1
|
Danescu S, Negrutiu M, Has C. Treatment of Epidermolysis Bullosa and Future Directions: A Review. Dermatol Ther (Heidelb) 2024; 14:2059-2075. [PMID: 39090514 PMCID: PMC11333680 DOI: 10.1007/s13555-024-01227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Epidermolysis bullosa (EB) comprises rare genetic disorders characterized by skin and mucosal membrane blistering induced by mechanical trauma. Molecularly, pathogenic variants affect genes encoding proteins crucial for epidermal-dermal adhesion and stability. Management of severe EB is multidisciplinary, focusing on wound healing support, ensuring that patients thrive, and complication treatment. Despite extensive research over 30 years, novel therapeutic approaches face challenges. Gene therapy and protein therapy struggle with efficacy, while regenerative cell-based therapies show limited effects. Drug repurposing to target various pathogenic mechanisms has gained attention, as has in vivo gene therapy with drugs for dystrophic and junctional EB that were recently approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). However, their high cost limits global accessibility. This review examines therapeutic advancements made over the past 5 years, exploiting a systematic literature review and clinical trial data.
Collapse
Affiliation(s)
- Sorina Danescu
- Department of Dermatology, University of Medicine Iuliu Hatieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Mircea Negrutiu
- Department of Dermatology, University of Medicine Iuliu Hatieganu Cluj-Napoca, Cluj-Napoca, Romania
| | - Cristina Has
- Department of Dermatology, Medical Center University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
2
|
Pabón-Carrasco M, Caceres-Matos R, Roche-Campos M, Hurtado-Guapo MA, Ortiz-Romero M, Gordillo-Fernández LM, Pabón-Carrasco D, Castro-Méndez A. Management of Skin Lesions in Patients with Epidermolysis Bullosa by Topical Treatment: Systematic Review and Meta-Analysis. Healthcare (Basel) 2024; 12:261. [PMID: 38275540 PMCID: PMC11154251 DOI: 10.3390/healthcare12020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Epidermolysis bullosa (EB) is the overarching term for a set of rare inherited skin fragility disorders that result from mutations in at least 20 different genes. Currently, there is no cure for any of the EB subtypes associated with various mutations. Existing therapies primarily focus on alleviating pain and promoting early wound healing to prevent potential complications. Consequently, there is an urgent need for innovative therapeutic approaches. The objective of this research was to assess the efficacy of various topical treatments in patients with EB with the goal of achieving wound healing. A secondary objective was to analyse the efficacy of topical treatments for symptom reduction. A literature search was conducted using scientific databases, including The Cochrane Library, Medline (Pubmed), Web of Science, CINHAL, Embase, and Scopus. The protocol review was registered in PROSPERO (ID: 418790), and inclusion and exclusion criteria were applied, resulting in the selection of 23 articles. Enhanced healing times were observed compared with the control group. No conclusive data have been observed on pain management, infection, pruritus episodes, and cure rates over time. Additionally, evidence indicates significant progress in gene therapies (B-VEC), as well as cell and protein therapies. The dressing group, Oleogel S-10, allantoin and diacerein 1%, were the most represented, followed by fibroblast utilisation. In addition, emerging treatments that improve the patient's innate immunity, such as calcipotriol, are gaining attention. However, more trials are needed to reduce the prevalence of blistering and improve the quality of life of individuals with epidermolysis bullosa.
Collapse
Affiliation(s)
- Manuel Pabón-Carrasco
- Research Group PAIDI-CTS-1054: “Interventions and Health Care, Red Cross (ICSCRE)”, Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 6 Avenzoar ST, 41009 Seville, Spain;
| | - Rocio Caceres-Matos
- Research Group PAIDI-CTS-1050: “Complex Care, Chronicity and Health Outcomes”, Nursing Department, Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 6 Avenzoar ST, 41009 Seville, Spain
| | | | | | - Mercedes Ortiz-Romero
- Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain; (M.O.-R.); (L.M.G.-F.); (A.C.-M.)
| | - Luis M. Gordillo-Fernández
- Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain; (M.O.-R.); (L.M.G.-F.); (A.C.-M.)
| | | | - Aurora Castro-Méndez
- Faculty of Nursing, Physiotherapy and Podiatry, University of Seville, 41009 Seville, Spain; (M.O.-R.); (L.M.G.-F.); (A.C.-M.)
