1
|
Yuan Y, Chen B, Song L, An X, Zhang Q, Lu H, Li CM, Guo C. Magnetic two-dimensional nanocomposites for multimodal antitumor therapy: a recent review. J Mater Chem B 2024; 12:1404-1428. [PMID: 38251275 DOI: 10.1039/d3tb02333h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Magnetic two-dimensional nanocomposites (M2D NCs) that synergistically combine magnetic nanomedicine and 2D nanomaterials have emerged in multimodal antitumor therapy, attracting great interest in materials science and biomedical engineering. This review provides a summary of the recent advances of M2D NCs and their multimodal antitumor applications. We first introduce the design and fabrication of M2D NCs, followed by discussing new types of M2D NCs that have been recently reported. Then, a detailed analysis and discussions about the different types of M2D NCs are presented based on the structural categories of 2D NMs, including 2D graphene, transition metal dichalcogenides (TMDs), transition metal carbides/nitrides/carbonitrides (MXenes), black phosphorus (BP), layered double hydroxides (LDHs), metal organic frameworks (MOFs), covalent organic frameworks (COFs) and other 2D nanomaterials. In particular, we focus on the synthesis strategies, magnetic or optical responsive performance, and the versatile antitumor applications, which include magnetic hyperthermia therapy (MHT), photothermal therapy (PTT), photodynamic therapy (PDT), drug delivery, immunotherapy and multimodal imaging. We conclude the review by proposing future developments with an emphasis on the mass production and biodegradation mechanism of the M2D NCs. This work is expected to provide a comprehensive overview to researchers and engineers who are interested in such a research field and promote the clinical translation of M2D NCs in practical applications.
Collapse
Affiliation(s)
- Ying Yuan
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Luping Song
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Xingxing An
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Qinrui Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Hao Lu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Chang Ming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu, P. R. China.
| |
Collapse
|
2
|
Konwar K, Kaushik SD, Babu PD, Chaturvedi A, Kumar D, Chakraborty R, Mukhopadhyay R, Sharma P, Lodha S, Sen D, Deb P. Integrative Modulation of Magnetic Resonance Transverse and Longitudinal Relaxivity in a Cell-Viable Bimagnetic Ensemble, γ-Fe 2O 3@ZnFe 2O 4. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1793-1803. [PMID: 38181379 DOI: 10.1021/acs.langmuir.3c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The potential application of magnetic nanosystems as magnetic resonance imaging (MRI) contrast agents has been thoroughly investigated. This work seeks to attain robust MRI-contrast efficiency by designing an interacting landscape of a bimagnetic ensemble of zinc ferrite nanorods and maghemite nanoparticles, γ-Fe2O3@ZnFe2O4. Because of competing spin clusters and structural anisotropy triggered by isotropic γ-Fe2O3 and anisotropic ZnFe2O4, γ-Fe2O3@ZnFe2O4 undergoes the evolution of cluster spin-glass state as evident from the critical slowing down law. Such interacting γ-Fe2O3@ZnFe2O4 with spin flipping of 1.2 × 10-8 s and energy barrier of 8.2 × 10-14 erg reflects enhanced MRI-contrast signal. Additionally, γ-Fe2O3@ZnFe2O4 is cell-viable to noncancerous HEK 293 cell-line and shows no pro-tumorigenic activity as observed in MDA-MB-231, an extremely aggressive triple-negative breast cancer cell line. As a result, γ-Fe2O3@ZnFe2O4 is a feasible option for an MRI-contrast agent having longitudinal relaxivity, r1, of 0.46 s-1mM-1 and transverse relaxivity, r2, of 15.94 s-1mM-1, together with r2/r1 of 34.65 at 1.41 T up to a modest metal concentration of 0.1 mM. Hence, this study addresses an interacting isotropic/anisotropic framework with faster water proton decay in MR-relaxivity resulting in phantom signal amplification.
Collapse
Affiliation(s)
- Korobi Konwar
- Department of Physics, Tezpur University (Central University), Tezpur-784028, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Peram Delli Babu
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Rituraj Chakraborty
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur784028, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur784028, India
| | - Pooja Sharma
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Saurabh Lodha
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur-784028, India
| |
Collapse
|
3
|
Gogoi R, Baruah M, Borgohain A, Saikia J, Baruah VJ, Rohman S, Singh M, Kar R, Dey SK, Mazumder B, Karak T. Intercalation vs Adsorption Strategies of Myo-Inositol Hexakisphosphate into Zn-Fe Layered Double Hydroxide: A Tiff between Anion Exchange and Coprecipitation. ACS OMEGA 2023; 8:43151-43162. [PMID: 38024765 PMCID: PMC10652260 DOI: 10.1021/acsomega.3c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Myo-inositol hexakisphosphates (IHPs) or phytates are the most abundant organic phosphates having the potential to serve as a phosphorus reserve in soil. Understanding the fate of IHP interaction with soil minerals tends to be crucial for its efficient storage and utilization as a slow-release organic phosphate fertilizer. We have systematically compared the effective intercalation strategy of a phytate onto Zn-Fe layered double hydroxide (LDH) acting as storage/carrier material through coprecipitation and anion exchange. Powder X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetric analysis, FTIR spectra, and molecular modeling demonstrated the formation of phytate-intercalated Zn-Fe LDH through coprecipitation with a maximum loading of 41.34% (w/w) in the pH range of ∼9-10 in a vertical alignment through monolayer formation. No intercalation product was obtained from the anion exchange method, which was concluded based on the absence of shifting in the XRD (003) peak. A change in the zeta potential values from positive to negative and subsequent increase in solution pH, with decreasing phytate concentration, are suggestive of adsorption of IHP onto the LDH surface. The batch adsorption data were best fitted with Langmuir isotherm equation and followed the pseudo-second-order kinetic model. The maximum adsorption capacity was found to be 45.87 mg g-1 at a temperature of 25 ± 0.5 °C and pH 5.63.
