1
|
Khan AYY, Khalid Rana MA, Mehmood Qadri H, Amir A. Fueling Recovery: The Therapeutic Role of Ketogenic Diet in Neurological Pathologies. Cureus 2024; 16:e68697. [PMID: 39371891 PMCID: PMC11452917 DOI: 10.7759/cureus.68697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
The ketogenic diet (KD) has gained a lot of attraction in the management of neurological disorders. KD therapies are high-fat, low-carbohydrate diets intended to shift energy consumption and metabolism from carbohydrates to fat in ketogenesis. The oxidative phosphorylation of ketone bodies generates energy packets for body cells, especially the central nervous system, replacing the role of glucose. KD can benefit multiple neurologic disorders like migraine, motor neuron disease, autism, multiple sclerosis, neuro-oncology, drug-resistant epilepsy, and neurotrauma. KD can provide significant adjuncts to limited conventional therapies, highlighting the feasibility, safety, and potential efficacy in neurology and neurosurgical disease management.
Collapse
Affiliation(s)
| | | | | | - Arham Amir
- General Surgery, Shaikh Zayed Medical Complex, Lahore, PAK
| |
Collapse
|
2
|
Valerio J, Borro M, Proietti E, Pisciotta L, Olarinde IO, Fernandez Gomez M, Alvarez Pinzon AM. Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience. J Pers Med 2024; 14:929. [PMID: 39338183 PMCID: PMC11433106 DOI: 10.3390/jpm14090929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Recent scientific research has shown that the ketogenic diet may have potential benefits in a variety of medical fields, which has led to the diet receiving a substantial amount of attention. Clinical and experimental research on brain tumors has shown that the ketogenic diet has a satisfactory safety profile. This safety profile has been established in a variety of applications, including the management of obesity and the treatment of drug-resistant epileptic cases. However, in human studies, the impact of ketogenic therapy on the growth of tumors and the life expectancy of patients has not provided results that are well characterized. Consequently, our purpose is to improve the comprehension of these features by succinctly presenting the developments and conclusions that have been gained from the most recent study that pertains to this non-pharmacological technique. According to the findings of our study, patients with brain tumors who stick to a ketogenic diet are more likely to experience improved survival rates. However, it is required to conduct additional research on humans in order to more accurately define the anti-tumor efficiency of this diet as well as the underlying processes that support the therapeutic effects of this dieting regimen.
Collapse
Affiliation(s)
- Jose Valerio
- Neurosurgery Oncology Center of Excellence, Neurosurgery Department, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA
| | - Matteo Borro
- Internal Medicine Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Elisa Proietti
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Livia Pisciotta
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Operative Unit of Dietetics and Clinical Nutrition, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Immanuel O Olarinde
- Neurosurgery Department, Latino America Valerio Foundation, Weston, FL 33331, USA
| | | | - Andres Mauricio Alvarez Pinzon
- MCIFAU Cancer Center of Excellence, Memorial Cancer Institute, Memorial Healthcare System, Hollywood, FL 33021, USA
- Cancer Neuroscience Program, The Institute of Neuroscience of Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute for Human Health and Disease Intervention, Division of Research, FAU Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
3
|
Poblete RA, Yaceczko S, Aliakbar R, Saini P, Hazany S, Breit H, Louie SG, Lyden PD, Partikian A. Optimization of Nutrition after Brain Injury: Mechanistic and Therapeutic Considerations. Biomedicines 2023; 11:2551. [PMID: 37760993 PMCID: PMC10526443 DOI: 10.3390/biomedicines11092551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Emerging science continues to establish the detrimental effects of malnutrition in acute neurological diseases such as traumatic brain injury, stroke, status epilepticus and anoxic brain injury. The primary pathological pathways responsible for secondary brain injury include neuroinflammation, catabolism, immune suppression and metabolic failure, and these are exacerbated by malnutrition. Given this, there is growing interest in novel nutritional interventions to promote neurological recovery after acute brain injury. In this review, we will describe how malnutrition impacts the biomolecular mechanisms of secondary brain injury in acute neurological disorders, and how nutritional status can be optimized in both pediatric and adult populations. We will further highlight emerging therapeutic approaches, including specialized diets that aim to resolve neuroinflammation, immunodeficiency and metabolic crisis, by providing pre-clinical and clinical evidence that their use promotes neurologic recovery. Using nutrition as a targeted treatment is appealing for several reasons that will be discussed. Given the high mortality and both short- and long-term morbidity associated with acute brain injuries, novel translational and clinical approaches are needed.
