1
|
Zhou L, Gao G, Tang R, Liu J, Wang Y, Liang Z, Tian S, Qin G. Redox modification of m 6A demethylase SlALKBH2 in tomato regulates fruit ripening. NATURE PLANTS 2025:10.1038/s41477-024-01893-8. [PMID: 39794492 DOI: 10.1038/s41477-024-01893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/04/2024] [Indexed: 01/13/2025]
Abstract
Hydrogen peroxide (H2O2) functions as a critical signalling molecule in controlling multiple biological processes. How H2O2 signalling integrates with other regulatory pathways such as epigenetic modification to coordinately regulate plant development remains elusive. Here we report that SlALKBH2, an m6A demethylase required for normal ripening of tomato fruit, is sensitive to oxidative modification by H2O2, which leads to the formation of homodimers mediated by intermolecular disulfide bonds, and Cys39 serves as a key site in this process. The oxidation of SlALKBH2 promotes protein stability and facilitates its function towards the target transcripts including the pivotal ripening gene SlDML2 encoding a DNA demethylase. Furthermore, we demonstrate that the thioredoxin reductase SlNTRC interacts with SlALKBH2 and catalyses its reduction, thereby modulating m6A levels and fruit ripening. Our study establishes a molecular link between H2O2 and m6A methylation and highlights the importance of redox regulation of m6A modifiers in controlling fruit ripening.
Collapse
Affiliation(s)
- Leilei Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Guangtong Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Renkun Tang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinying Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuying Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guozheng Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhao L, Wei X, Chen F, Chen B, Li R. m 6A demethylase CpALKBH regulates CpZap1 mRNA stability to modulate the development and virulence of chestnut blight fungus. mBio 2025; 16:e0184424. [PMID: 39611846 PMCID: PMC11708048 DOI: 10.1128/mbio.01844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
As the most abundant eukaryotic mRNA modification, N6-methyladenosine (m6A) plays a crucial role in regulating multiple biological processes. This methylation is regulated by methyltransferases and demethylases. However, the regulatory role and mode of action of m6A demethylases in fungi remain poorly understood. In this study, we demonstrate that CpALKBH is a demethylase in Cryphonectria parasitica that removes m6A modification from single-stranded RNA in vitro. The deletion of CpALKBH resulted in a significant increase in the m6A methylation levels, along with decreases in the growth rate, sporulation, and virulence in C. parasitica. Additionally, CpZap1-a transcription factor-was identified as a downstream target of CpALKBH demethylase based on RNA sequencing analysis. We confirmed that CpALKBH demethylase regulates CpZap1 mRNA stability in an m6A-dependent manner. Furthermore, through MazF assay, we found that methylation of CpZap1 at position 1935A is regulated by both CpALKBH demethylase and CpMTA1 methyltransferase. CpZap1 significantly influences the fungal phenotype and virulence, thereby restoring the abnormal phenotype observed in ∆CpALKBH mutants. Collectively, our findings highlight the essential role of CpALKBH as an m6A demethylase in the development and virulence of C. parasitica, while also elucidating the molecular mechanisms through which m6A modification impacts CpZap1 mRNA stability. IMPORTANCE N6-methyladenosine (m6A) is the most abundant eukaryotic mRNA modification and is involved in various biological processes. Methyltransferases and demethylases regulate the m6A modification, but the regulatory role of m6A demethylases in fungi remains poorly understood. Here, we demonstrated that CpALKBH functions as a demethylase in Cryphonectria parasitica. The deletion of CpALKBH leads to a significant increase in m6A levels and a reduction in fungal growth, sporulation, and virulence. We identified CpZap1 as a downstream target of CpALKBH, with CpALKBH regulating CpZap1 mRNA stability in an m6A-dependent manner. Additionally, our findings indicate that methylation at position 1935A of CpZap1 is regulated by both the CpALKBH demethylase and the CpMTA1 methyltransferase. Given its critical role in fungal development and virulence, overexpression of CpZap1 can rescue abnormal phenotypes of ∆CpALKBH mutant. Overall, these findings contribute to improving our understanding of the role of m6A demethylase in fungi.