Collapse
Affiliation(s)
- Rimjim Gogoi
- Department
of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Madhusmita Baruah
- Department
of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Arup Borgohain
- Department
of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Jiban Saikia
- Department
of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Vishwa Jyoti Baruah
- Centre
for Biotechnology and Bioinformatics, Dibrugarh
University, Dibrugarh 786004, Assam, India
| | - Satter Rohman
- Department
of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Mohini Singh
- Department
of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Rahul Kar
- Department
of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sandeep Kumar Dey
- CSIR-North
East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Bhaskar Mazumder
- Department
of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Tanmoy Karak
- Department
of Soil Science, School of Agricultural Sciences, Nagaland University, Medziphema
Campus 797106, Nagaland, India
| |
Collapse
|
4
|
Chavda VP, Balar PC, Nalla LV, Bezbaruah R, Gogoi NR, Gajula SNR, Peng B, Meena AS, Conde J, Prasad R. Conjugated Nanoparticles for Solid Tumor Theranostics: Unraveling the Interplay of Known and Unknown Factors. ACS OMEGA 2023; 8:37654-37684. [PMID: 37867666 PMCID: PMC10586263 DOI: 10.1021/acsomega.3c05069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Cancer diagnoses have been increasing worldwide, and solid tumors are among the leading contributors to patient mortality, creating an enormous burden on the global healthcare system. Cancer is responsible for around 10.3 million deaths worldwide. Solid tumors are one of the most prevalent cancers observed in recent times. On the other hand, early diagnosis is a significant challenge that could save a person's life. Treatment with existing methods has pitfalls that limit the successful elimination of the disorder. Though nanoparticle-based imaging and therapeutics have shown a significant impact in healthcare, current methodologies for solid tumor treatment are insufficient. There are multiple complications associated with the diagnosis and management of solid tumors as well. Recently, surface-conjugated nanoparticles such as lipid nanoparticles, metallic nanoparticles, and quantum dots have shown positive results in solid tumor diagnostics and therapeutics in preclinical models. Other nanotheranostic material platforms such as plasmonic theranostics, magnetotheranostics, hybrid nanotheranostics, and graphene theranostics have also been explored. These nanoparticle theranostics ensure the appropriate targeting of tumors along with selective delivery of cargos (both imaging and therapeutic probes) without affecting the surrounding healthy tissues. Though they have multiple applications, nanoparticles still possess numerous limitations that need to be addressed in order to be fully utilized in the clinic. In this review, we outline the importance of materials and design strategies used to engineer nanoparticles in the treatment and diagnosis of solid tumors and how effectively each method overcomes the drawbacks of the current techniques. We also highlight the gaps in each material platform and how design considerations can address their limitations in future research directions.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department
of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Pankti C. Balar
- Pharmacy
Section, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Lakshmi Vineela Nalla
- Department
of Pharmacy, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Rajashri Bezbaruah
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Niva Rani Gogoi
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Siva Nageswara Rao Gajula
- Department
of Pharmaceutical Analysis, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Berney Peng
- Department
of Pathology and Laboratory Medicine, University
of California at Los Angeles, Los
Angeles, California 90095, United States
| | - Avtar S. Meena
- Department
of Biotechnology, All India Institute of
Medical Sciences (AIIMS), Ansari
Nagar, New Delhi 110029, India
| | - João Conde
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Rajendra Prasad
- School
of Biochemical Engineering, Indian Institute
of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
5
|
Shariati A, Ebrahimi T, Babadinia P, Shariati FS, Ahangari Cohan R. Synthesis and characterization of Gd 3+-loaded hyaluronic acid-polydopamine nanoparticles as a dual contrast agent for CT and MRI scans. Sci Rep 2023; 13:4520. [PMID: 36934115 PMCID: PMC10024681 DOI: 10.1038/s41598-023-31252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Magnetic resonance imaging and computed tomography (CT) suffer from low contrast sensitivity and potential toxicity of contrast agents. To overcome these limitations, we developed and tested a new class of dual contrast agents based on polydopamine nanoparticles (PDA-NPs) that are functionalized and targeted with hyaluronic acid (HA). These nanoparticles (NPs) are chelated with Gd3+ to provide suitable contrast. The targeted NPs