1
|
Fechete FI, Popescu M, Mârza SM, Olar LE, Papuc I, Beteg FI, Purdoiu RC, Codea AR, Lăcătuș CM, Matei IR, Lăcătuș R, Hoble A, Petrescu-Mag IV, Bora FD. Spatial and Bioaccumulation of Heavy Metals in a Sheep-Based Food System: Implications for Human Health. TOXICS 2024; 12:752. [PMID: 39453172 PMCID: PMC11511467 DOI: 10.3390/toxics12100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024]
Abstract
Heavy metal contamination in agricultural soils presents serious environmental and health risks. This study assessed the bioaccumulation and spatial distribution of nickel, cadmium, zinc, lead, and copper within a sheep-based food chain in the Baia Mare region, Romania, which includes soil, green grass, sheep serum, and dairy products. Using inductively coupled plasma mass spectrometry (ICP-MS), we analyzed the concentrations of these metals and calculated bioconcentration factors (BCFs) to evaluate their transfer through trophic levels. Spatial analysis revealed that copper (up to 2528.20 mg/kg) and zinc (up to 1821.40 mg/kg) exceeded permissible limits, particularly near former mining sites. Elevated lead (807.59 mg/kg) and cadmium (2.94 mg/kg) were observed in industrial areas, while nickel and cobalt showed lower concentrations, but with localized peaks. Zinc was the most abundant metal in grass, while cadmium transferred efficiently to milk and cheese, raising potential health concerns. The results underscore the complex interplay between soil properties, contamination sources, and biological processes in heavy metal accumulation. These findings highlight the importance of continuous monitoring, risk assessment, and mitigation strategies to protect public health from potential exposure through contaminated dairy products.
Collapse
Affiliation(s)
- Florin-Ioan Fechete
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Maria Popescu
- Equine Clinic, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Sorin-Marian Mârza
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Loredana-Elena Olar
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Ionel Papuc
- Preclinic Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Florin-Ioan Beteg
- Clinical and Paraclinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Robert-Cristian Purdoiu
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Andrei Răzvan Codea
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Caroline-Maria Lăcătuș
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Ileana-Rodica Matei
- Plastic Surgery Department, University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Plastic Surgery Clinic, Spitalul Clinic de Recuperare, 46-50 Viilor Street, 400347 Cluj-Napoca, Romania
| | - Radu Lăcătuș
- Clinical Sciences Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.-I.F.); (S.-M.M.); (L.-E.O.); (R.-C.P.); (A.R.C.); (C.-M.L.); (R.L.)
| | - Adela Hoble
- Research Laboratory Regarding Exploitation of Land Improvement, Land Reclamation Systems and Irrigation of Horticultural Crops, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Ioan Valentin Petrescu-Mag
- Department of Environmental Engineering and Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
- Bioflux SRL, 54 Ceahlău Street, Cluj-Napoca, 400488 Cluj-Napoca, Romania
- Doctoral School of Engineering, University of Oradea, 1 Universității Street, 410087 Oradea, Romania
| | - Florin-Dumitru Bora
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
- Laboratory of Chromatography, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business for Rural Development, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Peirovi-Minaee R, Alami A, Esmaeili F, Zarei A. Analysis of trace elements in processed products of grapes and potential health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24051-24063. [PMID: 38436862 DOI: 10.1007/s11356-024-32654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Raisins and grape pekmez are consumed commonly by human all over the globe. Consumption of contaminated foods may be the likely pathway of heavy metal exposure. Therefore, the objectives of the present research were to quantify trace elements concentration in raisins and grape pekmez produced from locally grown grapes in Gonabad and to assess non-carcinogenic (HQ and HI) and carcinogenic (total cancer risk, CRt) health risks caused by trace elements exposure via oral intake of these products for children, teenagers, and adults. For this purpose, a totally 30 (15 raisins and 15 grape pekmez) samples were purchased from the vineyard gardeners and examined for ten trace elements including As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. The HI values signaled that the studied population consuming these products is at risk. The HQ, HI, and CRt values of the elements were in order of children > teenagers > adults. The highest cancer risk contribution was attributed to As and Ni for all the studied age groups in both raisins and grape pekmez samples. However, it is recommended that the concentration of trace elements in the soil and crops of the study area and its related health risks be regularly monitored to avoid significant health risks in the future.
