1
|
Kristan A, Debeljak N. Targeted Next-Generation Sequencing in Rare Diseases. Methods Mol Biol 2025; 2866:45-57. [PMID: 39546196 DOI: 10.1007/978-1-0716-4192-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Targeted next-generation sequencing (NGS) in rare disease focuses on genetic analysis of specific regions in genome that are linked to a rare disease. In addition to library preparation, sequencing, and data analysis, targeted NGS includes an additional step of target enrichment of selected genes and regions. It allows for more sensitive and profound sequencing, as it is a fast and cost-effective approach with less data burden and is therefore often a method of choice for identifying rare variants in known genes, especially in diagnostics of rare diseases. Several in silico tools address the pathogenicity predictions of rare variants of unknown significance (VUS) and can therefore facilitate clinical interpretation.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Zhao W, Tao Y, Xiong J, Liu L, Wang Z, Shao C, Shang L, Hu Y, Xu Y, Su Y, Yu J, Feng T, Xie J, Xu H, Zhang Z, Peng J, Wu J, Zhang Y, Zhu S, Xia K, Tang B, Zhao G, Li J, Li B. GoFCards: an integrated database and analytic platform for gain of function variants in humans. Nucleic Acids Res 2024:gkae1079. [PMID: 39578693 DOI: 10.1093/nar/gkae1079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Gain-of-function (GOF) variants, which introduce new or amplify protein functions, are essential for understanding disease mechanisms. Despite advances in genomics and functional research, identifying and analyzing pathogenic GOF variants remains challenging owing to fragmented data and database limitations, underscoring the difficulty in accessing critical genetic information. To address this challenge, we manually reviewed the literature, pinpointing 3089 single-nucleotide variants and 72 insertions and deletions in 579 genes associated with 1299 diseases from 2069 studies, and integrated these with the 3.5 million predicted GOF variants. Our approach is complemented by a proprietary scoring system that prioritizes GOF variants on the basis of the evidence supporting their GOF effects and provides predictive scores for variants that lack existing documentation. We then developed a database named GoFCards for general geneticists and clinicians to easily obtain GOF variants in humans (http://www.genemed.tech/gofcards). This database also contains data from >150 sources and offers comprehensive variant-level and gene-level annotations, with the aim of providing users with convenient access to detailed and relevant genetic information. Furthermore, GoFCards empowers users with limited bioinformatic skills to analyze and annotate genetic data, and prioritize GOF variants. GoFCards offers an efficient platform for interpreting GOF variants and thereby advancing genetic research.
Collapse
Affiliation(s)
- Wenjing Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, No. 87 Xiangya Road, Furong District, Changsha, Hunan 410008, China
- Department of Medical Genetics, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Xishan District, Kunming, Yunnan 650000, China
- School of Medicinie, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming, Yunnan 650000, China
| | - Youfu Tao
- Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Jiayi Xiong
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, No. 87 Xiangya Road, Furong District, Changsha, Hunan 410008, China
| | - Lei Liu
- School of Life Science, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Zhongqing Wang
- School of Medicinie, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming, Yunnan 650000, China
| | - Chuhan Shao
- Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Ling Shang
- Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Yue Hu
- Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Yishu Xu
- Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Yingluo Su
- Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Jiahui Yu
- Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Tianyi Feng
- Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Junyi Xie
- School of Life Science, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Huijuan Xu
- School of Life Science, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Zijun Zhang
- School of Life Science, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Jiayi Peng
- School of Life Science, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Jianbin Wu
- School of Life Science, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Yuchang Zhang
- School of Life Science, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Shaobo Zhu
- School of Life Science, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, Hunan 410008, China
| | - Kun Xia
- MOE Key Laboratory of Pediatric Rare Diseases & Hunan Key Laboratory of Medical Genetics, Central South University, No. 110 Xiangya Road, Furong District, Changsha, Hunan 410008, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, No. 87 Xiangya Road, Furong District, Changsha, Hunan 410008, China
- Department of Neurology & Multi-omics Research Center for Brain Disorders, The First Affiliated Hospital University of South China, 69 Chuan Shan Road, Shi Gu District, Hengyang, Hunan 421000, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Furong District, Changsha,Hunan 410008, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, No. 87 Xiangya Road, Furong District, Changsha, Hunan 410008, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, No. 87 Xiangya Road, Furong District, Changsha, Hunan 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Furong District, Changsha,Hunan 410008, China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, No. 87 Xiangya Road, Furong District, Changsha, Hunan 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, No. 87 Xiangya Road, Furong District, Changsha, Hunan 410008, China
| |
Collapse
|
3
|
Vinci M, Treccarichi S, Galati Rando R, Musumeci A, Todaro V, Federico C, Saccone S, Elia M, Calì F. A de novo ARIH2 gene mutation was detected in a patient with autism spectrum disorders and intellectual disability. Sci Rep 2024; 14:15848. [PMID: 38982159 PMCID: PMC11233510 DOI: 10.1038/s41598-024-66475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
E3 ubiquitin protein ligase encoded by ARIH2 gene catalyses the ubiquitination of target proteins and plays a crucial role in posttranslational modifications across various cellular processes. As prior documented, mutations in genes involved in the ubiquitination process are often associated with autism spectrum disorder (ASD) and/or intellectual disability (ID). In the current study, a de novo heterozygous mutation was identified in the splicing intronic region adjacent to the last exon of the ARIH2 gene using whole exome sequencing (WES). We hypothesize that this mutation, found in an ASD/ID patient, disrupts the protein Ariadne domain which is involved in the autoinhibition of ARIH2 enzyme. Predictive analyses elucidated the implications of the novel mutation in the splicing process and confirmed its autosomal dominant inheritance model. Nevertheless, we cannot exclude the possibility that other genetic factors, undetectable by WES, such as mutations in non-coding regions and polygenic risk in inter-allelic complementation, may contribute to the patient's phenotype. This work aims to suggest potential relationship between the detected mutation in ARIH2 gene and both ASD and ID, even though functional studies combined with new sequencing approaches will be necessary to validate this hypothesis.
Collapse
Affiliation(s)
| | | | | | | | - Valeria Todaro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, Italy.
| | | | | |
Collapse
|
4
|
Zadeh-Vakili A, Najd-Hassan-Bonab L, Akbarzadeh M, Abdi H, Zahedi AS, Azizi F, Daneshpour MS. Three candidate SNPs show associations with thyroid-stimulating hormone in euthyroid subjects: Tehran thyroid study. J Diabetes Metab Disord 2024; 23:1047-1055. [PMID: 38932823 PMCID: PMC11196493 DOI: 10.1007/s40200-023-01383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/23/2023] [Indexed: 06/28/2024]
Abstract
Objectives Previous studies have shown interindividual variation in free thyroxine (FT4) serum levels and thyroid stimulating hormone (TSH) in healthy persons. Genetic factors mainly determine this variation, and genome-wide association studies have increased the number of thyroid function-associated variants. The present study investigates the association of candidate variants with FT4 and TSH in a euthyroid Iranian population. Method A total of 2931 unrelated euthyroid subjects (FT4 10.29-21.88 pmol/L; TSH 0.32-10 mIU/L, thyroid peroxidase antibody TPOAb < 33 IU/mL in men and < 35 IU/mL in women), with available genotypes were chosen from the Tehran Thyroid Study (TTS), to examine the impact of selected SNPs on thyroid hormone under the additive genetic model. In order to evaluate regional associations with FT4 and TSH levels, a haplotype analysis was done. Results We identified a strong association between the rs4338740-C allele and TSH in the adjusted model (β = -0.095, P-value = 0.0004). Also, findings indicated that rs4954192 ACMSD and rs4445669 CADM1 correlated with normal TSH levels (P-value = 0.011, P-value = 0.014, respectively). Haplotype analysis revealed that two haplotypes were significantly associated with TSH levels in euthyroid individuals. The ACGA and AC haplotypes on chromosomes 8 and 14 were significantly correlated with normal TSH levels, respectively (P-value = 0.014, P-value = 0.016). Conclusions This is the first genetic association study with TSH and FT4 reference values in an Iranian population. Our findings indicate that a few gene variants associated with the reference values of TSH in other populations are also associated with the reference values of TSH in Iranians. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01383-2.
Collapse
Affiliation(s)
- Azita Zadeh-Vakili
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Najd-Hassan-Bonab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, IR Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, IR Iran
| | - Hengameh Abdi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asiyeh Sadat Zahedi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, IR Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S. Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 24, Parvaneh St, Yemen St, Chamran Exp, PO Box 1985717413, Tehran, IR Iran
| |
Collapse
|
5
|
Bettim CA, da Silva AV, Kahmann A, Dorn M, Alho CS, Avila E. MC1R and age heteroclassification of face phenotypes in the Rio Grande do Sul population. Int J Legal Med 2024; 138:859-872. [PMID: 38087053 DOI: 10.1007/s00414-023-03143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND Forensic DNA phenotyping (FDP) consists of the use of methodologies for predicting externally visible characteristics (EVCs) from the genetic material of biological samples found in crime scenes and has proven to be a promising tool in aiding human identification in police activities. Currently, methods based on multiplex assays and statistical models of prediction of EVCs related to hair, skin, and iris pigmentation using panels of SNP and INDEL biomarkers have already been developed and validated by the forensic scientific community. As well as traces of pigmentation, an individual's perceived age (PA) can also be considered an EVC and its estimation in unknown individuals can be useful for the progress of investigations. Liu and colleagues (2016) were pioneers in evidencing that, in addition to lifestyle and environmental factors, the presence of SNP and INDEL variants in the MC1R gene - which encodes a transmembrane receptor responsible for regulating melanin production - seems to contribute to an individual's PA. The group highlighted the association between these MC1R gene polymorphisms and the PA in the European population, where carriers of risk haplotypes appeared to be up to 2 years older in comparison to their chronological age (CA). PURPOSE Understanding that genotype-phenotype relationships cannot be extrapolated between different population groups, this study aimed to test this hypothesis and verify the applicability of this variant panel in the Rio Grande do Sul admixed population. METHODS Based on genomic data from a sample of 261 volunteers representative of gaucho population and using a multiple linear regression (MLR) model, our group was able to verify a significant association among nine intronic variants in loci adjacent to MC1R (e.g., AFG3L1P, TUBB3, FANCA) and facial age appearance, whose PA was defined after age heteroclassification of standard frontal face images through 11 assessors. RESULTS Different from that observed in European populations, our results show that the presence of effect alleles (R) of the selected variants in our sample influenced both younger and older face phenotypes. The influence of each variant on PA is expressed as β values. CONCLUSIONS There are important molecular mechanisms behind the effects of MC1R locus on PA, and the genomic background of each population seems to be crucial to determine this influence.
Collapse
Affiliation(s)
- Cássio Augusto Bettim
- Structural Bioinformatics and Computational Biology Lab, Institute of Informatics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
| | - Alexsandro Vasconcellos da Silva
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- Technical Scientific and Identification Sections, Superintendency of Federal Police in Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alessandro Kahmann
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil.
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil.