were characterized through ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), infrared Fourier transform (FTIR), and dynamic light scattering (DLS). The cytotoxicity was investigated on HEK293 cells using an MTT assay. The contrast property of synthesized Gd3+/PDA/HA was compared with Barium sulfate and Dotarem, as commercial contrast agents (CAs) for CT and MRI, respectively. The results illustrated that synthesized PDA-NPs have a spherical morphology and an average diameter of 72 nm. A distinct absorption peak around 280 nm in the UV-vis spectrum reported the self-polymerization of PDA-NPs. The HA coating on PDA-NPs was revealed through a shift in the FTIR peak of C=O from 1618 cm-1 to 1635 cm-1. The Gd3+ adsorption on PDA/HA-NPs was confirmed using an adsorption isotherm assay. The developed CA showed low in vitro toxicity (up to 158.98 µM), and created a similar contrast in MRI and CT when compared to the commercial agents. The r1 value for PDA/HA/Gd3+ (6.5 (mg/ml)-1 s-1) was more than Dotarem (5.6 (mg/ml)-1 s-1) and the results of the hemolysis test showed that at concentrations of 2, 4, 6, and 10 mg/ml, the hemolysis rate of red blood cells is very low. Additionally, the results demonstrated that PDA/HA/Gd3+ could better target the CD44+-expressing cancer cells than PDA/Gd3+. Thus, it can be concluded that lower doses of developed CA are needed to achieve similar contrast of Dotarem, and the developed CA has no safety concerns in terms of hemolysis. The stability of PDA/HA/Gd3+ has also been evaluated by ICP-OES, zeta potential, and DLS during 3 days, and the results suggested that Gd-HA NPs were stable.
Collapse
Affiliation(s)
- Alireza Shariati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Parva Babadinia
- Farzanegan High School, National Organization for Development of Exceptional Talents, Tehran, Iran
| | | | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
6
|
Lee J, Seo HS, Park W, Park CG, Jeon Y, Park DH. Biofunctional Layered Double Hydroxide Nanohybrids for Cancer Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7977. [PMID: 36431465 PMCID: PMC9694224 DOI: 10.3390/ma15227977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Layered double hydroxides (LDHs) with two-dimensional nanostructure are inorganic materials that have attractive advantages such as biocompatibility, facile preparation, and high drug loading capacity for therapeutic bioapplications. Since the intercalation chemistry of DNA molecules into the LDH materials were reported, various LDH nanohybrids have been developed for biomedical drug delivery system. For these reasons, LDHs hybridized with numerous therapeutic agents have a significant role in cancer imaging and therapy with targeting functions. In this review, we summarized the recent advances in the preparation of LDH nanohybrids for cancer therapeutic strategies including gene therapy, chemotherapy, immunotherapy, and combination therapy.
Collapse
Affiliation(s)
- Joonghak Lee
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon 16419, Gyeonggi, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Gyeonggi, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Gyeonggi, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Gyeonggi, Republic of Korea
| | - Yukwon Jeon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Gangwondo, Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, College of Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| |
Collapse
|
7
|
Gil CJ, Li L, Hwang B, Cadena M, Theus AS, Finamore TA, Bauser-Heaton H, Mahmoudi M, Roeder RK, Serpooshan V. Tissue engineered drug delivery vehicles: Methods to monitor and regulate the release behavior. J Control Release 2022; 349:143-155. [PMID: 35508223 DOI: 10.1016/j.jconrel.2022.04.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022]
Abstract
Tissue engineering is a rapidly evolving, multidisciplinary field that aims at generating or regenerating 3D functional tissues for in vitro disease modeling and drug screening applications or for in vivo therapies. A variety of advanced biological and engineering methods are increasingly being used to further enhance and customize the functionality of tissue engineered scaffolds. To this end, tunable drug delivery and release mechanisms are incorporated into tissue engineering modalities to promote different therapeutic processes, thus, addressing challenges faced in the clinical applications. In this review, we elaborate the mechanisms and recent developments in different drug delivery vehicles, including the quantum dots, nano/micro particles, and molecular agents. Different loading strategies to incorporate the therapeutic reagents into the scaffolding structures are explored. Further, we discuss the main mechanisms to tune and monitor/quantify the release kinetics of embedded drugs from engineered scaffolds. We also survey the current trend of drug delivery using stimuli driven biopolymer scaffolds to enable precise spatiotemporal control of the release behavior. Recent advancements, challenges facing current scaffold-based drug delivery approaches, and areas of future research are discussed.
