1
|
Yu G, Xiang J, Liu J, Zhang X, Lin H, Sunahara GI, Yu H, Jiang P, Lan H, Qu J. Single-cell atlases reveal leaf cell-type-specific regulation of metal transporters in the hyperaccumulator Sedum alfredii under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136185. [PMID: 39418904 DOI: 10.1016/j.jhazmat.2024.136185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Hyperaccumulation in plants is a complex and dynamic biological process. Sedum alfredii, the most studied Cd hyperaccumulator, can accumulate up to 9000 mg kg-1 Cd in its leaves without suffering toxicity. Although several studies have reported the molecular mechanisms of Cd hyperaccumulation, our understanding of the cell-type-specific transcriptional regulation induced by Cd remains limited. In this study, the first full-length transcriptome of S. alfredii was generated using the PacBio Iso-Seq technology. A total of 18,718,513 subreads (39.90 Gb) were obtained, with an average length of 2133 bp. The single-cell RNA sequencing was employed on leaves of S. alfredii grown under Cd stress. A total of 12,616 high-quality single cells were derived from the control and Cd-treatment samples of S. alfredii leaves. Based on cell heterogeneity and the expression profiles of previously reported marker genes, seven cell types with 12 transcriptionally distinct cell clusters were identified, thereby constructing the first single-cell atlas for S. alfredii leaves. Metal transporters such as CAX5, COPT5, ZIP5, YSL7, and MTP1 were up-regulated in different cell types of S. alfredii leaves under Cd stress. The distinctive gene expression patterns of metal transporters indicate special gene regulatory networks underlying Cd tolerance and hyperaccumulation in S. alfredii. Collectively, our findings are the first observation of the cellular and molecular responses of S. alfredii leaves under Cd stress and lay the cornerstone for future hyperaccumulator scRNA-seq investigations.
Collapse
Affiliation(s)
- Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingyu Xiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pingping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huachun Lan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Liu Y, Xu X, He C, Jin L, Zhou Z, Gao J, Guo M, Wang X, Chen C, Ayaad MH, Li X, Yan W. Chromatin loops gather targets of upstream regulators together for efficient gene transcription regulation during vernalization in wheat. Genome Biol 2024; 25:306. [PMID: 39623466 PMCID: PMC11613916 DOI: 10.1186/s13059-024-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Plants respond to environmental stimuli by altering gene transcription that is highly related with chromatin status, including histone modification, chromatin accessibility, and three-dimensional chromatin interaction. Vernalization is essential for the transition to reproductive growth for winter wheat. How wheat reshapes its chromatin features, especially chromatin interaction during vernalization, remains unknown. RESULTS Combinatory analysis of gene transcription and histone modifications in winter wheat under different vernalization conditions identifies 17,669 differential expressed genes and thousands of differentially enriched peaks of H3K4me3, H3K27me3, and H3K9ac. We find dynamic gene expression across the vernalization process is highly associated with H3K4me3. More importantly, the dynamic H3K4me3- and H3K9ac-associated chromatin-chromatin interactions demonstrate that vernalization leads to increased chromatin interactions and gene activation. Remarkably, spatially distant targets of master regulators like VRN1 and VRT2 are gathered together by chromatin loops to achieve efficient transcription regulation, which is designated as a "shepherd" model. Furthermore, by integrating gene regulatory network for vernalization and natural variation of flowering time, TaZNF10 is identified as a negative regulator for vernalization-related flowering time in wheat. CONCLUSIONS We reveal dynamic gene transcription network during vernalization and find that the spatially distant genes can be recruited together via chromatin loops associated with active histone mark thus to be more efficiently found and bound by upstream regulator. It provides new insights into understanding vernalization and response to environmental stimuli in wheat and other plants.
Collapse
Affiliation(s)
- Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xintong Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liujie Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziru Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanye Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohammed H Ayaad
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Li Z, Zhao Y, Luo K. Molecular Mechanisms of Heterosis and Its Applications in Tree Breeding: Progress and Perspectives. Int J Mol Sci 2024; 25:12344. [PMID: 39596408 PMCID: PMC11594601 DOI: 10.3390/ijms252212344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Heterosis, or hybrid vigor, refers to the phenomenon where hybrid progenies outperform their parents in traits such as yield and resistance. This phenomenon has been widely applied in plant breeding. Recent advances in high-throughput genomics have significantly advanced our understanding of heterosis. This review systematically summarizes the genetic, molecular, and epigenetic mechanisms underlying heterosis. Furthermore, we discuss recent advances in predictive methods for heterosis and their applications in improving growth rate, resistance to abiotic stresses, and wood yield in tree species. We also explore the role of tree genomics in unraveling the mechanisms underlying heterosis, emphasizing the potential of integrating high-resolution genomics, single-cell sequencing, and spatial transcriptomics to achieve a comprehensive understanding of heterosis from the molecular to spatial levels. Building on this, CRISPR-based gene-editing technologies can be employed to precisely edit heterotic loci, enabling the study of allele function. Additionally, molecular marker-assisted selection (MAS) can be utilized to identify heterotic loci in parental lines, facilitating the selection of optimal hybrid combinations and significantly reducing the labor and time costs of hybrid breeding. Finally, we review the utilization of heterosis in tree breeding and provide a forward-looking perspective on future research directions, highlighting the potential of integrating multi-omics approaches and emerging gene-editing tools to revolutionize tree hybrid breeding.