- Interdisciplinary Department, Federal University of Rio Grande Do Sul, Tramandaí, RS, Brazil.
| | - Márcio Dorn
- Structural Bioinformatics and Computational Biology Lab, Institute of Informatics, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil
| | - Clarice Sampaio Alho
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil
| | - Eduardo Avila
- National Science and Technology Institute for Forensic Science, Porto Alegre, RS, Brazil
- Technical Scientific and Identification Sections, Superintendency of Federal Police in Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children Cancer Biology and Pediatric Oncology, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Zambrano-Román M, Padilla-Gutiérrez JR, Valle Y, Muñoz-Valle JF, Guevara-Gutiérrez E, López-Olmos PA, Sepúlveda-Loza LC, Bautista-Herrera LA, Valdés-Alvarado E. PTCH1 Gene Variants, mRNA Expression, and Bioinformatics Insights in Mexican Cutaneous Squamous Cell Carcinoma Patients. BIOLOGY 2024; 13:191. [PMID: 38534460 DOI: 10.3390/biology13030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Skin cancer is one of the most frequent types of cancer, and cutaneous squamous cell carcinoma (cSCC) constitutes 20% of non-melanoma skin cancer (NMSC) cases. PTCH1, a tumor suppressor gene involved in the Sonic hedgehog signaling pathway, plays a crucial role in neoplastic processes. METHODS An analytical cross-sectional study, encompassing 211 cSCC patients and 290 individuals in a control group (CG), was performed. A subgroup of samples was considered for the relative expression analysis, and the results were obtained using quantitative real-time PCR (qPCR) with TaqMan® probes. The functional, splicing, and disease-causing effects of the proposed variants were explored via bioinformatics. RESULTS cSCC was predominant in men, especially in sun-exposed areas such as the head and neck. No statistically significant differences were found regarding the rs357564, rs2236405, rs2297086, and rs41313327 variants of PTCH1, or in the risk of cSCC, nor in the mRNA expression between the cSCC group and CG. A functional effect of rs357564 and a disease-causing relation to rs41313327 was identified. CONCLUSION The proposed variants were not associated with cSCC risk in this Mexican population, but we recognize the need for analyzing larger population groups to elucidate the disease-causing role of rare variants.
Collapse
Affiliation(s)
- Marianela Zambrano-Román
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jorge R Padilla-Gutiérrez
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Yeminia Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Elizabeth Guevara-Gutiérrez
- Departamento de Dermatología, Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Secretaría de Salud Jalisco, Zapopan 45190, Mexico
| | - Patricia Aidé López-Olmos
- Departamento de Dermatología, Instituto Dermatológico de Jalisco "Dr. José Barba Rubio", Secretaría de Salud Jalisco, Zapopan 45190, Mexico
| | | | | | - Emmanuel Valdés-Alvarado
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
7
|
Lynn N, Tuller T. Detecting and understanding meaningful cancerous mutations based on computational models of mRNA splicing. NPJ Syst Biol Appl 2024; 10:25. [PMID: 38453965 PMCID: PMC10920900 DOI: 10.1038/s41540-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cancer research has long relied on non-silent mutations. Yet, it has become overwhelmingly clear that silent mutations can affect gene expression and cancer cell fitness. One fundamental mechanism that apparently silent mutations can severely disrupt is alternative splicing. Here we introduce Oncosplice, a tool that scores mutations based on models of proteomes generated using aberrant splicing predictions. Oncosplice leverages a highly accurate neural network that predicts splice sites within arbitrary mRNA sequences, a greedy transcript constructor that considers alternate arrangements of splicing blueprints, and an algorithm that grades the functional divergence between proteins based on evolutionary conservation. By applying this tool to 12M somatic mutations we identify 8K deleterious variants that are significantly depleted within the healthy population; we demonstrate the tool's ability to identify clinically validated pathogenic variants with a positive predictive value of 94%; we show strong enrichment of predicted deleterious mutations across pan-cancer drivers. We also achieve improved patient survival estimation using a proposed set of novel cancer-involved genes. Ultimately, this pipeline enables accelerated insight-gathering of sequence-specific consequences for a class of understudied mutations and provides an efficient way of filtering through massive variant datasets - functionalities with immediate experimental and clinical applications.
Collapse
Affiliation(s)
- Nicolas Lynn
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel.
| |
Collapse
|
8
|
Zambrano‐Román M, Padilla‐Gutiérrez JR, Valle Y, Muñoz‐Valle JF, Guevara‐Gutiérrez E, Martínez‐Fernández DE, Valdés‐Alvarado E. PTCH1 gene variants rs357564, rs2236405, rs2297086 and rs41313327, mRNA and tissue expression in basal cell carcinoma patients from Western Mexico. J Clin Lab Anal 2024; 38:e25010. [PMID: 38287479 PMCID: PMC10873687 DOI: 10.1002/jcla.25010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Basal cell carcinoma (BCC) represents about 80% of all cases of skin cancer. The PTCH1 is a transmembrane protein of the Sonic Hedgehog signaling pathway that regulates cell proliferation. Genetic variants in PTCH1 gene have been previously described in association with BCC development. In addition, PTCH1 mRNA and protein expression analysis are also significant to understand its role in skin cancer physiopathology. METHODS An analytical cross-sectional study was performed, and a total of 250 BCC patients and 290 subjects from the control group (CG) were included, all born in western Mexico. The genotypes and relative expression of the mRNA were determined by TaqMan® assay. The protein expression was investigated in 70 BCC paraffin-embedded samples with PTCH1 antibodies. Semi-quantitative analysis was performed to determine the expression level in the immunostained cells. RESULTS We did not find evidence of an association between PTCH1 rs357564, rs2297086, rs2236405, and rs41313327 genetic variants and susceptibility to BCC. Likewise, no statistically significant differences were found in the comparison of the mRNA level expression between BCC and CG (p > 0.05). The PTCH1 protein showed a low expression in 6 of the analyzed samples and moderate expression in 1 sample. No association was found between genetic variants, protein expression, and demographic-clinical characteristics (p > 0.05). CONCLUSION The studied PTCH1 variants may not be associated with BCC development in the Western Mexico population. The PTCH1 mRNA levels were lower in patients with BCC compared to the control group, but its protein was underexpressed in the tissue samples.
Collapse
Affiliation(s)
- Marianela Zambrano‐Román
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
- Doctorado en Genética Humana, Departamento de Biología Molecular y GenómicaUniversidad de GuadalajaraGuadalajaraMexico
| | - Jorge R. Padilla‐Gutiérrez
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - Yeminia Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - José F. Muñoz‐Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - Elizabeth Guevara‐Gutiérrez
- Departamento de Dermatología, Instituto Dermatológico de Jalisco “Dr. José Barba Rubio”Secretaría de Salud JaliscoZapopanJaliscoMexico
| | - Diana Emilia Martínez‐Fernández
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - Emmanuel Valdés‐Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| |
Collapse
|
9
|
Li K, Xiao J, Ling Z, Luo T, Xiong J, Chen Q, Dong L, Wang Y, Wang X, Jiang Z, Xia L, Yu Z, Hua R, Guo R, Tang D, Lv M, Lian A, Li B, Zhao G, He X, Xia K, Cao Y, Li J. Prioritizing de novo potential non-canonical splicing variants in neurodevelopmental disorders. EBioMedicine 2024; 99:104928. [PMID: 38113761 PMCID: PMC10767160 DOI: 10.1016/j.ebiom.2023.104928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Genomic variants outside of the canonical splicing site (±2) may generate abnormal mRNA splicing, which are defined as non-canonical splicing variants (NCSVs). However, the clinical interpretation of NCSVs in neurodevelopmental disorders (NDDs) is largely unknown. METHODS We investigated the contribution of NCSVs to NDDs from 345,787 de novo variants (DNVs) in 47,574 patients with NDDs. We performed functional enrichment and protein-protein interaction analysis to assess the association between genes carrying prioritised NCSVs and NDDs. Minigene was used to validate the impact of NCSVs on mRNA splicing. FINDINGS We observed significantly more NCSVs (p = 0.02, odds ratio [OR] = 2.05) among patients with NDD than in controls. Both canonical splicing variants (CSVs) and NCSVs contributed to an equal proportion of patients with NDD (0.76% vs. 0.82%). The candidate genes carrying NCSVs were associated with glutamatergic synapse and chromatin remodelling. Minigene successfully validated 59 of 79 (74.68%) NCSVs that led to abnormal splicing in 40 candidate genes, and 9 of the genes (ARID1B, KAT6B, TCF4, SMARCA2, SHANK3, PDHA1, WDR45, SCN2A, SYNGAP1) harboured recurrent NCSVs with the same variant present in more than two unrelated patients with NDD. Moreover, 36 of 59 (61.02%) NCSVs are novel clinically relevant variants, including 34 unreported and 2 clinically conflicting interpretations or of uncertain significance NCSVs in the ClinVar database. INTERPRETATION This study highlights the common pathology and clinical importance of NCSVs in unsolved patients with NDD. FUNDING The present study was funded by grants from the National Natural Science Foundation of China, China Postdoctoral Science Foundation, the Hunan Youth Science and Technology Innovation Talent Project, the Provincial Natural Science Foundation of Hunan, The Scientific Research Program of FuRong laboratory, and the Natural Science Project of the University of Anhui Province.
Collapse
Affiliation(s)
- Kuokuo Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jifang Xiao
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Zhengbao Ling
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Luo
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jingyu Xiong
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Lijie Dong
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Yijing Wang
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Xiaomeng Wang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Zhaowei Jiang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhen Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rong Hua
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Rui Guo
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Bin Li
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - GuiHu Zhao
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China; Anhui Provincial Human Sperm Bank, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Jinchen Li
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China; Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China; Bioinformatics Center, Furong Laboratory, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Kaikaryte K, Gedvilaite G, Balnyte R, Uloziene I, Liutkeviciene R. Role of SIRT1 Gene Polymorphisms and Serum Levels in Patients with Multiple Sclerosis. Diagnostics (Basel) 2023; 13:3287. [PMID: 37892107 PMCID: PMC10606525 DOI: 10.3390/diagnostics13203287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
AIM The purpose of this work was to investigate the prevalence of SIRT1 rs3818292, rs3758391, and rs7895833 single nucleotide polymorphisms and SIRT1 serum levels associated with multiple sclerosis (MS) in the Lithuanian population. METHODS A total of 250 MS patients and 250 healthy controls were included in the study. Genotyping was performed using the RT-PCR method. Statistical analysis was performed using "IBM SPSS version 29.0". The serum SIRT1 level was determined by the ELISA method. RESULTS We found that rs3818292 was associated with increased odds of developing MS under the dominant (p = 0.007) and allelic genetic (p = 0.004) models. rs3758391 was associated with increased odds of developing under the co-dominant (p < 0.001), overdominant (p < 0.001), dominant (p < 0.001), and allelic (p = 0.002) genetic models. rs7895833 was associated with increased odds of developing MS under co-dominant (p < 0.001), overdominant (p < 0.001), dominant (p < 0.001), and allelic (p < 0.001) genetic models. Additional sex-differentiated analysis within females revealed that the rs3758391 was associated with an increased odds ratio for the occurrence of MS among the co-dominant (p = 0.006), dominant (p = 0.002), and allelic (p = 0.001). rs7895833 was associated with an increased odds ratio for the development of MS under the co-dominant (p < 0.001), overdominant (p < 0.001), dominant (p < 0.001), and allelic (p < 0.001) genetic models. Age-differentiated analysis showed that rs3758391 was associated with an increased odds ratio for the development of MS in younger patients under the codominant (p = 0.002), overdominant (p = 0.003), and dominant (p = 0.004) genetic models. rs7895833 was associated with an increased odds ratio for the occurrence of MS under the overdominant genetic model (p = 0.013). In elderly patients, rs3818292 was associated with an increased odds ratio for the occurrence of MS under the dominant (p = 0.008) and allelic (p = 0.009) genetic models. rs7895833 was associated with an increased odds ratio for the occurrence of MS under the codominant (p = 0.011 and p = 0.012), dominant (p = 0.001), and allelic (p < 0.001) genetic models. We also found that serum SIRT1 levels were statistically significantly different between MS patients and control group subjects (p < 0.001). In addition, comparison of SIRT1 levels between study groups and genotypes showed that rs3818292 AA (p = 0.001), rs3758391 CT (p < 0.001), and rs7895833 AA (p = 0.002) and AG (p = 0.004) had higher SIRT1 levels in the control group than in the MS group. All results were provided after strict Bonferroni correction. CONCLUSIONS Genetic variations in SIRT1 rs3818292, rs3758391, and rs7895833 are associated with multiple sclerosis, with possible differences in gender and age, as well as lower serum SIRT1 levels.