Collapse
Affiliation(s)
- Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Cheng P, Zhao H, Zhang S, Zong Z, Li C, Ming L, Xie W, Yu H. Feedback regulation of m 6A modification creates local auxin maxima essential for rice microsporogenesis. Dev Cell 2025:S1534-5807(24)00773-1. [PMID: 39809283 DOI: 10.1016/j.devcel.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
N6-methyladenosine (m6A) RNA modification and its effectors control various plant developmental processes, yet whether and how these effectors are transcriptionally controlled to confer functional specificity so far remain elusive. Herein, we show that a rice C2H2 zinc-finger protein, OsZAF, specifically activates the expression of OsFIP37 encoding a core component of the m6A methyltransferase complex during microsporogenesis in rice anthers. OsFIP37, in turn, facilitates m6A modification and stabilization of an auxin biosynthesis gene OsYUCCA3 to promote auxin biosynthesis in anthers. This elevates auxin levels coinciding with upregulation of an auxin response factor OsARF12 that positively controls OsZAF, thus creating a positive feedback circuit whereby OsFIP37 is continuously activated for local auxin production. Our findings suggest that OsZAF-dependent feedback regulation of m6A modification is integral to local auxin biosynthesis and signaling in anthers, which facilitates the timely generation of auxin maxima required for male meiosis in rice.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Hu Zhao
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore; National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Songyao Zhang
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore
| | - Zhanxiang Zong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiang Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Luchang Ming
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Shen L. Epitranscriptomic regulation through phase separation in plants. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00313-3. [PMID: 39706711 DOI: 10.1016/j.tplants.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Epitranscriptomic regulation has emerged as a crucial layer of gene control where RNA modifications, particularly N6-methyladenosine (m6A), introduce complexity and versatility to gene regulation. Increasing evidence suggests that epitranscriptomic regulation through phase separation plays critical roles in mediating RNA metabolism during plant development and stress responses. m6A-associated biomolecular condensates formed via phase separation act as dynamic cellular hotspots where m6A effectors, RNAs, and other regulatory proteins coalesce to facilitate RNA regulation. Moreover, m6A modulates condensate assembly. Herein, I summarize the current understanding of how m6A- and m6A effector-mediated formation of biomolecular condensates mediates plant development and stress adaptation. I also discuss several working models for m6A-associated biomolecular condensates and highlight the prospects for future research on epitranscriptomic regulation through phase separation.
Collapse
Affiliation(s)
- Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
5
|
He R, Lv Z, Li Y, Ren S, Cao J, Zhu J, Zhang X, Wu H, Wan L, Tang J, Xu S, Chen XL, Zhou Z. tRNA-m 1A methylation controls the infection of Magnaporthe oryzae by supporting ergosterol biosynthesis. Dev Cell 2024; 59:2931-2946.e7. [PMID: 39191251 DOI: 10.1016/j.devcel.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Ergosterols are essential components of fungal plasma membranes. Inhibitors targeting ergosterol biosynthesis (ERG) genes are critical for controlling fungal pathogens, including Magnaporthe oryzae, the fungus that causes rice blast. However, the translational mechanisms governing ERG gene expression remain largely unexplored. Here, we show that the Trm6/Trm61 complex catalyzes dynamic N1-methyladenosine at position 58 (m1A58) in 51 transfer RNAs (tRNAs) of M. oryzae, significantly influencing translation at both the initiation and elongation stages. Notably, tRNA m1A58 promotes elongation speed at most cognate codons mainly by enhancing eEF1-tRNA binding rather than affecting tRNA abundance or charging. The absence of m1A58 leads to substantial decreases in the translation of ERG genes, ergosterol production, and, consequently, fungal virulence. Simultaneously targeting the Trm6/Trm61 complex and the ergosterol biosynthesis pathway markedly improves rice blast control. Our findings demonstrate an important role of m1A58-mediated translational regulation in ergosterol production and fungal infection, offering a potential strategy for fungicide development.
Collapse
Affiliation(s)
- Rongrong He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziwei Lv
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinan Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuchao Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaqi Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinrong Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihao Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji Tang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shutong Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lin Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Zhu XT, Sanz-Jimenez P, Ning XT, Tahir Ul Qamar M, Chen LL. Direct RNA sequencing in plants: Practical applications and future perspectives. PLANT COMMUNICATIONS 2024; 5:101064. [PMID: 39155503 PMCID: PMC11589328 DOI: 10.1016/j.xplc.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The transcriptome serves as a bridge that links genomic variation to phenotypic diversity. A vast number of studies using next-generation RNA sequencing (RNA-seq) over the last 2 decades have emphasized the essential roles of the plant transcriptome in response to developmental and environmental conditions, providing numerous insights into the dynamic changes, evolutionary traces, and elaborate regulation of the plant transcriptome. With substantial improvement in accuracy and throughput, direct RNA sequencing (DRS) has emerged as a new and powerful sequencing platform for precise detection of native and full-length transcripts, overcoming many limitations such as read length and PCR bias that are inherent to short-read RNA-seq. Here, we review recent advances in dissecting the complexity and diversity of plant transcriptomes using DRS as the main technological approach, covering many aspects of RNA metabolism, including novel isoforms, poly(A) tails, and RNA modification, and we propose a comprehensive workflow for processing of plant DRS data. Many challenges to the application of DRS in plants, such as the need for machine learning tools tailored to plant transcriptomes, remain to be overcome, and together we outline future biological questions that can be addressed by DRS, such as allele-specific RNA modification. This technology provides convenient support on which the connection of distinct RNA features is tightly built, sustainably refining our understanding of the biological functions of the plant transcriptome.
