintains a high level of GABRA3 RNA and protein in normal glial cells which provides a less migratory environment for the normal functioning of the brain. In contrast, the reduction in GABRA3 protein levels, due to lower stability of unedited RNA, results in the loss of function which confers an aggressive phenotype to GBM tumor.
Collapse
Affiliation(s)
- Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Jagriti Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kulandaivelu Mahalingam
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
38
|
Altered Regulation of adipomiR Editing with Aging. Int J Mol Sci 2020; 21:ijms21186899. [PMID: 32962255 PMCID: PMC7555933 DOI: 10.3390/ijms21186899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose dysfunction with aging increases risk to insulin resistance and other chronic metabolic diseases. We previously showed functional changes in microRNAs involved in pre-adipocyte differentiation with aging resulting in adipose dysfunction. However, the mechanisms leading to this dysfunction in microRNAs in adipose tissue (adipomiRs) during aging are not well understood. We determined the longitudinal changes in expression of adipomiRs and studied their regulatory mechanisms, such as miRNA biogenesis and editing, in an aging rodent model, with Fischer344 × Brown-Norway hybrid rats at ages ranging from 3 to 30 months (male/females, n > 8). Expression of adipomiRs and their edited forms were determined by small-RNA sequencing. RT-qPCR was used to measure the mRNA expression of biogenesis and editing enzymes. Sanger sequencing was used to validate editing with aging. Differential expression of adipomiRs involved in adipocyte differentiation and insulin signaling was altered with aging. Sex- and age-specific changes in edited adipomiRs were observed. An increase in miRNA biogenesis and editing enzymes (ADARs and their splice variants) were observed with increasing age, more so in female than male rats. The adipose dysfunction observed with age is attributed to differences in editing of adipomiRs, suggesting a novel regulatory pathway in aging.
Collapse
|
39
|
Huang AZ, Delaidelli A, Sorensen PH. RNA modifications in brain tumorigenesis. Acta Neuropathol Commun 2020; 8:64. [PMID: 32375856 PMCID: PMC7204278 DOI: 10.1186/s40478-020-00941-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
RNA modifications are emerging as critical regulators in cancer biology, thanks to their ability to influence gene expression and the predominant protein isoforms expressed during cell proliferation, migration, and other pro-oncogenic properties. The reversibility and dynamic nature of post-transcriptional RNA modifications allow cells to quickly adapt to microenvironmental changes. Recent literature has revealed that the deregulation of RNA modifications can promote a plethora of developmental diseases, including tumorigenesis. In this review, we will focus on four key post-transcriptional RNA modifications which have been identified as contributors to the pathogenesis of brain tumors: m6A, alternative polyadenylation, alternative splicing and adenosine to inosine modifications. In addition to the role of RNA modifications in brain tumor progression, we will also discuss potential opportunities to target these processes to improve the dismal prognosis for brain tumors.
Collapse
Affiliation(s)
- Albert Z Huang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
40
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
41
|
Lo Giudice C, Silvestris DA, Roth SH, Eisenberg E, Pesole G, Gallo A, Picardi E. Quantifying RNA Editing in Deep Transcriptome Datasets. Front Genet 2020; 11:194. [PMID: 32211029 PMCID: PMC7069340 DOI: 10.3389/fgene.2020.00194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Massive transcriptome sequencing through the RNAseq technology has enabled quantitative transcriptome-wide investigation of co-/post-transcriptional mechanisms such as alternative splicing and RNA editing. The latter is abundant in human transcriptomes in which million adenosines are deaminated into inosines by the ADAR enzymes. RNA editing modulates the innate immune response and its deregulation has been associated with different human diseases including autoimmune and inflammatory pathologies, neurodegenerative and psychiatric disorders, and tumors. Accurate profiling of RNA editing using deep transcriptome data is still a challenge, and the results depend strongly on processing and alignment steps taken. Accurate calling of the inosinome repertoire, however, is required to reliably quantify RNA editing and, in turn, investigate its biological and functional role across multiple samples. Using real RNAseq data, we demonstrate the impact of different bioinformatics steps on RNA editing detection and describe the main metrics to quantify its level of activity.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù," Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
42
|