Collapse
Affiliation(s)
- Zeyu Li
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yan Zhao
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China; (Z.L.); (Y.Z.)
- Chongqing Key Laboratory of Forest Resource Innovation and Utilization, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
4
|
Garg R, Sahu SK, Jain M. Single same-cell multiome for dissecting key plant traits. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00276-0. [PMID: 39487081 DOI: 10.1016/j.tplants.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024]
Abstract
Understanding molecular dynamics at the single cell level is crucial to understand plant traits. Recently, Liu et al. and Cui et al. reported multiome analysis in the same cell/nucleus to dissect the key plant traits (osmotic stress response and pod development). Their results provide novel insights into pathways and regulatory networks at a single cell resolution.
Collapse
Affiliation(s)
- Rohini Garg
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India; Centre of Excellence in Epigenetics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Sunil Kumar Sahu
- BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Mukesh Jain
- Translational Genomics and Systems Biology Laboratory, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Tsang I, Thomelin P, Ober ES, Rawsthorne S, Atkinson JA, Wells DM, Percival-Alwyn L, Leigh FJ, Cockram J. A novel root hair mutant, srh1, affects root hair elongation and reactive oxygen species levels in wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1490502. [PMID: 39539300 PMCID: PMC11557487 DOI: 10.3389/fpls.2024.1490502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Background Root hairs are single-celled projections on root surfaces, critical for water and nutrient uptake. Here, we describe the first short root hair mutant in wheat (Triticum aestivum L.), identified in a mutagenized population and termed here short root hair 1 (srh1). Results While the srh1 mutant can initiate root hair bulges, lack of subsequent extension results in very short root hairs. Due to its semi-dominant nature, heterozygous lines displayed intermediate root hair lengths compared to wild-type. Bulked segregant analysis in a BC1F3 segregating population genotyped via exome capture sequencing localized the genetic control of this mutant to a region on the long arm of chromosome 3A. Via RNA sequencing and bioinformatic analysis, we identified two promising candidate genes. The first was a respiratory burst oxidase homolog (RBOH) encoding gene TaNOX3-A, orthologous to RBOH genes controlling root hair elongation in rice (OsNOX3) and maize (ZmRTH5), that carries a missense mutation in a conserved region of the predicted protein. RBOHs are membrane bound proteins that produce reactive oxygen species (ROS) which trigger cell wall extensibility, allowing subsequent root hair elongation. Notably, reduced ROS levels were observed in srh1 root hair bulges compared to wild-type. The second candidate was the calreticulin-3 encoding gene TaCRT3-A, located within the wider srh1 interval and whose expression was significantly downregulated in srh1 root tissues. Conclusions The identification of a major effect gene controlling wheat root hair morphology provides an entry point for future optimization of root hair architecture best suited to future agricultural environments.
Collapse
Affiliation(s)
- Ian Tsang
- Plant Genetics Department, NIAB, Cambridge, United Kingdom
- Department of Plant Science, University of Nottingham, Nottingham, United Kingdom
| | | | - Eric S. Ober
- Plant Genetics Department, NIAB, Cambridge, United Kingdom
| | | | - Jonathan A. Atkinson
- Department of Plant Science, University of Nottingham, Nottingham, United Kingdom
| | - Darren M. Wells
- Department of Plant Science, University of Nottingham, Nottingham, United Kingdom
| | | | - Fiona J. Leigh
- Plant Genetics Department, NIAB, Cambridge, United Kingdom
| | - James Cockram
- Plant Genetics Department, NIAB, Cambridge, United Kingdom
| |
Collapse
|
6
|
Yan H, Mendieta JP, Zhang X, Marand AP, Liang Y, Luo Z, Minow MAA, Jang H, Li X, Roule T, Wagner D, Tu X, Wang Y, Jiang D, Zhong S, Huang L, Wessler SR, Schmitz RJ. Evolution of plant cell-type-specific cis-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574753. [PMID: 38260561 PMCID: PMC10802394 DOI: 10.1101/2024.01.08.574753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cis-regulatory elements (CREs) are critical in regulating gene expression, and yet understanding of CRE evolution remains challenging. Here, we constructed a comprehensive single-cell atlas of chromatin accessibility in Oryza sativa, integrating data from 103,911 nuclei representing 126 discrete cell states across nine distinct organs. We used comparative genomics to compare cell-type resolved chromatin accessibility between O. sativa and 57,552 nuclei from four additional grass species (Zea mays, Sorghum bicolor, Panicum miliaceum, and Urochloa fusca). Accessible chromatin regions (ACRs) had different levels of conservation depending on the degree of cell-type specificity. We found a complex relationship between ACRs with conserved noncoding sequences, cell-type specificity, conservation, and tissue-specific switching. Additionally, we found that epidermal ACRs were less conserved compared to other cell types, potentially indicating that more rapid regulatory evolution has occurred in the L1-derived epidermal layer of these species. Finally, we identified and characterized a conserved subset of ACRs that overlapped the repressive histone modification H3K27me3, implicating them as potentially silencer-like CREs maintained by evolution. Collectively, this comparative genomics approach highlights the dynamics of plant cell-type-specific CRE evolution.