Collapse
Affiliation(s)
- Roya Peirovi-Minaee
- Department of Environmental Health Engineering, School of Public Health, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Alami
- School of Medicine, Social Medicine Department, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Esmaeili
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ahmad Zarei
- Department of Environmental Health Engineering, School of Public Health, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
3
|
Orbanić F, Rossi S, Bestulić E, Budić-Leto I, Kovačević Ganić K, Horvat I, Plavša T, Bubola M, Lukić I, Jeromel A, Radeka S. Applying Different Vinification Techniques in Teran Red Wine Production: Impact on Bioactive Compounds and Sensory Attributes. Foods 2023; 12:3838. [PMID: 37893731 PMCID: PMC10606038 DOI: 10.3390/foods12203838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Six different vinification treatments, including a control treatment (7-day standard maceration) (K7), were performed to study the effects of non-standard techniques on bioactive compounds and sensory attributes of Teran red wine. Pre-fermentative mash cooling (8 °C; 48 h) and heating (50 °C; 48 h) followed by prolonged post-fermentative maceration of 13 days (C15;H15) or 28 days (C30;H30) were applied. In another treatment, after cooling, saignée was performed followed by 13-day prolonged maceration (CS15). Wine phenols and vitamins were analyzed by HPLC-DAD-FLD, minerals by ICP-OES, and sensory analysis was performed using the QDA and 100-point O.I.V./U.I.O.E. methods. Obtained results showed total phenolic concentration was the highest in the H30 treatment. The concentration of anthocyanins, flavan-3-ols and phenolic acids was significantly higher in wines of all vinification techniques compared to the control. Stilbene content was highly affected by pre-fermentative heating. Treatments CS15, H15, C30 and H30 resulted in the highest scores by both the QDA and 100-point sensory methods. The obtained results suggest that advanced non-standard vinification techniques have a significant impact on Teran wine by enhancing its composition of bioactive compounds and improving its sensory profile, which gives it an additional market value. Furthermore, a comprehensive comparison of such techniques applied simultaneously in one study is of substantial importance for additional research in wine production.
Collapse
Affiliation(s)
- Fumica Orbanić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (F.O.); (S.R.); (E.B.); (I.H.); (T.P.); (M.B.); (I.L.); (S.R.)
| | - Sara Rossi
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (F.O.); (S.R.); (E.B.); (I.H.); (T.P.); (M.B.); (I.L.); (S.R.)
| | - Ena Bestulić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (F.O.); (S.R.); (E.B.); (I.H.); (T.P.); (M.B.); (I.L.); (S.R.)
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Karin Kovačević Ganić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Ivana Horvat
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (F.O.); (S.R.); (E.B.); (I.H.); (T.P.); (M.B.); (I.L.); (S.R.)
| | - Tomislav Plavša
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (F.O.); (S.R.); (E.B.); (I.H.); (T.P.); (M.B.); (I.L.); (S.R.)
| | - Marijan Bubola
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (F.O.); (S.R.); (E.B.); (I.H.); (T.P.); (M.B.); (I.L.); (S.R.)
| | - Igor Lukić
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (F.O.); (S.R.); (E.B.); (I.H.); (T.P.); (M.B.); (I.L.); (S.R.)
| | - Ana Jeromel
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia;
| | - Sanja Radeka
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (F.O.); (S.R.); (E.B.); (I.H.); (T.P.); (M.B.); (I.L.); (S.R.)
