1
|
Han Y, Jiang S, Dong X, Dai X, Wang S, Zheng Y, Yan G, Li S, Wu L, Walbot V, Meyers BC, Zhang M. Ribosome binding of phasiRNA precursors accelerates the 24-nt phasiRNA burst in meiotic maize anthers. THE PLANT CELL 2024; 37:koae289. [PMID: 39442012 DOI: 10.1093/plcell/koae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Reproductive phasiRNAs (phased, secondary, small interfering RNAs), produced from numerous PHAS loci, are essential for plant anther development. PHAS transcripts are enriched on endoplasmic reticulum-bound ribosomes in maize (Zea mays), but the impact of ribosome binding on phasiRNA biogenesis remains elusive. Through ribosome profiling of maize anthers at 10 developmental stages, we demonstrated that 24-PHAS transcripts are bound by ribosomes, with patterns corresponding to the timing and abundance of 24-PHAS transcripts. Ribosome binding to 24-PHAS transcripts is conserved among different maize inbred lines, with ribosomes enriched upstream of the miR2275 target sites. We detected short open reading frames (sORFs) in the ribosome-binding regions of some 24-PHAS transcripts and observed a 3-nt periodicity in most sORFs, but mass spectrometry failed to detect peptides corresponding to the sORFs. Deletion of the entire ribosome-binding region of 24PHAS_NO296 locus eliminated ribosome binding and decreased 24-nt phasiRNA production, without affecting 24PHAS_NO296 transcript levels. In contrast, disrupting only the sORFs in 24PHAS_NO296 did not substantially affect the generation of 24-nt phasiRNAs. A newly formed sORF in these mutants may have re-directed ribosome binding to its transcripts. Overall, these findings demonstrate that sORFs facilitate ribosome binding to 24-PHAS transcripts, thereby promoting phasiRNA biogenesis in meiotic anthers.
Collapse
Affiliation(s)
- Yingjia Han
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Siqi Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xing Dai
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shunxi Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengben Li
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Busche M. Embracing a new phase: Ribosome binding promotes phasiRNA biogenesis. THE PLANT CELL 2024; 37:koae298. [PMID: 39535808 DOI: 10.1093/plcell/koae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Michael Busche
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
3
|
Wang Z, Zhong S, Zhang S, Zhang B, Zheng Y, Sun Y, Zhang Q, Liu X. A novel and ubiquitous miRNA-involved regulatory module ensures precise phosphorylation of RNA polymerase II and proper transcription. PLoS Pathog 2024; 20:e1012138. [PMID: 38640110 PMCID: PMC11062530 DOI: 10.1371/journal.ppat.1012138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/01/2024] [Accepted: 03/20/2024] [Indexed: 04/21/2024] Open
Abstract
Proper transcription orchestrated by RNA polymerase II (RNPII) is crucial for cellular development, which is rely on the phosphorylation state of RNPII's carboxyl-terminal domain (CTD). Sporangia, developed from mycelia, are essential for the destructive oomycetes Phytophthora, remarkable transcriptional changes are observed during the morphological transition. However, how these changes are rapidly triggered and their relationship with the versatile RNPII-CTD phosphorylation remain enigmatic. Herein, we found that Phytophthora capsici undergone an elevation of Ser5-phosphorylation in its uncanonical heptapeptide repeats of RNPII-CTD during sporangia development, which subsequently changed the chromosomal occupation of RNPII and primarily activated transcription of certain genes. A cyclin-dependent kinase, PcCDK7, was highly induced and phosphorylated RNPII-CTD during this morphological transition. Mechanistically, a novel DCL1-dependent microRNA, pcamiR1, was found to be a feedback modulator for the precise phosphorylation of RNPII-CTD by complexing with PcAGO1 and regulating the accumulation of PcCDK7. Moreover, this study revealed that the pcamiR1-CDK7-RNPII regulatory module is evolutionarily conserved and the impairment of the balance between pcamiR1 and PcCDK7 could efficiently reduce growth and virulence of P. capsici. Collectively, this study uncovers a novel and evolutionary conserved mechanism of transcription regulation which could facilitate correct development and identifies pcamiR1 as a promising target for disease control.