Collapse
Affiliation(s)
- Kriste Kaikaryte
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.); (R.L.)
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.); (R.L.)
| | - Renata Balnyte
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania;
| | - Ingrida Uloziene
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., 50161 Kaunas, Lithuania
| |
Collapse
|
11
|
Zhang L, Shen M, Shu X, Zhou J, Ding J, Zhong C, Pan B, Wang B, Zhang C, Guo W. Intronic position +9 and -9 are potentially splicing sites boundary from intronic variants analysis of whole exome sequencing data. BMC Med Genomics 2023; 16:146. [PMID: 37365551 DOI: 10.1186/s12920-023-01542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Whole exome sequencing (WES) can also detect some intronic variants, which may affect splicing and gene expression, but how to use these intronic variants, and the characteristics about them has not been reported. This study aims to reveal the characteristics of intronic variant in WES data, to further improve the clinical diagnostic value of WES. A total of 269 WES data was analyzed, 688,778 raw variants were called, among these 367,469 intronic variants were in intronic regions flanking exons which was upstream/downstream region of the exon (default is 200 bps). Contrary to expectation, the number of intronic variants with quality control (QC) passed was the lowest at the +2 and -2 positions but not at the +1 and -1 positions. The plausible explanation was that the former had the worst effect on trans-splicing, whereas the latter did not completely abolish splicing. And surprisingly, the number of intronic variants that passed QC was the highest at the +9 and -9 positions, indicating a potential splicing site boundary. The proportion of variants which could not pass QC filtering (false variants) in the intronic regions flanking exons generally accord with "S"-shaped curve. At +5 and -5 positions, the number of variants predicted damaging by software was most. This was also the position at which many pathogenic variants had been reported in recent years. Our study revealed the characteristics of intronic variant in WES data for the first time, we found the +9 and -9 positions might be a potentially splicing sites boundary and +5 and -5 positions were potentially important sites affecting splicing or gene expression, the +2 and -2 positions seem more important splicing site than +1 and -1 positions, and we found variants in intronic regions flanking exons over ± 50 bps may be unreliable. This result can help researchers find more useful variants and demonstrate that WES data is valuable for intronic variants analysis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minna Shen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, State Key Laboratory, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Fabo T, Khavari P. Functional characterization of human genomic variation linked to polygenic diseases. Trends Genet 2023; 39:462-490. [PMID: 36997428 PMCID: PMC11025698 DOI: 10.1016/j.tig.2023.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
The burden of human disease lies predominantly in polygenic diseases. Since the early 2000s, genome-wide association studies (GWAS) have identified genetic variants and loci associated with complex traits. These have ranged from variants in coding sequences to mutations in regulatory regions, such as promoters and enhancers, as well as mutations affecting mediators of mRNA stability and other downstream regulators, such as 5' and 3'-untranslated regions (UTRs), long noncoding RNA (lncRNA), and miRNA. Recent research advances in genetics have utilized a combination of computational techniques, high-throughput in vitro and in vivo screening modalities, and precise genome editing to impute the function of diverse classes of genetic variants identified through GWAS. In this review, we highlight the vastness of genomic variants associated with polygenic disease risk and address recent advances in how genetic tools can be used to functionally characterize them.
Collapse
Affiliation(s)
- Tania Fabo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
13
|
Johar L, Lee G, Martin-Rios A, Hall K, Cheng C, Lombardo D, Pahl M, Kimonis V. Polycystic kidney disease complicates renal pathology in a family with Fabry disease. Mol Genet Metab Rep 2022; 33:100934. [DOI: 10.1016/j.ymgmr.2022.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
|
14
|
Fazeli Z, Abdollahimajd F, Atazadeh F, Karimi M, Alikhani A, Aryan A, Asadi K. The association of Interleukin-10 and Interleukin-13 polymorphisms with susceptibility to vitiligo: A study in Iranian patients. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
de Lima LC, Cruz ÁA, Costa RDS, Silva HDS, Coelho RS, Teixeira HM, Oliveira PR, Barnes KC, Figueiredo CA, Carneiro VL. TSLP and IL25 variants are related to asthma and atopy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Wang Y, Du M, Vallis J, Shariati M, Parfrey PS, Mclaughlin JR, Wang PP, Zhu Y. The Roles of MTRR and MTHFR Gene Polymorphisms in Colorectal Cancer Survival. Nutrients 2022; 14:nu14214594. [PMID: 36364857 PMCID: PMC9658674 DOI: 10.3390/nu14214594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Paradoxically epidemiological data illustrate a negative relationship between dietary folate intake and colorectal cancer (CRC) risk. The occurrence and progression of CRC may be influenced by variants in some key enzyme coding genes in the folate metabolic pathway. We investigated the correlation between genetic variants in methionine synthase reductase (MTRR) and methylenetetrahydrofolate reductase (MTHFR) and CRC survival. Methods: This study used data collected from the Newfoundland Familial Colorectal Cancer Study. A total of 532 patients diagnosed with CRC for the first time from 1999 to 2003 were enrolled, and their mortality were tracked until April 2010. DNA samples were genotyped by Illumina’s integrated quantum 1 million chip. Cox models were established to assess 33 tag single-nucleotide polymorphisms in MTRR and MTHFR in relation to overall survival (OS), disease-free survival (DFS) and CRC-specific survival. Results: The MTRR and MTHFR genes were associated with DFS and CRC-specific survival in CRC patients at the gene level. After multiple comparison adjustment, MTRR rs1801394 A (vs. G) allele was associated with increased DFS (p = 0.024), while MTHRT rs3737966 (G vs. A), rs4846049 (T vs. G), rs1476413 (A vs. G), rs1801131 (C vs. A), rs12121543 (A vs. C), rs1801133 (C vs. T), rs4846052 (T vs. C), rs2066471 (A vs. G) and rs7533315 (T vs. C) were related to worse CRC-specific survival. Additionally, significant interactions were seen among pre-diagnostic alcohol consumption with MTRR rs1801394, rs3776467, rs326124, rs162040, and rs3776455, with superior OS associated with those protective variant alleles limited to patients with alcohol consumption under the median. The MTHFR rs3737966 (G vs. A) allele seemed to be detrimental to CRC survival only among subjects with fruit intake below the median. Conclusions: Polymorphic variants in MTRR and MTHFR genes that code for key enzymes for folate metabolism may be associated with survival in patients with CRC. The gene-CRC outcome association seems modulated by alcohol drinking and fruit intake.
Collapse
Affiliation(s)
- Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Meizhi Du
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jillian Vallis
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Matin Shariati
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Patrick S. Parfrey
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - John R. Mclaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Peizhong Peter Wang
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Correspondence: (P.P.W.); (Y.Z.); Tel.: +1-(709)-777-8571 (P.P.W.); +86-(022)-8333-6118 (Y.Z.)
| | - Yun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (P.P.W.); (Y.Z.); Tel.: +1-(709)-777-8571 (P.P.W.); +86-(022)-8333-6118 (Y.Z.)
| |
Collapse
|
17
|
Mechanism and modeling of human disease-associated near-exon intronic variants that perturb RNA splicing. Nat Struct Mol Biol 2022; 29:1043-1055. [PMID: 36303034 DOI: 10.1038/s41594-022-00844-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
It is estimated that 10%-30% of disease-associated genetic variants affect splicing. Splicing variants may generate deleteriously altered gene product and are potential therapeutic targets. However, systematic diagnosis or prediction of splicing variants is yet to be established, especially for the near-exon intronic splice region. The major challenge lies in the redundant and ill-defined branch sites and other splicing motifs therein. Here, we carried out unbiased massively parallel splicing assays on 5,307 disease-associated variants that overlapped with branch sites and collected 5,884 variants across the 5' splice region. We found that strong splice sites and exonic features preserve splicing from intronic sequence variation. Whereas the splice-altering mechanism of the 3' intronic variants is complex, that of the 5' is mainly splice-site destruction. Statistical learning combined with these molecular features allows precise prediction of altered splicing from an intronic variant. This statistical model provides the identity and ranking of biological features that determine splicing, which serves as transferable knowledge and out-performs the benchmarking predictive tool. Moreover, we demonstrated that intronic splicing variants may associate with disease risks in the human population. Our study elucidates the mechanism of splicing response of intronic variants, which classify disease-associated splicing variants for the promise of precision medicine.
Collapse
|
18
|
Suazo J, Salamanca C, González-Hormazábal P, Cáceres-Rojas G, Pantoja R, Leiva N, Pardo R. PEMT variants are associated with nonsyndromic cleft lip with or without cleft palate in Chile. Epigenomics 2022; 14:987-993. [PMID: 36154674 DOI: 10.2217/epi-2022-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To assess the association between PEMT variants and nonsyndromic cleft lip with or without cleft palate in Chile and the effects of these variants on global DNA methylation. Subjects & methods: The authors obtained genotypes for nine variants from 247 cases and 453 controls for genotype-phenotype associations. The effect of significant polymorphisms on global DNA methylation (percentage of long interspersed element-1 methylation) was evaluated in a subsample of 95 controls. Results: After multiple comparison corrections, variants rs7649 and rs4646409 were associated with nonsyndromic cleft lip with or without cleft palate. Carriers of risk alleles presented lower DNA methylation levels than noncarriers. Conclusion: According to functional analysis for risk variants from previous reports, the authors infer that a decrease of methyl group availability is occurring in affected subjects.
Collapse
Affiliation(s)
- José Suazo
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Carlos Salamanca
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile.,Research Center in Dental Sciences (CICO), Dental School, Universidad de La Frontera, Temuco, Chile.,Universidad Adventista de Chile, Chillán, Chile
| | - Patricio González-Hormazábal
- Human Genetics Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Gabriela Cáceres-Rojas
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Roberto Pantoja
- Unit of Oral & Maxillofacial Surgery, Hospital Clínico San Borja-Arriaran, Santiago, Chile.,Department of Oral & Maxillofacial Surgery, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Noemi Leiva
- Unit of Maxillofacial Malformations, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rosa Pardo
- Section of Genetics, Hospital Clínico Universidad de Chile, Santiago, Chile.,Unit of Neonatology, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Li K, Luo T, Zhu Y, Huang Y, Wang A, Zhang D, Dong L, Wang Y, Wang R, Tang D, Yu Z, Shen Q, Lv M, Ling Z, Fang Z, Yuan J, Li B, Xia K, He X, Li J, Zhao G. Performance evaluation of differential splicing analysis methods and splicing analytics platform construction. Nucleic Acids Res 2022; 50:9115-9126. [PMID: 35993808 PMCID: PMC9458456 DOI: 10.1093/nar/gkac686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
A proportion of previously defined benign variants or variants of uncertain significance in humans, which are challenging to identify, may induce an abnormal splicing process. An increasing number of methods have been developed to predict splicing variants, but their performance has not been completely evaluated using independent benchmarks. Here, we manually sourced ∼50 000 positive/negative splicing variants from > 8000 studies and selected the independent splicing variants to evaluate the performance of prediction methods. These methods showed different performances in recognizing splicing variants in donor and acceptor regions, reminiscent of different weight coefficient applications to predict novel splicing variants. Of these methods, 66.67% exhibited higher specificities than sensitivities, suggesting that more moderate cut-off values are necessary to distinguish splicing variants. Moreover, the high correlation and consistent prediction ratio validated the feasibility of integration of the splicing prediction method in identifying splicing variants. We developed a splicing analytics platform called SPCards, which curates splicing variants from publications and predicts splicing scores of variants in genomes. SPCards also offers variant-level and gene-level annotation information, including allele frequency, non-synonymous prediction and comprehensive functional information. SPCards is suitable for high-throughput genetic identification of splicing variants, particularly those located in non-canonical splicing regions.
