1
|
Weyns AS, Ahannach S, Van Rillaer T, De Bruyne T, Lebeer S, Hermans N. Enhancing pediatric attention-deficit hyperactivity disorder treatment: exploring the gut microbiota effects of French maritime pine bark extract and methylphenidate intervention. Front Nutr 2024; 11:1422253. [PMID: 39257605 PMCID: PMC11385872 DOI: 10.3389/fnut.2024.1422253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/26/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction The pathogenesis of Attention-Deficit Hyperactivity Disorder (ADHD) is thought to be multifactorial, with a potential role for the bidirectional communication between the gut microbiome and brain development and function. Since the "golden-standard" medication therapy with methylphenidate (MPH) is linked to multiple adverse effects, there is a need for alternative treatment options such as dietary polyphenols. These secondary plant metabolites exert antioxidant and anti-inflammatory effects, but much less is known about their impact on the gut microbiota. Since polyphenols are believed to modulate gut microbial composition, interventions might be advantageous in ADHD therapy. Therefore, intervention studies with polyphenols in ADHD therapy investigating the gut microbial composition are highly relevant. Methods Besides the primary research questions addressed previously, this study explored a potential prebiotic effect of the polyphenol-rich French Maritime Pine Bark Extract (PBE) compared to MPH and a placebo in pediatric ADHD patients by studying their impact on the gut microbiota via amplicon sequencing of the full length 16S rRNA gene ribosomal subunit (V1-V9). Results One interesting finding was the high relative abundance of Bifidobacteria among all patients in our study cohort. Moreover, our study has identified that treatment (placebo, MPH and PBE) explains 3.94% of the variation in distribution of microbial taxa (adjusted p-value of 0.011). Discussion Our small sample size (placebo: n = 10; PBE: n = 13 and MPH: n = 14) did not allow to observe clear prebiotic effects in the patients treated with PBE. Notwithstanding this limitation, subtle changes were noticeable and some limited compositional changes could be observed. Clinical Trial Registration doi: 10.1186/S13063-017-1879-6.
Collapse
Affiliation(s)
- Anne-Sophie Weyns
- Natural Products and Food Research and Analysis - Pharmaceutical Technology (NatuRA-PT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Ahannach
- Laboratorium of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tim Van Rillaer
- Laboratorium of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tess De Bruyne
- Natural Products and Food Research and Analysis - Pharmaceutical Technology (NatuRA-PT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Laboratorium of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Nina Hermans
- Natural Products and Food Research and Analysis - Pharmaceutical Technology (NatuRA-PT), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Martins A, Conte M, Goettert MI, Contini V. Attention-deficit/hyperactivity disorder and inflammation: natural product-derived treatments-a review of the last ten years. Inflammopharmacology 2023; 31:2939-2954. [PMID: 37740887 DOI: 10.1007/s10787-023-01339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Attention-deficit hyperactivity disorder (ADHD) is a psychiatric disorder characterized by symptoms of inattention, hyperactivity, and impulsivity. Stimulant medication is the main pharmacological treatment for ADHD. However, the traditional pharmacological treatments may have significant side effects; therefore, non-pharmacological approaches are needed. Thus, there has been growing interest in alternative herbal treatments. The aim of this review was to comprehensively assess the current evidence for plant-based treatment of ADHD in human and animal models, as well as their ability to modulate the inflammatory process. METHODS This study was an integrative review of the current evidence for the plant-based treatment of ADHD. The research involved using literature available on PubMed and Scopus databases. FINDINGS Spontaneously hypersensitive rats treated with baicalin exhibited significant reductions in locomotion, increased spatial learning skills, and increased levels of dopamine in the striatum. Supplementation with Sansonite improved memory and attention capacity. In human studies, Ginkgo biloba significantly improved the symptoms of inattention and reduced memory impairment. In studies conducted using Korean Red ginseng, Klamath, and Crocus sativus L., the patients showed significant improvements in symptoms of inattention and hyperactivity/impulsivity. Furthermore, we demonstrated that the identified plants modulate the inflammatory process through pro-inflammatory and anti-inflammatory cytokines, nitric oxide, Th cells, Toll-like receptor 4, and mitogen-activated protein kinases. CONCLUSION All the studies included in this review focused on plants with demonstrated potential against inflammatory processes, positioning them as promising candidates for ADHD treatment, due to their potential to attenuate or even prevent neuroinflammatory mechanisms.
Collapse
Affiliation(s)
- Alexandre Martins
- Graduate Program in Biotechnology, Universidade of Vale do Taquari - Univates, Rua Avelino Talini, 171 - Bairro Universitário, Lajeado, RS, 95914-014, Brazil
| | - Magali Conte
- Center for Biological and Health Sciences, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, Universidade of Vale do Taquari - Univates, Rua Avelino Talini, 171 - Bairro Universitário, Lajeado, RS, 95914-014, Brazil
- Institute of Pharmacy/Pharmaceutical/Medicinal Chemistry, Eberhard-Karls-Universität Tubingen, Tübingen, Germany
| | - Verônica Contini
- Graduate Program in Biotechnology, Universidade of Vale do Taquari - Univates, Rua Avelino Talini, 171 - Bairro Universitário, Lajeado, RS, 95914-014, Brazil.