Collapse
|
7
|
Tsang I, Atkinson JA, Rawsthorne S, Cockram J, Leigh F. Root hairs: an underexplored target for sustainable cereal crop production. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5484-5500. [PMID: 38894654 PMCID: PMC11427827 DOI: 10.1093/jxb/erae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
To meet the demands of a rising human population, plant breeders will need to develop improved crop varieties that maximize yield in the face of increasing pressure on crop production. Historically, the optimization of crop root architecture has represented a challenging breeding target due to the inaccessibility of the root systems. Root hairs, single cell projections from the root epidermis, are perhaps the most overlooked component of root architecture traits. Root hairs play a central role in facilitating water, nutrient uptake, and soil cohesion. Current root hair architectures may be suboptimal under future agricultural production regimes, coupled with an increasingly variable climate. Here, we review the genetic control of root hair development in the world's three most important crops-rice, maize, and wheat-and highlight conservation of gene function between monocots and the model dicot species Arabidopsis. Advances in genomic techniques including gene editing combined with traditional plant breeding methods have the potential to overcome many inherent issues associated with the design of improved root hair architectures. Ultimately, this will enable detailed characterization of the effects of contrasting root hair morphology strategies on crop yield and resilience, and the development of new varieties better adapted to deliver future food security.
Collapse
Affiliation(s)
- Ian Tsang
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
- University of Nottingham, Plant Sciences Building, Sutton Bonnington Campus, Nottingham LE12 5RD, UK
| | - Jonathan A Atkinson
- University of Nottingham, Plant Sciences Building, Sutton Bonnington Campus, Nottingham LE12 5RD, UK
| | - Stephen Rawsthorne
- The Morley Agricultural Foundation, Morley Business Centre, Deopham Road, Morley St Botolph, Wymondham NR18 9DF, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Fiona Leigh
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| |
Collapse
|
8
|
Sun Y, Sun J, Lin C, Zhang J, Yan H, Guan Z, Zhang C. Single-Cell Transcriptomics Applied in Plants. Cells 2024; 13:1561. [PMID: 39329745 PMCID: PMC11430455 DOI: 10.3390/cells13181561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a high-tech method for characterizing the expression patterns of heterogeneous cells in the same tissue and has changed our evaluation of biological systems by increasing the number of individual cells analyzed. However, the full potential of scRNA-seq, particularly in plant science, has not yet been elucidated. To explore the utilization of scRNA-seq technology in plants, we firstly conducted a comprehensive review of significant scRNA-seq findings in the past few years. Secondly, we introduced the research and applications of scRNA-seq technology to plant tissues in recent years, primarily focusing on model plants, crops, and wood. We then offered five databases that could facilitate the identification of distinct expression marker genes for various cell types. Finally, we analyzed the potential problems, challenges, and directions for applying scRNA-seq in plants, with the aim of providing a theoretical foundation for the better use of this technique in future plant research.