Collapse
Affiliation(s)
- Carmen J Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Lan Li
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Melissa Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Andrea S Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Tyler A Finamore
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Sibley Heart Center at Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI 48864, USA
| | - Ryan K Roeder
- Bioengineering Graduate Program, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
8
|
Seliverstov ES, Golovin SN, Lebedeva OE. Layered Double Hydroxides Containing Rare Earth Cations: Synthesis and Applications. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.867615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this mini-review, we describe the currently available literature concerning synthesis and applications of layered double hydroxides (LDHs) containing rare earth cations (RE-LDHs), focusing on the catalytic activity of those compounds. The lack of studies of some rare earth elements (REE) and the insufficient knowledge of their catalytic activity in the structure of LDHs indicate the need for further research.
Collapse
|
9
|
Zhang Z, Wells CJR, Liang R, Davies GL, Williams GR. Gadolinium Doped Layered Double Hydroxides for Simultaneous Drug Delivery and Magnetic Resonance Imaging. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIn this study, gadolinium (Gd) doped MgAl layered double hydroxides (LDHs) were synthesized via a ‘bottom-up’ method and fully characterized by X-ray diffraction, infrared spectroscopy and relaxivity measurements. Two cytotoxic agents were then intercalated via ion-exchange. X-ray diffraction patterns exhibit expanded interlayer spacings as a result of successful drug intercalation. Infrared spectra also showed characteristic peaks of the incorporated methotrexate (MTX) or 5-fluorouracil (5-FU). The LDHs were found to be highly stable under physiological conditions, while in acidic conditions a small proportion of Gd was freed into the immersion medium. Dissolution tests revealed that both 5FU and MTX were rapidly released from the LDH carrier. The longitudinal relaxivity of Gd-LDHs remains largely stable during drug release over 24 h, and was higher in acidic environments. Overall, the drug-loaded Gd-LDH systems prepared in this study could serve as pH-sensitive theranostic platforms for MRI-guided anti-cancer therapy.
Collapse
|
10
|
Sandougah K, AlJohar R, Aladhadhi D, AlHazmi YT, Kariri MN, Bin Abdulrahman KA. Awareness of Gadolinium Toxicity Among Non-radiologists in Saudi Arabia. Cureus 2022; 14:e21104. [PMID: 35165563 PMCID: PMC8829821 DOI: 10.7759/cureus.21104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 11/05/2022] Open
|
11
|
Ce-Containing MgAl-Layered Double Hydroxide-Graphene Oxide Hybrid Materials as Multifunctional Catalysts for Organic Transformations. MATERIALS 2021; 14:ma14237457. [PMID: 34885609 PMCID: PMC8659285 DOI: 10.3390/ma14237457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/04/2023]
Abstract
The combination of layered double hydroxides (LDH) with graphene oxide (GO) enables the formation of nanohybrids with improved properties. This work focuses on the structural and catalytic properties of Ce-containing MgAl LDH-GO composites bearing different concentrations of GO in the range of 5-25 wt.%. The synthesis of the composites was performed by co-precipitating the LDH phase in the presence of GO, while their characterization was performed using XRF, XRD, DRIFT, Raman, SEM, nitrogen adsorption-desorption, and acidity-basicity measurements. The LDH-GO composites, showing redox, basic, and acid catalytic functions, were tested in two different types of organic transformations: (i) Knoevenagel condensation and (ii) one-pot cascade oxidation-Knoevenagel condensation. (i) The cinnamic acid was synthesized by the Knoevenagel condensation of benzaldehyde with diethylmalonate. The composites showed catalytic performances in strong contrast to neat LDH or GO, suggesting a synergistic interaction between the two components. During Knoevenagel condensation, the catalytic activity increased with the GO content in the hybrids up to 15 wt.% and decreased afterwards. (ii) 2-Benzoyl-3-phenylacrylonitrile was synthesized by the aerobic oxidation of benzyl alcohol followed by the Knoevenagel condensation with benzoyl acetonitrile using three different non-polar solvents, i.e., toluene, benzene, and mesitylene. The conversion of benzyl alcohol was higher for the hybrid materials compared to the individual components but decreased with the increase of the graphene oxide concentration.
Collapse
|
12
|
Strimaite M, Harman CLG, Duan H, Wang Y, Davies GL, Williams GR. Layered terbium hydroxides for simultaneous drug delivery and imaging. Dalton Trans 2021; 50:10275-10290. [PMID: 34254077 DOI: 10.1039/d1dt01251g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Layered rare-earth hydroxides have begun to gather increasing attention as potential theranostic platforms owing to their extensive intercalation chemistry combined with magnetic and fluorescent properties. In this work, the potential of layered terbium hydroxide (LTbH) as a platform for simultaneous drug delivery and fluorescence imaging was evaluated. LTbH-Cl ([Tb2(OH)5]Cl·yH2O) was loaded with three nonsteroidal anti-inflammatory drugs (diclofenac, ibuprofen, and naproxen) via ion-exchange. Drug release studies in phosphate buffered saline (pH = 7.4) revealed all three formulations release their drug cargo rapidly over the course of approximately 5 hours. In addition, solid state fluorescence studies indicated that fluorescence intensity is strongly dependent on the identity of the guest anion. It was postulated that this feature may be used to track the extent of drug release from the formulation, which was subsequently successfully demonstrated for the ibuprofen loaded LTbH. Overall, LTbH exhibits good biocompatibility, high drug loading, and a strong, guest-dependent fluorescence signal, all of which are desirable qualities for theranostic applications.