Collapse
Affiliation(s)
- Roy A. Poblete
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Shelby Yaceczko
- UCLA Health, University of California, 100 Medical Plaza, Suite 345, Los Angeles, CA 90024, USA;
| | - Raya Aliakbar
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Pravesh Saini
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Saman Hazany
- Department of Radiology, Keck School of Medicine, The University of Southern California, 1500 San Pablo Street, Los Angeles, CA 90033, USA;
| | - Hannah Breit
- Department of Neurology, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA; (R.A.); (P.S.); (H.B.)
| | - Stan G. Louie
- Department of Clinical Pharmacy, School of Pharmacy, The University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA;
| | - Patrick D. Lyden
- Department of Neurology, Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, The University of Southern California, 1540 Alcazar Street, Suite 215, Los Angeles, CA 90033, USA;
| | - Arthur Partikian
- Department of Neurology, Department of Pediatrics, Keck School of Medicine, The University of Southern California, 2010 Zonal Avenue, Building B, 3P61, Los Angeles, CA 90033, USA;
| |
Collapse
|
4
|
Chalamgari A, Hey G, Dave A, Liu A, Nanduru A, Lucke-Wold B. Nutritional Optimization for Post-Spinal Surgery Recovery. JOURNAL OF CLINICAL TRIALS AND REGULATIONS 2023; 5:1-16. [PMID: 37143932 PMCID: PMC10156085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Adequate nutritional intake is a key component of uncomplicated recovery from spinal surgery. Though much in the literature exists regarding its importance, specific dietary regimens for spinal surgery remain understudied, and little is available in compiling both preoperative and postoperative nutritional recommendations for patients. The complexity that may exist with these recommendations -- especially in the context of patients with diabetes or those who use substances -- has led in recent years to the development of protocols such as Enhanced Recovery After Surgery (ERAS), which gives providers a guideline upon which to base their nutritional counselling. More innovative regimens, such as the use of bioelectrical impedance analyses to assess nutritional status, have also emerged, resulting in a vast array of dietary recommendations and protocols for spinal surgery. In the following paper, we aim to compile a few of these guidelines, comparing various preoperative and postoperative nutritional strategies as well as making note of special considerations, like patients with diabetes or those who use substances. We also work to overview several such dietary "protocols" available in the literature, with a special focus on ERAS and more recent regimens like the Northwestern High-Risk Spine Protocol. We briefly mentioned preclinical work on novel nutritional recommendations as well. Ultimately, we hope to highlight the importance of nutrition in spinal surgery and address the need for greater cohesion of dietary strategies already in existence.
Collapse
Affiliation(s)
- Anjalika Chalamgari
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Grace Hey
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Akanksha Dave
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Annika Liu
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| | - Aparna Nanduru
- Post Graduate Student, School of Medicine, George Washington University, Washington, D.C., United States
| | - Brandon Lucke-Wold
- Post Graduate Student, Department of Neurosurgery, University of Florida, Florida, United States
| |
Collapse
|
5
|