Collapse
Affiliation(s)
- Yanyan Sun
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Chunjing Lin
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China
- Key Laboratory of Hybrid Soybean Breeding, Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Jingyong Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China
- Key Laboratory of Hybrid Soybean Breeding, Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Hao Yan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China
- Key Laboratory of Hybrid Soybean Breeding, Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Zheyun Guan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China
- Key Laboratory of Hybrid Soybean Breeding, Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Chunbao Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China
- Key Laboratory of Hybrid Soybean Breeding, Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| |
Collapse
|
9
|
Wang M, Li Z, Wang H, Zhao J, Zhang Y, Lin K, Zheng S, Feng Y, Zhang Y, Teng W, Tong Y, Zhang W, Xue Y, Mao H, Li H, Zhang B, Rasheed A, Bhavani S, Liu C, Ling HQ, Hu YQ, Zhang Y. A Quantitative Computational Framework for Allopolyploid Single-Cell Data Integration and Core Gene Ranking in Development. Mol Biol Evol 2024; 41:msae178. [PMID: 39213378 PMCID: PMC11421573 DOI: 10.1093/molbev/msae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/20/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Polyploidization drives regulatory and phenotypic innovation. How the merger of different genomes contributes to polyploid development is a fundamental issue in evolutionary developmental biology and breeding research. Clarifying this issue is challenging because of genome complexity and the difficulty in tracking stochastic subgenome divergence during development. Recent single-cell sequencing techniques enabled probing subgenome-divergent regulation in the context of cellular differentiation. However, analyzing single-cell data suffers from high error rates due to high dimensionality, noise, and sparsity, and the errors stack up in polyploid analysis due to the increased dimensionality of comparisons between subgenomes of each cell, hindering deeper mechanistic understandings. In this study, we develop a quantitative computational framework, called "pseudo-genome divergence quantification" (pgDQ), for quantifying and tracking subgenome divergence directly at the cellular level. Further comparing with cellular differentiation trajectories derived from single-cell RNA sequencing data allows for an examination of the relationship between subgenome divergence and the progression of development. pgDQ produces robust results and is insensitive to data dropout and noise, avoiding high error rates due to multiple comparisons of genes, cells, and subgenomes. A statistical diagnostic approach is proposed to identify genes that are central to subgenome divergence during development, which facilitates the integration of different data modalities, enabling the identification of factors and pathways that mediate subgenome-divergent activity during development. Case studies have demonstrated that applying pgDQ to single-cell and bulk tissue transcriptomic data promotes a systematic and deeper understanding of how dynamic subgenome divergence contributes to developmental trajectories in polyploid evolution.
Collapse
Affiliation(s)
- Meiyue Wang
- Beijing Life Science Academy, Beijing, China
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences\Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Zijuan Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haoyu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan 457004, China
| | - Junwei Zhao
- Beijing Life Science Academy, Beijing, China
| | - Yuyun Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kande Lin
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yilong Feng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu'e Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan Teng
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenli Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hude Mao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, Henan 457004, China
| | - Bo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 81008, China
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- International Maize and Wheat Improvement Center (CIMMYT), China Office, c/o CAAS, Beijing, 100081, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do. de México, Mexico
| | - Chenghong Liu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences\Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Yazhouwan National Laboratory, Sanya, Hainan 572025, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Cui Y, Su Y, Bian J, Han X, Guo H, Yang Z, Chen Y, Li L, Li T, Deng XW, Liu X. Single-nucleus RNA and ATAC sequencing analyses provide molecular insights into early pod development of peanut fruit. PLANT COMMUNICATIONS 2024; 5:100979. [PMID: 38794796 PMCID: PMC11369777 DOI: 10.1016/j.xplc.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Peanut (Arachis hypogaea L.) is an important leguminous oil and economic crop that produces flowers aboveground and fruits belowground. Subterranean fruit-pod development, which significantly affects peanut production, involves complex molecular mechanisms that likely require the coordinated regulation of multiple genes in different tissues. To investigate the molecular mechanisms that underlie peanut fruit-pod development, we characterized the anatomical features of early fruit-pod development and integrated single-nucleus RNA-sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin with sequencing (snATAC-seq) data at the single-cell level. We identified distinct cell types, such as meristem, embryo, vascular tissue, cuticular layer, and stele cells within the shell wall. These specific cell types were used to examine potential molecular changes unique to each cell type during pivotal stages of fruit-pod development. snRNA-seq analyses of differentially expressed genes revealed cell-type-specific insights that were not previously obtainable from transcriptome analyses of bulk RNA. For instance, we identified MADS-box genes that contributes to the formation of parenchyma cells and gravity-related genes that are present in the vascular cells, indicating an essential role for the vascular cells in peg gravitropism. Overall, our single-nucleus analysis provides comprehensive and novel information on specific cell types, gene expression, and chromatin accessibility during the early stages of fruit-pod development. This information will enhance our understanding of the mechanisms that underlie fruit-pod development in peanut and contribute to efforts aimed at improving peanut production.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Yanning Su
- School of Advanced Agricultural Sciences, Peking University, Beijing 100083, China
| | - Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Xue Han
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Haosong Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100083, China
| | - Zhiyuan Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Yijun Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Lihui Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Tianyu Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100083, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory for Advanced Agricultural Sciences at Weifang, Shandong 261325, China.
| |
Collapse
|
11
|
Mathieu L, Ballini E, Morel JB, Méteignier LV. The root of plant-plant interactions: Belowground special cocktails. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102547. [PMID: 38749206 DOI: 10.1016/j.pbi.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Plants interact with each other via a multitude of processes among which belowground communication facilitated by specialized metabolites plays an important but overlooked role. Until now, the exact targets, modes of action, and resulting phenotypes that these metabolites induce in neighboring plants have remained largely unknown. Moreover, positive interactions driven by the release of root exudates are prevalent in both natural field conditions and controlled laboratory environments. In particular, intraspecific positive interactions suggest a genotypic recognition mechanism in addition to non-self perception in plant roots. This review concentrates on recent discoveries regarding how plants interact with one another through belowground signals in intra- and interspecific mixtures. Furthermore, we elaborate on how an enhanced understanding of these interactions can propel the field of agroecology forward.