Collapse
Affiliation(s)
| | | | - Yan Zhu
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuanfeng Huang
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - An Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Di Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Lijie Dong
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yujian Wang
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Wang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Dongdong Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhen Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Qunshan Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Mingrong Lv
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhengbao Ling
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhenghuan Fang
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China,NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Bin Li
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kun Xia
- Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China,Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaojin He
- Correspondence may also be addressed to Xiaojin He. Tel: +86 731 8975 2406; Fax: +86 731 8432 7332;
| | - Jinchen Li
- To whom correspondence should be addressed. Tel: +86 731 8975 2406; Fax: +86 731 8432 7332;
| | - Guihu Zhao
- Correspondence may also be addressed to Guihu Zhao. Tel: +86 731 8975 2406; Fax: +86 731 8432 7332;
| |
Collapse
|
20
|
Liu H, Dai J, Li K, Sun Y, Wei H, Wang H, Zhao C, Wang DW. Performance evaluation of computational methods for splice-disrupting variants and improving the performance using the machine learning-based framework. Brief Bioinform 2022; 23:6670557. [PMID: 35976049 DOI: 10.1093/bib/bbac334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023] Open
Abstract
A critical challenge in genetic diagnostics is the assessment of genetic variants associated with diseases, specifically variants that fall out with canonical splice sites, by altering alternative splicing. Several computational methods have been developed to prioritize variants effect on splicing; however, performance evaluation of these methods is hampered by the lack of large-scale benchmark datasets. In this study, we employed a splicing-region-specific strategy to evaluate the performance of prediction methods based on eight independent datasets. Under most conditions, we found that dbscSNV-ADA performed better in the exonic region, S-CAP performed better in the core donor and acceptor regions, S-CAP and SpliceAI performed better in the extended acceptor region and MMSplice performed better in identifying variants that caused exon skipping. However, it should be noted that the performances of prediction methods varied widely under different datasets and splicing regions, and none of these methods showed the best overall performance with all datasets. To address this, we developed a new method, machine learning-based classification of splice sites variants (MLCsplice), to predict variants effect on splicing based on individual methods. We demonstrated that MLCsplice achieved stable and superior prediction performance compared with any individual method. To facilitate the identification of the splicing effect of variants, we provided precomputed MLCsplice scores for all possible splice sites variants across human protein-coding genes (http://39.105.51.3:8090/MLCsplice/). We believe that the performance of different individual methods under eight benchmark datasets will provide tentative guidance for appropriate method selection to prioritize candidate splice-disrupting variants, thereby increasing the genetic diagnostic yield.
Collapse
Affiliation(s)
- Hao Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiaqi Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Ke Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hong Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Chunxia Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
21
|
Diasio RB, Offer SM. Testing for Dihydropyrimidine Dehydrogenase Deficiency to Individualize 5-Fluorouracil Therapy. Cancers (Basel) 2022; 14:3207. [PMID: 35804978 PMCID: PMC9264755 DOI: 10.3390/cancers14133207] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Severe adverse events (toxicity) related to the use of the commonly used chemotherapeutic drug 5-fluorouracil (5-FU) affect one in three patients and are the primary reason cited for premature discontinuation of therapy. Deficiency of the 5-FU catabolic enzyme dihydropyrimidine dehydrogenase (DPD, encoded by DPYD) has been recognized for the past 3 decades as a pharmacogenetic syndrome associated with high risk of 5-FU toxicity. An appreciable fraction of patients with DPD deficiency that receive 5-FU-based chemotherapy die as a result of toxicity. In this manuscript, we review recent progress in identifying actionable markers of DPD deficiency and the current status of integrating those markers into the clinical decision-making process. The limitations of currently available tests, as well as the regulatory status of pre-therapeutic DPYD testing, are also discussed.
Collapse
Affiliation(s)
- Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA;
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN 55902, USA
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA;
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
22
|
Kumar J, Lackey L, Waldern JM, Dey A, Mustoe AM, Weeks KM, Mathews DH, Laederach A. Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing. eLife 2022; 11:73888. [PMID: 35695373 PMCID: PMC9236610 DOI: 10.7554/elife.73888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.
Collapse
Affiliation(s)
- Jayashree Kumar
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, United States
| | - Justin M Waldern
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Abhishek Dey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - David H Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, United States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
23
|
Nieves-Colón MA, Badillo Rivera KM, Sandoval K, Villanueva Dávalos V, Enriquez Lencinas LE, Mendoza-Revilla J, Adhikari K, González-Buenfil R, Chen JW, Zhang ET, Sockell A, Ortiz-Tello P, Hurtado GM, Condori Salas R, Cebrecos R, Manzaneda Choque JC, Manzaneda Choque FP, Yábar Pilco GP, Rawls E, Eng C, Huntsman S, Burchard E, Ruiz-Linares A, González-José R, Bedoya G, Rothhammer F, Bortolini MC, Poletti G, Gallo C, Bustamante CD, Baker JC, Gignoux CR, Wojcik GL, Moreno-Estrada A. Clotting factor genes are associated with preeclampsia in high-altitude pregnant women in the Peruvian Andes. Am J Hum Genet 2022; 109:1117-1139. [PMID: 35588731 PMCID: PMC9247825 DOI: 10.1016/j.ajhg.2022.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Preeclampsia is a multi-organ complication of pregnancy characterized by sudden hypertension and proteinuria that is among the leading causes of preterm delivery and maternal morbidity and mortality worldwide. The heterogeneity of preeclampsia poses a challenge for understanding its etiology and molecular basis. Intriguingly, risk for the condition increases in high-altitude regions such as the Peruvian Andes. To investigate the genetic basis of preeclampsia in a population living at high altitude, we characterized genome-wide variation in a cohort of preeclamptic and healthy Andean families (n = 883) from Puno, Peru, a city located above 3,800 meters of altitude. Our study collected genomic DNA and medical records from case-control trios and duos in local hospital settings. We generated genotype data for 439,314 SNPs, determined global ancestry patterns, and mapped associations between genetic variants and preeclampsia phenotypes. A transmission disequilibrium test (TDT) revealed variants near genes of biological importance for placental and blood vessel function. The top candidate region was found on chromosome 13 of the fetal genome and contains clotting factor genes PROZ, F7, and F10. These findings provide supporting evidence that common genetic variants within coagulation genes play an important role in preeclampsia. A selection scan revealed a potential adaptive signal around the ADAM12 locus on chromosome 10, implicated in pregnancy disorders. Our discovery of an association in a functional pathway relevant to pregnancy physiology in an understudied population of Native American origin demonstrates the increased power of family-based study design and underscores the importance of conducting genetic research in diverse populations.
Collapse
Affiliation(s)
- Maria A Nieves-Colón
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, México; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA; Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA.
| | | | - Karla Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, México
| | | | | | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris 75015, France
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, WC1E 6BT London, UK
| | - Ram González-Buenfil
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, México
| | - Jessica W Chen
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Elisa T Zhang
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Alexandra Sockell
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | | | - Gloria Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Ramiro Condori Salas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Ricardo Cebrecos
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | | | | | | | - Erin Rawls
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Celeste Eng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Scott Huntsman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Esteban Burchard
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Andrés Ruiz-Linares
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, WC1E 6BT London, UK; Aix-Marseille Université, CNRS, EFS, ADES, 13005 Marseille, France; Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, China
| | - Rolando González-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico-CONICET y Programa Nacional de Referencia y Biobanco Genómico de la Población Argentina (PoblAr), Ministerio de Ciencia, Tecnología e Innovación, Puerto Madryn, Chubut, Argentina
| | - Gabriel Bedoya
- Genética Molecular (GENMOL), Universidad de Antioquía, Medellin, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación Universidad de Tarapacá, Tarapacá, Chile; Programa de Genética Humana, ICBM Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 15053, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Carlos D Bustamante
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Julie C Baker
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | | | - Genevieve L Wojcik
- Department of Epidemiology, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD 21205, USA
| | - Andrés Moreno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, México.
| |
Collapse
|
24
|
Kaikaryte K, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Mockute R, Cebatoriene D, Zemaitiene R, Balciuniene VJ, Liutkeviciene R. SIRT1: Genetic Variants and Serum Levels in Age-Related Macular Degeneration. Life (Basel) 2022; 12:life12050753. [PMID: 35629418 PMCID: PMC9148058 DOI: 10.3390/life12050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of this paper was to determine the frequency of SIRT1 rs3818292, rs3758391, rs7895833 single nucleotide polymorphism genotypes and SIRT1 serum levels associated with age-related macular degeneration (AMD) in the Lithuanian population. Methods: Genotyping of SIRT1 rs3818292, rs3758391 and rs7895833 was performed using RT-PCR. SIRT1 serum level was determined using the ELISA method. Results: We found that rs3818292 and rs7895833 were associated with an increased risk of developing exudative AMD. Additional sex-differentiated analysis revealed only rs7895833 was associated with an increased risk of developing exudative AMD in women after strict Bonferroni correction. The analysis also revealed that individuals carrying rs3818292, rs3758391 and rs7895833 haplotype G-T-G are associated with increased odds of exudative AMD. Still, the rare haplotypes were associated with the decreased odds of exudative AMD. After performing an analysis of serum SIRT1 levels and SIRT1 genetic variant, we found that carriers of the SIRT1 rs3818292 minor allele G had higher serum SIRT1 levels than the AA genotype. In addition, individuals carrying at least one SIRT1 rs3758391 T allele also had elevated serum SIRT1 levels compared with individuals with the wild-type CC genotype. Conclusions: Our study showed that the SIRT1 polymorphisms rs3818292 and rs7895833 and rs3818292-rs3758391-rs7895833 haplotype G-T-G could be associated with the development of exudative AMD. Also, two SNPs (rs3818292 and rs3758391) are associated with elevated SIRT1 levels.
Collapse
Affiliation(s)
- Kriste Kaikaryte
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Correspondence: ; Tel.: +370-6857-5999
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Ruta Mockute
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Dzastina Cebatoriene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Reda Zemaitiene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Vilma Jurate Balciuniene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, LT-50161 Kaunas, Lithuania; (G.G.); (A.V.); (L.K.); (R.L.)
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2 Str., LT-50161 Kaunas, Lithuania; (R.M.); (D.C.); (R.Z.); (V.J.B.)
| |
Collapse
|
25
|
Suazo J, Salamanca C, Cáceres-Rojas G, González-Hormazábal P, Pantoja R, Leiva N, Pardo R. Vitamin B12 Transport Genes and Nonsyndromic Cleft Lip With or Without Cleft Palate in Chile. Reprod Sci 2022; 29:2921-2926. [PMID: 35471549 DOI: 10.1007/s43032-022-00957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
The aims of this study were to assess the association between polymorphisms within genes involved in vitamin B12 transport and nonsyndromic cleft lip with or without cleft palate (NSCL/P) and global DNA methylation in Chile. From 247 cases and 453 controls, we obtained variant genotypes for CBLIF, CUBN, AMN, ABCC1, CD320, and TCN2 from a single nucleotide polymorphisms array. Global DNA methylation in 95 controls was obtained through LINE-1 methylation. After multiple comparison corrections, only rs780807 in CUBN remains associated with NSCL/P at dominant model (OR 0.564, p-value = 0.0006, q-value = 0.0450). Carriers of protective allele showed lower levels of DNA methylation than non-carriers (p = 0.0259). Further studies are necessary in order to explain relations with the phenotype and DNA methylation due to the absence of functional evidence for rs780807 in CUBN.