| |
Collapse
|
3
|
Adepoju FO, Duru KC, Li E, Kovaleva EG, Tsurkan MV. Pharmacological Potential of Betulin as a Multitarget Compound. Biomolecules 2023; 13:1105. [PMID: 37509141 PMCID: PMC10377123 DOI: 10.3390/biom13071105] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Betulin is a natural triterpene, usually from birch bark, known for its potential wound-healing properties. Despite having a wide range of pharmacological targets, no studies have proposed betulin as a multitarget compound. Betulin has protective effects against cardiovascular and liver diseases, cancer, diabetes, oxidative stress, and inflammation. It reduces postprandial hyperglycemia by inhibiting α-amylase and α-glucosidase activity, combats tumor cells by inducing apoptosis and inhibiting metastatic proteins, and modulates chronic inflammation by blocking the expression of proinflammatory cytokines via modulation of the NFκB and MAPKs pathways. Given its potential to influence diverse biological networks with high target specificity, it can be hypothesized that betulin may eventually become a new lead for drug development because it can modify a variety of pharmacological targets. The summarized research revealed that the diverse beneficial effects of betulin in various diseases can be attributed, at least in part, to its multitarget anti-inflammatory activity. This review focuses on the natural sources, pharmacokinetics, pharmacological activity of betulin, and the multi-target effects of betulin on signaling pathways such as MAPK, NF-κB, and Nrf2, which are important regulators of the response to oxidative stress and inflammation in the body.
Collapse
Affiliation(s)
- Feyisayo O Adepoju
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | - Kingsley C Duru
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854-8021, USA
| | - Erguang Li
- Medical School, Nanjing University, Nanjing, 22 Hankou Road, Nanjing 210093, China
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Chemical Technology Institute, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
| | | |
Collapse
|
4
|
Dieter K, Niebergall-Roth E, Daniele C, Fluhr S, Frank NY, Ganss C, Kiritsi D, McGrath JA, Tolar J, Frank MH, Kluth MA. ABCB5 + mesenchymal stromal cells facilitate complete and durable wound closure in recessive dystrophic epidermolysis bullosa. Cytotherapy 2023; 25:782-788. [PMID: 36868990 PMCID: PMC10257763 DOI: 10.1016/j.jcyt.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND AIMS Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary, rare, devastating and life-threatening skin fragility disorder with a high unmet medical need. In a recent international, single-arm clinical trial, treatment of 16 patients (aged 6-36 years) with three intravenous infusions of 2 × 106 immunomodulatory ABCB5+ dermal mesenchymal stromal cells (MSCs)/kg on days 0, 17 and 35 reduced disease activity, itch and pain. A post-hoc analysis was undertaken to assess the potential effects of treatment with ABCB5+ MSCs on the overall skin wound healing in patients suffering from RDEB. METHODS Documentary photographs of the affected body regions taken on days 0, 17, 35 and at 12 weeks were evaluated regarding proportion, temporal course and durability of wound closure as well as development of new wounds. RESULTS Of 168 baseline wounds in 14 patients, 109 (64.9%) wounds had closed at week 12, of which 63.3% (69 wounds) had closed already by day 35 or day 17. Conversely, 74.2% of the baseline wounds that had closed by day 17 or day 35 remained closed until week 12. First-closure ratio within 12 weeks was 75.6%. The median rate of newly developing wounds decreased significantly (P = 0.001) by 79.3%. CONCLUSIONS Comparison of the findings with published data from placebo arms and vehicle-treated wounds in controlled clinical trials suggests potential capability of ABCB5+ MSCs to facilitate wound closure, prolongate wound recurrence and decelerate formation of new wounds in RDEB. Beyond suggesting therapeutic efficacy for ABCB5+ MSCs, the analysis might stimulate researchers who develop therapies for RDEB and other skin fragility disorders to not only assess closure of preselected target wounds but pay attention to the patients' dynamic and diverse overall wound presentation as well as to the durability of achieved wound closure and the development of new wounds. TRIAL REGISTRATION Clinicaltrials.gov NCT03529877; EudraCT 2018-001009-98.