- Graduate Program in Medical Science, Universidade of Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
3
|
Salm S, Rutz J, van den Akker M, Blaheta RA, Bachmeier BE. Current state of research on the clinical benefits of herbal medicines for non-life-threatening ailments. Front Pharmacol 2023; 14:1234701. [PMID: 37841934 PMCID: PMC10569491 DOI: 10.3389/fphar.2023.1234701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Herbal medicines are becoming increasingly popular among patients because they are well tolerated and do not exert severe side effects. Nevertheless, they receive little consideration in therapeutic settings. The present article reviews the current state of research on the clinical benefits of herbal medicines on five indication groups, psychosomatic disorders, gynecological complaints, gastrointestinal disorders, urinary and upper respiratory tract infections. The study search was based on the database PubMed and concentrated on herbal medicines legally approved in Europe. After applying defined inclusion and exclusion criteria, 141 articles were selected: 59 for psychosomatic disorders (100% randomized controlled trials; RCTs), 20 for gynecological complaints (56% RCTs), 19 for gastrointestinal disorders (68% RCTs), 16 for urinary tract infections (UTI, 63% RCTs) and 24 for upper respiratory tract infections (URTI) (79% RCTs). For the majority of the studies, therapeutic benefits were evaluated by patient reported outcome measures (PROs). For psychosomatic disorders, gynecological complaints and URTI more than 80% of the study outcomes were positive, whereas the clinical benefit of herbal medicines for the treatment of UTI and gastrointestinal disorders was lower with 55%. The critical appraisal of the articles shows that there is a lack of high-quality studies and, with regard to gastrointestinal disorders, the clinical benefits of herbal medicines as a stand-alone form of therapy are unclear. According to the current state of knowledge, scientific evidence has still to be improved to allow integration of herbal medicines into guidelines and standard treatment regimens for the indications reviewed here. In addition to clinical data, real world data and outcome measures can add significant value to pave the way for herbal medicines into future therapeutic applications.
Collapse
Affiliation(s)
- Sandra Salm
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt, Germany
- Institute of General Practice, Goethe University, Frankfurt, Germany
| | - Jochen Rutz
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Marjan van den Akker
- Institute of General Practice, Goethe University, Frankfurt, Germany
- Department of Family Medicine, Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
- Department of Public Health and Primary Care, Academic Centre of General Practice, KU Leuven, Leuven, Belgium
| | - Roman A. Blaheta
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | | |
Collapse
|
4
|
Storebø OJ, Storm MRO, Pereira Ribeiro J, Skoog M, Groth C, Callesen HE, Schaug JP, Darling Rasmussen P, Huus CML, Zwi M, Kirubakaran R, Simonsen E, Gluud C. Methylphenidate for children and adolescents with attention deficit hyperactivity disorder (ADHD). Cochrane Database Syst Rev 2023; 3:CD009885. [PMID: 36971690 PMCID: PMC10042435 DOI: 10.1002/14651858.cd009885.pub3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is one of the most commonly diagnosed and treated psychiatric disorders in childhood. Typically, children and adolescents with ADHD find it difficult to pay attention and they are hyperactive and impulsive. Methylphenidate is the psychostimulant most often prescribed, but the evidence on benefits and harms is uncertain. This is an update of our comprehensive systematic review on benefits and harms published in 2015. OBJECTIVES To assess the beneficial and harmful effects of methylphenidate for children and adolescents with ADHD. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, three other databases and two trials registers up to March 2022. In addition, we checked reference lists and requested published and unpublished data from manufacturers of methylphenidate. SELECTION CRITERIA We included all randomised clinical trials (RCTs) comparing methylphenidate versus placebo or no intervention in children and adolescents aged 18 years and younger with a diagnosis of ADHD. The search was not limited by publication year or language, but trial inclusion required that 75% or more of participants had a normal intellectual quotient (IQ > 70). We assessed two primary outcomes, ADHD symptoms and serious adverse events, and three secondary outcomes, adverse events considered non-serious, general behaviour, and quality of life. DATA COLLECTION AND ANALYSIS Two review authors independently conducted data extraction and risk of bias assessment for each trial. Six review authors including two review authors from the original publication participated in the update in 2022. We used standard Cochrane methodological procedures. Data from parallel-group trials and first-period data from cross-over trials formed the basis of our primary analyses. We undertook separate analyses using end-of-last period data from cross-over trials. We used Trial Sequential Analyses (TSA) to control for type I (5%) and type II (20%) errors, and we assessed and downgraded evidence according to the GRADE approach. MAIN RESULTS We included 212 trials (16,302 participants randomised); 55 parallel-group trials (8104 participants randomised), and 156 cross-over trials (8033 participants randomised) as well as one trial with a parallel phase (114 participants randomised) and a cross-over phase (165 participants randomised). The mean age of participants was 9.8 years ranging from 3 to 18 years (two trials from 3 to 21 years). The male-female ratio was 3:1. Most trials were carried out in high-income countries, and 86/212 included trials (41%) were funded or partly funded by the pharmaceutical industry. Methylphenidate