Collapse
Affiliation(s)
- Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Pablo Sanz-Jimenez
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Tong Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Adamiec M, Luciński R. The Roles of RNA Modifications in Regulating Chloroplast Performance and Photosynthesis Efficiency. Int J Mol Sci 2024; 25:11912. [PMID: 39595982 PMCID: PMC11594162 DOI: 10.3390/ijms252211912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The regulation of gene expression is crucial for maintaining cellular activities and responding to environmental stimuli. RNA molecules are central to this regulatory network, influencing transcription, post-transcriptional processing, and translation. Recent advancements have expanded our understanding of RNA modifications beyond the nucleus, highlighting their impact on chloroplast function and photosynthesis efficiency. Chloroplasts, essential for photosynthesis, rely on precise genetic regulation to adapt to environmental changes. RNA modifications, such as methylation and pseudouridylation, are critical in regulating chloroplast RNA stability, processing, and translation. This review summarizes current knowledge of how RNA modifications affect chloroplast function and photosynthesis. It discusses the roles of specific RNA modifications occurring in chloroplast RNA, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridylation, as well as the enzymes which are known to be involved in these processes. This review also explores extrachloroplastic RNA modifications that influence chloroplast function, emphasizing the importance of m6A and m5C modifications and their associated enzymes.
Collapse
Affiliation(s)
- Małgorzata Adamiec
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | | |
Collapse
|
8
|
Zhang B, Zhang S, Wu Y, Li Y, Kong L, Wu R, Zhao M, Liu W, Yu H. Defining context-dependent m 6A RNA methylomes in Arabidopsis. Dev Cell 2024; 59:2772-2786.e3. [PMID: 39025060 DOI: 10.1016/j.devcel.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
N6-Methyladenosine (m6A) prevalently occurs on cellular RNA across almost all kingdoms of life. It governs RNA fate and is essential for development and stress responses. However, the dynamic, context-dependent m6A methylomes across tissues and in response to various stimuli remain largely unknown in multicellular organisms. Here, we generate a comprehensive census that identifies m6A methylomes in 100 samples during development or following exposure to various external conditions in Arabidopsis thaliana. We demonstrate that m6A is a suitable biomarker to reflect the developmental lineage, and that various stimuli rapidly affect m6A methylomes that constitute the regulatory network required for an effective response to the stimuli. Integrative analyses of the census and its correlation with m6A regulators identify multiple layers of regulation on highly context-dependent m6A modification in response to diverse developmental and environmental stimuli, providing insights into m6A modification dynamics in the myriad contexts of multicellular organisms.
Collapse
Affiliation(s)
- Bin Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Songyao Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yujin Wu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Yan Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Lingyao Kong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ranran Wu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ming Zhao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wei Liu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
9
|
Li Y, Dong X, Ma J, Sui C, Jian H, Lv D. Genome-Wide Identification and Expression Analysis of the ALKB Homolog Gene Family in Potato ( Solanum tuberosum L.). Int J Mol Sci 2024; 25:10984. [PMID: 39456766 PMCID: PMC11507222 DOI: 10.3390/ijms252010984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
N6-methyladenosine (m6A) is an abundant and pervasive post-transcriptional modification in eukaryotic mRNAs. AlkB homolog (ALKBH) proteins play crucial roles in RNA metabolism and translation, participating in m6A methylation modification to regulate plant development. However, no comprehensive investigations have been conducted on ALKBH in potato. Here, 11 StALKBH family genes were identified in potato and renamed according to BLASTP and phylogenetic analyses following the Arabidopsis genome. The characteristics, sequence structures, motif compositions, phylogenetics, chromosomal locations, synteny, and promoter cis-acting element predictions were analyzed, revealing distinct evolutionary relationships between potato and other species (tomato and Arabidopsis). Homologous proteins were classified into seven groups depending on similar conserved domains, which implies that they possess a potentially comparable function. Moreover, the StALKBHs were ubiquitous, and their expression was examined in the various tissues of a whole potato, in which the StALKBH genes, except for StALKBH2, were most highly expressed in the stolon and flower. Multiple hormone and stress-response elements were found to be located in the promoters of the StALKBH genes. Further qRT-PCR results suggest that they may be significantly upregulated in response to phytohormones and abiotic stress (except for cold), and the expression of most of the StALKBH genes exhibited positively modulated trends. Overall, this study is the first to report a genome-wide assessment of the ALKBH family in potato, providing valuable insights into candidate gene selection and facilitating in-depth functional analyses of ALKBH-mediated m6A methylation mechanisms in potato.