Collapse
Affiliation(s)
- José Suazo
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Sergio Livingstone #943, Santiago, Chile.
| | - Carlos Salamanca
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Sergio Livingstone #943, Santiago, Chile.,Research Center in Dental Sciences (CICO), Dental School, Universidad de La Frontera, Temuco, Chile.,Universidad Adventista de Chile, Chillán, Chile
| | - Gabriela Cáceres-Rojas
- Institute for Research in Dental Sciences, School of Dentistry, Universidad de Chile, Sergio Livingstone #943, Santiago, Chile
| | - Patricio González-Hormazábal
- Human Genetics Program, Institute of Biomedical Sciences, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto Pantoja
- Unit of Oral and Maxillofacial Surgery, Hospital Clínico San Borja-Arriaran, Santiago, Chile.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Noemi Leiva
- Unit of Maxillofacial Malformations, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rosa Pardo
- Section of Genetics, Hospital Clínico Universidad de Chile, Santiago, Chile.,Unit of Neonatology, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Analysis of the APOB Gene and Apolipoprotein B Serum Levels in a Mexican Population with Acute Coronary Syndrome: Association with the Single Nucleotide Variants rs1469513, rs673548, rs676210, and rs1042034. Genet Res (Camb) 2022; 2022:4901090. [PMID: 35440891 PMCID: PMC8991409 DOI: 10.1155/2022/4901090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Apolipoprotein B (APOB) is associated with the development of atherosclerosis and consequently in the acute coronary syndrome (ACS) physiopathology. Single number variants (SNVs) in apolipoprotein B gene (APOB) influence over the susceptibility for this syndrome. The aim of this study was to determine the impact of the rs1469513, rs673548, rs676210, and rs1042034 SNVs and serum levels of APOB in the risk of ACS in a population from western Mexico. We included 300 patients in the group of cases (ACSG) and 300 individuals in the control group (CG). APOB levels were evaluated by immunonephelometry, and SNVs were genotyped with TaqMan probes. We found significant allelic and genotypic differences between groups for rs673548 and rs676210 (OR = 1.33, p=0.030, OR = 2.69, p < 0.001) and rs1042034 (OR = 0.50, p=0.037) SNVs. We found a risk haplotype TAGT (OR: 2.14, IC 1.50–3.04, p < 0.001). Our findings support a significant risk association between rs673548 and rs676210 variants for ACS; meanwhile, rs1042034 could be considered protective factor in a western Mexican population. Also, in this population, haplotype TAGT may confer 2.14 times a higher risk. APOB serum levels were compared by genotype variants in both groups without any significant statistical difference.
Collapse
|
27
|
A New Algorithm for Multivariate Genome Wide Association Studies Based on Differential Evolution and Extreme Learning Machines. MATHEMATICS 2022. [DOI: 10.3390/math10071024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies (GWAS) are observational studies of a large set of genetic variants, whose aim is to find those that are linked to a certain trait or illness. Due to the multivariate nature of these kinds of studies, machine learning methodologies have been already applied in them, showing good performance. This work presents a new methodology for GWAS that makes use of extreme learning machines and differential evolution. The proposed methodology was tested with the help of the genetic information (370,750 single-nucleotide polymorphisms) of 2049 individuals, 1076 of whom suffer from colorectal cancer. The possible relationship of 10 different pathways with this illness was tested. The results achieved showed that the proposed methodology is suitable for detecting relevant pathways for the trait under analysis with a lower computational cost than other machine learning methodologies previously proposed.
Collapse
|
28
|
Jiang Y, Jiang F, Li M, Wu Q, Xu C, Zhang R, Song M, Wang Y, Wang Y, Chen Y, Zhang J, Ge X, Zhu Q, Zhuang L, Yang D, Lu M, Wang F, Jiang M, Liu X, Liu Y, Liu L. Identification and management of GCK-MODY complicating pregnancy in Chinese patients with gestational diabetes. Mol Cell Biochem 2022; 477:1629-1643. [PMID: 35229243 DOI: 10.1007/s11010-022-04374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Precise differentiation of glucokinase (GCK) monogenic diabetes from gestational diabetes mellitus (GDM) is critical for accurate management of the pregnancy outcome. We screened GCK-MODY complicating pregnancies in Chinese GDM patients, explored the pathogenesis of novel GCK mutations, and evaluated the patients' pregnancy outcome and management. The GCK gene from 411 GDM patients was screened with PCR-direct sequencing and multiplex ligation-dependent probe amplification (MLPA) and 15 GCK mutations were identified. We also retrospectively analyzed a total of 65 pregnancies from 21 GCK-MODY families, wherein 41 were from 15 maternal families and 24 were from six paternal families. Bioinformatic analysis and biochemical functional study were conducted to identify novel GCK mutations. In total, we identified 21 GCK mutations: 15 from the 411 GDM patients and six from 24 fathers. Of th Asp78Asn (GAC → AAC), Met87Arg (ATG → AGG), Leu451Val (CTT → GTT), Leu451Pro (CTG → CCG) and 1019 + 20G > A e mutations, five, i.e., were novel and deleterious, with markedly decreased enzyme activity and thermal stability. The unaffected offspring of GCK mutation-affected mothers were heavier than affected offspring (p < 0.001). Of 21 insulin-treated affected mothers, 10 had maternal hypoglycemia (47.6%) and seven had perinatal complications (33.3%), and the affected offspring of the insulin-treated affected mothers had significantly lower birth weights than that of the 20 diet-control affected mothers (p = 0.031). In this study, the prevalence of GCK-MODY complicating pregnancy in Chinese GDM patients was 3.6% (15/411). The defective GCK may contribute to the hyperglycemia in GCK-MODY. Insulin therapy is not beneficial for GCK-MODY complicating pregnancy and therefore should not be recommended.
Collapse
Affiliation(s)
- Yanyan Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Fusong Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Ming Li
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qingkai Wu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Shanghai, 200233, China
| | - Chenming Xu
- The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Mingqiang Song
- Department of Endocrinology, Weihai Municipal Hospital, No. 70, Heping Road, Weihai, 264200, China
| | - Yanzhong Wang
- School of Population Health and Environmental Science, King's College London, London, UK
| | - Ying Wang
- Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Yating Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Juan Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Xiaoxu Ge
- Department of Endocrinology, School of Medicine, Shanghai Tongren Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Qihan Zhu
- Department of Endocrinology, The first affiliated hospital of Wenzhou Medical University, The South of Shangcai Village, Nanbaixiang Town, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Langen Zhuang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, China
| | - Di Yang
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, USA
| | - Ming Lu
- Department of Endocrinology & Metabolism, Putuo Hospital Attached to Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200000, China
| | - Feng Wang
- Department of Nephrology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240, China
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University, Los Angeles, USA
- David Geffen School of Medicine at University of California, Los Angeles, USA
| | - Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
29
|
Xie T, Yang Y, Gong K, Luo Y, Guo H, Liu R, Wang L, Tan Z, Luo J, Xie L. Whole-Exome Sequencing Identifies a Novel Variant (c.1538T > C) of TNNI3K in Arrhythmogenic Right Ventricular Cardiomyopathy. Front Cardiovasc Med 2022; 9:843837. [PMID: 35274013 PMCID: PMC8902045 DOI: 10.3389/fcvm.2022.843837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Backgrounds Arrhythmic right ventricular cardiomyopathy (ARVC) is a cardiomyopathy with a genetic predisposition that can lead to a sudden cardiac death and heart failure. According to the 2010 Task Force Criteria, genetic diagnosis is one of the most important methods, but, so far, only a few genes related to ARVC have been identified. Methods In this study, the pathogenic gene of a patient with ARVC was examined using whole-exome sequencing. The plasmids of TNNI3K were constructed, and the effects of the TNNI3K variant was investigated by a real-time polymerase chain reaction (PCR) and western blot. Results A novel variant (c.1538T > C) of TNNI3K was identified, with phenotypes of dominant right ventricular (RV) disease preliminarily fulfilling the diagnosis of ARVC. A comprehensive assessment revealed that the variant was pathogenic. We found that this variant would lead to a decrease in the level of TNNI3K mRNA and protein, as well as a decrease in the expression of the RYR2 gene, which further proves that TNNI3K plays an important role in cardiomyopathy and expands the spectrum of the TNNI3K variants. Conclusion In this study, we reported a TNNI3K variant in ARVC for the first time, and the results not only contribute to the diagnosis of ARVC, but also provide a reference for genetic counseling and promote the understanding of the genetic mechanism of cardiomyopathy.
Collapse
Affiliation(s)
- Ting Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yong Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Hui Guo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Ruilin Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Lei Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Jinwen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- *Correspondence: Li Xie
| |
Collapse
|
30
|
Methods to Improve Molecular Diagnosis in Genomic Cold Cases in Pediatric Neurology. Genes (Basel) 2022; 13:genes13020333. [PMID: 35205378 PMCID: PMC8871714 DOI: 10.3390/genes13020333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
During the last decade, genetic testing has emerged as an important etiological diagnostic tool for Mendelian diseases, including pediatric neurological conditions. A genetic diagnosis has a considerable impact on disease management and treatment; however, many cases remain undiagnosed after applying standard diagnostic sequencing techniques. This review discusses various methods to improve the molecular diagnostic rates in these genomic cold cases. We discuss extended analysis methods to consider, non-Mendelian inheritance models, mosaicism, dual/multiple diagnoses, periodic re-analysis, artificial intelligence tools, and deep phenotyping, in addition to integrating various omics methods to improve variant prioritization. Last, novel genomic technologies, including long-read sequencing, artificial long-read sequencing, and optical genome mapping are discussed. In conclusion, a more comprehensive molecular analysis and a timely re-analysis of unsolved cases are imperative to improve diagnostic rates. In addition, our current understanding of the human genome is still limited due to restrictions in technologies. Novel technologies are now available that improve upon some of these limitations and can capture all human genomic variation more accurately. Last, we recommend a more routine implementation of high molecular weight DNA extraction methods that is coherent with the ability to use and/or optimally benefit from these novel genomic methods.
Collapse
|
31
|
Rana S, Fatima N, Bhatti AA. Association of CLOCK gene variants with obesity and adiposity-related anthropometric, metabolic, and behavioral parameters. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The CLOCK gene is a core component of the circadian clock and regulates various aspects of metabolism. Therefore, any variation that affects the function/expression of the CLOCK gene may contribute to the manifestation of metabolic disorders such as obesity. This study investigated whether the CLOCK variants rs4864548 and rs6843722 are associated with obesity and related traits in Pakistanis. A total of 306 overweight/obese cases and 306 age- and gender-matched control subjects were recruited (males 336 and females 276, age range 12–63 years). Anthropometric and metabolic parameters were taken by standard procedures and biochemical analyses, respectively. Behavior-related information was collected with a questionnaire. The genotypes of the variants were determined by allelic discrimination Taqman assays. Both variants were found to have a significant association with overweight/obesity according to the over-dominant model. The rs4864548 and rs6843722 were observed to escalate the risk of overweight/obesity by 1.611 ( p = 0.004) and 1.657 ( p = 0.002) times, respectively. These variants were also seen to be significantly associated with various other adiposity-related anthropometric parameters ( p < 0.05). However, no association of both variants with metabolic and behavioral parameters was observed ( p > 0.05). Thus, these variants may contribute to increasing the risk of overweight/obesity and related anthropometric traits in Pakistanis.