| |
Collapse
|
4
|
Bora FD, Babeș AC, Călugăr A, Jitea MI, Hoble A, Filimon RV, Bunea A, Nicolescu A, Bunea CI. Unravelling Heavy Metal Dynamics in Soil and Honey: A Case Study from Maramureș Region, Romania. Foods 2023; 12:3577. [PMID: 37835231 PMCID: PMC10573013 DOI: 10.3390/foods12193577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The study examined soil and honey samples from the Maramureș region, assessing potentially toxic elements and their concentrations. The highest concentrations were found for (Cu), (Zn), (Pb), (Cr), (Ni), (Cd), (Co), and (As), while (Hg) remained below the detection limit. Samples near anthropogenic sources displayed elevated metal levels, with the Aurul settling pond and Herja mine being major contamination sources. Copper concentrations exceeded the legal limits in areas near these sources. Zinc concentrations were highest near mining areas, and Pb and Cd levels surpassed the legal limits near beehives producing acacia honey. Nickel and Co levels were generally within limits but elevated near the Herja mine. The study highlighted the role of anthropogenic activities in heavy metal pollution. In the second part, honey samples were analyzed for heavy metal concentrations, with variations across types and locations. Positive correlations were identified between certain elements in honey, influenced by factors like location and pollution sources. The research emphasized the need for pollution control measures to ensure honey safety. The bioaccumulation factor analysis indicated a sequential metal transfer from soil to honey. The study's comprehensive approach sheds light on toxic element contamination in honey, addressing pollution sources and pathways.
Collapse
Affiliation(s)
- Florin Dumitru Bora
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.D.B.); (A.C.B.); (A.C.)
- Laboratory of Chromatography, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business for Rural Development, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Anca Cristina Babeș
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.D.B.); (A.C.B.); (A.C.)
| | - Anamaria Călugăr
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.D.B.); (A.C.B.); (A.C.)
| | - Mugurel Ioan Jitea
- Department of Economic Sciences, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Adela Hoble
- Research Laboratory Regarding Exploitation of Land Improvement, Land Reclamation Systems and Irrigation of Horticultural Crops, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Răzvan Vasile Filimon
- Research Development Station for Viticulture and Winemaking Iași, 48 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Andrea Bunea
- Biochemistry Department, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Alexandru Nicolescu
- Laboratory of Chromatography, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business for Rural Development, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
- Department of Pharmaceutical Botany, Faculty of Pharmacy “Iuliu Hațieganu”, University of Medicine and Pharmacy, 23 Gheorghe Marinescu, 400337 Cluj-Napoca, Romania
| | - Claudiu Ioan Bunea
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (F.D.B.); (A.C.B.); (A.C.)
| |
Collapse
|
5
|
Nechita C, Iordache AM, Voica C, Costinel D, Botoran OR, Popescu DI, Șuvar NS. Evaluating the Chemical Hazards in Wine Production Associated with Climate Change. Foods 2023; 12:foods12071526. [PMID: 37048347 PMCID: PMC10094511 DOI: 10.3390/foods12071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
The climate warming trend challenges the chemical risk associated with wine production worldwide. The present study investigated the possible difference between chemical wine profile during the drought year 2012 compared to the post-drought year 2013. Toxic metals (Cd and Pb), microelements (Mn, Ni, Zn, Al, Ba, and Cu), macroelements (Na, Mg, K, Ca, and P), isotopic ratios (87Sr/86Sr and 206Pb/207Pb), stable isotopes (δ18O, δ13C, (D/H)I, and (D/H)II), and climatic data were analyzed. The multivariate technique, correlation analysis, factor analysis, partial least squares–discriminant analysis, and hierarchical cluster analysis were used for data interpretation. The maximum temperature had a maximum difference when comparing data year apart. Indeed, extreme droughts were noted in only the spring and early summer of 2012 and in 2013, which increased the mean value of ground frost days. The microelements, macroelements, and Pb presented extreme effects in 2012, emphasizing more variability in terms of the type of wine. Extremely high Cd values were found in the wine samples analyzed, at up to 10.1 µg/L. The relationship between precipitation and δ18O from wine was complex, indicating grape formation under the systematic influence of the current year precipitation, and differences between years were noted. δ13C had disentangled values, with no differentiation between years, and when coupled with the deuterium–hydrogen ratio, it could sustain the hypothesis of possible adulteration. In the current analysis, the 87Sr/86Sr showed higher values than in other Romanian studies. The temperature had a strong positive correlation with Pb, while the ground frost day frequency correlated with both Pb and Cd toxic elements in the wine. Other significant relationships were disclosed between the chemical properties of wine and climate data. The multivariate statistical analysis indicated that heat stress had significant importance in the chemical profile of the wine, and the ground frost exceeded the influence of water stress, especially in Transylvania.