Collapse
Affiliation(s)
- Yan Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xuanming Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jianyu Ma
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chenxin Sui
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Dianqiu Lv
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2024:S1673-8527(24)00246-7. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
11
|
Zhao L, Wei X, Chen F, Yuan L, Chen B, Li R. N6-methyladenosine RNA methyltransferase CpMTA1 mediates CpAphA mRNA stability through a YTHDF1-dependent m6A modification in the chestnut blight fungus. PLoS Pathog 2024; 20:e1012476. [PMID: 39159278 PMCID: PMC11361730 DOI: 10.1371/journal.ppat.1012476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/29/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
In eukaryotic cells, N6-methyladenosine (m6A) is the most prevalent RNA epigenetic modification that plays crucial roles in multiple biological processes. Nevertheless, the functions and regulatory mechanisms of m6A in phytopathogenic fungi are poorly understood. Here, we showed that CpMTA1, an m6A methyltransferase in Cryphonectria parasitica, plays a crucial role in fungal phenotypic traits, virulence, and stress tolerance. Furthermore, the acid phosphatase gene CpAphA was implicated to be a target of CpMTA1 by integrated analysis of m6A-seq and RNA-seq, as in vivo RIP assay data confirmed that CpMTA1 directly interacts with CpAphA mRNA. Deletion of CpMTA1 drastically lowered the m6A level of CpAphA and reduced its mRNA expression. Moreover, we found that an m6A reader protein CpYTHDF1 recognizes CpAphA mRNA and increases its stability. Typically, the levels of CpAphA mRNA and protein exhibited a positive correlation with CpMTA1 and CpYTHDF1. Importantly, site-specific mutagenesis demonstrated that the m6A sites, A1306 and A1341, of CpAphA mRNA are important for fungal phenotypic traits and virulence in C. parasitica. Together, our findings demonstrate the essential role of the m6A methyltransferase CpMTA1 in C. parasitica, thereby advancing our understanding of fungal gene regulation through m6A modification.
Collapse
Affiliation(s)
- Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xiangyu Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Li ST, Ke Y, Zhu Y, Zhu TY, Huang H, Li L, Hou Z, Zhang X, Li Y, Liu C, Li X, Xie M, Zhou L, Meng C, Wang F, Gu X, Yang B, Yu H, Liang Z. Mass spectrometry-based proteomic landscape of rice reveals a post-transcriptional regulatory role of N 6-methyladenosine. NATURE PLANTS 2024; 10:1201-1214. [PMID: 38997433 DOI: 10.1038/s41477-024-01745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Rice is one of the most important staple food and model species in plant biology, yet its quantitative proteomes are largely uncharacterized. Here we quantify the relative protein levels of over 15,000 genes across major rice tissues using a tandem mass tag strategy followed by intensive fractionation and mass spectrometry. We identify tissue-specific and tissue-enriched proteins that are linked to the functional specificity of individual tissues. Proteogenomic comparison of rice and Arabidopsis reveals conserved proteome expression, which differs from mammals in that there is a strong separation of species rather than tissues. Notably, profiling of N6-methyladenosine (m6A) across the rice major tissues shows that m6A at untranslated regions is negatively correlated with protein abundance and contributes to the discordance between RNA and protein levels. We also demonstrate that our data are valuable for identifying novel genes required for regulating m6A methylation. Taken together, this study provides a paradigm for further research into rice proteogenome.
Collapse
Affiliation(s)
- Shang-Tong Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Glbizzia Biosciences, Beijing, China
| | - Yunzhuo Ke
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunke Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tian-Yi Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Huanwei Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linxia Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyang Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaping Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaofan Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiulan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Lianqi Zhou
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chen Meng
- Bavarian Biomolecular Mass Spectrometry Center, Technical University of Munich, Freising, Germany
| | - Faming Wang
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| | - Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
13
|
Xiang Y, Zhang D, Li L, Xue YX, Zhang CY, Meng QF, Wang J, Tan XL, Li YL. Detection, distribution, and functions of RNA N 6-methyladenosine (m 6A) in plant development and environmental signal responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1429011. [PMID: 39081522 PMCID: PMC11286456 DOI: 10.3389/fpls.2024.1429011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The epitranscriptomic mark N 6-methyladenosine (m6A) is the most common type of messenger RNA (mRNA) post-transcriptional modification in eukaryotes. With the discovery of the demethylase FTO (FAT MASS AND OBESITY-ASSOCIATED PROTEIN) in Homo Sapiens, this modification has been proven to be dynamically reversible. With technological advances, research on m6A modification in plants also rapidly developed. m6A modification is widely distributed in plants, which is usually enriched near the stop codons and 3'-UTRs, and has conserved modification sequences. The related proteins of m6A modification mainly consist of three components: methyltransferases (writers), demethylases (erasers), and reading proteins (readers). m6A modification mainly regulates the growth and development of plants by modulating the RNA metabolic processes and playing an important role in their responses to environmental signals. In this review, we briefly outline the development of m6A modification detection techniques; comparatively analyze the distribution characteristics of m6A in plants; summarize the methyltransferases, demethylases, and binding proteins related to m6A; elaborate on how m6A modification functions in plant growth, development, and response to environmental signals; and provide a summary and outlook on the research of m6A in plants.
Collapse
|
14
|
Wang G, Li H, Ye C, He K, Liu S, Jiang B, Ge R, Gao B, Wei J, Zhao Y, Li A, Zhang D, Zhang J, He C. Quantitative profiling of m 6A at single base resolution across the life cycle of rice and Arabidopsis. Nat Commun 2024; 15:4881. [PMID: 38849358 PMCID: PMC11161662 DOI: 10.1038/s41467-024-48941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3' UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Haoxuan Li
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Kayla He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Bochen Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Ruiqi Ge
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boyang Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yutao Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Aixuan Li
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA.