Chen X, Lei X, Xu X, Zhou Y, Huang M. Intensive Care Unit-Acquired Weakness in Patients With Extracorporeal Membrane Oxygenation Support: Frequency and Clinical Characteristics. Front Med (Lausanne) 2022; 9:792201. [PMID: 35620711 PMCID: PMC9128022 DOI: 10.3389/fmed.2022.792201] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Intensive care unit-acquired weakness (ICU-AW) is common in critical illness patients and is well described. Extracorporeal membrane oxygenation (ECMO) is used as a life-saving method and patients with ECMO support often suffer more risk factors of ICU-AW. However, information on the frequency and clinical characteristics of ICU-AW in patients with ECMO support is lacking. Our study aims to clarify the frequency and characteristics of ICU-AW in ECMO patients. Methods We conducted a retrospective study, ICU-AW was diagnosed when patients were discharged with a Medical Research Council (MRC) sum score <48. Clinical information was collected from the case report forms. Univariable analysis, LASSO regression analysis, and logistic regression analysis were used to analyze the clinical data of individuals. Results In ECMO population, 40 (80%) patients diagnosed with ICU-AW. On univariable analysis, the ICU-AW group had higher Acute Physiology and Chronic Health Evaluation II (APACHE II) [13.9 (6.5-21.3) versus 21.1 (14.3-27.9), p = 0.005], longer deep sedation time [2 (0-7) versus 6.5 (3-11), p = 0.005], longer mechanical ventilation time [6.8 (2.6-9.3) versus 14.3 (6.6-19.3), p = 0.008], lower lowest albumin [26.7 (23.8-29.5) versus 22.1 (18.5-25.7), p < 0.001]. The LASSO analysis showed mechanical ventilation time, deep sedation time, deep sedation time during ECMO operation, APACHE II, and lowest albumin level were independent predictors of ICU-AW. To investigate whether ICU-AW occurs more frequently in the ECMO population, we performed a 1:1 matching with patients without ECMO and found there was no difference in the incidence of ICU-AW between the two groups. Logistic regression analysis of combined cohorts showed lowest albumin odds ratio (OR: 1.9, p = 0.024), deep sedation time (OR: 1.9, p = 0.022), mechanical ventilation time (OR: 2.0, p = 0.034), and APACHE II (OR: 2.3, p = 0.034) were independent risk factors of ICU-AW, but not ECMO. Conclusion The ICU-AW was common with a prevalence of 80% in the ECMO population. Mechanical ventilation time, deep sedation time, deep sedation time during ECMO operation, APACHE II, and lowest albumin level were risk factors of ICU-AW in ECMO population. The ECMO wasn't an independent risk factor of ICU-AW.
Collapse
Affiliation(s)
| | | | | | | | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Zeng H, Lu Y, Huang MJ, Yang YY, Xing HY, Liu XX, Zhou MW. Ketogenic diet-mediated steroid metabolism reprogramming improves the immune microenvironment and myelin growth in spinal cord injury rats according to gene and co-expression network analyses. Aging (Albany NY) 2021; 13:12973-12995. [PMID: 33962394 PMCID: PMC8148504 DOI: 10.18632/aging.202969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/27/2021] [Indexed: 01/08/2023]
Abstract
The ketogenic diet has been widely used in the treatment of various nervous system and metabolic-related diseases. Our previous research found that a ketogenic diet exerts a protective effect and promotes functional recovery after spinal cord injury. However, the mechanism of action is still unclear. In this study, different dietary feeding methods were used, and myelin expression and gene level changes were detected among different groups. We established 15 RNA-seq cDNA libraries from among 4 different groups. First, KEGG pathway enrichment of upregulated differentially expressed genes and gene set enrichment analysis of the ketogenic diet and normal diet groups indicated that a ketogenic diet significantly improved the steroid anabolic pathway in rats with spinal cord injury. Through cluster analysis, protein-protein interaction analysis and visualization of iPath metabolic pathways, it was determined that Sqle, Sc5d, Cyp51, Dhcr24, Msmo1, Hsd17b7, and Fdft1 expression changed significantly. Second, through weighted gene co-expression network analysis showed that rats fed a ketogenic diet showed a significant reduction in the expression of genes involved in immune-related pathways, including those associated with immunity and infectious diseases. A ketogenic diet may improve the immune microenvironment and myelin growth in rats with spinal cord injury through reprogramming of steroid metabolism.