Collapse
Affiliation(s)
- Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Narjis Fatima
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Adil Anwar Bhatti
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
32
|
Siavrienė E, Petraitytė G, Burnytė B, Morkūnienė A, Mikštienė V, Rančelis T, Utkus A, Kučinskas V, Preikšaitienė E. Compound heterozygous c.598_612del and c.1746-20C > G CAPN3 genotype cause autosomal recessive limb-girdle muscular dystrophy-1: a case report. BMC Musculoskelet Disord 2021; 22:1020. [PMID: 34863162 PMCID: PMC8645139 DOI: 10.1186/s12891-021-04920-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/28/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Autosomal recessive limb-girdle muscular dystrophy-1 (LGMDR1), also known as calpainopathy, is a genetically heterogeneous disorder characterised by progression of muscle weakness. Homozygous or compound heterozygous variants in the CAPN3 gene are known genetic causes of this condition. The aim of this study was to confirm the molecular consequences of the CAPN3 variant NG_008660.1(NM_000070.3):c.1746-20C > G of an individual with suspected LGMDR1 by extensive complementary DNA (cDNA) analysis. CASE PRESENTATION In the present study, we report on a male with proximal muscular weakness in his lower limbs. Compound heterozygous NM_000070.3:c.598_612del and NG_008660.1(NM_000070.3):c.1746-20C > G genotype was detected on the CAPN3 gene by targeted next-generation sequencing (NGS). To confirm the pathogenicity of the variant c.1746-20C > G, we conducted genetic analysis based on Sanger sequencing of the proband's cDNA sample. The results revealed that this splicing variant disrupts the original 3' splice site on intron 13, thus leading to the skipping of the DNA fragment involving exon 14 and possibly exon 15. However, the lack of exon 15 in the CAPN3 isoforms present in a blood sample was explained by cell-specific alternative splicing rather than an aberrant splicing mechanism. In silico the c.1746-20C > G splicing variant consequently resulted in frameshift and formation of a premature termination codon (NP_000061.1:p.(Glu582Aspfs*62)). CONCLUSIONS Based on the results of our study and the literature we reviewed, both c.598_612del and c.1746-20C > G variants are pathogenic and together cause LGMDR1. Therefore, extensive mRNA and/or cDNA analysis of splicing variants is critical to understand the pathogenesis of the disease.
Collapse
Affiliation(s)
- Evelina Siavrienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu street 2, LT-08661, Vilnius, Lithuania.
- Biobank of Lithuanian Population and Rare Disorders, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Gunda Petraitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu street 2, LT-08661, Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu street 2, LT-08661, Vilnius, Lithuania
| | - Aušra Morkūnienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu street 2, LT-08661, Vilnius, Lithuania
| | - Violeta Mikštienė
- Biobank of Lithuanian Population and Rare Disorders, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu street 2, LT-08661, Vilnius, Lithuania
- Biobank of Lithuanian Population and Rare Disorders, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu street 2, LT-08661, Vilnius, Lithuania
- Biobank of Lithuanian Population and Rare Disorders, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu street 2, LT-08661, Vilnius, Lithuania
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu street 2, LT-08661, Vilnius, Lithuania
| |
Collapse
|
33
|
Clinical Relevance of Novel Polymorphisms in the Dihydropyrimidine Dehydrogenase ( DPYD) Gene in Patients with Severe Fluoropyrimidine Toxicity: A Spanish Case-Control Study. Pharmaceutics 2021; 13:pharmaceutics13122036. [PMID: 34959317 PMCID: PMC8707980 DOI: 10.3390/pharmaceutics13122036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
Among cancer patients treated with fluoropyrimidines, 10-40% develop severe toxicity. Polymorphism of the dihydropyrimidine dehydrogenase (DPYD) gene may reduce DPD function, the main enzyme responsible for the metabolism of fluoropyrimidines. This leads to drug accumulation and to an increased risk of toxicity. Routine genotyping of this gene, which usually includes DPYD *HapB3, *2A, *13 and c.2846A > T (D949V) variants, helps predict approximately 20-30% of toxicity cases. For DPD intermediate (IM) or poor (PM) metabolizers, a dose adjustment or drug switch is warranted to avoid toxicity, respectively. Societies such as the Spanish Society of Pharmacogenetics and Pharmacogenomics (SEFF), the Dutch Pharmacogenetics Working Group (DPWG) or the Clinical Pharmacogenetics Implementation Consortium (CPIC) and regulatory agencies (e.g., the Spanish Medicines Agency, AEMPS) already recommend DPYD routine genotyping. However, the predictive capacity of genotyping is currently still limited. This can be explained by the presence of unknown polymorphisms affecting the function of the enzyme. In this case-control work, 11 cases of severe fluoropyrimidine toxicity in patients who did not carry any of the four variants mentioned above were matched with 22 controls, who did not develop toxicity and did not carry any variant. The DPYD exome was sequenced (Sanger) in search of potentially pathogenic mutations. DPYD rs367619008 (c.187 A > G, p.Lys63Glu), rs200643089 (c.2324 T > G, p.Leu775Trp) and rs76387818 (c.1084G > A, p.Val362Ile) increased the percentage of explained toxicities to 38-48%. Moreover, there was an intronic variant considered potentially pathogenic: rs944174134 (c.322-63G > A). Further studies are needed to confirm its clinical relevance. The remaining variants were considered non-pathogenic.
Collapse
|
34
|
Legro NR, Kumar A, Aliu E. Case report of atypical Leigh syndrome in an adolescent male with novel biallelic variants in NDUFAF5 and review of the natural history of NDUFAF5-related disorders. Am J Med Genet A 2021; 188:896-899. [PMID: 34797029 DOI: 10.1002/ajmg.a.62568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022]
Abstract
NDUFAF5 encodes a Complex I assembly factor which is critical to the modification of a core subunit, NDUFS7, in early Complex I factor assembly. Mutations in NDUFAF5 have been previously shown to cause Complex I deficiency leading to mitochondrial respiratory chain impairment. More than 15 individuals affected by variants in NDUFAF5 have been described; however, there is phenotypic heterogeneity within this cohort. Some individuals display features of classical Leigh syndrome with early onset neurodegeneration whereas others live into early adulthood with progressive neurological deficits. Here, we present a clinical report of a 17-year-old African American individual with compound heterozygous mutations in NDUFAF5. The individual presented with childhood onset bilateral optic atrophy and developed progressive neuromuscular decline with relatively preserved cognition over time.
Collapse
Affiliation(s)
- Nicole R Legro
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.,Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ashutosh Kumar
- Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.,Division of Neurology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ermal Aliu
- Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.,Division of Medical Genetics, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
35
|
Tarek MM, Yahia A, El-Nakib MM, Elhefnawi M. Integrative assessment of CIP2A overexpression and mutational effects in human malignancies identifies possible deleterious variants. Comput Biol Med 2021; 139:104986. [PMID: 34739970 DOI: 10.1016/j.compbiomed.2021.104986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
KIAA1524 is the gene encoding the human cancerous inhibitor of PP2A (CIP2A) protein which is regarded as a novel target for cancer therapy. It is overexpressed in 65%-90% of tissues in almost all studied human cancers. CIP2A expression correlates with cancer progression, disease aggressivity in lung cancer besides poor survival and resistance to chemotherapy in breast cancer. Herein, a pan-cancer analysis of public gene expression datasets was conducted showing significant upregulation of CIP2A in cancerous and metastatic tissues. CIP2A overexpression also correlated with poor survival of cancer patients. To determine the non-coding variants associated with CIP2A overexpression, 5'UTR and 3'UTR variants were annotated and scored using RegulomeDB and Enformer deep learning model. The 5'UTR variants rs1239349555, rs1576326380, and rs1231839144 were predicted to be potential regulators of CIP2A overexpression scoring best on RegulomeDB annotations with a high "2a" rank of supporting experimental data. These variants also scored the highest on Enformer predictions. Analysis of the 3'UTR variants of CIP2A predicted rs56255137 and rs58758610 to alter binding sites of hsa-miR-500a-5 and (hsa-miR-3671, hsa-miR-5692a) respectively. Both variants were also found in linkage disequilibrium with rs11709183 and rs147863209 respectively at r2 ≥ 0.8. The aforementioned variants were found to be eQTL hits significantly associated with CIP2A overexpression. Further, analysis of rs11709183 and rs147863209 revealed a high "2b" rank on RegulomeDB annotations indicating a probable effect on DNAse transcription factors binding. The MuTarget analysis indicated that somatic mutations in TP53 are significantly associated with upregulated CIP2A in human cancers. Analysis of missense SNPs on CIP2A solved structure predicted seven deleterious effects. Four of these variants were also predicted as structurally and functionally destabilizing to CIP2A including; rs375108755, rs147942716, rs368722879, and rs367941403. Variant rs1193091427 was predicted as a potential intronic splicing mutation that might be responsible for the novel CIP2A variant (NOCIVA) in multiple myeloma. Finally, Enrichment of the Wnt/β-catenin pathway within the CIP2A regulatory gene network suggested potential of therapeutic combinations between FTY720 with Wnt/β-catenin, Plk1 and/or HDAC inhibitors to downregulate CIP2A which has been shown to be essential for the survival of different cancer cell lines.
Collapse
Affiliation(s)
- Mohammad M Tarek
- Bioinformatics Department, Armed Forces College of Medicine (AFCM) Cairo, Egypt.
| | - Ahmed Yahia
- Otolaryngology Department, Armed Forces College of Medicine (AFCM) Cairo, Egypt
| | | | - Mahmoud Elhefnawi
- Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Medical Research, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
36
|
Shaker O, Sroor W, Ali O, Soliman H, Abdeen M. Association between MEG3 polymorphisms (rs941576 and rs7158663) and risk of acute ischemic stroke in Egyptian patients. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Takeda JI, Fukami S, Tamura A, Shibata A, Ohno K. IntSplice2: Prediction of the Splicing Effects of Intronic Single-Nucleotide Variants Using LightGBM Modeling. Front Genet 2021; 12:701076. [PMID: 34349788 PMCID: PMC8326971 DOI: 10.3389/fgene.2021.701076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 12/03/2022] Open
Abstract
Prediction of the effect of a single-nucleotide variant (SNV) in an intronic region on aberrant pre-mRNA splicing is challenging except for an SNV affecting the canonical GU/AG splice sites (ss). To predict pathogenicity of SNVs at intronic positions −50 (Int-50) to −3 (Int-3) close to the 3’ ss, we developed light gradient boosting machine (LightGBM)-based IntSplice2 models using pathogenic SNVs in the human gene mutation database (HGMD) and ClinVar and common SNVs in dbSNP with 0.01 ≤ minor allelic frequency (MAF) < 0.50. The LightGBM models were generated using features representing splicing cis-elements. The average recall/sensitivity and specificity of IntSplice2 by fivefold cross-validation (CV) of the training dataset were 0.764 and 0.884, respectively. The recall/sensitivity of IntSplice2 was lower than the average recall/sensitivity of 0.800 of IntSplice that we previously made with support vector machine (SVM) modeling for the same intronic positions. In contrast, the specificity of IntSplice2 was higher than the average specificity of 0.849 of IntSplice. For benchmarking (BM) of IntSplice2 with IntSplice, we made a test dataset that was not used to train IntSplice. After excluding the test dataset from the training dataset, we generated IntSplice2-BM and compared it with IntSplice using the test dataset. IntSplice2-BM was superior to IntSplice in all of the seven statistical measures of accuracy, precision, recall/sensitivity, specificity, F1 score, negative predictive value (NPV), and matthews correlation coefficient (MCC). We made the IntSplice2 web service at https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice2.