| |
Collapse
|
15
|
Song M, Zhao J, Zhang C, Jia C, Yang J, Zhao H, Zhai J, Lei B, Tao S, Chen S, Su R, Ma C. PEA-m6A: an ensemble learning framework for accurately predicting N6-methyladenosine modifications in plants. PLANT PHYSIOLOGY 2024; 195:1200-1213. [PMID: 38428981 DOI: 10.1093/plphys/kiae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
N 6-methyladenosine (m6A), which is the mostly prevalent modification in eukaryotic mRNAs, is involved in gene expression regulation and many RNA metabolism processes. Accurate prediction of m6A modification is important for understanding its molecular mechanisms in different biological contexts. However, most existing models have limited range of application and are species-centric. Here we present PEA-m6A, a unified, modularized and parameterized framework that can streamline m6A-Seq data analysis for predicting m6A-modified regions in plant genomes. The PEA-m6A framework builds ensemble learning-based m6A prediction models with statistic-based and deep learning-driven features, achieving superior performance with an improvement of 6.7% to 23.3% in the area under precision-recall curve compared with state-of-the-art regional-scale m6A predictor WeakRM in 12 plant species. Especially, PEA-m6A is capable of leveraging knowledge from pretrained models via transfer learning, representing an innovation in that it can improve prediction accuracy of m6A modifications under small-sample training tasks. PEA-m6A also has a strong capability for generalization, making it suitable for application in within- and cross-species m6A prediction. Overall, this study presents a promising m6A prediction tool, PEA-m6A, with outstanding performance in terms of its accuracy, flexibility, transferability, and generalization ability. PEA-m6A has been packaged using Galaxy and Docker technologies for ease of use and is publicly available at https://github.com/cma2015/PEA-m6A.
Collapse
Affiliation(s)
- Minggui Song
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiawen Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chujun Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengchao Jia
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haonan Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Zhai
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
| | - Beilei Lei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiheng Tao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Chen
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Ran Su
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin 300072, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Wu Y, Shao W, Yan M, Wang Y, Xu P, Huang G, Li X, Gregory BD, Yang J, Wang H, Yu X. Transfer learning enables identification of multiple types of RNA modifications using nanopore direct RNA sequencing. Nat Commun 2024; 15:4049. [PMID: 38744925 PMCID: PMC11094168 DOI: 10.1038/s41467-024-48437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Nanopore direct RNA sequencing (DRS) has emerged as a powerful tool for RNA modification identification. However, concurrently detecting multiple types of modifications in a single DRS sample remains a challenge. Here, we develop TandemMod, a transferable deep learning framework capable of detecting multiple types of RNA modifications in single DRS data. To train high-performance TandemMod models, we generate in vitro epitranscriptome datasets from cDNA libraries, containing thousands of transcripts labeled with various types of RNA modifications. We validate the performance of TandemMod on both in vitro transcripts and in vivo human cell lines, confirming its high accuracy for profiling m6A and m5C modification sites. Furthermore, we perform transfer learning for identifying other modifications such as m7G, Ψ, and inosine, significantly reducing training data size and running time without compromising performance. Finally, we apply TandemMod to identify 3 types of RNA modifications in rice grown in different environments, demonstrating its applicability across species and conditions. In summary, we provide a resource with ground-truth labels that can serve as benchmark datasets for nanopore-based modification identification methods, and TandemMod for identifying diverse RNA modifications using a single DRS sample.
Collapse
Affiliation(s)
- You Wu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenna Shao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuqin Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Pengfei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
- Chenshan Scientific Research Center of CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 201602, China.
| | - Hongxia Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
- Chenshan Scientific Research Center of CAS Center for Excellence in Molecular Plant Sciences, Shanghai, 201602, China.
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Song P, Cai Z, Jia G. Principles, functions, and biological implications of m 6A in plants. RNA (NEW YORK, N.Y.) 2024; 30:491-499. [PMID: 38531642 PMCID: PMC11019739 DOI: 10.1261/rna.079951.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Over the past decade, N 6-methyladenosine (m6A) has emerged as a prevalent and dynamically regulated modification across the transcriptome; it has been reversibly installed, removed, and interpreted by specific binding proteins, and has played crucial roles in molecular and biological processes. Within this scope, we consolidate recent advancements of m6A research in plants regarding gene expression regulation, diverse physiologic and pathogenic processes, as well as crop trial implications, to guide discussions on challenges associated with and leveraging epitranscriptome editing for crop improvement.
Collapse
Affiliation(s)
- Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- PKU-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Fan S, Zhang Y, Zhu S, Shen L. Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses. MOLECULAR PLANT 2024; 17:531-551. [PMID: 38419328 DOI: 10.1016/j.molp.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N6-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.
Collapse
Affiliation(s)
- Sheng Fan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Shaobo Zhu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
19
|
Grones C, Eekhout T, Shi D, Neumann M, Berg LS, Ke Y, Shahan R, Cox KL, Gomez-Cano F, Nelissen H, Lohmann JU, Giacomello S, Martin OC, Cole B, Wang JW, Kaufmann K, Raissig MT, Palfalvi G, Greb T, Libault M, De Rybel B. Best practices for the execution, analysis, and data storage of plant single-cell/nucleus transcriptomics. THE PLANT CELL 2024; 36:812-828. [PMID: 38231860 PMCID: PMC10980355 DOI: 10.1093/plcell/koae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/19/2024]
Abstract
Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss common challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this fast-developing field of research.