Collapse
Affiliation(s)
- Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Clarissa L G Harman
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Huan Duan
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| | - Yuwei Wang
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029, PR China
| | - Gemma-Louise Davies
- Department of Chemistry, University College London, 20 Gordon St, Bloomsbury, London, WC1H 0AJ, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
13
|
Nanomaterials for bioprinting: functionalization of tissue-specific bioinks. Essays Biochem 2021; 65:429-439. [PMID: 34223619 DOI: 10.1042/ebc20200095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) bioprinting is rapidly evolving, offering great potential for manufacturing functional tissue analogs for use in diverse biomedical applications, including regenerative medicine, drug delivery, and disease modeling. Biomaterials used as bioinks in printing processes must meet strict physiochemical and biomechanical requirements to ensure adequate printing fidelity, while closely mimicking the characteristics of the native tissue. To achieve this goal, nanomaterials are increasingly being investigated as a robust tool to functionalize bioink materials. In this review, we discuss the growing role of different nano-biomaterials in engineering functional bioinks for a variety of tissue engineering applications. The development and commercialization of these nanomaterial solutions for 3D bioprinting would be a significant step towards clinical translation of biofabrication.
Collapse
|
14
|
Wang X, Guo W, Li L, Yu F, Li J, Liu L, Fang B, Xia L. Photothermally triggered biomimetic drug delivery of Teriparatide via reduced graphene oxide loaded chitosan hydrogel for osteoporotic bone regeneration. CHEMICAL ENGINEERING JOURNAL 2021; 413:127413. [DOI: 10.1016/j.cej.2020.127413] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Alimohammadi E, Maleki R, Akbarialiabad H, Dahri M. Novel pH-responsive nanohybrid for simultaneous delivery of doxorubicin and paclitaxel: an in-silico insight. BMC Chem 2021; 15:11. [PMID: 33573669 PMCID: PMC7879683 DOI: 10.1186/s13065-021-00735-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The distribution of drugs could not be controlled in the conventional delivery systems. This has led to the developing of a specific nanoparticle-based delivery system, called smart drug delivery systems. In cancer therapy, innovative biocompatible nanocarriers have received much attention for various ranges of anti-cancer drugs. In this work, the effect of an interesting and novel copolymer named "dimethyl acrylamide-trimethyl chitosan" was investigated on delivery of paclitaxel and doxorubicin applying carboxylated fullerene nanohybrid. The current study was run via molecular dynamics simulation and quantum calculations based on the acidic pH differences between cancerous microenvironment and normal tissues. Furthermore, hydrogen bonds, radius of gyration, and nanoparticle interaction energies were studied here. Stimulatingly, a simultaneous pH and temperature-responsive system were proposed for paclitaxel and doxorubicin for a co-polymer. A pH-responsive and thermal responsive copolymer were utilized based on trimethyl chitosan and dimethyl acrylamide, respectively. In such a dualistic approach, co-polymer makes an excellent system to possess two simultaneous properties in one bio-polymer. RESULTS The simulation results proposed dramatic and indisputable effects of the copolymer in the release of drugs in cancerous tissues, as well as increased biocompatibility and drug uptake in healthy tissues. Repeated simulations of a similar article performed for the validation test. The results are very close to those of the reference paper. CONCLUSIONS Overall, conjugated modified fullerene and dimethyl acrylamide-trimethyl chitosan (DMAA-TMC) as nanohybrid can be an appropriate proposition for drug loading, drug delivery, and drug release on dual responsive smart drug delivery system.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
| | - Hossein Akbarialiabad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Ameena Shirin VK, Sankar R, Johnson AP, Gangadharappa HV, Pramod K. Advanced drug delivery applications of layered double hydroxide. J Control Release 2020; 330:398-426. [PMID: 33383094 DOI: 10.1016/j.jconrel.2020.12.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays or hydrotalcite-like compounds, are a class of nanomaterials that attained great attention as a carrier for drug delivery applications. The lamellar structure of this compound exhibits a high surface-to-volume ratio which enables the intercalation of therapeutic agents and releases them at the target site, thereby reducing the adverse effect. Moreover, the intercalated drug can be released in a sustained manner, and hence the frequency of drug administration can be decreased. The co-precipitation, ion exchange, manual grinding, and sol-gel methods are the most employed for their synthesis. The unique properties like the ease of synthesis, low cost, high biocompatibility, and low toxicity render them suitable for biomedical applications. This review presents the advances in the structure, properties, method of preparation, types, functionalization, and drug delivery applications of LDH. Also, this review provides various new conceptual insights that can form the basis for new research questions related to the drug delivery applications of LDH.