Collapse
Affiliation(s)
- Constantin Nechita
- National Research and Development Institute for Forestry “Marin Drăcea”—INCDS, 128 Boulvard Eroilor, 077190 Voluntari, Romania
| | - Andreea Maria Iordache
- National Research and Development Institute of Cryogenics and Isotopic Technologies, ICSI, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Diana Costinel
- National Research and Development Institute of Cryogenics and Isotopic Technologies, ICSI, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Oana Romina Botoran
- National Research and Development Institute of Cryogenics and Isotopic Technologies, ICSI, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Diana Ionela Popescu
- National Research and Development Institute of Cryogenics and Isotopic Technologies, ICSI, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 050044 Bucharest, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| |
Collapse
|
6
|
Mahlungulu A, Kambizi L, Akinpelu EA, Nchu F. Levels of Heavy Metals in Grapevine Soil and Leaf Samples in Response to Seasonal Change and Farming Practice in the Cape Winelands. TOXICS 2023; 11:193. [PMID: 36851067 PMCID: PMC9965250 DOI: 10.3390/toxics11020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal toxicity is a major threat to the health of both humans and ecosystems. Toxic levels of heavy metals in food crops, such as grapes, can have devastating effects on plant health and the market value of the produce. Two important factors that may influence the prevalence of heavy metals in grapevines are seasonal change and farming practices. The objectives of this study were (i) to conduct a detailed pioneer screening of heavy metal levels in soils and grapevine leaf tissues in selected wine farms and (ii) to study the influence of season and farming on heavy metal levels in soils and grapevine leaf tissues. Soil and grapevine leaf samples were collected from demarcated areas in selected vineyards in the Cape Winelands region of South Africa. The sampling was conducted in winter and summer from the same sites. The soil and leaf samples were analysed using inductively coupled plasma mass spectrometry (ICP-MS) techniques. The pooled data from the farms practising conventional or organic farming showed that seasonal variation had no significant effect (DF = 1, 22; p > 0.05) on the heavy metal contents in the soil. When the soil data from the winter and summer months were compared separately or pooled, the influence of agricultural practice was well-pronounced in As (DF = 1, 22, or 46; p < 0.05) and Cu (DF = 1, 22, or 46; p <0.05). The agricultural practice greatly influenced (DF = 1, 22; p< 0.05) Cu, As, Cr, and Hg uptake, with little effect on Ni, Co, Cd, and Hg leaf contents. Generally, the heavy metals studied (Cr, Co, Ni, Zn, As, Cd, Hg, and Pb) were substantially below the maximum permitted levels in plant and soil samples, per the recommendations of the WHO and Er indices, respectively. However, moderate contamination of the soils was recorded for Cr, Ni, Zn, and Pb. Remarkably, the Cu levels in the organic vineyard soils were significantly higher than in the conventional vineyards. Furthermore, based on the Igeo index, Cu occurred at moderate to heavy contamination levels.