Collapse
Affiliation(s)
| | | | | | | | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Christoph Ganss
- RHEACELL GmbH & Co. KG, Heidelberg, Germany; TICEBA GmbH, Heidelberg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - John A McGrath
- St John's Institute of Dermatology, Guy's Hospital, King's College London, London, UK
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Pediatrics, University of Minnesota M Health Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - Markus H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA; Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Mark A Kluth
- RHEACELL GmbH & Co. KG, Heidelberg, Germany; TICEBA GmbH, Heidelberg, Germany.
| |
Collapse
|
5
|
Kern JS, Sprecher E, Fernandez MF, Schauer F, Bodemer C, Cunningham T, Löwe S, Davis C, Sumeray M, Bruckner AL, Murrell DF. Efficacy and safety of Oleogel-S10 (birch triterpenes) for epidermolysis bullosa: results from the phase III randomized double-blind phase of the EASE study. Br J Dermatol 2023; 188:12-21. [PMID: 36689495 DOI: 10.1093/bjd/ljac001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Epidermolysis bullosa (EB) is a heterogeneous group of rare, difficult-to-treat, inherited multisystem diseases affecting epithelial integrity. Patients with EB are affected by mechanical fragility of epithelial surfaces including the skin and, as a result, extensive recurrent blistering is a characteristic of the condition. Chronic wounds predispose patients with EB to the development of squamous cell carcinoma, which is a major cause of premature death. OBJECTIVES EASE was a double-blind, randomized, vehicle-controlled, phase III study to determine the efficacy and safety of the topical gel Oleogel-S10 (birch triterpenes) in EB. EASE was funded by Amryt Research Limited. METHODS Patients with dystrophic EB, junctional EB or Kindler EB and a target partial-thickness wound lasting ≥ 21 days and < 9 months that was 10-50 cm2, were enrolled and randomized via computer-generated allocation tables 1 : 1 to Oleogel-S10 or control gel - both with standard-of-care dressings. Study gel was applied to all wounds at least every 4 days. The primary endpoint was the proportion of patients with first complete closure of target wound within 45 days. RESULTS A total of 223 patients were enrolled and treated (109 treated with Oleogel-S10, 114 with control gel). The primary endpoint was met; Oleogel-S10 resulted in 41·3% of patients with first complete target wound closure within 45 days, compared with 28·9% in the control gel arm (relative risk 1·44, 95% confidence interval (CI) 1·01-2·05; P = 0·013). Adverse events (AEs) occurred with similar frequency for Oleogel-S10 (81·7%) compared with control gel (80·7%). AEs were predominantly of mild-to-moderate intensity (4·6% were severe). CONCLUSIONS Oleogel-S10 is the first therapy to demonstrate accelerated wound healing in EB. Oleogel-S10 was well -tolerated.
Collapse
Affiliation(s)
- Johannes S Kern
- Dermatology Department, Royal Melbourne Hospital, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Department of Dermatology, Alfred Hospital, Central Clinical School, Monash University, Melbourne, Australia
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Franziska Schauer
- Department of Dermatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Bodemer
- Department of Dermatology, Expert Centre for Genodermatoses (MAGEC) Necker-Enfants Malades Hospital, University Paris Centre, Paris, France
| | | | | | | | | | - Anna L Bruckner
- University of Colorado School of Medicine, Department of Dermatology, Aurora, CO, USA
| | - Dédée F Murrell
- Department of Dermatology, St. George Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Mellerio JE. The challenges of clinical trials in rare diseases. Br J Dermatol 2022; 187:453-454. [DOI: 10.1111/bjd.21686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jemima E. Mellerio
- St John’s Institute of Dermatology Guy’s and St Thomas’ NHS Foundation Trust Westminster Bridge Road London UK
| |
Collapse
|
7
|
Ning S, Zang J, Zhang B, Feng X, Qiu F. Botanical Drugs in Traditional Chinese Medicine With Wound Healing Properties. Front Pharmacol 2022; 13:885484. [PMID: 35645789 PMCID: PMC9133888 DOI: 10.3389/fphar.2022.885484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic and unhealed wound is a serious public problem, which brings severe economic burdens and psychological pressure to patients. Various botanical drugs in traditional Chinese medicine have been used for the treatment of wounds since ancient time. Nowadays, multiple wound healing therapeutics derived from botanical drugs are commercially available worldwide. An increasing number of investigations have been conducted to elucidate the wound healing activities and the potential mechanisms of botanical drugs in recent years. The aim of this review is to summarize the botanical drugs in traditional Chinese medicine with wound healing properties and the underlying mechanisms of them, which can contribute to the research of wound healing and drug development. Taken together, five botanical drugs that have been developed into commercially available products, and 24 botanical drugs with excellent wound healing activities and several multiherbal preparations are reviewed in this article.