Collapse
Affiliation(s)
- Jun-Ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sae Fukami
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Tamura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihide Shibata
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Anesthesiology, Toranomon Hospital, Tokyo, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
38
|
Zhang S, Cooper-Knock J, Weimer AK, Harvey C, Julian TH, Wang C, Li J, Furini S, Frullanti E, Fava F, Renieri A, Pan C, Song J, Billing-Ross P, Gao P, Shen X, Timpanaro IS, Kenna KP, Davis MM, Tsao PS, Snyder MP. Common and rare variant analyses combined with single-cell multiomics reveal cell-type-specific molecular mechanisms of COVID-19 severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.06.15.21258703. [PMID: 34189540 PMCID: PMC8240695 DOI: 10.1101/2021.06.15.21258703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The determinants of severe COVID-19 in non-elderly adults are poorly understood, which limits opportunities for early intervention and treatment. Here we present novel machine learning frameworks for identifying common and rare disease-associated genetic variation, which outperform conventional approaches. By integrating single-cell multiomics profiling of human lungs to link genetic signals to cell-type-specific functions, we have discovered and validated over 1,000 risk genes underlying severe COVID-19 across 19 cell types. Identified risk genes are overexpressed in healthy lungs but relatively downregulated in severely diseased lungs. Genetic risk for severe COVID-19, within both common and rare variants, is particularly enriched in natural killer (NK) cells, which places these immune cells upstream in the pathogenesis of severe disease. Mendelian randomization indicates that failed NKG2D-mediated activation of NK cells leads to critical illness. Network analysis further links multiple pathways associated with NK cell activation, including type-I-interferon-mediated signalling, to severe COVID-19. Our rare variant model, PULSE, enables sensitive prediction of severe disease in non-elderly patients based on whole-exome sequencing; individualized predictions are accurate independent of age and sex, and are consistent across multiple populations and cohorts. Risk stratification based on exome sequencing has the potential to facilitate post-exposure prophylaxis in at-risk individuals, potentially based around augmentation of NK cell function. Overall, our study characterizes a comprehensive genetic landscape of COVID-19 severity and provides novel insights into the molecular mechanisms of severe disease, leading to new therapeutic targets and sensitive detection of at-risk individuals.
Collapse
|
39
|
Wan JY, Goodman DL, Willems EL, Freedland AR, Norden-Krichmar TM, Santorico SA, Edwards KL. Genome-wide association analysis of metabolic syndrome quantitative traits in the GENNID multiethnic family study. Diabetol Metab Syndr 2021; 13:59. [PMID: 34074324 PMCID: PMC8170963 DOI: 10.1186/s13098-021-00670-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To identify genetic associations of quantitative metabolic syndrome (MetS) traits and characterize heterogeneity across ethnic groups. METHODS Data was collected from GENetics of Noninsulin dependent Diabetes Mellitus (GENNID), a multiethnic resource of Type 2 diabetic families and included 1520 subjects in 259 African-American, European-American, Japanese-Americans, and Mexican-American families. We focused on eight MetS traits: weight, waist circumference, systolic and diastolic blood pressure, high-density lipoprotein, triglycerides, fasting glucose, and insulin. Using genotyped and imputed data from Illumina's Multiethnic array, we conducted genome-wide association analyses with linear mixed models for all ethnicities, except for the smaller Japanese-American group, where we used additive genetic models with gene-dropping. RESULTS Findings included ethnic-specific genetic associations and heterogeneity across ethnicities. Most significant associations were outside our candidate linkage regions and were coincident within a gene or intergenic region, with two exceptions in European-American families: (a) within previously identified linkage region on chromosome 2, two significant GLI2-TFCP2L1 associations with weight, and (b) one chromosome 11 variant near CADM1-LINC00900 with pleiotropic blood pressure effects. CONCLUSIONS This multiethnic family study found genetic heterogeneity and coincident associations (with one case of pleiotropy), highlighting the importance of including diverse populations in genetic research and illustrating the complex genetic architecture underlying MetS.
Collapse
Affiliation(s)
- Jia Y Wan
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Deborah L Goodman
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Emileigh L Willems
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA
| | - Alexis R Freedland
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Trina M Norden-Krichmar
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA
| | - Stephanie A Santorico
- Department of Mathematical and Statistical Sciences, University of Colorado, Denver, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado, Denver, CO, USA
- Department of Biostatistics & Informatics, University of Colorado, Denver, CO, USA
- Division of Biomedical Informatics & Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karen L Edwards
- Department of Epidemiology and Biostatistics, Program in Public Health, University of California, 635 E. Peltason Dr, Mail Code: 7550, Irvine, CA, 92697, USA.
| |
Collapse
|
40
|
Morales-Rosado JA, Goel K, Zhang L, Åkerblom A, Baheti S, Black JL, Eriksson N, Wallentin L, James S, Storey RF, Goodman SG, Jenkins GD, Eckloff BW, Bielinski SJ, Sicotte H, Johnson S, Roger VL, Wang L, Weinshilboum R, Klee EW, Rihal CS, Pereira NL. Next-Generation Sequencing of CYP2C19 in Stent Thrombosis: Implications for Clopidogrel Pharmacogenomics. Cardiovasc Drugs Ther 2021; 35:549-559. [PMID: 32623598 PMCID: PMC7779664 DOI: 10.1007/s10557-020-06988-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Describe CYP2C19 sequencing results in the largest series of clopidogrel-treated cases with stent thrombosis (ST), the closest clinical phenotype to clopidogrel resistance. Evaluate the impact of CYP2C19 genetic variation detected by next-generation sequencing (NGS) with comprehensive annotation and functional studies. METHODS Seventy ST cases on clopidogrel identified from the PLATO trial (n = 58) and Mayo Clinic biorepository (n = 12) were matched 1:1 with controls for age, race, sex, diabetes mellitus, presentation, and stent type. NGS was performed to cover the entire CYP2C19 gene. Assessment of exonic variants involved measuring in vitro protein expression levels. Intronic variants were evaluated for potential splicing motif variations. RESULTS Poor metabolizers (n = 4) and rare CYP2C19*8, CYP2C19*15, and CYP2C19*11 alleles were identified only in ST cases. CYP2C19*17 heterozygote carriers were observed more frequently in cases (n = 29) than controls (n = 18). Functional studies of CYP2C19 exonic variants (n = 11) revealed 3 cases and only 1 control carrying a deleterious variant as determined by in vitro protein expression studies. Greater intronic variation unique to ST cases (n = 169) compared with controls (n = 84) was observed with predictions revealing 13 allele candidates that may lead to a potential disruption of splicing and a loss-of-function effect of CYP2C19 in ST cases. CONCLUSION NGS detected CYP2C19 poor metabolizers and paradoxically greater number of so-called rapid metabolizers in ST cases. Rare deleterious exonic variation occurs in 4%, and potentially disruptive intronic alleles occur in 16% of ST cases. Additional studies are required to evaluate the role of these variants in platelet aggregation and clopidogrel metabolism.
Collapse
Affiliation(s)
- Joel A Morales-Rosado
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kashish Goel
- Vanderbilt University School of Medicine, Nashville, TN, 37215, USA
| | - Lingxin Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Axel Åkerblom
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - John L Black
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Niclas Eriksson
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Stefan James
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Shaun G Goodman
- St. Michael's Hospital, University of Toronto, Toronto, Canada
- Canadian VIGOUR Centre, University of Alberta , Edmonton, Canada
| | - Gregory D Jenkins
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Suzette J Bielinski
- Division of Epidemiology, Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA
| | - Hugues Sicotte
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Stephen Johnson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Veronique L Roger
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charanjit S Rihal
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
41
|
Parathyroid Hormone Gene and Genes Involved in the Maintenance of Vitamin D Levels Association with Mandibular Retrognathism. J Pers Med 2021; 11:jpm11050369. [PMID: 34063310 PMCID: PMC8147469 DOI: 10.3390/jpm11050369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023] Open
Abstract
In this study we evaluated whether single nucleotide polymorphisms (SNPs) in the genes encoding PTH, VDR, CYP24A1, and CYP27B1 were associated with mandibular retrognathism (MR). Samples from biologically-unrelated Brazilian patients receiving orthodontic treatment were included in this study. Pre-orthodontic lateral cephalograms were used to determine the phenotype. Patients with a retrognathic mandible were selected as cases and those with an orthognathic mandible were selected as controls. Genomic DNA was used for genotyping analysis of SNPs in PTH (rs694, rs6256, and rs307247), VDR (rs7975232), CYP24A1 (rs464653), and CYP27B1 (rs927650). Chi-squared or Fisher’s tests were used to compare genotype and allele distribution among groups. Haplotype analysis was performed for the SNPs in PTH. The established alpha was p < 0.05. Multifactor dimensionality reduction (MDR) was used to identify SNP–SNP interactions. A total of 48 (22 males and 26 females) MR and 43 (17 males and 26 females) controls were included. The linear mandibular and the angular measurements were statistically different between MR and controls (p < 0.05). In the genotype and allele distribution analysis, the SNPs rs694, rs307247, and rs464653 were associated with MR (p < 0.05). MDR analyses predicted the best interaction model for MR was rs694–rs927650, followed by rs307247–rs464653–rs927650. Some haplotypes in the PTH gene presented statistical significance. Our results suggest that SNPs in PTH, VDR, CYP24A1, and CYP27B1 genes are associated with the presence of mandibular retrognathism.
Collapse
|
42
|
Shoily SS, Ahsan T, Fatema K, Sajib AA. Disparities in COVID-19 severities and casualties across ethnic groups around the globe and patterns of ACE2 and PIR variants. INFECTION GENETICS AND EVOLUTION 2021; 92:104888. [PMID: 33933634 PMCID: PMC8084605 DOI: 10.1016/j.meegid.2021.104888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mediated Coronavirus disease-19 (COVID-19) has affected millions of individuals around all corners of the globe. Symptoms and severities of infection with this highly contagious virus vary among individuals and there is disparity in the number of COVID-19-related casualties across different ethnic groups. The primary receptor for SARS-CoV-2 entry into the host cells is angiotensin-converting enzyme 2 (ACE2). Certain variants of ACE2 are known to be associated with COVID-19 comorbidities such as hypertension, cardiovascular complications, diabetes, chronic lung disease, etc. In this study, we looked into the geographic distribution of disease-associated variants of ACE2 as well as closely located PIR gene to explore any possible correlation with the disparities in COVID-19 severities and casualties across ethnic groups. Frequencies of the ACE2 variants associated with COVID-19 comorbidities are higher in the European and the admixed American populations. These variants are also present with stronger pairwise linkage disequilibrium (LD) in the European and the admixed American populations. On the other hand, the variants with protective role are more prevalent in the East and the South Asian populations. Strong pairwise LD exists among the activity modifying (modifier) variants of the PIR and ACE2 genes only in the European super-population. Absence of these PIR variants in the South Asian population may contribute to the overall lower COVID-19 case fatality rates (CFR) despite the dense population in this region.
Collapse
Affiliation(s)
- Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tamim Ahsan
- Department of Mathematics and Natural Sciences, Brac University, Dhaka 1212, Bangladesh
| | - Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
43
|
Kristan A, Gašperšič J, Režen T, Kunej T, Količ R, Vuga A, Fink M, Žula Š, Anžej Doma S, Preložnik Zupan I, Pajič T, Podgornik H, Debeljak N. Genetic analysis of 39 erythrocytosis and hereditary hemochromatosis-associated genes in the Slovenian family with idiopathic erythrocytosis. J Clin Lab Anal 2021; 35:e23715. [PMID: 33534944 PMCID: PMC8059723 DOI: 10.1002/jcla.23715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/10/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Erythrocytosis is a condition with an excessive number of erythrocytes, accompanied by an elevated haemoglobin and/or haematocrit value. Congenital erythrocytosis has a diverse genetic background with several genes involved in erythropoiesis. In clinical practice, nine genes are usually examined, but in approximately 70% of patients, no causative mutation can be identified. In this study, we screened 39 genes, aiming to identify potential disease-driving variants in the family with erythrocytosis of unknown cause. PATIENTS AND METHODS Two affected family members with elevated haemoglobin and/or haematocrit and negative for acquired causes and one healthy relative from the same family were selected for molecular-genetic analysis of 24 erythrocytosis and 15 hereditary haemochromatosis-associated genes with targeted NGS. The identified variants were further analysed for pathogenicity using various bioinformatic tools and review of the literature. RESULTS Of the 12 identified variants, two heterozygous variants, the missense variant c.471G>C (NM_022051.2) (p.(Gln157His)) in the EGLN1 gene and the intron variant c.2572-13A>G (NM_004972.3) in the JAK2 gene, were classified as low-frequency variants in European population. None of the two variants were present in a healthy family member. Variant c.2572-13A>G has potential impact on splicing by one prediction tool. CONCLUSION For the first time, we included 39 genes in the erythrocytosis clinical panel and identified two potential disease-driving variants in the Slovene family studied. Based on the reported functional in vitro studies combined with our bioinformatics analysis, we suggest further functional analysis of variant in the JAK2 gene and evaluation of a cumulative effect of both variants.