Collapse
|
7
|
Daccak D, Lidon FC, Luís IC, Marques AC, Coelho ARF, Pessoa CC, Caleiro J, Ramalho JC, Leitão AE, Silva MJ, Rodrigues AP, Guerra M, Leitão RG, Campos PS, Pais IP, Semedo JN, Alvarenga N, Gonçalves EM, Silva MM, Legoinha P, Galhano C, Kullberg JC, Brito M, Simões M, Pessoa MF, Reboredo FH. Zinc Biofortification in Vitis vinifera: Implications for Quality and Wine Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:2442. [PMID: 36145843 PMCID: PMC9501456 DOI: 10.3390/plants11182442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, there is a growing concern about micronutrient deficits in food products, with agronomic biofortification being considered a mitigation strategy. In this context, as Zn is essential for growth and maintenance of human health, a workflow for the biofortification of grapes from the Vitis vinifera variety Fernão Pires, which contains this nutrient, was carried out considering the soil properties of the vineyard. Additionally, Zn accumulation in the tissues of the grapes and the implications for some quality parameters and on winemaking were assessed. Vines were sprayed three times with ZnO and ZnSO4 at concentrations of 150, 450, and 900 g ha-1 during the production cycle. Physiological data were obtained through chlorophyll a fluorescence data, to access the potential symptoms of toxicity. At harvest, treated grapes revealed significant increases of Zn concentration relative to the control, being more pronounced for ZnO and ZnSO4 in the skin and seeds, respectively. After winemaking, an increase was also found regarding the control (i.e., 1.59-fold with ZnSO4-450 g ha-1). The contents of the sugars and fatty acids, as well as the colorimetric analyses, were also assessed, but significant variations were not found among treatments. In general, Zn biofortification increased with ZnO and ZnSO4, without significantly affecting the physicochemical characteristics of grapes.
Collapse
Affiliation(s)
- Diana Daccak
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando C. Lidon
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Inês Carmo Luís
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Coelho Marques
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Rita F. Coelho
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cláudia Campos Pessoa
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João Caleiro
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José C. Ramalho
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - António E. Leitão
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria José Silva
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Paula Rodrigues
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Mauro Guerra
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Roberta G. Leitão
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Paula Scotti Campos
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Isabel P. Pais
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - José N. Semedo
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Nuno Alvarenga
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Elsa M. Gonçalves
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Maria Manuela Silva
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Escola Superior de Educação Almeida Garrett (ESEAG-COFAC), Avenida do Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Paulo Legoinha
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos Galhano
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José Carlos Kullberg
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Brito
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Simões
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Fernanda Pessoa
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Xu X, Li T, Ji Y, Jiang X, Shi X, Wang B. Origin, Succession, and Control of Biotoxin in Wine. Front Microbiol 2021; 12:703391. [PMID: 34367103 PMCID: PMC8339702 DOI: 10.3389/fmicb.2021.703391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/22/2021] [Indexed: 11/13/2022] Open
Abstract
Wine is a worldwide alcoholic beverage with antioxidant active substances and complex flavors. Moderate drinking of wine has been proven to be beneficial to health. However, wine has some negative components, such as residual pesticides, heavy metals, and biotoxins. Of these, biotoxins from microorganisms were characterized as the most important toxins in wine. Wine fermentation mainly involves alcoholic fermentation, malolactic fermentation, and aging, which endue wine with complex flavors and even produce some undesirable metabolites. These metabolites cause potential safety risks that are not thoroughly understood. This review aimed to investigate the origin, evolution, and control technology of undesirable metabolites (e.g., ochratoxin A, ethyl carbamate, and biogenic amines) in wine. It also highlighted current wine industry practices of minimizing the number of biotoxins in wine.