Collapse
Affiliation(s)
- Laura Mathieu
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Elsa Ballini
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jean-Benoit Morel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Louis-Valentin Méteignier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
| |
Collapse
|
12
|
Sun Y, Dong L, Kang L, Zhong W, Jackson D, Yang F. Progressive meristem and single-cell transcriptomes reveal the regulatory mechanisms underlying maize inflorescence development and sex differentiation. MOLECULAR PLANT 2024; 17:1019-1037. [PMID: 38877701 DOI: 10.1016/j.molp.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Maize develops separate ear and tassel inflorescences with initially similar morphology but ultimately different architecture and sexuality. The detailed regulatory mechanisms underlying these changes still remain largely unclear. In this study, through analyzing the time-course meristem transcriptomes and floret single-cell transcriptomes of ear and tassel, we revealed the regulatory dynamics and pathways underlying inflorescence development and sex differentiation. We identified 16 diverse gene clusters with differential spatiotemporal expression patterns and revealed biased regulation of redox, programmed cell death, and hormone signals during meristem differentiation between ear and tassel. Notably, based on their dynamic expression patterns, we revealed the roles of two RNA-binding proteins in regulating inflorescence meristem activity and axillary meristem formation. Moreover, using the transcriptional profiles of 53 910 single cells, we uncovered the cellular heterogeneity between ear and tassel florets. We found that multiple signals associated with either enhanced cell death or reduced growth are responsible for tassel pistil suppression, while part of the gibberellic acid signal may act non-cell-autonomously to regulate ear stamen arrest during sex differentiation. We further showed that the pistil-protection gene SILKLESS 1 (SK1) functions antagonistically to the known pistil-suppression genes through regulating common molecular pathways, and constructed a regulatory network for pistil-fate determination. Collectively, our study provides a deep understanding of the regulatory mechanisms underlying inflorescence development and sex differentiation in maize, laying the foundation for identifying new regulators and pathways for maize hybrid breeding and improvement.
Collapse
Affiliation(s)
- Yonghao Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Kang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; School of Agriculture, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
13
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Song Y, Zhang Y, Wang X, Yu X, Liao Y, Zhang H, Li L, Wang Y, Liu B, Li W. Telomere-to-telomere reference genome for Panax ginseng highlights the evolution of saponin biosynthesis. HORTICULTURE RESEARCH 2024; 11:uhae107. [PMID: 38883331 PMCID: PMC11179851 DOI: 10.1093/hr/uhae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/31/2024] [Indexed: 06/18/2024]
Abstract
Ginseng (Panax ginseng) is a representative of Chinese traditional medicine, also used worldwide, while the triterpene saponin ginsenoside is the most important effective compound within it. Ginseng is an allotetraploid, with complex genetic background, making the study of its metabolic evolution challenging. In this study, we assembled a telomere-to-telomere ginseng reference genome, constructed of 3.45 Gb with 24 chromosomes and 77 266 protein-coding genes. Additionally, the reference genome was divided into two subgenomes, designated as subgenome A and B. Subgenome A contains a larger number of genes, whereas subgenome B has a general expression advantage, suggesting that ginseng subgenomes experienced asymmetric gene loss with biased gene expression. The two subgenomes separated approximately 6.07 million years ago, and subgenome B shows the closest relation to Panax vietnamensis var. fuscidiscus. Comparative genomics revealed an expansion of gene families associated with ginsenoside biosynthesis in both ginseng subgenomes. Furthermore, both tandem duplications and proximal duplications play crucial roles in ginsenoside biosynthesis. We also screened functional genes identified in previous research and found that some of these genes located in colinear regions between subgenomes have divergence functions, revealing an unbalanced evolution in both subgenomes and the saponin biosynthesis pathway in ginseng. Our work provides important resources for future genetic studies and breeding programs of ginseng, as well as the biosynthesis of ginsenosides.