Collapse
Affiliation(s)
- Aleša Kristan
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Jernej Gašperšič
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio‐ChipsFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| | - Tanja Kunej
- Department of Animal ScienceBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Rok Količ
- Kemomed Research and DevelopmentKemomed LtdKranjSlovenia
| | - Andrej Vuga
- Kemomed Research and DevelopmentKemomed LtdKranjSlovenia
| | - Martina Fink
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Špela Žula
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Saša Anžej Doma
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Irena Preložnik Zupan
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Department of Internal MedicineFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tadej Pajič
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Clinical Institute of Genomic MedicineUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Helena Podgornik
- Clinical Department of HaematologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
- Chair of Clinical BiochemistryFaculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia
| | - Nataša Debeljak
- Medical Centre for Molecular BiologyFaculty of MedicineInstitute of Biochemistry and Molecular GeneticsUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
44
|
GASVeM: A New Machine Learning Methodology for Multi-SNP Analysis of GWAS Data Based on Genetic Algorithms and Support Vector Machines. MATHEMATICS 2021. [DOI: 10.3390/math9060654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies (GWAS) are observational studies of a large set of genetic variants in an individual’s sample in order to find if any of these variants are linked to a particular trait. In the last two decades, GWAS have contributed to several new discoveries in the field of genetics. This research presents a novel methodology to which GWAS can be applied to. It is mainly based on two machine learning methodologies, genetic algorithms and support vector machines. The database employed for the study consisted of information about 370,750 single-nucleotide polymorphisms belonging to 1076 cases of colorectal cancer and 973 controls. Ten pathways with different degrees of relationship with the trait under study were tested. The results obtained showed how the proposed methodology is able to detect relevant pathways for a certain trait: in this case, colorectal cancer.
Collapse
|
45
|
Genetic variants in S-adenosyl-methionine synthesis pathway and nonsyndromic cleft lip with or without cleft palate in Chile. Pediatr Res 2021; 89:1020-1025. [PMID: 32492698 DOI: 10.1038/s41390-020-0994-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/25/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND The S-adenosyl-methionine (SAM) availability is crucial for DNA methylation, an epigenetic mechanism involved in nonsyndromic cleft lip with or without cleft palate (NSCL/P) expression. The aim of this study was to assess the association between single-nucleotide polymorphisms (SNPs) of genes involved in SAM synthesis and NSCL/P in a Chilean population. METHODS In 234 cases and 309 controls, 18 SNPs in AHCY, MTR, MTRR, and MAT2A were genotyped, and the association between them and the phenotype was evaluated based on additive (allele), dominant, recessive and haplotype models, by odds ratio (OR) computing. RESULTS Three deep intronic SNPs of MTR showed a protective effect on NSCL/P expression: rs10925239 (OR 0.68; p = 0.0032; q = 0.0192), rs10925254 (OR 0.66; p = 0.0018; q = 0.0162), and rs3768142 (OR 0.66; p = 0.0015; q = 0.0162). Annotations in expression database demonstrate that the protective allele of the three SNPs is associated with a reduction of MTR expression summed to the prediction by bioinformatic tools of its potentiality to modify splicing sites. CONCLUSIONS The protective effect against NSCL/P of these intronic MTR SNPs seems to be related to a decrease in MTR enzyme expression, modulating the SAM availability for proper substrate methylation. However, functional analyses are necessary to confirm our findings. IMPACT SAM synthesis pathway genetic variants are factors associated to NSCL/P. This article adds new evidence for folate related genes in NSCL/P in Chile. Its impact is to contribute with potential new markers for genetic counseling.
Collapse
|
46
|
Momozawa Y, Mizukami K. Unique roles of rare variants in the genetics of complex diseases in humans. J Hum Genet 2021; 66:11-23. [PMID: 32948841 PMCID: PMC7728599 DOI: 10.1038/s10038-020-00845-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/06/2020] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have identified >10,000 genetic variants associated with various phenotypes and diseases. Although the majority are common variants, rare variants with >0.1% of minor allele frequency have been investigated by imputation and using disease-specific custom SNP arrays. Rare variants sequencing analysis mainly revealed have played unique roles in the genetics of complex diseases in humans due to their distinctive features, in contrast to common variants. Unique roles are hypothesis-free evidence for gene causality, a precise target of functional analysis for understanding disease mechanisms, a new favorable target for drug development, and a genetic marker with high disease risk for personalized medicine. As whole-genome sequencing continues to identify more rare variants, the roles associated with rare variants will also increase. However, a better estimation of the functional impact of rare variants across whole genome is needed to enhance their contribution to improvements in human health.
Collapse
Affiliation(s)
- Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
- Laboratory for Molecular Science for Drug Discovery, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| | - Keijiro Mizukami
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
47
|
Xu S, Feng W, Lu Z, Yu CY, Shao W, Nakshatri H, Reiter JL, Gao H, Chu X, Wang Y, Liu Y. regSNPs-ASB: A Computational Framework for Identifying Allele-Specific Transcription Factor Binding From ATAC-seq Data. Front Bioeng Biotechnol 2020; 8:886. [PMID: 32850739 PMCID: PMC7405637 DOI: 10.3389/fbioe.2020.00886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Expression quantitative trait loci (eQTL) analysis is useful for identifying genetic variants correlated with gene expression, however, it cannot distinguish between causal and nearby non-functional variants. Because the majority of disease-associated SNPs are located in regulatory regions, they can impact allele-specific binding (ASB) of transcription factors and result in differential expression of the target gene alleles. In this study, our aim was to identify functional single-nucleotide polymorphisms (SNPs) that alter transcriptional regulation and thus, potentially impact cellular function. Here, we present regSNPs-ASB, a generalized linear model-based approach to identify regulatory SNPs that are located in transcription factor binding sites. The input for this model includes ATAC-seq (assay for transposase-accessible chromatin with high-throughput sequencing) raw read counts from heterozygous loci, where differential transposase-cleavage patterns between two alleles indicate preferential transcription factor binding to one of the alleles. Using regSNPs-ASB, we identified 53 regulatory SNPs in human MCF-7 breast cancer cells and 125 regulatory SNPs in human mesenchymal stem cells (MSC). By integrating the regSNPs-ASB output with RNA-seq experimental data and publicly available chromatin interaction data from MCF-7 cells, we found that these 53 regulatory SNPs were associated with 74 potential target genes and that 32 (43%) of these genes showed significant allele-specific expression. By comparing all of the MCF-7 and MSC regulatory SNPs to the eQTLs in the Genome-Tissue Expression (GTEx) Project database, we found that 30% (16/53) of the regulatory SNPs in MCF-7 and 43% (52/122) of the regulatory SNPs in MSC were also in eQTL regions. The enrichment of regulatory SNPs in eQTLs indicated that many of them are likely responsible for allelic differences in gene expression (chi-square test, p-value < 0.01). In summary, we conclude that regSNPs-ASB is a useful tool for identifying causal variants from ATAC-seq data. This new computational tool will enable efficient prioritization of genetic variants identified as eQTL for further studies to validate their causal regulatory function. Ultimately, identifying causal genetic variants will further our understanding of the underlying molecular mechanisms of disease and the eventual development of potential therapeutic targets.
Collapse
Affiliation(s)
- Siwen Xu
- Institute of Intelligent System and Bioinformatics, College of Automation, Harbin Engineering University, Harbin, China.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Weixing Feng
- Institute of Intelligent System and Bioinformatics, College of Automation, Harbin Engineering University, Harbin, China
| | - Zixiao Lu
- Regenstrief Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Christina Y Yu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Wei Shao
- Regenstrief Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Harikrishna Nakshatri
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jill L Reiter
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaona Chu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yue Wang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
48
|
Nicholls HL, John CR, Watson DS, Munroe PB, Barnes MR, Cabrera CP. Reaching the End-Game for GWAS: Machine Learning Approaches for the Prioritization of Complex Disease Loci. Front Genet 2020; 11:350. [PMID: 32351543 PMCID: PMC7174742 DOI: 10.3389/fgene.2020.00350] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS - the ability to detect genetic association by linkage disequilibrium (LD) - is also its limitation. Whilst the ever-increasing study size and improved design have augmented the power of GWAS to detect effects, differentiation of causal variants or genes from other highly correlated genes associated by LD remains the real challenge. This has severely hindered the biological insights and clinical translation of GWAS findings. Although thousands of disease susceptibility loci have been reported, causal genes at these loci remain elusive. Machine learning (ML) techniques offer an opportunity to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from relatively simple logistic regression approaches to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models, i.e., neural networks. Paired with functional validation, these methods show important promise for clinical translation, providing a strong evidence-based approach to direct post-GWAS research. However, as ML approaches continue to evolve to meet the challenge of causal gene identification, a critical assessment of the underlying methodologies and their applicability to the GWAS prioritization problem is needed. This review investigates the landscape of ML applications in three parts: selected models, input features, and output model performance, with a focus on prioritizations of complex disease associated loci. Overall, we explore the contributions ML has made towards reaching the GWAS end-game with consequent wide-ranging translational impact.
Collapse
Affiliation(s)
- Hannah L. Nicholls
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christopher R. John
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - David S. Watson
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Oxford Internet Institute, University of Oxford, Oxford, United Kingdom
| | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael R. Barnes
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- The Alan Turing Institute, British Library, London, United Kingdom
| | - Claudia P. Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
49
|
Lin H, Hargreaves KA, Li R, Reiter JL, Wang Y, Mort M, Cooper DN, Zhou Y, Zhang C, Eadon MT, Dolan ME, Ipe J, Skaar TC, Liu Y. RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants. Genome Biol 2019; 20:254. [PMID: 31779641 PMCID: PMC6883696 DOI: 10.1186/s13059-019-1847-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/03/2019] [Indexed: 12/27/2022] Open
Abstract
Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together, RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis.
Collapse
Affiliation(s)
- Hai Lin
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 410 West 10th Street, Suite 5000, Indianapolis, IN, 46202, USA
| | - Katherine A Hargreaves
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, 950 W Walnut St, Suite 419, Indianapolis, IN, 46202, USA
| | - Rudong Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 410 West 10th Street, Suite 5000, Indianapolis, IN, 46202, USA
| | - Jill L Reiter
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 410 West 10th Street, Suite 5000, Indianapolis, IN, 46202, USA
| | - Yue Wang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 410 West 10th Street, Suite 5000, Indianapolis, IN, 46202, USA
| | - Matthew Mort
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Yaoqi Zhou
- Institute for Glycomics and School of Informatics and Communication Technology, Griffith University, Parklands Dr., Southport, QLD, 4215, Australia
| | - Chi Zhang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 410 West 10th Street, Suite 5000, Indianapolis, IN, 46202, USA
| | - Michael T Eadon
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Joseph Ipe
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, 950 W Walnut St, Suite 419, Indianapolis, IN, 46202, USA
| | - Todd C Skaar
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, 950 W Walnut St, Suite 419, Indianapolis, IN, 46202, USA.
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 410 West 10th Street, Suite 5000, Indianapolis, IN, 46202, USA.
| |
Collapse
|