Knutson SD, Arthur RA, Johnston HR, Heemstra JM. Selective Enrichment of A-to-I Edited Transcripts from Cellular RNA Using Endonuclease V. J Am Chem Soc 2020; 142:5241-5251. [PMID: 32109061 DOI: 10.1021/jacs.9b13406] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Creating accurate maps of A-to-I RNA editing activity is vital to improving our understanding of the biological role of this process and harnessing it as a signal for disease diagnosis. Current RNA sequencing techniques are susceptible to random sampling limitations due to the complexity of the transcriptome and require large amounts of RNA material, specialized instrumentation, and high read counts to accurately interrogate A-to-I editing sites. To address these challenges, we show that Escherichia coli Endonuclease V (eEndoV), an inosine-cleaving enzyme, can be repurposed to bind and isolate A-to-I edited transcripts from cellular RNA. While Mg2+ enables eEndoV to catalyze RNA cleavage, we show that similar levels of Ca2+ instead promote binding of inosine without cleavage and thus enable high affinity capture of inosine in RNA. We leverage this capability to demonstrate EndoVIPER-seq (Endonuclease V inosine precipitation enrichment sequencing) as a facile and effective method to enrich A-to-I edited transcripts prior to RNA-seq, producing significant increases in the coverage and detection of identified editing sites. We envision the use of this approach as a straightforward and cost-effective strategy to improve the epitranscriptomic informational density of RNA samples, facilitating a deeper understanding of the functional roles of A-to-I editing.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Robert A Arthur
- Emory Integrated Computational Core, Emory Integrated Core Facilities, Emory University, Atlanta, Georgia 30322, United States
| | - H Richard Johnston
- Department of Human Genetics, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
43
|
Piazzi M, Bavelloni A, Gallo A, Blalock WL. AKT-Dependent Phosphorylation of ADAR1p110 and ADAR2 Represents a New and Important Link Between Cell Signaling and RNA Editing. DNA Cell Biol 2020; 39:343-348. [PMID: 31999481 DOI: 10.1089/dna.2020.5351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA editing is a process by which nascent RNA transcripts are covalently modified, thus enhancing the complexity of the transcriptome. The most common modifications are deaminations of adenosine to inosine at sites of complex RNA secondary structure, a process that is carried out by the adenosine deaminase acting on double-strand RNA (ADAR) family of RNA editases. Although much has been learned about the ADAR family members since their discovery, very little information on their post-transcriptional regulation has been reported. Similar to most proteins, the ADAR family members are post-translationally modified at multiple sites. We recently reported that members of the AKT kinase family directly phosphorylate ADAR1p110 and ADAR2 on a conserved threonine within the catalytic domain of the protein. Phosphorylation was observed to differentially inhibit the enzymatic activity of the ADAR proteins toward known RNA substrates. The direct downstream involvement of the AKT kinases in multiple major signaling pathways associated with cell survival, growth, glucose metabolism (insulin signaling), and differentiation is well established; thus, the AKT kinases represent a link between ADAR-dependent A-to-I editing and major signal transduction pathways that are necessary for cell maintenance and development.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza," Consiglio Nazionale delle Ricerca (IGM-CNR) Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, Bologna Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Dipartimento di Oncoematologia, IRCCS, Ospedale Pediatrica Bambino Gesù, Rome, Italy
| | - William L Blalock
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza," Consiglio Nazionale delle Ricerca (IGM-CNR) Bologna, Italy.,IRCCS, Istituto Ortopedico Rizzoli, Bologna Italy
| |
Collapse
|
44
|
Lo Giudice C, Tangaro MA, Pesole G, Picardi E. Investigating RNA editing in deep transcriptome datasets with REDItools and REDIportal. Nat Protoc 2020; 15:1098-1131. [PMID: 31996844 DOI: 10.1038/s41596-019-0279-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
RNA editing is a widespread post-transcriptional mechanism able to modify transcripts through insertions/deletions or base substitutions. It is prominent in mammals, in which millions of adenosines are deaminated to inosines by members of the ADAR family of enzymes. A-to-I RNA editing has a plethora of biological functions, but its detection in large-scale transcriptome datasets is still an unsolved computational task. To this aim, we developed REDItools, the first software package devoted to the RNA editing profiling in RNA-sequencing (RNAseq) data. It has been successfully used in human transcriptomes, proving the tissue and cell type specificity of RNA editing as well as its pervasive nature. Outcomes from large-scale REDItools analyses on human RNAseq data have been collected in our specialized REDIportal database, containing more than 4.5 million events. Here we describe in detail two bioinformatic procedures based on our computational resources, REDItools and REDIportal. In the first procedure, we outline a workflow to detect RNA editing in the human cell line NA12878, for which transcriptome and whole genome data are available. In the second procedure, we show how to identify dysregulated editing at specific recoding sites in post-mortem brain samples of Huntington disease donors. On a 64-bit computer running Linux with ≥32 GB of random-access memory (RAM), both procedures should take ~76 h, using 4 to 24 cores. Our protocols have been designed to investigate RNA editing in different organisms with available transcriptomic and/or genomic reads. Scripts to complete both procedures and a docker image are available at https://github.com/BioinfoUNIBA/REDItools.