Collapse
Affiliation(s)
- Yiting Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yating Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xikai Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yi Liao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Hao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200433, China
| | - Yingping Wang
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agricultural University, Changchun 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
15
|
Liu Q, Ma W, Chen R, Li S, Wang Q, Wei C, Hong Y, Sun H, Cheng Q, Zhao J, Kang J. Multiome in the Same Cell Reveals the Impact of Osmotic Stress on Arabidopsis Root Tip Development at Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308384. [PMID: 38634607 PMCID: PMC11199978 DOI: 10.1002/advs.202308384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Cell-specific transcriptional regulatory networks (TRNs) play vital roles in plant development and response to environmental stresses. However, traditional single-cell mono-omics techniques are unable to directly capture the relationships and dynamics between different layers of molecular information within the same cells. While advanced algorithm facilitates merging scRNA-seq and scATAC-seq datasets, accurate data integration remains a challenge, particularly when investigating cell-type-specific TRNs. By examining gene expression and chromatin accessibility simultaneously in 16,670 Arabidopsis root tip nuclei, the TRNs are reconstructed that govern root tip development under osmotic stress. In contrast to commonly used computational integration at cell-type level, 12,968 peak-to-gene linkage is captured at the bona fide single-cell level and construct TRNs at an unprecedented resolution. Furthermore, the unprecedented datasets allow to more accurately reconstruct the coordinated changes of gene expression and chromatin states during cellular state transition. During root tip development, chromatin accessibility of initial cells precedes gene expression, suggesting that changes in chromatin accessibility may prime cells for subsequent differentiation steps. Pseudo-time trajectory analysis reveal that osmotic stress can shift the functional differentiation of trichoblast. Candidate stress-related gene-linked cis-regulatory elements (gl-cCREs) as well as potential target genes are also identified, and uncovered large cellular heterogeneity under osmotic stress.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory of Vegetable Germplasm Innovation and Utilization of HebeiMinistry of Education of China‐Hebei Province Joint Innovation Center for Efficient Green Vegetable IndustryInternational Joint R & D Center of Hebei Province in Modern Agricultural BiotechnologyCollege of Life SciencesCollege of HorticultureHebei Agricultural UniversityBaoding071000China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory of Vegetable Germplasm Innovation and Utilization of HebeiMinistry of Education of China‐Hebei Province Joint Innovation Center for Efficient Green Vegetable IndustryInternational Joint R & D Center of Hebei Province in Modern Agricultural BiotechnologyCollege of Life SciencesCollege of HorticultureHebei Agricultural UniversityBaoding071000China
| | - Ruiying Chen
- BGI ResearchBeijing102601China
- BGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | | | - Qifan Wang
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory of Vegetable Germplasm Innovation and Utilization of HebeiMinistry of Education of China‐Hebei Province Joint Innovation Center for Efficient Green Vegetable IndustryInternational Joint R & D Center of Hebei Province in Modern Agricultural BiotechnologyCollege of Life SciencesCollege of HorticultureHebei Agricultural UniversityBaoding071000China
| | - Cai Wei
- BGI ResearchBeijing102601China
| | - Yiguo Hong
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory of Vegetable Germplasm Innovation and Utilization of HebeiMinistry of Education of China‐Hebei Province Joint Innovation Center for Efficient Green Vegetable IndustryInternational Joint R & D Center of Hebei Province in Modern Agricultural BiotechnologyCollege of Life SciencesCollege of HorticultureHebei Agricultural UniversityBaoding071000China
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Hai‐Xi Sun
- BGI ResearchBeijing102601China
- BGI ResearchShenzhen518083China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qi Cheng
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory of Vegetable Germplasm Innovation and Utilization of HebeiMinistry of Education of China‐Hebei Province Joint Innovation Center for Efficient Green Vegetable IndustryInternational Joint R & D Center of Hebei Province in Modern Agricultural BiotechnologyCollege of Life SciencesCollege of HorticultureHebei Agricultural UniversityBaoding071000China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and RegulationKey Laboratory of Vegetable Germplasm Innovation and Utilization of HebeiMinistry of Education of China‐Hebei Province Joint Innovation Center for Efficient Green Vegetable IndustryInternational Joint R & D Center of Hebei Province in Modern Agricultural BiotechnologyCollege of Life SciencesCollege of HorticultureHebei Agricultural UniversityBaoding071000China
| | - Jingmin Kang
- BGI ResearchBeijing102601China
- BGI ResearchShenzhen518083China
| |
Collapse
|
16
|
Ai G, He C, Bi S, Zhou Z, Liu A, Hu X, Liu Y, Jin L, Zhou J, Zhang H, Du D, Chen H, Gong X, Saeed S, Su H, Lan C, Chen W, Li Q, Mao H, Li L, Liu H, Chen D, Kaufmann K, Alazab KF, Yan W. Dissecting the molecular basis of spike traits by integrating gene regulatory networks and genetic variation in wheat. PLANT COMMUNICATIONS 2024; 5:100879. [PMID: 38486454 PMCID: PMC11121755 DOI: 10.1016/j.xplc.2024.100879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 04/30/2024]
Abstract
Spike architecture influences both grain weight and grain number per spike, which are the two major components of grain yield in bread wheat (Triticum aestivum L.). However, the complex wheat genome and the influence of various environmental factors pose challenges in mapping the causal genes that affect spike traits. Here, we systematically identified genes involved in spike trait formation by integrating information on genomic variation and gene regulatory networks controlling young spike development in wheat. We identified 170 loci that are responsible for variations in spike length, spikelet number per spike, and grain number per spike through genome-wide association study and meta-QTL analyses. We constructed gene regulatory networks for young inflorescences at the double ridge stage and the floret primordium stage, in which the spikelet meristem and the floret meristem are predominant, respectively, by integrating transcriptome, histone modification, chromatin accessibility, eQTL, and protein-protein interactome data. From these networks, we identified 169 hub genes located in 76 of the 170 QTL regions whose polymorphisms are significantly associated with variation in spike traits. The functions of TaZF-B1, VRT-B2, and TaSPL15-A/D in establishment of wheat spike architecture were verified. This study provides valuable molecular resources for understanding spike traits and demonstrates that combining genetic analysis and developmental regulatory networks is a robust approach for dissection of complex traits.