Collapse
Affiliation(s)
| | | | | | | | - Feng Qiu
- *Correspondence: Feng Qiu, ; Xinchi Feng,
| |
Collapse
|
8
|
Morren MA, Legius E, Giuliano F, Hadj-Rabia S, Hohl D, Bodemer C. Challenges in Treating Genodermatoses: New Therapies at the Horizon. Front Pharmacol 2022; 12:746664. [PMID: 35069188 PMCID: PMC8766835 DOI: 10.3389/fphar.2021.746664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/28/2023] Open
Abstract
Genodermatoses are rare inherited skin diseases that frequently affect other organs. They often have marked effects on wellbeing and may cause early death. Progress in molecular genetics and translational research has unravelled many underlying pathological mechanisms, and in several disorders with high unmet need, has opened the way for the introduction of innovative treatments. One approach is to intervene where cell-signaling pathways are dysregulated, in the case of overactive pathways by the use of selective inhibitors, or when the activity of an essential factor is decreased by augmenting a molecular component to correct disequilibrium in the pathway. Where inflammatory reactions have been induced by a genetically altered protein, another possible approach is to suppress the inflammation directly. Depending on the nature of the genodermatosis, the implicated protein or even on the particular mutation, to correct the consequences or the genetic defect, may require a highly personalised stratagem. Repurposed drugs, can be used to bring about a "read through" strategy especially where the genetic defect induces premature termination codons. Sometimes the defective protein can be replaced by a normal functioning one. Cell therapies with allogeneic normal keratinocytes or fibroblasts may restore the integrity of diseased skin and allogeneic bone marrow or mesenchymal cells may additionally rescue other affected organs. Genetic engineering is expanding rapidly. The insertion of a normal functioning gene into cells of the recipient is since long explored. More recently, genome editing, allows reframing, insertion or deletion of exons or disruption of aberrantly functioning genes. There are now several examples where these stratagems are being explored in the (pre)clinical phase of therapeutic trial programmes. Another stratagem, designed to reduce the severity of a given disease involves the use of RNAi to attenuate expression of a harmful protein by decreasing abundance of the cognate transcript. Most of these strategies are short-lasting and will thus require intermittent life-long administration. In contrast, insertion of healthy copies of the relevant gene or editing the disease locus in the genome to correct harmful mutations in stem cells is more likely to induce a permanent cure. Here we discuss the potential advantages and drawbacks of applying these technologies in patients with these genetic conditions. Given the severity of many genodermatoses, prevention of transmission to future generations remains an important goal including offering reproductive choices, such as preimplantation genetic testing, which can allow selection of an unaffected embryo for transfer to the uterus.
Collapse
Affiliation(s)
- Marie-Anne Morren
- Pediatric Dermatology Unit, Departments of Dermatology and Venereology and Pediatrics, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, ERN Genturis and ERN Skin, Leuven, Belgium
| | - Fabienne Giuliano
- Department of Medical Genetics, University Hospital Lausanne, Lausanne, Switzerland
| | - Smail Hadj-Rabia
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| | - Daniel Hohl
- Department of Dermatology and Venereology, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Christine Bodemer
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| |
Collapse
|
9
|
Abstract
Epidermolysis bullosa (EB) is a heterogeneous group of rare inherited blistering skin disorders characterized by skin fragility following minor trauma, usually present since birth. EB can be categorized into four classical subtypes, EB simplex, junctional EB, dystrophic EB and Kindler EB, distinguished on clinical features, plane of blister formation in the skin, and molecular pathology. Treatment for EB is mostly supportive, focusing on wound care and patient symptoms such as itch or pain. However, therapeutic advances have also been made in targeting the primary genetic abnormalities as well as the secondary inflammatory footprint of EB. Pre-clinical or clinical testing of gene therapies (gene replacement, gene editing, RNA-based therapy, natural gene therapy), cell-based therapies (fibroblasts, bone marrow transplantation, mesenchymal stromal cells, induced pluripotential stem cells), recombinant protein therapies, and small molecule and drug repurposing approaches, have generated new hope for better patient care. In this article, we review advances in translational research that are impacting on the quality of life for people living with different forms of EB and which offer hope for improved clinical management.