Collapse
Affiliation(s)
- Claudio Lo Giudice
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Marco Antonio Tangaro
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy.,National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy. .,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy. .,National Institute of Biostructures and Biosystems (INBB), Rome, Italy.
| |
Collapse
|
45
|
Zhang Y, Qian H, Xu J, Gao W. ADAR, the carcinogenesis mechanisms of ADAR and related clinical applications. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:686. [PMID: 31930087 DOI: 10.21037/atm.2019.11.06] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze the conversion of adenosine (A) to inosine (I) in double-stranded RNA, which can change the codons after transcription. Abnormal ADAR editing is present in a variety of cancers. However, the study of the biological effects of ADARs in cancer is not very deep. Here, we review current important ADAR-mediated editing events, related carcinogenic mechanisms and applications in clinical medicine. Further exploration in ADARs can provide a new direction for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huizhu Qian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
46
|
Roth SH, Levanon EY, Eisenberg E. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat Methods 2019; 16:1131-1138. [PMID: 31636457 DOI: 10.1038/s41592-019-0610-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing by the adenosine deaminase that acts on RNA (ADAR) enzymes is a common RNA modification, preventing false activation of the innate immune system by endogenous double-stranded RNAs. Methods for quantification of ADAR activity are sought after, due to an increasing interest in the role of ADARs in cancer and autoimmune disorders, as well as attempts to harness the ADAR enzymes for RNA engineering. Here, we present the Alu editing index (AEI), a robust and simple-to-use computational tool devised for this purpose. We describe its properties and demonstrate its superiority to current quantification methods of ADAR activity. The AEI is used to map global editing across a large dataset of healthy human samples and identify putative regulators of ADAR, as well as previously unknown factors affecting the observed Alu editing levels. These should be taken into account in future comparative studies of ADAR activity. The AEI tool is available at https://github.com/a2iEditing/RNAEditingIndexer.
Collapse
Affiliation(s)
- Shalom Hillel Roth
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
47
|
Radiosensitization and a Less Aggressive Phenotype of Human Malignant Glioma Cells Expressing Isocitrate Dehydrogenase 1 (IDH1) Mutant Protein: Dissecting the Mechanisms. Cancers (Basel) 2019; 11:cancers11060889. [PMID: 31242696 PMCID: PMC6627228 DOI: 10.3390/cancers11060889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
The presence of an isocitrate dehydrogenase 1 (IDH1) mutation is associated with a less aggressive phenotype, increased sensitivity to radiation, and increased overall survival in patients with diffuse glioma. Based on in vitro experimentations in malignant glioma cell lines, the consequences on cellular processes of IDH1R132H expression were analyzed. The results revealed that IDH1R132H expression enhanced the radiation induced accumulation of residual γH2AX foci and decreased the amount of glutathione (GSH) independent of the oxygen status. In addition, expression of the mutant IDH1 caused a significant increase of cell stiffness and induced an altered organization of the cytoskeleton, which has been shown to reinforce cell stiffness. Furthermore, IDH1R132H expression decreased the expression of vimentin, an important component of the cytoskeleton and regulator of the cell stiffness. The results emphasize the important role of mutant IDH1 in treatment of patients with diffuse gliomas especially in response to radiation. Hence, detection of the genetic status of IDH1 before therapy massively expands the utility of immunohistochemistry to accurately distinguish patients with a less aggressive and radiosensitive IDH1-mutant diffuse glioma suitable for radiotherapy from those with a more aggressive IDH1-wildtype diffuse glioma who might benefit from an individually intensified therapy comprising radiotherapy and alternative medical treatments.
Collapse
|