Collapse
Affiliation(s)
- Guo Ai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siteng Bi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziru Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ankui Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liujie Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - JiaCheng Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heping Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dengxiang Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sulaiman Saeed
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome, Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität Zu Berlin, 10115 Berlin, Germany
| | - Khaled F Alazab
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
von der Mark C, Minne M, De Rybel B. Studying plant vascular development using single-cell approaches. CURRENT OPINION IN PLANT BIOLOGY 2024; 78:102526. [PMID: 38479078 DOI: 10.1016/j.pbi.2024.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
Vascular cells form a highly complex and heterogeneous tissue. Its composition, function, shape, and arrangement vary with the developmental stage and between organs and species. Understanding the transcriptional regulation underpinning this complexity thus requires a high-resolution technique that is capable of capturing rapid events during vascular cell formation. Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) approaches provide powerful tools to extract transcriptional information from these lowly abundant and dynamically changing cell types, which allows the reconstruction of developmental trajectories. Here, we summarize and reflect on recent studies using single-cell transcriptomics to study vascular cell types and discuss current and future implementations of sc/snRNA-seq approaches in the field of vascular development.
Collapse
Affiliation(s)
- Claudia von der Mark
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
18
|
Islam MT, Liu Y, Hassan MM, Abraham PE, Merlet J, Townsend A, Jacobson D, Buell CR, Tuskan GA, Yang X. Advances in the Application of Single-Cell Transcriptomics in Plant Systems and Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0029. [PMID: 38435807 PMCID: PMC10905259 DOI: 10.34133/bdr.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/28/2024] [Indexed: 03/05/2024] Open
Abstract
Plants are complex systems hierarchically organized and composed of various cell types. To understand the molecular underpinnings of complex plant systems, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for revealing high resolution of gene expression patterns at the cellular level and investigating the cell-type heterogeneity. Furthermore, scRNA-seq analysis of plant biosystems has great potential for generating new knowledge to inform plant biosystems design and synthetic biology, which aims to modify plants genetically/epigenetically through genome editing, engineering, or re-writing based on rational design for increasing crop yield and quality, promoting the bioeconomy and enhancing environmental sustainability. In particular, data from scRNA-seq studies can be utilized to facilitate the development of high-precision Build-Design-Test-Learn capabilities for maximizing the targeted performance of engineered plant biosystems while minimizing unintended side effects. To date, scRNA-seq has been demonstrated in a limited number of plant species, including model plants (e.g., Arabidopsis thaliana), agricultural crops (e.g., Oryza sativa), and bioenergy crops (e.g., Populus spp.). It is expected that future technical advancements will reduce the cost of scRNA-seq and consequently accelerate the application of this emerging technology in plants. In this review, we summarize current technical advancements in plant scRNA-seq, including sample preparation, sequencing, and data analysis, to provide guidance on how to choose the appropriate scRNA-seq methods for different types of plant samples. We then highlight various applications of scRNA-seq in both plant systems biology and plant synthetic biology research. Finally, we discuss the challenges and opportunities for the application of scRNA-seq in plants.