Collapse
Affiliation(s)
- Zhiwen Wang
- China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Shan Zhong
- China Agricultural University, Beijing, China
| | | | - Borui Zhang
- China Agricultural University, Beijing, China
| | - Yang Zheng
- China Agricultural University, Beijing, China
| | - Ye Sun
- China Agricultural University, Beijing, China
| | | | - Xili Liu
- China Agricultural University, Beijing, China
- State Key Laboratory or Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Zhong C, Smith NA, Zhang D, Gou X, Greaves IK, Millar AA, Walsh TK, Shan W, Wang MB. G-U base-paired hpRNA confers potent inhibition of small RNA function in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1206-1222. [PMID: 38038953 DOI: 10.1111/tpj.16555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
MicroRNA (miRNA) target mimicry technologies, utilizing naturally occurring miRNA decoy molecules, represent a potent tool for analyzing miRNA function. In this study, we present a highly efficient small RNA (sRNA) target mimicry design based on G-U base-paired hairpin RNA (hpG:U), which allows for the simultaneous targeting of multiple sRNAs. The hpG:U constructs consistently generate high amounts of intact, polyadenylated stem-loop (SL) RNA outside the nuclei, in contrast to traditional hairpin RNA designs with canonical base pairing (hpWT), which were predominantly processed resulting in a loop. By incorporating a 460-bp G-U base-paired double-stranded stem and a 312-576 nt loop carrying multiple miRNA target mimicry sites (GUMIC), the hpG:U construct displayed effective repression of three Arabidopsis miRNAs, namely miR165/166, miR157, and miR160, both individually and in combination. Additionally, a GUMIC construct targeting a prominent cluster of siRNAs derived from cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) effectively inhibited Y-Sat siRNA-directed silencing of the chlorophyll biosynthetic gene CHLI, thereby reducing the yellowing symptoms in infected Nicotiana plants. Therefore, the G-U base-paired hpRNA, characterized by differential processing compared to traditional hpRNA, acts as an efficient decoy for both miRNAs and siRNAs. This technology holds great potential for sRNA functional analysis and the management of sRNA-mediated diseases.
Collapse
Affiliation(s)
- Chengcheng Zhong
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
- Stake Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Neil A Smith
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
| | - Daai Zhang
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
| | - Xiuhong Gou
- Stake Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ian K Greaves
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Tom K Walsh
- CSIRO Environment, Canberra, 2601, ACT, Australia
| | - Weixing Shan
- Stake Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming-Bo Wang
- CSIRO Agriculture and Food, Canberra, 2601, ACT, Australia
| |
Collapse
|
5
|
Zhang X, Du M, Yang Z, Wang Z, Lim KJ. Biogenesis, Mode of Action and the Interactions of Plant Non-Coding RNAs. Int J Mol Sci 2023; 24:10664. [PMID: 37445841 DOI: 10.3390/ijms241310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The central dogma of genetics, which outlines the flow of genetic information from DNA to RNA to protein, has long been the guiding principle in molecular biology. In fact, more than three-quarters of the RNAs produced by transcription of the plant genome are not translated into proteins, and these RNAs directly serve as non-coding RNAs in the regulation of plant life activities at the molecular level. The breakthroughs in high-throughput transcriptome sequencing technology and the establishment and improvement of non-coding RNA experiments have now led to the discovery and confirmation of the biogenesis, mechanisms, and synergistic effects of non-coding RNAs. These non-coding RNAs are now predicted to play important roles in the regulation of gene expression and responses to stress and evolution. In this review, we focus on the synthesis, and mechanisms of non-coding RNAs, and we discuss their impact on gene regulation in plants.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Mingjun Du
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Kong X, Yang M, Le BH, He W, Hou Y. The master role of siRNAs in plant immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:1565-1574. [PMID: 35869407 PMCID: PMC9452763 DOI: 10.1111/mpp.13250] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/01/2023]
Abstract