Collapse
Affiliation(s)
- Carolin Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
- VIB Single Cell Core Facility, Ghent 9052, Belgium
| | - Dongbo Shi
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | - Manuel Neumann
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Lea S Berg
- Institute of Plant Sciences, University of Bern, 3012 Bern, Switzerland
| | - Yuji Ke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
| | - Rachel Shahan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Kevin L Cox
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Fabio Gomez-Cano
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
| | - Jan U Lohmann
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Stefania Giacomello
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Olivier C Martin
- Universities of Paris-Saclay, Paris-Cité and Evry, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Gif-sur-Yvette 91192, France
| | - Benjamin Cole
- DOE-Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Kerstin Kaufmann
- Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Michael T Raissig
- Institute of Plant Sciences, University of Bern, 3012 Bern, Switzerland
| | - Gergo Palfalvi
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Thomas Greb
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Marc Libault
- Division of Plant Science and Technology, Interdisciplinary Plant Group, College of Agriculture, Food, and Natural Resources, University of Missouri-Columbia, Columbia, MO 65201, USA
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Centre for Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
20
|
Cerav EN, Wu N, Akkaya MS. Transcriptome-Wide N6-Methyladenosine (m 6A) Methylation Analyses in a Compatible Wheat- Puccinia striiformis f. sp. tritici Interaction. PLANTS (BASEL, SWITZERLAND) 2024; 13:982. [PMID: 38611510 PMCID: PMC11013425 DOI: 10.3390/plants13070982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
N6-methyladenosine (m6A) is a prevalent internal modification in eukaryotic mRNA, tRNA, miRNA, and long non-coding RNA. It is also known for its role in plant responses to biotic and abiotic stresses. However, a comprehensive m6A transcriptome-wide map for Puccinia striiformis f. sp. tritici (Pst) infections in wheat (Triticum aestivum) is currently unavailable. Our study is the first to profile m6A modifications in wheat infected with a virulent Pst race. Analysis of RNA-seq and MeRIP-seq data revealed that the majority of differentially expressed genes are up-regulated and hyper-methylated. Some of these genes are enriched in the plant-pathogen interaction pathway. Notably, genes related to photosynthesis showed significant down-regulation and hypo-methylation, suggesting a potential mechanism facilitating successful Pst invasion by impairing photosynthetic function. The crucial genes, epitomizing the core molecular constituents that fortify plants against pathogenic assaults, were detected with varying expression and methylation levels, together with a newly identified methylation motif. Additionally, m6A regulator genes were also influenced by m6A modification, and their expression patterns varied at different time points of post-inoculation, with lower expression at early stages of infection. This study provides insights into the role of m6A modification regulation in wheat's response to Pst infection, establishing a foundation for understanding the potential function of m6A RNA methylation in plant resistance or susceptibility to pathogens.
Collapse
Affiliation(s)
| | | | - Mahinur S. Akkaya
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China; (E.N.C.); (N.W.)
| |
Collapse
|
21
|
Yang ZC, Zhao LX, Sang YQ, Huang X, Lin XC, Yu ZM. Aggregation-Induced Emission Luminogens: A New Possibility for Efficient Visualization of RNA in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:743. [PMID: 38475589 DOI: 10.3390/plants13050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
RNAs play important roles in regulating biological growth and development. Advancements in RNA-imaging techniques are expanding our understanding of their function. Several common RNA-labeling methods in plants have pros and cons. Simultaneously, plants' spontaneously fluorescent substances interfere with the effectiveness of RNA bioimaging. New technologies need to be introduced into plant RNA luminescence. Aggregation-induced emission luminogens (AIEgens), due to their luminescent properties, tunable molecular size, high fluorescence intensity, good photostability, and low cell toxicity, have been widely applied in the animal and medical fields. The application of this technology in plants is still at an early stage. The development of AIEgens provides more options for RNA labeling. Click chemistry provides ideas for modifying AIEgens into RNA molecules. The CRISPR/Cas13a-mediated targeting system provides a guarantee of precise RNA modification. The liquid-liquid phase separation in plant cells creates conditions for the enrichment and luminescence of AIEgens. The only thing that needs to be looked for is a specific enzyme that uses AIEgens as a substrate and modifies AIEgens onto target RNA via a click chemical reaction. With the development and progress of artificial intelligence and synthetic biology, it may soon be possible to artificially synthesize or discover such an enzyme.