Collapse
Affiliation(s)
- V K Ameena Shirin
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Renu Sankar
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India.
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
17
|
Liu T, Li Y, Chen X, Zhao X, Wang J, Zhang D. Fabrication of pH-sensitive graphene oxide-Benazepril carrier as biosafety controlled release systems. J Appl Biomater Funct Mater 2020; 18:2280800020963471. [PMID: 33270494 DOI: 10.1177/2280800020963471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A novel graphene oxide (GO)-based carrier was fabricated for the controlled release of Benazepril (BENA). Freeze dried samples of GO-BENA carrier were prepared for controlled drug release at different pHs (pH = 2, 7, and 10) and release kinetics indicate BENA desorption from GO is by Fickian diffusion. The BENA yield from the carrier amounted to ~55% of the adsorbed material in a strongly acidic medium after 50 h. Binding fractions of BENA to 10 mg/L GO was determined for different solution concentrations of the drug. In vitro assays of cell proliferation (WST-1 kit), cell structural integrity (LDH kit) and flow cytometric indicators of necrosis in three different cell lines (CACO-2, SGC-7901, and primary mouse hepatic fibroblast) all demonstrated that the GO carrier had a good biocompatibility. The pH-dependent release sensitivity of the GO-based carrier suggests that it is a potential candidate for use in the controlled release of drugs in the acidic environment of the stomach.
Collapse
Affiliation(s)
- Tianxiong Liu
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, China
| | - Yujiao Li
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, China
| | - Xianzhe Chen
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, China
| | - Xiaoming Zhao
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, China
| | - Jianfang Wang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, China
| | - Dongyi Zhang
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, China
| |
Collapse
|
18
|
Shirazi AN, Park SE, Rad S, Baloyan L, Mandal D, Sajid MI, Hall R, Lohan S, Zoghebi K, Parang K, Tiwari RK. Cyclic Peptide-Gadolinium Nanoparticles for Enhanced Intracellular Delivery. Pharmaceutics 2020; 12:pharmaceutics12090792. [PMID: 32825689 PMCID: PMC7557599 DOI: 10.3390/pharmaceutics12090792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] Open
Abstract
A cyclic peptide containing one cysteine and five alternating tryptophan and arginine amino acids [(WR)5C] was synthesized using Fmoc/tBu solid-phase methodology. The ability of the synthesized cyclic peptide to produce gadolinium nanoparticles through an in situ one-pot mixing of an aqueous solution of GdCl3 with [(WR)5C] peptide solution was evaluated. Transmission electron microscopy showed the formed peptide-Gd nanoparticles in star-shape morphology with a size of ~250 nm. Flow cytometry investigation showed that the cellular uptake of a cell-impermeable fluorescence-labeled phosphopeptide (F′-GpYEEI, where F′ = fluorescein) was approximately six times higher in the presence of [(WR)5C]-Gd nanoparticles than those of F′-GpYEEI alone in human leukemia adenocarcinoma (CCRF-CEM) cells after 2 h incubation. The antiproliferative activities of cisplatin and carboplatin (5 µM) were increased in the presence of [(WR)5C]-GdNPs (50 μM) by 41% and 18%, respectively, after 72-h incubation in CCRF-CEM cells. The intracellular release of epirubicin, an anticancer drug, from the complex showed that 15% and 60% of the drug was released intracellularly within 12 and 48 h, respectively. This report provides insight about using a non-toxic MRI agent, gadolinium nanoparticles, for the delivery of various types of molecular cargos.
Collapse
Affiliation(s)
- Amir Nasrolahi Shirazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA; (S.R.); (L.B.)
- Correspondence: (A.N.S.); (R.K.T.); Tel.: +1-714-449-7497 (A.N.S.); +1-714-516-5483 (R.K.T.); Fax: +1-714-872-5706 (A.N.S); +1-714-516-5481 (R.K.T.)
| | - Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.E.P.); (M.I.S.); (R.H.); (S.L.); (K.Z.); (K.P.)
| | - Shirin Rad
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA; (S.R.); (L.B.)
| | - Luiza Baloyan
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA; (S.R.); (L.B.)
| | - Dindyal Mandal
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India;
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.E.P.); (M.I.S.); (R.H.); (S.L.); (K.Z.); (K.P.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Ryley Hall
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.E.P.); (M.I.S.); (R.H.); (S.L.); (K.Z.); (K.P.)
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.E.P.); (M.I.S.); (R.H.); (S.L.); (K.Z.); (K.P.)
| | - Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.E.P.); (M.I.S.); (R.H.); (S.L.); (K.Z.); (K.P.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.E.P.); (M.I.S.); (R.H.); (S.L.); (K.Z.); (K.P.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (S.E.P.); (M.I.S.); (R.H.); (S.L.); (K.Z.); (K.P.)