Gene silencing mediated by small noncoding RNAs (sRNAs) is a fundamental gene regulation mechanism in eukaryotes that broadly governs cellular processes. It has been established that sRNAs are critical regulators of plant growth, development, and antiviral defence, while accumulating studies support positive roles of sRNAs in plant defence against bacteria and eukaryotic pathogens such as fungi and oomycetes. Emerging evidence suggests that plant sRNAs move between species and function as antimicrobial agents against nonviral parasites. Multiple plant pathosystems have been shown to involve a similar exchange of small RNAs between species. Recent analysis about extracellular sRNAs shed light on the understanding of the selection and transportation of sRNAs moving from plant to parasites. In this review, we summarize current advances regarding the function and regulatory mechanism of plant endogenous small interfering RNAs (siRNAs) in mediating plant defence against pathogen intruders including viruses, bacteria, fungi, oomycetes, and parasitic plants. Beyond that, we propose potential mechanisms behind the sorting of sRNAs moving between species and the idea that engineering siRNA-producing loci could be a useful strategy to improve disease resistance of crops.
Collapse
Affiliation(s)
- Xiuzhen Kong
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Meng Yang
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Brandon H. Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Wenrong He
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Yingnan Hou
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
7
|
Zhou X, Huang K, Teng C, Abdelgawad A, Batish M, Meyers BC, Walbot V. 24-nt phasiRNAs move from tapetal to meiotic cells in maize anthers. THE NEW PHYTOLOGIST 2022; 235:488-501. [PMID: 35451503 DOI: 10.1111/nph.18167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In maize, 24-nt phased, secondary small interfering RNAs (phasiRNAs) are abundant in meiotic stage anthers, but their distribution and functions are not precisely known. Using laser capture microdissection, we analyzed tapetal cells, meiocytes and other somatic cells at several stages of anther development to establish the timing of 24-PHAS precursor transcripts and the 24-nt phasiRNA products. By integrating RNA and small RNA profiling plus single-molecule and small RNA FISH (smFISH or sRNA-FISH) spatial detection, we demonstrate that the tapetum is the primary site of 24-PHAS precursor and Dcl5 transcripts and the resulting 24-nt phasiRNAs. Interestingly, 24-nt phasiRNAs accumulate in all cell types, with the highest levels in meiocytes, followed by tapetum. Our data support the conclusion that 24-nt phasiRNAs are mobile from tapetum to meiocytes and to other somatic cells. We discuss possible roles for 24-nt phasiRNAs in anther cell types.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Kun Huang
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19716, USA
- Dana-Farber Cancer Institute Molecular Imaging Core, 360 Longwood Ave, Boston, MA, 02215, USA
| | - Chong Teng
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Ahmed Abdelgawad
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Plant Sciences, University of Missouri - Columbia, Columbia, MO, 65211, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Luo K, Li S, Zheng Z, Lai X, Ju M, Li C, Wan X. tsRNAs及其对植物响应非生物胁迫时基因表达的调控. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Chu S, Wang S, Zhang R, Yin M, Yang X, Shi Q. Integrative analysis of transcriptomic and metabolomic profiles reveals new insights into the molecular foundation of fruit quality formation in Citrullus lanatus (Thunb.) Matsum. & Nakai. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
In this study, an integrated transcriptome and metabolome analysis was used to explore the molecular foundation of fruit quality in two parent lines of Citrullus lanatus with distinct flesh characteristics, including ‘14-1’ (sweet, red, and soft) and ‘W600’ (bitter, light yellow, and firm), as well as the corresponding F1 population (bitter, light yellow, and firm). Numerous differentially expressed genes (DEGs) were identified in the fruit samples: 3,766 DEGs for ‘14-1’ vs. ‘W600’, 2,767 for ‘14-1’ vs. F1, and 1,178 for F1 vs. ‘W600’ at the transition stage; and 4,221 for ‘14-1’ vs. ‘W600’, 2,447 for ‘14-1’ vs. F1, and 446 for F1 vs. ‘W600’ at the maturity stage. Weighted gene co-expression network analysis (WGCNA) revealed that a gene module including 1,111 DEGs was closely associated with flesh taste and color, and another gene module including 1,575 DEGs contributed significantly to flesh texture. The metabolomic results showed that there were 447 differential metabolites (DMs) for ‘14-1’ vs. ‘W600’ fruits, 394 for ‘14-1’ vs. F1, and 298 for F1 vs. ‘W600’ at the maturity stage. Combining WGNCA and metabolomic results, several DEGs and DMs were further identified as hub players in fruit quality formation: six DEGs with four DMs for flesh sweetness; six DEGs with 13 DMs for bitterness; nine DEGs with 10 DMs for flesh color; and nine DEGs with four DMs for flesh texture. Altogether, these observations not only expand our knowledge of the molecular basis of fruit quality in watermelon, but also provide potential targets for future watermelon improvement.