Collapse
Affiliation(s)
- Zheng-Chao Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Xiang Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yu-Qi Sang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan-Chen Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhi-Ming Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
22
|
Wu X, Su T, Zhang S, Zhang Y, Wong CE, Ma J, Shao Y, Hua C, Shen L, Yu H. N 6-methyladenosine-mediated feedback regulation of abscisic acid perception via phase-separated ECT8 condensates in Arabidopsis. NATURE PLANTS 2024; 10:469-482. [PMID: 38448725 DOI: 10.1038/s41477-024-01638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNAs, yet how plants recognize this chemical modification to swiftly adjust developmental plasticity under environmental stresses remains unclear. Here we show that m6A mRNA modification and its reader protein EVOLUTIONARILY CONSERVED C-TERMINAL REGION 8 (ECT8) act together as a key checkpoint for negative feedback regulation of abscisic acid (ABA) signalling by sequestering the m6A-modified ABA receptor gene PYRABACTIN RESISTANCE 1-LIKE 7 (PYL7) via phase-separated ECT8 condensates in stress granules in response to ABA. This partially depletes PYL7 mRNA from its translation in the cytoplasm, thus reducing PYL7 protein levels and compromising ABA perception. The loss of ECT8 results in defective sequestration of m6A-modified PYL7 in stress granules and permits more PYL7 transcripts for translation. This causes overactivation of ABA-responsive genes and the consequent ABA-hypersensitive phenotypes, including drought tolerance. Overall, our findings reveal that m6A-mediated sequestration of PYL7 by ECT8 in stress granules negatively regulates ABA perception, thereby enabling prompt feedback regulation of ABA signalling to prevent plant cell overreaction to environmental stresses.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Tingting Su
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Songyao Zhang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Chui Eng Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jinqi Ma
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yanlin Shao
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Changmei Hua
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Lisha Shen
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Su H, Meng L, Qu Z, Zhang W, Liu N, Cao P, Jin J. Genome-wide identification of the N 6-methyladenosine regulatory genes reveals NtFIP37B increases drought resistance of tobacco (Nicotiana tabacum L.). BMC PLANT BIOLOGY 2024; 24:134. [PMID: 38403644 PMCID: PMC10895791 DOI: 10.1186/s12870-024-04813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is one of the common internal RNA modifications found in eukaryotes. The m6A modification can regulate various biological processes in organisms through the modulation of alternative splicing, alternative polyadenylation, folding, translation, localization, transport, and decay of multiple types of RNA, without altering the nucleotide sequence. The three components involved in m6A modification, namely writer, eraser, and reader, mediate the abundance of RNA m6A modification through complex collaborative actions. Currently, research on m6A regulatory genes in plants is still in its infancy. RESULTS In this study, we identified 52 candidate m6A regulatory genes in common tobacco (Nicotiana tabacum L.). Gene structure, conserved domains, and motif analysis showed structural and functional diversity among different subgroups of tobacco m6A regulatory genes. The amplification of m6A regulatory genes were mainly driven by polyploidization and dispersed duplication, and duplicated genes evolved through purified selection. Based on the potential regulatory network and expression pattern analysis of m6A regulatory genes, a significant number of m6A regulatory genes might play important roles in growth, development, and stress response processes. Furthermore, we have confirmed the critical role of NtFIP37B, an m6A writer gene in tobacco, in enhancing drought resistance. CONCLUSIONS This study provides useful information for better understanding the evolution of m6A regulatory genes and the role of m6A modification in tobacco stress response, and lays the foundation for further elucidating the function of m6A regulatory genes in tobacco.
Collapse
Affiliation(s)
- Huan Su
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Peijian Cao
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| | - Jingjing Jin
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
24
|
Cao S, Sawettalake N, Shen L. Gapless genome assembly and epigenetic profiles reveal gene regulation of whole-genome triplication in lettuce. Gigascience 2024; 13:giae043. [PMID: 38991853 PMCID: PMC11238431 DOI: 10.1093/gigascience/giae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Lettuce, an important member of the Asteraceae family, is a globally cultivated cash vegetable crop. With a highly complex genome (∼2.5 Gb; 2n = 18) rich in repeat sequences, current lettuce reference genomes exhibit thousands of gaps, impeding a comprehensive understanding of the lettuce genome. FINDINGS Here, we present a near-complete gapless reference genome for cutting lettuce with high transformability, using long-read PacBio HiFi and Nanopore sequencing data. In comparison to stem lettuce genome, we identify 127,681 structural variations (SVs, present in 0.41 Gb of sequence), reflecting the divergence of leafy and stem lettuce. Interestingly, these SVs are related to transposons and DNA methylation states. Furthermore, we identify 4,612 whole-genome triplication genes exhibiting high expression levels associated with low DNA methylation levels and high N6-methyladenosine RNA modifications. DNA methylation changes are also associated with activation of genes involved in callus formation. CONCLUSIONS Our gapless lettuce genome assembly, an unprecedented achievement in the Asteraceae family, establishes a solid foundation for functional genomics, epigenomics, and crop breeding and sheds new light on understanding the complexity of gene regulation associated with the dynamics of DNA and RNA epigenetics in genome evolution.