Collapse
Affiliation(s)
| | | | | | | | - Xuewei Shi
- School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Bin Wang
- School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
9
|
Mirzaei M, Verrelst J, Bakhtiari AR, Marofi S. Potential use of grapevine cv Askari for heavy metal phytoremediation purposes at greenhouse scale. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12447-12458. [PMID: 33079348 PMCID: PMC7613395 DOI: 10.1007/s11356-020-11129-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 10/04/2020] [Indexed: 05/30/2023]
Abstract
Grapevine varieties possess desirable characteristics for phytoremediation purposes. We investigated the potential of grapevine cv Askari in phytoremediation of heavy metal (HM) pollutions. In total 80 grapevine seedlings were exposed to four levels of HM stress (mild, low, moderate, and severe) in greenhouse condition during two growing years (2018 and 2019). The HM concentrations (Zn, Cu, Cd, Cr, and Pb) were subsequently determined in the soils, roots, and grapevine aboveground parts (AGPs), and then phytoextraction and phytostabilization potential assessment indices, i.e., biological absorption coefficient (BAC), bioconcentration factor (BCF), and translocation factor (TF), were calculated. Results led to ranking of the cumulative concentration order of the HMs, i.e.: soils (3476.6) > AGPs (1418.8) > roots (562.2) mg/kg-DW. The mean concentrations ranking order of studied HMs were in soil: Cu (1184.8) > Pb (865.5) > Cd (803.2) > Cr (623.0) > Zn (277.9) mg/kg-DW; roots, Cu (242.0) > Cd (239.5) > Zn (188.8) > Pb (63.5) > Cr (17.2) mg/kg-DW; and AGP environments, Cu (910.2) > Cd (322.9) > Zn (160.3) > Pb (152.9) > Cr (25.3) mg/kg-DW. Principal component analysis results demonstrated the same distribution pattern for the studied HMs between soil, root, and AGP environments, and the highest correlation coefficients were found for Cu, Zn, and Cd. Based on the obtained results (Cu-BAC (> 1), Zn-BCF (> 1), Zn-TF (< 1), Cu-AGP mean concentrations (> 1000 mg/kg-DW), and Cd-AGP mean concentrations (> 100 mg/kg-DW)), it can be concluded that grapevine cv Askari possesses potentials for phytoremediation purposes of Cu, Zn, and Cd. These results were acquired in a greenhouse environment and under controlled conditions; we suggest that the phytoremediation potential of this grapevine variety be assessed in a contaminated vineyard environment as well.
Collapse
Affiliation(s)
- Mohsen Mirzaei
- Department of Environment, School of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jochem Verrelst
- Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, València, Spain
| | - Alireza Riyahi Bakhtiari
- Department of Environment, School of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Safar Marofi
- Grape Environmental Science Department, Research Institute for Grapes and Raisin (RIGR), Malayer University-Water Engineering Department, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
10
|
Castro C, Carvalho A, Gaivão I, Lima-Brito J. Evaluation of copper-induced DNA damage in Vitis vinifera L. using Comet-FISH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6600-6610. [PMID: 33006094 DOI: 10.1007/s11356-020-10995-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The contamination of soils and water with copper (Cu) can compromise the crops production and quality. Fungicides containing Cu are widely and intensively used in viticulture contributing to environmental contamination and genotoxicity in Vitis vinifera L. Despite the difficulty in reproducing field conditions in the laboratory, hydroponic solutions enriched with Cu (1, 10, 25 and 50 μM) were used in forced V. vinifera cuttings to evaluate the DNA damage in leaves of four wine-producing varieties ('Tinta Barroca', 'Tinto Cão', 'Malvasia Fina' and 'Viosinho'). Alkaline comet assay followed by fluorescence in situ hybridisation (Comet-FISH) was performed with the 45S ribosomal DNA (rDNA) and telomeric [(TTTAGGG)n] sequences as probes. This study aimed to evaluate the tolerance of the four varieties to different concentrations of Cu and to determine which genomic regions were more prone to DNA damage. The comet assay revealed comets of categories 0 to 4 in all varieties. The DNA damage increased significantly (p < 0.001) with the Cu concentration. 'Tinto Cão' appeared to be the most sensitive variety because it had the highest DNA damage increase in 50 μM Cu relative to the control. Comet-FISH was only performed on slides of the control and 50 μM Cu treatments. Comets of all varieties treated with 50 μM Cu showed rDNA hybridisation on the head, 'halo' and tail (category III), and their frequency was significantly higher than that of control. The frequency of category III comets hybridised with the telomeric probe was only significantly different from the control in 'Malvasia Fina' and 'Tinta Barroca'. Comet-FISH revealed partial damage on rDNA and telomeric DNA in response to Cu but also in control, confirming the high sensitivity of these genomic regions to DNA fragmentation.