treatment duration ranged from 1 to 425 days, with a mean duration of 28.8 days. Trials compared methylphenidate with placebo (200 trials) and with no intervention (12 trials). Only 165/212 trials included usable data on one or more outcomes from 14,271 participants. Of the 212 trials, we assessed 191 at high risk of bias and 21 at low risk of bias. If, however, deblinding of methylphenidate due to typical adverse events is considered, then all 212 trials were at high risk of bias. PRIMARY OUTCOMES methylphenidate versus placebo or no intervention may improve teacher-rated ADHD symptoms (standardised mean difference (SMD) -0.74, 95% confidence interval (CI) -0.88 to -0.61; I² = 38%; 21 trials; 1728 participants; very low-certainty evidence). This corresponds to a mean difference (MD) of -10.58 (95% CI -12.58 to -8.72) on the ADHD Rating Scale (ADHD-RS; range 0 to 72 points). The minimal clinically relevant difference is considered to be a change of 6.6 points on the ADHD-RS. Methylphenidate may not affect serious adverse events (risk ratio (RR) 0.80, 95% CI 0.39 to 1.67; I² = 0%; 26 trials, 3673 participants; very low-certainty evidence). The TSA-adjusted intervention effect was RR 0.91 (CI 0.31 to 2.68). SECONDARY OUTCOMES methylphenidate may cause more adverse events considered non-serious versus placebo or no intervention (RR 1.23, 95% CI 1.11 to 1.37; I² = 72%; 35 trials 5342 participants; very low-certainty evidence). The TSA-adjusted intervention effect was RR 1.22 (CI 1.08 to 1.43). Methylphenidate may improve teacher-rated general behaviour versus placebo (SMD -0.62, 95% CI -0.91 to -0.33; I² = 68%; 7 trials 792 participants; very low-certainty evidence), but may not affect quality of life (SMD 0.40, 95% CI -0.03 to 0.83; I² = 81%; 4 trials, 608 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS The majority of our conclusions from the 2015 version of this review still apply. Our updated meta-analyses suggest that methylphenidate versus placebo or no-intervention may improve teacher-rated ADHD symptoms and general behaviour in children and adolescents with ADHD. There may be no effects on serious adverse events and quality of life. Methylphenidate may be associated with an increased risk of adverse events considered non-serious, such as sleep problems and decreased appetite. However, the certainty of the evidence for all outcomes is very low and therefore the true magnitude of effects remain unclear. Due to the frequency of non-serious adverse events associated with methylphenidate, the blinding of participants and outcome assessors is particularly challenging. To accommodate this challenge, an active placebo should be sought and utilised. It may be difficult to find such a drug, but identifying a substance that could mimic the easily recognised adverse effects of methylphenidate would avert the unblinding that detrimentally affects current randomised trials. Future systematic reviews should investigate the subgroups of patients with ADHD that may benefit most and least from methylphenidate. This could be done with individual participant data to investigate predictors and modifiers like age, comorbidity, and ADHD subtypes.
Collapse
Affiliation(s)
- Ole Jakob Storebø
- Psychiatric Research Unit, Region Zealand Psychiatry, Slagelse, Denmark
- Child and Adolescent Psychiatric Department, Region Zealand, Roskilde, Denmark
- Department of Psychology, University of Southern Denmark, Odense, Denmark
| | | | | | - Maria Skoog
- Clinical Study Support, Clinical Studies Sweden - Forum South, Lund, Sweden
| | - Camilla Groth
- Pediatric Department, Herlev University Hospital, Herlev, Denmark
| | | | | | | | | | - Morris Zwi
- Islington Child and Adolescent Mental Health Service, Whittington Health, London, UK
| | - Richard Kirubakaran
- Cochrane India-CMC Vellore Affiliate, Prof. BV Moses Centre for Evidence Informed Healthcare and Health Policy, Christian Medical College, Vellore, India
| | - Erik Simonsen
- Research Unit, Mental Health services, Region Zealand Psychiatry, Roskilde, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital ─ Rigshospitalet, Copenhagen, Denmark
- Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
NAUREEN ZAKIRA, DHULI KRISTJANA, MEDORI MARIACHIARA, CARUSO PAOLA, MANGANOTTI PAOLO, CHIURAZZI PIETRO, BERTELLI MATTEO. Dietary supplements in neurological diseases and brain aging. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E174-E188. [PMID: 36479494 PMCID: PMC9710403 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A healthy diet shapes a healthy mind. Diet quality has a strong association with brain health. Diet influences the onset and consequences of neurological diseases, and dietary factors may influence mental health at individual and population level. The link between unhealthy diet, impaired cognitive function and neurodegenerative diseases indicates that adopting a healthy diet would ultimately afford prevention and management of neurological diseases and brain aging. Neurodegenerative diseases are of multifactorial origin and result in progressive loss of neuronal function in the brain, leading to cognitive impairment and motoneuron disorders. The so-called Mediterranean diet (MedDiet) with its healthy ingredients rich in antioxidant, anti-inflammatory, immune, neuroprotective, antidepressant, antistress and senolytic activity plays an essential role in the prevention and management of neurological diseases and inhibits cognitive decline in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. The MedDiet also modulates the gut-brain axis by promoting a diversity of gut microbiota. In view of the importance of diet in neurological diseases management, this review focuses on the dietary components, natural compounds and medicinal plants that have proven beneficial in neurological diseases and for brain health. Among them, polyphenols, omega-3 fatty acids, B vitamins and several ayurvedic herbs have promising beneficial effects.