Collapse
|
10
|
Wally V, Reisenberger M, Kitzmüller S, Laimer M. Small molecule drug development for rare genodermatoses - evaluation of the current status in epidermolysis bullosa. Orphanet J Rare Dis 2020; 15:292. [PMID: 33076941 PMCID: PMC7574495 DOI: 10.1186/s13023-020-01467-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hereditary epidermolysis bullosa (EB) comprises a heterogeneous group of rare genodermatoses, which are caused by mutations in genes involved in the maintenance of the structural and functional integrity of dermo-epidermal adhesion in various stratified epithelia. In severe variants, generalized skin disease, extracutaneous manifestations and multi-organ involvement cause considerable morbidity and mortality. Causal and early treatment by re-expression of a respective mutated gene is the major long-term goal in therapy development. However, characterization and targeted modulation of pathogenic molecular cascades in EB also holds great promise as a symptom-relieving approach to ameliorate phenotype, complications and quality of life. Small molecules are chemical structures of less than 900 Da that can diffuse across cell membranes and interfere with target biomolecules, thus influencing their function at different levels. They constitute the vast majority of active components of all approved drugs. Methods We performed PubMed and Google Scholar search for publications and screened FDA- and EMA-hosted clinical trial registries to identify studies using small molecule-based drugs for epidermolysis bullosa. Upon detailed analysis this resulted in the identification of a total of 84 studies. Results We identified 52 publications and 32 registered trials that investigate small molecules for their safety and efficacy as treatment for different aspects of epidermolysis bullosa. Further, a total of 38 different small molecules clinically used in EB were found. Most frequent outcome measures concerned wound healing, reduction in blister numbers, as well as reduction of itch and pain, predominantly for EBS and RDEB. Conclusion We provide a comprehensive summary of the current status of clinical small molecule development for EB and discuss prospects and limitations in orphan drug development for rare conditions like EB.
Collapse
Affiliation(s)
- Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.
| | - Manuela Reisenberger
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria, 5020, Salzburg, Austria
| | - Sophie Kitzmüller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria
| | - Martin Laimer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020, Salzburg, Austria.,Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria, 5020, Salzburg, Austria
| |
Collapse
|
11
|
Keith AR, Twaroski K, Ebens CL, Tolar J. Leading edge: emerging drug, cell, and gene therapies for junctional epidermolysis bullosa. Expert Opin Biol Ther 2020; 20:911-923. [PMID: 32178539 PMCID: PMC7392816 DOI: 10.1080/14712598.2020.1740678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Junctional epidermolysis bullosa (JEB) is a rare inherited genetic disorder with limited treatments beyond palliative care. A major hallmark of JEB is skin blistering caused by functional loss or complete absence of major structural proteins of the skin. Impaired wound healing in patients with JEB gives rise to chronic cutaneous ulcers that require daily care. Wound care and infection control are the current standard of care for this patient population. AREAS COVERED This review covers research and clinical implementation of emerging drug, cell, and gene therapies for JEB. Current clinical trials use topical drug delivery to manipulate the inflammation and re-epithelialization phases of wound healing or promote premature stop codon readthrough to accelerate chronic wound closure. Allogeneic cell therapies for JEB have been largely unsuccessful, with autologous skin grafting emerging as a reliable method of resolving the cutaneous manifestations of JEB. Genetic correction and transplant of autologous keratinocytes have demonstrated persistent amelioration of chronic wounds in a subset of patients. EXPERT OPINION Emerging therapies address the cutaneous symptoms of JEB but are unable to attend to systemic manifestations of the disease. Investigations into the molecular mechanism(s) underpinning the failure of systemic allogeneic cell therapies are necessary to expand the range of effective JEB therapies.
Collapse
Affiliation(s)
- Allison R. Keith
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirk Twaroski
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christen L. Ebens
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|