Collapse
Affiliation(s)
- Cláudia Castro
- Biosystems & Integrative Sciences Institute-University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Carvalho
- Biosystems & Integrative Sciences Institute-University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
- Department of Genetics and Biotechnology, Blocos Laboratoriais, A1.09, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Isabel Gaivão
- Department of Genetics and Biotechnology, Blocos Laboratoriais, A1.09, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Lima-Brito
- Biosystems & Integrative Sciences Institute-University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, Blocos Laboratoriais, A1.09, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| |
Collapse
|
11
|
A revisited FAAS method for very simple and fast determination of total concentrations of Cu, Fe, Mn and Zn in grape juices with sample preparation developed by modeling experimental design and optimization. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Bora FD, Bunea CI, Chira R, Bunea A. Assessment of the Quality of Polluted Areas in Northwest Romania Based on the Content of Elements in Different Organs of Grapevine ( Vitis vinifera L.). Molecules 2020; 25:molecules25030750. [PMID: 32050507 PMCID: PMC7037287 DOI: 10.3390/molecules25030750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the environmental quality of polluted areas near the Baia Mare Mining and Smelting Complex for future improvements the quality of the environment in polluted areas, such as the city of Baia Mare and its surroundings. Samples of soil and organs of grapevine (Vitis vinifera L.) were collected from Baia Mare, Baia Sprie and surrounding areas (Simleul Silvaniei) and their content of Cu, Zn, Pb, Cd, Ni, Co, As, Cr, Hg were analyzed. Most soil and plant samples showed higher metal concentrations in Baia Mare and Baia Sprie areas compared to Simleul Silvaniei, exceeding the normal values. The results obtained from the translocation factors, mobility ratio, as well as from Pearson correlation study confirmed that very useful information is recorded in plant organs: root, canes, leaves and fruit. Results also indicated that Vitis vinifera L. has some highly effective strategies to tolerate heavy metal-induced stress, may also be useful as a vegetation protection barrier from considerable atmospheric pollution. At the same time, berries are safe for consumption to a large degree, which is a great advantage of this species.
Collapse
Affiliation(s)
- Florin Dumitru Bora
- Research Station for Viticulture and Enology Târgu Bujor, Department of Physico-Chemistry and Biochemistry, 805200 Târgu Bujor, Romania;
| | - Claudiu Ioan Bunea
- University of Agricultural Sciences and Veterinary Medicine, Department of Horticulture and Landscaping, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Romeo Chira
- University of Medicine and Pharmacy “Iuliu Hatieganu”, 3–5 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Andrea Bunea
- University of Agricultural Sciences and Veterinary Medicine, Department of Chemistry, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-264-596-384 (ext. 126)
| |
Collapse
|
13
|
Dutra MDCP, Rodrigues LL, de Oliveira D, Pereira GE, Lima MDS. Integrated analyses of phenolic compounds and minerals of Brazilian organic and conventional grape juices and wines: Validation of a method for determination of Cu, Fe and Mn. Food Chem 2018; 269:157-165. [DOI: 10.1016/j.foodchem.2018.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/01/2022]
|
14
|
Metal bioaccumulation in the soil–leaf–fruit system determined by neutron activation analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9972-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Pohl P, Dzimitrowicz A, Jamroz P, Greda K. Development and optimization of simplified method of fast sequential HR-CS-FAAS analysis of apple juices on the content of Ca, Fe, K, Mg, Mn and Na with the aid of response surface methodology. Talanta 2018; 189:182-189. [DOI: 10.1016/j.talanta.2018.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/10/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
|
16
|