Collapse
Affiliation(s)
| | - KRISTJANA DHULI
- MAGI’S LAB, Rovereto, Italy
- Correspondence: Kristjana Dhuli, MAGI’S LAB, Rovereto (TN), 38068, Italy. E-mail:
| | | | - PAOLA CARUSO
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PAOLO MANGANOTTI
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
| | - PIETRO CHIURAZZI
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - MATTEO BERTELLI
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto, Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
6
|
Weyns AS, Verlaet AA, Breynaert A, Naessens T, Fransen E, Verhelst H, Van West D, Van Ingelghem I, Jonckheere AI, Beysen D, Kenis S, Moens E, van Roest AP, Savelkoul HF, De Bruyne T, Pieters L, Ceulemans B, Hermans N. Clinical Investigation of French Maritime Pine Bark Extract on Attention-Deficit Hyperactivity Disorder as compared to Methylphenidate and Placebo: Part 1: Efficacy in a Randomised Trial. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Clinical Investigation of French Maritime Pine Bark Extract on Attention-Deficit Hyperactivity Disorder as compared to Methylphenidate and Placebo: Part 2: Oxidative Stress and Immunological Modulation. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Potential Targets and Action Mechanism of Gastrodin in the Treatment of Attention-Deficit/Hyperactivity Disorder: Bioinformatics and Network Pharmacology Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3607053. [PMID: 36133787 PMCID: PMC9484880 DOI: 10.1155/2022/3607053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Objective Gastrodin is a main medicinal component of traditional Chinese medicine (TCM) Gastrodia elata Blume (G. elata), presenting the potential for the treatment of attention-deficit/hyperactivity disorder (ADHD). However, the underlying targets and action mechanisms of the treatment have not been identified. Methods The gastrodin-related microarray dataset GSE85871 was obtained from the GEO database and analyzed by GEO2R to obtain differentially expressed genes (DEGs). Subsequently, the targets of gastrodin were supplemented by the Encyclopedia of Traditional Chinese Medicine (ETCM), PubChem, STITCH, and SwissTargetPrediction databases. ADHD-associated genes were collected from six available disease databases (i.e., TTD, DrugBank, OMIM, PharmGKB, GAD, and KEGG DISEASE). The potential targets of gastrodin during ADHD treatment were obtained by mapping gastrodin-related targets with ADHD genes, and their protein–protein interaction (PPI) relationship was constructed by the STRING database. The GO function and KEGG pathway enrichment analyses were performed using the ClueGO plug-in in the Cytoscape software and DAVID database, respectively. Finally, the binding affinity between gastrodin and important targets was verified by molecular docking. Results A total of 460 gastrodin-related DEGs were identified from GSE85871, and 124 known gastrodin targets were supplemented from 4 databases, including ETCM. A total of 440 genes were collected from the above 6 disease databases, and 267 ADHD-relevant genes were obtained after duplicate removal. Through mapping the 584 gastrodin targets to the 267 ADHD genes, 16 potential therapeutic targets were obtained, among which the important ones were DRD2, DRD4, CHRNA3, CYP1A1, TNF, IL6, and KCNJ3. The enrichment analysis results indicated that 16 potential targets were involved in 25 biological processes (e.g., dopamine (DA) transport) and 22 molecular functions (e.g., postsynaptic neurotransmitter receptor activity), which were mainly localized at excitatory synapses. The neuroactive ligand-receptor interaction, cholinergic synapse, and dopaminergic synapse might be the core pathways of gastrodin in ADHD treatment. Through molecular docking, it was preliminarily verified that gastrodin showed good binding activity to seven important targets and formed stable binding conformations. Conclusions Gastrodin might exert an anti-ADHD effect by upgrading the dopaminergic system and central cholinergic system, inhibiting the inflammatory response and GIRK channel, and exerting a synergistic effect with other drugs on ADHD. For this reason, gastrodin should be considered a multitarget drug for ADHD treatment.
Collapse
|
9
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
10
|
Nattagh-Eshtivani E, Gheflati A, Barghchi H, Rahbarinejad P, Hachem K, Shalaby MN, Abdelbasset WK, Ranjbar G, Olegovich Bokov D, Rahimi P, Gholizadeh Navashenaq J, Pahlavani N. The role of Pycnogenol in the control of inflammation and oxidative stress in chronic diseases: Molecular aspects. Phytother Res 2022; 36:2352-2374. [PMID: 35583807 DOI: 10.1002/ptr.7454] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023]
Abstract
The prevalence of chronic diseases has increased significantly with the rising trend of sedentary lifestyles, reduced physical activity, and dietary modifications in recent decades. Inflammation and oxidative stress play a key role in the pathophysiology of several chronic diseases, such as type II diabetes, cardiovascular diseases, and hepatic conditions. Therefore, reducing inflammation and oxidative stress may be beneficial in the prevention and treatment of various chronic disorders. Since chronic diseases are not completely curable, various methods have been proposed for their control. Complementary therapies and the use of natural antioxidant and antiinflammatory compounds are among these novel approaches. Pycnogenol (PYC) is a natural compound that could control inflammation and oxidative stress. Furthermore, some previous studies have shown that PYC could effectively reduce inflammation through signaling the downstream of insulin receptors, inhibiting the phosphorylation of the serine residues of insulin receptor substrate-1, reducing pro-inflammatory cytokines and oxidative stress indices through the stimulation of antioxidant pathways, increasing free radical scavenging activities, preventing lipid peroxidation, and protecting the erythrocytes in glucose-6-phosphate dehydrogenase-deficient individuals, although these effects have not been fully proved. The present study aimed to comprehensively review the evidence concerning the positive physiological and pharmacological properties of PYC, with an emphasis on the therapeutic potential of this natural component for enhancing human health.