- Correspondence: (A.N.S.); (R.K.T.); Tel.: +1-714-449-7497 (A.N.S.); +1-714-516-5483 (R.K.T.); Fax: +1-714-872-5706 (A.N.S); +1-714-516-5481 (R.K.T.)
| |
Collapse
|
19
|
Li X, Wang X, Ito A. An MRI-visible immunoadjuvant based on hollow Gd 2O 3 nanospheres for cancer immunotherapy. Chem Commun (Camb) 2020; 56:8186-8189. [PMID: 32618297 DOI: 10.1039/d0cc03568h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hollow Gd2O3 nanospheres significantly promote the cellular uptake of a tumor antigen by antigen presenting cells, exhibit pH-dependent alteration of the MR signal intensity and markedly enhance the antitumor immunity. Hollow Gd2O3 nanospheres are promising as magnetic resonance imaging (MRI)-visible cancer immunoadjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Xia Li
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
20
|
Wang T, Zhang D, Sun D, Gu J. Current status of in vivo bioanalysis of nano drug delivery systems. J Pharm Anal 2020; 10:221-232. [PMID: 32612868 PMCID: PMC7322761 DOI: 10.1016/j.jpha.2020.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The development of nano drug delivery systems (NDDSs) provides new approaches to fighting against diseases. The NDDSs are specially designed to serve as carriers for the delivery of active pharmaceutical ingredients (APIs) to their target sites, which would certainly extend the benefit of their unique physicochemical characteristics, such as prolonged circulation time, improved targeting and avoiding of drug-resistance. Despite the remarkable progress achieved over the last three decades, the understanding of the relationships between the in vivo pharmacokinetics of NDDSs and their safety profiles is insufficient. Analysis of NDDSs is far more complicated than the monitoring of small molecular drugs in terms of structure, composition and aggregation state, whereby almost all of the conventional techniques are inadequate for accurate profiling their pharmacokinetic behavior in vivo. Herein, the advanced bioanalysis for tracing the in vivo fate of NDDSs is summarized, including liquid chromatography tandem-mass spectrometry (LC-MS/MS), Förster resonance energy transfer (FRET), aggregation-caused quenching (ACQ) fluorophore, aggregation-induced emission (AIE) fluorophores, enzyme-linked immunosorbent assay (ELISA), magnetic resonance imaging (MRI), radiolabeling, fluorescence spectroscopy, laser ablation inductively coupled plasma MS (LA-ICP-MS), and size-exclusion chromatography (SEC). Based on these technologies, a comprehensive survey of monitoring the dynamic changes of NDDSs in structure, composition and existing form in system (i.e. carrier polymers, released and encapsulated drug) with recent progress is provided. We hope that this review will be helpful in appropriate application methodology for investigating the pharmacokinetics and evaluating the efficacy and safety profiles of NDDSs.
Collapse
Affiliation(s)
- Tingting Wang
- Clinical Laboratory, The First Hospital, Jilin University, Changchun, 130061, PR China
- Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, PR China
| | - Di Zhang
- Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, PR China
| | - Dong Sun
- Department of Biopharmacy, College of Life Science, Jilin University, Changchun, 130012, PR China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Jingkai Gu
- Research Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, 130061, PR China
- Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, PR China
| |
Collapse
|
21
|
Yapryntsev AD, Baranchikov AE, Ivanov VK. Layered rare-earth hydroxides: a new family of anion-exchangeable layered inorganic materials. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Han XM, Zheng KW, Wang RL, Yue SF, Chen J, Zhao ZW, Song F, Su Y, Ma Q. Functionalization and optimization-strategy of graphene oxide-based nanomaterials for gene and drug delivery. Am J Transl Res 2020; 12:1515-1534. [PMID: 32509159 PMCID: PMC7270027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Graphene-family nanomaterials (GFNs) have been widely used in cancer therapy, tissue engineering, antibacterial and biological imaging due to their optical, thermal, and drug absorption properties. When used as drug and gene nanocarrier, the major limitations are aggregation, biocompatibility, and inappropriate release of drugs or genes. To overcome these problems, researchers have developed a variety of functionalization processes. In this review, we grouped the functionalization according to the decoration molecules, putting particular emphasis on the gene delivery. Organic and inorganic materials resulted as the major sets to introduce functional sections onto graphene oxide (GO). We also classified the target molecules used in the GO delivery system, as well as introduced other strategies to increase the delivery efficacy such as controlled release and magnetic targeting.