Collapse
Affiliation(s)
- Hong Zeng
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China.,Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu 200011, China
| | - Yao Lu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Meng-Jie Huang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yan-Yan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Hua-Yi Xing
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xiao-Xie Liu
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Mou-Wang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
7
|
Jiang H, Ni J, Zheng Y, Xu Y. Knockdown of lncRNA SNHG14 alleviates LPS-induced inflammation and apoptosis of PC12 cells by regulating miR-181b-5p. Exp Ther Med 2021; 21:497. [PMID: 33791006 PMCID: PMC8005701 DOI: 10.3892/etm.2021.9928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a traumatic central nervous system disorder that leads to permanent functional loss, and unavailable treatment of this disease results in poor quality of life. However, the specific role of long non-coding RNA small nucleolar RNA host gene 14 (lncRNA SNHG14) in SCI has not been fully studied. The aim of the current study was to investigate the role of SNHG14 and its regulatory mechanism in lipopolysaccharide (LPS)-induced PC-12 cells. LPS was used to stimulate PC-12 cells to simulate inflammatory injury following SCI in vitro. Cell viability and apoptosis were respectively assessed by Cell Counting Kit-8 assay and TUNEL assay. Western blotting was performed to detect the expressions of apoptosis-related proteins. The mRNA levels of SNHG14 and microRNA (miR)-181b-5p were detected by reverse transcription-quantitative PCR. The target of SNGH14 was predicted by bioinformatics analysis and subsequently validated by a luciferase reporter assay. ELISA was then used to detect the levels of inflammatory factors. The results indicated that LPS induced inflammation, decreased cell viability and increased the apoptosis of PC-12 cells. Interference of SNHG14 alleviated this type of injury of PC-12 cells. Bioinformatics prediction and luciferase reporter assay demonstrated that miR-181b-5p could directly bind to SNHG14. Moreover, mechanistic investigations revealed that the miR-181b-5p inhibitor could reverse the inhibitory effects of SNHG14 silencing on cell viability, inflammation and apoptosis of PC-12 cells. To conclude, the present results showed that SNHG14 knockdown alleviated PC-12 cell inflammation and apoptosis induced by LPS via regulating miR-181b-5p, which might provide a novel insight into the treatment of SCI.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Jie Ni
- Department of Emergency, Affiliated Drum Tower Hospital of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Yan Zheng
- Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Yun Xu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
8
|
Sayadi JJ, Sayadi L, Satteson E, Chopan M. Nerve injury and repair in a ketogenic milieu: A systematic review of traumatic injuries to the spinal cord and peripheral nervous tissue. PLoS One 2021; 16:e0244244. [PMID: 33395427 PMCID: PMC7781473 DOI: 10.1371/journal.pone.0244244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Dietary interventions such as intermittent fasting and the ketogenic diet have demonstrated neuroprotective effects in various models of neurological insult. However, there has been a lack of evaluation of these interventions from a surgical perspective despite their potential to augment reparative processes that occur following nerve injury. Thus, we sought to analyze the effects of these dietary regimens on nerve regeneration and repair by critical appraisal of the literature. Following PRISMA guidelines, a systematic review was performed to identify studies published between 1950 and 2020 that examined the impact of either the ketogenic diet or intermittent fasting on traumatic injuries to the spinal cord or peripheral nerves. Study characteristics and outcomes were analyzed for each included article. A total of 1,890 articles were reviewed, of which 11 studies met inclusion criteria. Each of these articles was then assessed based on a variety of qualitative parameters, including type of injury, diet composition, timing, duration, and outcome. In total, seven articles examined the ketogenic diet, while four examined intermittent fasting. Only three studies examined peripheral nerves. Neuroprotective effects manifested as either improved histological or functional benefits in most of the included studies. Overall, we conclude that intermittent fasting and the ketogenic diet may promote neuroprotection and facilitate the regeneration and repair of nerve fibers following injury; however, lack of consistency between the studies in terms of animal models, diet compositions, and timing of dietary interventions preclude synthesis of their outcomes as a whole.
Collapse
Affiliation(s)
- Jamasb Joshua Sayadi
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Lohrasb Sayadi
- Department of Plastic Surgery, University of California, Irvine, California, United States of America
| | - Ellen Satteson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida Health, Gainesville, Florida, United States of America
| | - Mustafa Chopan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida Health, Gainesville, Florida, United States of America
| |
Collapse
|
9
|
Gunay A, Shin HH, Gozutok O, Gautam M, Ozdinler PH. Importance of lipids for upper motor neuron health and disease. Semin Cell Dev Biol 2020; 112:92-104. [PMID: 33323321 DOI: 10.1016/j.semcdb.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
Building evidence reveals the importance of maintaining lipid homeostasis for the health and function of neurons, and upper motor neurons (UMNs) are no exception. UMNs are critically important for the initiation and modulation of voluntary movement as they are responsible for conveying cerebral cortex' input to spinal cord targets. To maintain their unique cytoarchitecture with a prominent apical dendrite and a very long axon, UMNs require a stable cell membrane, a lipid bilayer. Lipids can act as building blocks for many biomolecules, and they also contribute to the production of energy. Therefore, UMNs require sustained control over the production, utilization and homeostasis of lipids. Perturbations of lipid homeostasis lead to UMN vulnerability and progressive degeneration in diseases such as hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS). Here, we discuss the importance of lipids, especially for UMNs.
Collapse
Affiliation(s)
- Aksu Gunay
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Heather H Shin
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Oge Gozutok
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - Mukesh Gautam
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611
| | - P Hande Ozdinler
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA, 60611.
| |
Collapse
|