Collapse
Affiliation(s)
- Elyas Nattagh-Eshtivani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Gheflati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Barghchi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pegah Rahbarinejad
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences, University of Saida- Dr Moulay Tahar, Saida, Algeria
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Golnaz Ranjbar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Pegah Rahimi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
11
|
The Phenolic Content, Antioxidative Properties and Extractable Substances in Silver Fir (Abies alba Mill.) Branches Decrease with Distance from the Trunk. PLANTS 2022; 11:plants11030333. [PMID: 35161314 PMCID: PMC8839515 DOI: 10.3390/plants11030333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/12/2023]
Abstract
Silver fir (Abies alba Mill.) is one of the most common and valuable conifer tree species in Central Europe, with well-established usage in the construction and furniture industries, as well as the food, health products, pharmaceuticals and cosmetics industries. Silver fir branch extract, a mixture of antioxidative phenols, is produced industrially as a food supplement with a wide range of therapeutic properties. This study investigates optimization of the production of silver fir branch extract by researching its antioxidant activity (ABTS and DPPH assay), phenol content (Folin-Ciocalteu assay), lignan content (HPLC) and extractable content at various distances from the trunk (0–80 cm). The antioxidative activity, phenol content and extractable content decreased from the proximal to the distal part of the branch. The decrease in ABTS assay activity was 51%, and that of the DPPH assay was 52%; the decrease in total phenol content was 35–40%; and the decrease in lignan content was 91%. The extractable matter content was reduced by 40%. Data gained in the study herein justifies the importance of researching existing and industrially produced plant extracts for further optimization of the final product. Results shows that industry can also produce extracts with elevated content of lignans with the use of short proximal parts of the branches.
Collapse
|
12
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Robertson NU, Schoonees A, Brand A, Visser J. Pine bark (Pinus spp.) extract for treating chronic disorders. Cochrane Database Syst Rev 2020; 9:CD008294. [PMID: 32990945 PMCID: PMC8094515 DOI: 10.1002/14651858.cd008294.pub5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pine bark (Pinus spp.) extract is rich in bioflavonoids, predominantly proanthocyanidins, which are antioxidants. Commercially-available extract supplements are marketed for preventing or treating various chronic conditions associated with oxidative stress. This is an update of a previously published review. OBJECTIVES To assess the efficacy and safety of pine bark extract supplements for treating chronic disorders. SEARCH METHODS We searched three databases and three trial registries; latest search: 30 September 2019. We contacted the manufacturers of pine bark extracts to identify additional studies and hand-searched bibliographies of included studies. SELECTION CRITERIA Randomised controlled trials (RCTs) evaluating pine bark extract supplements in adults or children with any chronic disorder. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial eligibility, extracted data and assessed risk of bias. Where possible, we pooled data in meta-analyses. We used GRADE to evaluate the certainty of evidence. Primary outcomes were participant- and investigator-reported clinical outcomes directly related to each disorder and all-cause mortality. We also assessed adverse events and biomarkers of oxidative stress. MAIN RESULTS This review included 27 RCTs (22 parallel and five cross-over designs; 1641 participants) evaluating pine bark extract supplements across 10 chronic disorders: asthma (two studies; 86 participants); attention deficit hyperactivity disorder (ADHD) (one study; 61 participants), cardiovascular disease (CVD) and risk factors (seven studies; 338 participants), chronic venous insufficiency (CVI) (two studies; 60 participants), diabetes mellitus (DM) (six studies; 339 participants), erectile dysfunction (three studies; 277 participants), female sexual dysfunction (one study; 83 participants), osteoarthritis (three studies; 293 participants), osteopenia (one study; 44 participants) and traumatic brain injury (one study; 60 participants). Two studies exclusively recruited children; the remainder recruited adults. Trials lasted between four weeks and six months. Placebo was the control in 24 studies. Overall risk of bias was low for four, high for one and unclear for 22 studies. In adults with asthma, we do not know whether pine bark extract increases change in forced expiratory volume in one second (FEV1) % predicted/forced vital capacity (FVC) (mean difference (MD) 7.70, 95% confidence interval (CI) 3.19 to 12.21; one study; 44 participants; very low-certainty evidence), increases change in FEV1 % predicted (MD 7.00, 95% CI 0.10 to 13.90; one study; 44 participants; very low-certainty evidence), improves asthma symptoms (risk ratio (RR) 1.85, 95% CI 1.32 to 2.58; one study; 60 participants; very low-certainty evidence) or increases the number of people able to stop using albuterol inhalers (RR 6.00, 95% CI 1.97 to 18.25; one study; 60 participants; very low-certainty evidence). In children with ADHD, we