Collapse
Affiliation(s)
- Shuai Cao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Nunchanoke Sawettalake
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
25
|
Zhang Z, Wang XJ. N6-Methyladenosine mRNA Modification: From Modification Site Selectivity to Neurological Functions. Acc Chem Res 2023; 56:2992-2999. [PMID: 37847868 PMCID: PMC10634299 DOI: 10.1021/acs.accounts.3c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 10/19/2023]
Abstract
The development of various chemical methods has enabled scientists to decipher the distribution features and biological functions of RNA modifications in the past decade. In addition to modifying noncoding RNAs such as tRNAs and rRNAs, N6-methyladenosine (m6A) has been proven to be the most abundant internal chemical modification on mRNAs in eukaryotic cells and is also the most widely studied mRNA modification to date. Extensive studies have repeatedly demonstrated the important functions of m6A in various biological conditions, ranging from embryonic organ development to adult organ function and pathogenesis. Unlike DNA methylation which is relatively stable, the reversible m6A modification on mRNA is highly dynamic and easily influenced by various internal or external factors, such as cell type, developmental stage, nutrient supply, circadian rhythm, and environmental stresses.In this Account, we review our previous findings on the site selectivity mechanisms regulating m6A formation, as well as the physiological roles of m6A modification in cerebellum development and long-term memory consolidation. In our initial efforts to profile m6A in various types of mouse and human cells, we surprisingly found that the sequence motifs surrounding m6A sites were often complementary with the seed sequences of miRNAs. By manipulating the abundance of the miRNA biogenesis enzyme Dicer or individual miRNAs or mutating miRNA sequences, we were able to reveal a new role of nucleus localized miRNAs, which is to guide the m6A methyltransferase METTL3 to bind to mRNAs and to promote m6A formation. As a result, we partially answered the question of why only a small proportion of m6A motifs within an mRNA could have m6A modification at a certain time point. We further explored the functions of m6A modification in regulating brain development and brain functions. We found that cerebellum had the most severe defects when Mettl3 was knocked out in developing mouse embryonic brain and revealed that the underlying mechanisms could be attributed to aberrant mRNA splicing and enhanced cell apoptosis under m6A deficit conditions. On the other hand, knocking out Mettl3 in postnatal hippocampus did not cause morphological defects in the mouse brain but impaired the efficacy of long-term memory consolidation. Under learning stimuli, formation of m6A modifications could be detected on transcripts encoding proteins related to dendrite growth, synapse formation, and other memory related functions. Loss of m6A modifications on these transcripts would result in translation deficiency and reduced protein production, particularly in the translation of early response genes, and therefore would compromise the efficacy of long-term memory consolidation. Interestingly, excessive training sessions or increased training intensity could overcome such m6A deficiency related memory defects, which is likely due to the longer turnover cycle and the cumulative abundance of proteins throughout the training process. In addition to revealing the roles of m6A modification in regulating long-term memory formation, our work also demonstrated an effective method for studying memory formation efficacy. As the lack of an appropriate model for studying memory formation efficacy has been a long-lasting problem in the field of neural science, our hippocampus-specific postnatal m6A knockout model could also be utilized to study other questions related to memory formation efficacy.
Collapse
Affiliation(s)
- Zeyu Zhang
- Institute
of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Jie Wang
- Institute
of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Zhang Y, Huang D, Miao Y. Epigenetic control of plant senescence and cell death and its application in crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1258487. [PMID: 37965008 PMCID: PMC10642554 DOI: 10.3389/fpls.2023.1258487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Plant senescence is the last stage of plant development and a type of programmed cell death, occurring at a predictable time and cell. It involves the functional conversion from nutrient assimilation to nutrient remobilization, which substantially impacts plant architecture and plant biomass, crop quality, and horticultural ornamental traits. In past two decades, DNA damage was believed to be a main reason for cell senescence. Increasing evidence suggests that the alteration of epigenetic information is a contributing factor to cell senescence in organisms. In this review, we summarize the current research progresses of epigenetic and epitranscriptional mechanism involved in cell senescence of plant, at the regulatory level of DNA methylation, histone methylation and acetylation, chromatin remodeling, non-coding RNAs and RNA methylation. Furthermore, we discuss their molecular genetic manipulation and potential application in agriculture for crop improvement. Finally we point out the prospects of future research topics.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Chorostecki U, Bologna NG, Ariel F. The plant noncoding transcriptome: a versatile environmental sensor. EMBO J 2023; 42:e114400. [PMID: 37735935 PMCID: PMC10577639 DOI: 10.15252/embj.2023114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Plant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance. We then highlight the importance of noncoding RNA secondary structure for their molecular and biological functions. Finally, we discuss recent studies that have unveiled the functional significance of specific long noncoding transcripts and their molecular partners within ribonucleoprotein complexes during development and in response to biotic and abiotic stress. Overall, this review sheds light on the fascinating and complex relationship between dynamic noncoding transcription and plant environmental responses, and highlights the need for further research to uncover the underlying molecular mechanisms and exploit the potential of noncoding transcripts for crop resilience in the context of global warming.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Faculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaBarcelonaSpain
| | - Nicolas G. Bologna
- Centre for Research in Agricultural Genomics (CRAG)CSIC‐IRTA‐UAB‐UBBarcelonaSpain
| | - Federico Ariel
- Instituto de Agrobiotecnologia del Litoral, CONICET, FBCBUniversidad Nacional del LitoralSanta FeArgentina
| |
Collapse
|