Collapse
Affiliation(s)
- Md Torikul Islam
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Department of Genetics and Plant Breeding,
Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jean Merlet
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education,
University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Alice Townsend
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education,
University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - C. Robin Buell
- Center for Applied Genetic Technologies,
University of Georgia, Athens, GA 30602, USA
- Department of Crop and Soil Sciences,
University of Georgia, Athens, GA 30602, USA
- Institute of Plant Breeding, Genetics, and Genomics,
University of Georgia, Athens, GA 30602, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
19
|
Xiao Y, Xi Z, Wang F, Wang J. Genomic asymmetric epigenetic modification of transposable elements is involved in gene expression regulation of allopolyploid Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:226-241. [PMID: 37797206 DOI: 10.1111/tpj.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Polyploids are common and have a wide geographical distribution and environmental adaptability. Allopolyploidy may lead to the activation of transposable elements (TE). However, the mechanism of epigenetic modification of TEs in the establishment and evolution of allopolyploids remains to be explored. We focused on the TEs of model allopolyploid Brassica napus (An An Cn Cn ), exploring the TE characteristics of the genome, epigenetic modifications of TEs during allopolyploidization, and regulation of gene expression by TE methylation. In B. napus, approximately 50% of the genome was composed of TEs. TEs increased with proximity to genes, especially DNA transposons. TE methylation levels were negatively correlated with gene expression, and changes in TE methylation levels were able to regulate the expression of neighboring genes related to responses to light intensity and stress, which promoted powerful adaptation of allopolyploids to new environments. TEs can be synergistically regulated by RNA-directed DNA methylation pathways and histone modifications. The epigenetic modification levels of TEs tended to be similar to those of the diploid parents during the genome evolution of B. napus. The TEs of the An subgenome were more likely to be modified, and the imbalance in TE number and epigenetic modification level in the An and Cn subgenomes may lead to the establishment of subgenome dominance. Our study analyzed the characteristics of TE location, DNA methylation, siRNA, and histone modification in B. napus and highlighted the importance of TE epigenetic modifications during the allopolyploidy process, providing support for revealing the mechanism of allopolyploid formation and evolution.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zengde Xi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
20
|
Liang S, Li Y, Chen Y, Huang H, Zhou R, Ma T. Application and prospects of single-cell and spatial omics technologies in woody plants. FORESTRY RESEARCH 2023; 3:27. [PMID: 39526269 PMCID: PMC11524316 DOI: 10.48130/fr-2023-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2024]
Abstract
Over the past decade, high-throughput sequencing and high-resolution single-cell transcriptome sequencing technologies have undergone rapid development, leading to significant breakthroughs. Traditional molecular biology methods are limited in their ability to unravel cellular-level heterogeneity within woody plant tissues. Consequently, techniques such as single-cell transcriptomics, single-cell epigenetics, and spatial transcriptomics are rapidly gaining popularity in the study of woody plants. In this review, we provide a comprehensive overview of the development of these technologies, with a focus on their applications and the challenges they present in single-cell transcriptome research in woody plants. In particular, we delve into the similarities and differences among the results of current studies and analyze the reasons behind these differences. Furthermore, we put forth potential solutions to overcome the challenges encountered in single-cell transcriptome applications in woody plants. Finally, we discuss the application directions of these techniques to address key challenges in woody plant research in the future.
Collapse
Affiliation(s)
- Shaoming Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Heng Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Zhang K, Zhao X, Zhao Y, Zhang Z, Liu Z, Liu Z, Yu Y, Li J, Ma Y, Dong Y, Pang X, Jin X, Li N, Liu B, Wendel JF, Zhai J, Long Y, Wang T, Gong L. Cell type-specific cytonuclear coevolution in three allopolyploid plant species. Proc Natl Acad Sci U S A 2023; 120:e2310881120. [PMID: 37748065 PMCID: PMC10556624 DOI: 10.1073/pnas.2310881120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023] Open
Abstract
Cytonuclear disruption may accompany allopolyploid evolution as a consequence of the merger of different nuclear genomes in a cellular environment having only one set of progenitor organellar genomes. One path to reconcile potential cytonuclear mismatch is biased expression for maternal gene duplicates (homoeologs) encoding proteins that target to plastids and/or mitochondria. Assessment of this transcriptional form of cytonuclear coevolution at the level of individual cells or cell types remains unexplored. Using single-cell (sc-) and single-nucleus (sn-) RNAseq data from eight tissues in three allopolyploid species, we characterized cell type-specific variations of cytonuclear coevolutionary homoeologous expression and demonstrated the temporal dynamics of expression patterns across development stages during cotton fiber development. Our results provide unique insights into transcriptional cytonuclear coevolution in plant allopolyploids at the single-cell level.
Collapse
Affiliation(s)
- Keren Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Xueru Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Yue Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Ziyu Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Yanan Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Science, Changchun, Jilin130033, China
| | - Yuefan Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Xi Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50010
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin130024, China
| |
Collapse
|
23
|
Cao S, He Z, Chen R, Luo Y, Fu LY, Zhou X, He C, Yan W, Zhang CY, Chen D. scPlant: A versatile framework for single-cell transcriptomic data analysis in plants. PLANT COMMUNICATIONS 2023; 4:100631. [PMID: 37254480 PMCID: PMC10504592 DOI: 10.1016/j.xplc.2023.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
Single-cell transcriptomics has been fully embraced in plant biological research and is revolutionizing our understanding of plant growth, development, and responses to external stimuli. However, single-cell transcriptomic data analysis in plants is not trivial, given that there is currently no end-to-end solution and that integration of various bioinformatics tools involves a large number of required dependencies. Here, we present scPlant, a versatile framework for exploring plant single-cell atlases with minimum input data provided by users. The scPlant pipeline is implemented with numerous functions for diverse analytical tasks, ranging from basic data processing to advanced demands such as cell-type annotation and deconvolution, trajectory inference, cross-species data integration, and cell-type-specific gene regulatory network construction. In addition, a variety of visualization tools are bundled in a built-in Shiny application, enabling exploration of single-cell transcriptomic data on the fly.
Collapse
Affiliation(s)
- Shanni Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhaohui He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ruidong Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuting Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Liang-Yu Fu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|