do not know whether pine bark extract decreases inattention and hyperactivity assessed by parent- and teacher-rating scales (narrative synthesis; one study; 57 participants; very low-certainty evidence) or increases the change in visual-motoric coordination and concentration (MD 3.37, 95% CI 2.41 to 4.33; one study; 57 participants; very low-certainty evidence). In participants with CVD, we do not know whether pine bark extract decreases diastolic blood pressure (MD -3.00 mm Hg, 95% CI -4.51 to -1.49; one study; 61 participants; very low-certainty evidence); increases HDL cholesterol (MD 0.05 mmol/L, 95% CI -0.01 to 0.11; one study; 61 participants; very low-certainty evidence) or decreases LDL cholesterol (MD -0.03 mmol/L, 95% CI -0.05 to 0.00; one study; 61 participants; very low-certainty evidence). In participants with CVI, we do not know whether pine bark extract decreases pain scores (MD -0.59, 95% CI -1.02 to -0.16; one study; 40 participants; very low-certainty evidence), increases the disappearance of pain (RR 25.0, 95% CI 1.58 to 395.48; one study; 40 participants; very low-certainty evidence) or increases physician-judged treatment efficacy (RR 4.75, 95% CI 1.97 to 11.48; 1 study; 40 participants; very low-certainty evidence). In type 2 DM, we do not know whether pine bark extract leads to a greater reduction in fasting blood glucose (MD 1.0 mmol/L, 95% CI 0.91 to 1.09; one study; 48 participants;very low-certainty evidence) or decreases HbA1c (MD -0.90 %, 95% CI -1.78 to -0.02; 1 study; 48 participants; very low-certainty evidence). In a mixed group of participants with type 1 and type 2 DM we do not know whether pine bark extract decreases HbA1c (MD -0.20 %, 95% CI -1.83 to 1.43; one study; 67 participants; very low-certainty evidence). In men with erectile dysfunction, we do not know whether pine bark extract supplements increase International Index of Erectile Function-5 scores (not pooled; two studies; 147 participants; very low-certainty evidence). In women with sexual dysfunction, we do not know whether pine bark extract increases satisfaction as measured by the Female Sexual Function Index (MD 5.10, 95% CI 3.49 to 6.71; one study; 75 participants; very low-certainty evidence) or leads to a greater reduction of pain scores (MD 4.30, 95% CI 2.69 to 5.91; one study; 75 participants; very low-certainty evidence). In adults with osteoarthritis of the knee, we do not know whether pine bark extract decreases composite Western Ontario and McMaster Universities Osteoarthritis Index scores (MD -730.00, 95% CI -1011.95 to -448.05; one study; 37 participants; very low-certainty evidence) or the use of non-steroidal anti-inflammatory medication (MD -18.30, 95% CI -25.14 to -11.46; one study; 35 participants; very low-certainty evidence). We do not know whether pine bark extract increases bone alkaline phosphatase in post-menopausal women with osteopenia (MD 1.16 ug/L, 95% CI -2.37 to 4.69; one study; 40 participants; very low-certainty evidence). In individuals with traumatic brain injury, we do not know whether pine bark extract decreases cognitive failure scores (MD -2.24, 95% CI -11.17 to 6.69; one study; 56 participants; very low-certainty evidence) or post-concussion symptoms (MD -0.76, 95% CI -5.39 to 3.87; one study; 56 participants; very low-certainty evidence). For most comparisons, studies did not report outcomes of hospital admissions or serious adverse events. AUTHORS' CONCLUSIONS Small sample sizes, limited numbers of RCTs per condition, variation in outcome measures, and poor reporting of the included RCTs mean no definitive conclusions regarding the efficacy or safety of pine bark extract supplements are possible.
Collapse
Affiliation(s)
- Nina U Robertson
- Division of Human Nutrition, Stellenbosch University, Cape Town, South Africa
| | - Anel Schoonees
- Centre for Evidence-based Health Care, Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Amanda Brand
- Centre for Evidence-based Health Care, Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Janicke Visser
- Division of Human Nutrition, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Robberecht H, Verlaet AAJ, Breynaert A, De Bruyne T, Hermans N. Magnesium, Iron, Zinc, Copper and Selenium Status in Attention-Deficit/Hyperactivity Disorder (ADHD). Molecules 2020; 25:molecules25194440. [PMID: 32992575 PMCID: PMC7583976 DOI: 10.3390/molecules25194440] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, we critically review the literature concerning the relation of Mg, Fe, Zn, Cu and Se and attention-deficit/hyperactivity disorder (ADHD). Elemental status is estimated using peripheral blood parameters, hair, urine, daily intake and response to supplementation. The observed associations between concentration levels of the elements Mg, Fe, Zn, Cu and Se and ADHD symptoms are contradictory. This is partly due to the heterogeneity and complexity of the disorder. As a trend, lower ferritin and zinc levels can be observed. However, this correlation is not causative, as illustrated by placebo-controlled trials reporting conflicting evidence on the efficacy of supplementation. Well-defined studies on changes in concentration levels of the elements in relation to ADHD symptoms before and after treatment with therapeutics it will be possible to shed more light on the significance of these elements in this behavioral disorder. The discussion on whether a change in concentration of an element is cause or consequence of ADHD is not within the scope of this article.