Collapse
|
10
|
Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022; 23:185-203. [PMID: 34707241 PMCID: PMC9208737 DOI: 10.1038/s41580-021-00425-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Oded Rechavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Zhang Y, Waseem M, Zeng Z, Xu J, Chen C, Liu Y, Zhai J, Xia R. MicroRNA482/2118, a miRNA superfamily essential for both disease resistance and plant development. THE NEW PHYTOLOGIST 2022; 233:2047-2057. [PMID: 34761409 DOI: 10.1111/nph.17853] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/07/2021] [Indexed: 05/17/2023]
Abstract
MicroRNAs (miRNAs) are a class of 21-24 nucleotides (nt) noncoding small RNAs ubiquitously distributed across the plant kingdom. miR482/2118, one of the conserved miRNA superfamilies originating from gymnosperms, has divergent main functions in core-angiosperms. It mainly regulates NUCLEOTIDE BINDING SITE-LEUCINE-RICH REPEAT (NBS-LRR) genes in eudicots, functioning as an essential component in plant disease resistance; in contrast, it predominantly targets numerous long noncoding RNAs (lncRNAs) in monocot grasses, which are vital for plant reproduction. Usually, miR482/2118 is 22-nt in length, which can trigger the production of phased small interfering RNAs (phasiRNAs) after directed cleavage. PhasiRNAs instigated from target genes of miR482/2118 enhance their roles in corresponding biological processes by cis-regulation on cognate genes and expands their function to other pathways via trans activity on different genes. This review summarizes the origin, biogenesis, conservation, and evolutionary characteristics of the miR482/2118 superfamily and delineates its diverse functions in disease resistance, plant development, stress responses, etc.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Muhammad Waseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Jing Xu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510640, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
12
|
Lan T, Yang X, Chen J, Tian P, Shi L, Yu Y, Liu L, Gao L, Mo B, Chen X, Tang G. Mechanism for the genomic and functional evolution of the MIR2118 family in the grass lineage. THE NEW PHYTOLOGIST 2022; 233:1915-1930. [PMID: 34878652 DOI: 10.1111/nph.17910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
The MIR2118 family has undergone tremendous expansion in the grass lineage, in which the miRNA targets numerous noncoding PHAS loci to produce 21-nt phased small interfering RNAs (phasiRNAs) involved in male fertility. However, the evolutionary trajectory of the grass MIR2118 genes and the functions of phasiRNAs have not yet been fully elucidated. We conducted comparative genomic, molecular evolution, expression and parallel analysis of RNA ends (PARE) analyses of MIR2118 and the miR2118-mediated regulatory pathway in grasses, focusing on Oryza sativa. In total, 617 MIR2118 and eight MIR1859 novel members were identified. Phylogenetic analyses showed that grass MIR2118 genes form a distinct clade from the MIR482/2118 genes of nongrass species. We reconstructed hypothetical evolutionary histories of the grass MIR2118 clusters and its MIR1859 variants, and examined the polycistronic composition and the differential expression of the osa-MIR2118 clusters. PARE data showed that osa-miR2118 might also direct the cleavage of some protein-coding gene transcripts. Importantly, we found that PARE analysis is inherently prone to false-positive target predictions when a large number of small RNAs, such as phasiRNAs, are analysed. Our results revealed the evolution and diversification of the MIR2118 family, and provide new insights into the functions of phasiRNAs in the grasses.