Sahodaran NK, Ray JG. Heavy metal contamination in "chemicalized' green revolution banana fields in southern India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26874-26886. [PMID: 30003489 DOI: 10.1007/s11356-018-2729-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The present report is a general assessment of the level of nutrient and toxic heavy metals as an impact of "chemicalized" cultivation practices for decades in banana fields in the three south Indian states, Kerala, Karnataka, and Tamilnadu. The major objective was to critically analyze the status of metallic content in green revolution fields, where chemical fertilizers or plant protective chemicals remain the major source of heavy metal contaminants. Since soil series being a soil taxonomic category that includes slightly variant soils of similar origin and common parent materials, the 286 field samples of the broad south Indian region were further grouped into composite samples representing 47 different soil series for limiting the sample analysis. The quantitative assessment of ten metals done in these soils using the Atomic Absorption Spectrophotometer included Ca, Mg, Mn, Zn, Fe, Cu, Pb, Ni, Cr, and Co. The amount of Cu observed in many fields was higher than all the previous reports of the same in the "chemicalized" fields. Similarly, the amount of Co observed in 25 fields was above its threshold levels expected for normal soils. The amount of Pb observed in all the soils appeared quite normal. The amount of Ni observed in 14 soil series was higher than its threshold levels for normal soils, except in 4 soil series, where its amount exceeded the upper limit of contamination. Cr was detected in all the samples, but found higher than its threshold level in 31 soil series. Significant positive correlations were observed between the amounts of different metals in the study. PCA results indicated that variables were correlated to four principal components, and 74.36% of the total variance was justified.
Collapse
Affiliation(s)
- Nidheesh Kammadavil Sahodaran
- Laboratory of Plant Science and Ecology, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Joseph George Ray
- Laboratory of Plant Science and Ecology, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
17
|
Vystavna Y, Zaichenko L, Klimenko N, Rätsep R. Trace metals transfer during vine cultivation and winemaking processes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4520-4525. [PMID: 28332198 DOI: 10.1002/jsfa.8318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND The study was focused on Zn, Cu and Pb transfer in the system of soil-grape-must-juice-wine in a Chardonnay grape variety from Ukrainian vine growing regions. The analyses of soil, grape, must, pomace, juice and wine were done at the study plot in the south-west of Crimea. RESULTS Commercial white wines of Chardonnay from different vine growing regions in Ukraine were analysed for trace metals content. Results revealed that trace elements transfer was related to diverse Zn, Cu and Pb sources, trace metals bioavailability, their speciation and complexes during the wine making processes. The analysed commercial wines had lower Cu, Zn and Pb concentrations than wine from the Inkerman study plot. CONCLUSION Trace metals concentrations were comparable to those in European wines and lower than limits recommended by International Organization of Vine and Wine. The tentative relationship between wine and soil was found for Zn at the study plot. The method can be used to describe the relationship between the soil and wine in other study areas. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuliya Vystavna
- Biology Centre CAS, Institute of Hydrobiology, České Budějovice, Czech Republic
- O.M. Beketov National University of Urban Economy in Kharkiv, Department of Environmental Engineering and Management, Kharkiv, Ukraine
| | - Liubov Zaichenko
- O.M. Beketov National University of Urban Economy in Kharkiv, Department of Environmental Engineering and Management, Kharkiv, Ukraine
| | - Nina Klimenko
- Institute of Agroecology and Environmental Management of National Academy of Agricultural Sciences of Ukraine, Kiev, Ukraine
| | - Reelika Rätsep
- Polli Horticultural Research Centre, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Polli, Estonia
| |
Collapse
|
18
|
Towle KM, Garnick LC, Monnot AD. A human health risk assessment of lead (Pb) ingestion among adult wine consumers. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2017. [DOI: 10.1186/s40550-017-0052-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Vázquez Vázquez FA, Pérez Cid B, Río Segade S. Assessment of metal bioavailability in the vineyard soil-grapevine system using different extraction methods. Food Chem 2016; 208:199-208. [DOI: 10.1016/j.foodchem.2016.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 11/29/2022]
|