Collapse
|
15
|
Sharma P, Kumar A, Singh D. Dietary Flavonoids Interaction with CREB-BDNF Pathway: An Unconventional Approach for Comprehensive Management of Epilepsy. Curr Neuropharmacol 2020; 17:1158-1175. [PMID: 31400269 PMCID: PMC7057203 DOI: 10.2174/1570159x17666190809165549] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/26/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
cAMP response element binding protein (CREB) is a key transcriptional regulator that regulates the transcription of genes related with neuronal differentiation, synaptic plasticity, learning and memory. Brain derived neurotrophic factor (BDNF), is a CREB dependent gene which plays a pivotal role in the pathogenesis of epilepsy and central comorbid conditions associated with epilepsy. However, the beneficial or detrimental consequences of CREB-BDNF activation on the induction and/or progression of seizures depend specifically on the region of brain involved and the time of activation. The bioactive molecules that alter the activity of CREB in a way to have specialized effects in different brain regions and neural circuits involved could potentially be utilized for therapeutic purposes. Flavonoids are the polyphenolic compounds which lead to phosphorylation of CREB in the hippocampus, followed by increase in extracellular signal regulated kinase (ERK) and BDNF. Several members of flavonoid family have also showed suppression of epileptic seizures via interaction with CREB/BDNF pathway. Moreover, epilepsy is often accompanied by a number of behavioural and psychological comorbid conditions that further gets aggravated by the use of conventional antiepileptic drug therapy. Multiple studies have also supported the beneficial effects of flavonoids in cognitive and memory impairments by upregulation of CREB-BDNF pathway. The current review is an attempt to collate the available preclinical and clinical studies to establish the therapeutic potential of various dietary flavonoids in comprehensive management of epilepsy with relation to CREB-BDNF pathway.
Collapse
Affiliation(s)
- Pallavi Sharma
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Amit Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India
| |
Collapse
|
16
|
Schoretsanitis G, de Leon J, Eap CB, Kane JM, Paulzen M. Clinically Significant Drug-Drug Interactions with Agents for Attention-Deficit/Hyperactivity Disorder. CNS Drugs 2019; 33:1201-1222. [PMID: 31776871 DOI: 10.1007/s40263-019-00683-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article provides an overview of the pharmacokinetic drug-drug interactions (DDIs) for agents prescribed for attention-deficit/hyperactivity disorder (ADHD). Polypharmacy in the treatment of patients with ADHD leads to high exposures to DDIs and possibly adverse safety outcomes. We performed a systematic search of DDI reports for ADHD agents in Embase and Medline. We also searched for agents in the pharmacological pipeline, which include (1) mazindol, molindone and viloxazine, which were previously prescribed for other indications; (2) centanafadine and AR-08, never before approved; and (3) two extracts (Polygala tenuifolia extract and the French maritime pine bark extracts). The identified literature included case reports, cross-sectional, cross-over and placebo-controlled studies of patient cohorts and healthy volunteers. The DDIs were classified as follows: ADHD agents acting as perpetrators, i.e., affecting the clearance of co-prescribed agents (victim drugs), or ADHD agents being the victim drugs, being affected by other agents. Ratios for changes in pharmacokinetic parameters before and after the DDI were used as a rough estimate of the extent of the DDI. Alcohol may increase plasma dextroamphetamine concentrations by presystemic effects. Until studies are done to orient clinicians regarding dosing changes, clinicians need to be aware of the potential for cytochrome P450 (CYP) 2D6 inhibitors to increase amphetamine levels, which is equivalent to increasing dosages. Atomoxetine is a wide therapeutic window drug. The CYP2D6 poor metabolizers who do not have CYP2D6 activity had better atomoxetine response, but also an increased risk of adverse effects. CYP2D6 inhibitors have been used to increase atomoxetine response in CYP2D6 extensive metabolizers. Guanfacine is mainly metabolized by CYP3A4, which can be induced and inhibited. The package insert recommends that in guanfacine-treated patients, after adding potent CYP3A4 inducers, the guanfacine dose should be doubled; after adding potent CYP3A4 inhibitors the guanfacine dose should be halved. Based on a phenobarbital case report and our experience with CYP3A4-metabolized antipsychotics, these correction factors may be too low. According to two case reports, carbamazepine is a clinically relevant inducer of methylphenidate (MPH). A case series study suggested that MPH may be associated with important elevations in imipramine concentrations. Due to the absence of or limitations in the data, no comments for clinicians can be provided on the pharmacokinetic DDIs for clonidine, centanafadine, mazindol, molindone, AR-08, P. tenuifolia extract and the French maritime pine bark extracts. According to currently available data, clinicians should not expect that ADHD drugs modify each other's serum concentrations. A summary table for clinicians provides our current recommendations on pharmacokinetic DDIs of ADHD agents based on our literature review and the package inserts; whenever it was possible, we provide information on serum concentrations and dose correction factors. There will be a need to periodically update these recommendations and these correction factors as new knowledge becomes available.