Collapse
Affiliation(s)
- Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiwei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peng Tian
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lina Shi
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
13
|
Luo L, Yang X, Guo M, Lan T, Yu Y, Mo B, Chen X, Gao L, Liu L. TRANS-ACTING SIRNA3-derived short interfering RNAs confer cleavage of mRNAs in rice. PLANT PHYSIOLOGY 2022; 188:347-362. [PMID: 34599593 PMCID: PMC8774828 DOI: 10.1093/plphys/kiab452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/29/2021] [Indexed: 05/11/2023]
Abstract
Plant TRANS-ACTING SIRNA3 (TAS3)-derived short interfering RNAs (siRNAs) include tasiR-AUXIN RESPONSE FACTORs (ARFs), which are functionally conserved in targeting ARF genes, and a set of non-tasiR-ARF siRNAs, which have rarely been studied. In this study, TAS3 siRNAs were systematically characterized in rice (Oryza sativa). Small RNA sequencing results showed that an overwhelming majority of TAS3 siRNAs belong to the non-tasiR-ARF group, while tasiR-ARFs occupy a diminutive fraction. Phylogenetic analysis of TAS3 genes across dicot and monocot plants revealed that the siRNA-generating regions were highly conserved in grass species, especially in the Oryzoideae. Target genes were identified for not only tasiR-ARFs but also non-tasiR-ARF siRNAs by analyzing rice Parallel Analysis of RNA Ends datasets, and some of these siRNA-target interactions were experimentally confirmed using tas3 mutants generated by genome editing. Consistent with the de-repression of target genes, phenotypic alterations were observed for mutants in three TAS3 loci in comparison to wild-type rice. The regulatory role of ribosomes in the TAS3 siRNA-target interactions was further revealed by the fact that TAS3 siRNA-mediated target cleavage, in particular tasiR-ARFs targeting ARF2/3/14/15, occurred extensively in rice polysome samples. Altogether, our study sheds light into TAS3 genes in plants and expands our knowledge about rice TAS3 siRNA-target interactions.
Collapse
Affiliation(s)
- Linlin Luo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mingxi Guo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Yu Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Guangdong Province, Shenzhen 518060, China
- Author for communication:
| |
Collapse
|
14
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|
15
|
Ma X, Liu C, Cao X. Plant transfer RNA-derived fragments: Biogenesis and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1399-1409. [PMID: 34114725 DOI: 10.1111/jipb.13143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Processing of mature transfer RNAs (tRNAs) produces complex populations of tRNA-derived fragments (tRFs). Emerging evidence shows that tRFs have important functions in bacteria, animals, and plants. Here, we review recent advances in understanding plant tRFs, focusing on their biological and cellular functions, such as regulating stress responses, mediating plant-pathogen interactions, and modulating post-transcriptional gene silencing and translation. We also review sequencing strategies and bioinformatics resources for studying tRFs in plants. Finally, we discuss future directions for plant tRF research, which will expand our knowledge of plant non-coding RNAs.