Collapse
Affiliation(s)
| | - Jose de Leon
- University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
- Psychiatry and Neurosciences Research Group (CTS-549), Institute of Neurosciences, University of Granada, Granada, Spain
- Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apostol Hospital, University of the Basque Country, Vitoria, Spain
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Department of Psychiatry, Centre for Psychiatric Neuroscience, Lausanne University Hospital, Hospital of Cery, University of Lausanne, Prilly, Switzerland
- Institute of Pharmaceutical Sciences of Western, Switzerland University of Geneva, Geneva, Switzerland
| | - John M Kane
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, NY, USA
- The Hofstra Northwell School of Medicine, Hempstead, NY, USA
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Michael Paulzen
- Alexianer Hospital Aachen, Alexianergraben 33, 52062, Aachen, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- JARA-Translational Brain Medicine, Aachen, Germany.
| |
Collapse
|
17
|
Pourmasoumi M, Hadi A, Mohammadi H, Rouhani MH. Effect of pycnogenol supplementation on blood pressure: A systematic review and meta-analysis of clinical trials. Phytother Res 2019; 34:67-76. [PMID: 31637782 DOI: 10.1002/ptr.6515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 01/30/2023]
Abstract
Several studies investigated the impact of pycnogenol on blood pressure. Nevertheless, the results are inconclusive. The aim of the present systematic review and meta-analysis was to clarify the effect of pycnogenol supplementation on blood pressure. PubMed, Scopus, Web of Science, and Google Scholar were systematically searched until March 2018 to find clinical trials, which examined the effect of pycnogenol supplementation on systolic and diastolic blood pressure in adults. A subgroup analysis was applied to find out potential sources of interstudy heterogeneity. A total of 12 clinical trials (922 participants) were included in the meta-analysis. Pooled analysis suggested that pycnogenol supplementation can reduced systolic blood pressure (SBP) of (-3.22 mmHg; 95% CI [-5.52, -0.92]) and diastolic blood pressure (DBP; -1.91 mmHg; 95% CI [-3.64, -0.18]). Effect of pycnogenol on SBP was more pronounce in subgroup in which pycnogenol was administered along with other treatments. A significant effect of pycnogenol on DBP in studies with >12-week duration, whereas this favorable effect was not observed in subgroup with ≤12-week supplementation. The present systematic review and meta-analysis suggest that pycnogenol had a favorable effect on SBP and DBP. Further, high quality randomized clinical trials are needed to confirm this result.
Collapse
Affiliation(s)
- Makan Pourmasoumi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran.,Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Rouhani
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Natural Compounds for the Management of Parkinson's Disease and Attention-Deficit/Hyperactivity Disorder. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4067597. [PMID: 30596091 PMCID: PMC6282143 DOI: 10.1155/2018/4067597] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder with an unknown aetiology. The pathogenic mechanisms include oxidative stress, mitochondrial dysfunction, protein dysfunction, inflammation, autophagy, apoptosis, and abnormal deposition of α-synuclein. Currently, the existing pharmacological treatments for PD cannot improve fundamentally the degenerative process of dopaminergic neurons and have numerous side effects. On the other hand, attention-deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder of childhood and is characterised by hyperactivity, impulsivity, and inattention. The aetiology of ADHD remains unknown, although it has been suggested that its pathophysiology involves abnormalities in several brain regions, disturbances of the catecholaminergic pathway, and oxidative stress. Psychostimulants and nonpsychostimulants are the drugs prescribed for the treatment of ADHD; however, they have been associated with increased risk of substance use and have several side effects. Today, there are very few tools available to prevent or to counteract the progression of such neurological disorders. Thus, therapeutic approaches with high efficiency and fewer side effects are needed. This review presents a brief overview of the two neurological disorders and their current treatments, followed by a discussion of the natural compounds which have been studied as therapeutic agents and the mechanisms underlying the beneficial effects, in particular, the decrease in oxidative stress.
Collapse
|
19
|
Prehn-Kristensen A, Zimmermann A, Tittmann L, Lieb W, Schreiber S, Baving L, Fischer A. Reduced microbiome alpha diversity in young patients with ADHD. PLoS One 2018; 13:e0200728. [PMID: 30001426 PMCID: PMC6042771 DOI: 10.1371/journal.pone.0200728] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
ADHD is a psychiatric disorder which is characterized by hyperactivity, impulsivity and attention problems. Due to recent findings of microbial involvement in other psychiatric disorders like autism and depression, a role of the gut microbiota in ADHD pathogenesis is assumed but has not yet been investigated. In this study, the gut microbiota of 14 male ADHD patients (mean age: 11.9 yrs.) and 17 male controls (mean age: 13.1 yrs.) was examined via next generation sequencing of 16S rDNA and analyzed for diversity and biomarkers. We found that the microbial diversity (alpha diversity) was significantly decreased in ADHD patients compared to controls (pShannon = 0.036) and that the composition (beta diversity) differed significantly between patients and controls (pANOSIM = 0.033, pADONIS = 0.006, pbetadisper = 0.002). In detail, the bacterial family Prevotellacae was associated with controls, while patients with ADHD showed elevated levels of Bacteroidaceae, and both Neisseriaceae and Neisseria spec. were found as possible biomarkers for juvenile ADHD. Our results point to a possible link of certain microbiota with ADHD, with Neisseria spec. being a very promising ADHD-associated candidate. This finding provides the basis for a systematic, longitudinal assessment of the role of the gut microbiome in ADHD, yielding promising potential for both prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexandra Zimmermann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lukas Tittmann
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfgang Lieb
- Institute for Epidemiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
- Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lioba Baving
- Department of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Annegret Fischer
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|