Collapse
Affiliation(s)
- Xuan Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Molecular Plant Sciences, the Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Subcellular Localization of miRNAs and Implications in Cellular Homeostasis. Genes (Basel) 2021; 12:genes12060856. [PMID: 34199614 PMCID: PMC8226975 DOI: 10.3390/genes12060856] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are thought to act as post-transcriptional regulators in the cytoplasm by either dampening translation or stimulating degradation of target mRNAs. With the increasing resolution and scope of RNA mapping, recent studies have revealed novel insights into the subcellular localization of miRNAs. Based on miRNA subcellular localization, unconventional functions and mechanisms at the transcriptional and post-transcriptional levels have been identified. This minireview provides an overview of the subcellular localization of miRNAs and the mechanisms by which they regulate transcription and cellular homeostasis in mammals, with a particular focus on the roles of phase-separated biomolecular condensates.
Collapse
|
17
|
MicroRNA Zma-miR528 Versatile Regulation on Target mRNAs during Maize Somatic Embryogenesis. Int J Mol Sci 2021; 22:ijms22105310. [PMID: 34069987 PMCID: PMC8157881 DOI: 10.3390/ijms22105310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the accumulation and translation of their target mRNAs through sequence complementarity. miRNAs have emerged as crucial regulators during maize somatic embryogenesis (SE) and plant regeneration. A monocot-specific miRNA, mainly accumulated during maize SE, is zma-miR528. While several targets have been described for this miRNA, the regulation has not been experimentally confirmed for the SE process. Here, we explored the accumulation of zma-miR528 and several predicted targets during embryogenic callus induction, proliferation, and plantlet regeneration using the maize cultivar VS-535. We confirmed the cleavage site for all tested zma-miR528 targets; however, PLC1 showed very low levels of processing. The abundance of zma-miR528 slightly decreased in one month-induced callus compared to the immature embryo (IE) explant tissue. However, it displayed a significant increase in four-month sub-cultured callus, coincident with proliferation establishment. In callus-regenerated plantlets, zma-miR528 greatly decreased to levels below those observed in the initial explant. Three of the target transcripts (MATE, bHLH, and SOD1a) showed an inverse correlation with the miRNA abundance in total RNA samples at all stages. Using polysome fractionation, zma-miR528 was detected in the polysome fraction and exhibited an inverse distribution with the PLC1 target, which was not observed at total RNA. Accordingly, we conclude that zma-miR528 regulates multiple target mRNAs during the SE process by promoting their degradation, translation inhibition or both.
Collapse
|
18
|
Liu J, Liu X, Zhang S, Liang S, Luan W, Ma X. TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs. BMC Genomics 2021; 22:348. [PMID: 33985427 PMCID: PMC8120726 DOI: 10.1186/s12864-021-07680-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background In plants, microRNAs (miRNAs) are pivotal regulators of plant development and stress responses. Different computational tools and web servers have been developed for plant miRNA target prediction; however, in silico prediction normally contains false positive results. In addition, many plant miRNA target prediction servers lack information for miRNA-triggered phased small interfering RNAs (phasiRNAs). Creating a comprehensive and relatively high-confidence plant miRNA target database is much needed. Results Here, we report TarDB, an online database that collects three categories of relatively high-confidence plant miRNA targets: (i) cross-species conserved miRNA targets; (ii) degradome/PARE (Parallel Analysis of RNA Ends) sequencing supported miRNA targets; (iii) miRNA-triggered phasiRNA loci. TarDB provides a user-friendly interface that enables users to easily search, browse and retrieve miRNA targets and miRNA initiated phasiRNAs in a broad variety of plants. TarDB has a comprehensive collection of reliable plant miRNA targets containing previously unreported miRNA targets and miRNA-triggered phasiRNAs even in the well-studied model species. Most of these novel miRNA targets are relevant to lineage-specific or species-specific miRNAs. TarDB data is freely available at http://www.biosequencing.cn/TarDB. Conclusions In summary, TarDB serves as a useful web resource for exploring relatively high-confidence miRNA targets and miRNA-triggered phasiRNAs in plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07680-5.
Collapse
Affiliation(s)
- Jing Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xiaonan Liu
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Siju Zhang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Shanshan Liang
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Weijiang Luan
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|