Collapse
Affiliation(s)
- Xiao-Min Han
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Ke-Wen Zheng
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, The First Clinical College of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, P. R. China
| | - Rui-Long Wang
- No. 5 Railway Middle SchoolBaotou, Inner Mongolia Autonomous Region, P. R. China
| | - Shu-Fen Yue
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Jing Chen
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Zi-Wei Zhao
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Fang Song
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Yan Su
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
- Blood Conservation Institute, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| | - Qiang Ma
- School of Basic and Forensic Medicine, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
- Blood Conservation Institute, Baotou Medical CollegeBaotou 014040, Inner Mongolia Autonomous Region, P. R. China
| |
Collapse
|
23
|
Cheng L, Wang X, Gong F, Liu T, Liu Z. 2D Nanomaterials for Cancer Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902333. [PMID: 31353752 DOI: 10.1002/adma.201902333] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/17/2019] [Indexed: 05/19/2023]
Abstract
2D nanomaterials with unique nanosheet structures, large surface areas, and extraordinary physicochemical properties have attracted tremendous interest. In the area of nanomedicine, research on graphene and its derivatives for diverse biomedical applications began as early as 2008. Since then, many other types of 2D nanomaterials, including transition metal dichalcogenides, transition metal carbides, nitrides and carbonitrides, black phosphorus nanosheets, layered double hydroxides, and metal-organic framework nanosheets, have been explored in the area of nanomedicine over the past decade. In particular, a large surface area makes 2D nanomaterials highly efficient drug delivery nanoplatforms. The unique optical and/or X-ray attenuation properties of 2D nanomaterials can be harnessed for phototherapy or radiotherapy of cancer. Furthermore, by integrating 2D nanomaterials with other functional nanoparticles or utilizing their inherent physical properties, 2D nanomaterials may also be engineered as nanoprobes for multimodal imaging of tumors. 2D nanomaterials have shown substantial potential for cancer theranostics. Herein, the latest progress in the development of 2D nanomaterials for cancer theranostic applications is summarized. Current challenges and future perspectives of 2D nanomaterials applied in nanomedicine are also discussed.
Collapse
Affiliation(s)
- Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Xianwen Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Fei Gong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Teng Liu
- Jiangsu Key Laboratory for Environmental Functional Materials, School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
24
|
Ebadi M, Saifullah B, Buskaran K, Hussein MZ, Fakurazi S. Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine 2019; 14:6661-6678. [PMID: 31695362 PMCID: PMC6707435 DOI: 10.2147/ijn.s214923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Cancer treatments are being continually developed. Increasingly more effective and better-targeted treatments are available. As treatment has developed, the outcomes have improved. PURPOSE In this work, polyethylene glycol (PEG), layered double hydroxide (LDH) and 5-fluorouracil (5-FU) were used as a stabilizing agent, a carrier and an anticancer active agent, respectively. CHARACTERIZATION AND METHODS Magnetite nanoparticles (Fe3O4) coated with polyethylene glycol (PEG) and co-coated with 5-fluorouracil/Mg/Al- or Zn/Al-layered double hydroxide were synthesized by co-precipitation technique. Structural, magnetic properties, particle shape, particle size and drug loading percentage of the magnetic nanoparticles were investigated by XRD, TGA, FTIR, DLS, FESEM, TEM, VSM, UV-vis spectroscopy and HPLC techniques. RESULTS XRD, TGA and FTIR studies confirmed the formation of Fe3O4 phase and the presence of iron oxide nanoparticles, polyethylene glycol, LDH and the drug for all the synthesized samples. The size of the nanoparticles co-coated with Mg/Al-LDH is about 27 nm compared to 40 nm when they were co-coated with Zn/Al-LDH, with both showings near uniform spherical shape. The iron oxide nanoparticles retain their superparamagnetic property when they were coated with polyethylene glycol, polyethylene glycol co-coated with Mg/Al-LDH and polyethylene glycol co-coated with Zn/Al-LDH with magnetic saturation value of 56, 40 and 27 emu/g, respectively. The cytotoxicity study reveals that the anticancer nanodelivery system has better anticancer activity than the free drug, 5-FU against liver cancer HepG2 cells and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells. CONCLUSION These are unique core-shell nanoparticles synthesized with the presence of multiple functionalities are hoped can be used as a multifunctional nanocarrier with the capability of targeted delivery using an external magnetic field and can also be exploited as hypothermia for cancer cells in addition to the chemotherapy property.
Collapse
Affiliation(s)
- Mona Ebadi
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Bullo Saifullah
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Kalaivani Buskaran
- Laboratory for Vaccine and Immunotherapeutic, Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| |
Collapse
|
25
|
Shahbazi-Gahrouei D, Moradi Khaniabadi P, Moradi Khaniabadi B, Shahbazi-Gahrouei S. Medical imaging modalities using nanoprobes for cancer diagnosis: A literature review on recent findings. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:38. [PMID: 31143239 PMCID: PMC6521609 DOI: 10.4103/jrms.jrms_437_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Medical imaging modalities are used for different types of cancer detection and diagnosis. Recently, there have been a lot of studies on developing novel nanoparticles as new medical imaging contrast agents for the early detection of cancer. The aim of this review article is to categorize the medical imaging modalities accompanying with using nanoparticles to improve potential imaging for cancer detection and hence valuable therapy in the future. Nowadays, nanoparticles are becoming potentially transformative tools for cancer detection for a wide range of imaging modalities, including computed tomography (CT), magnetic resonance imaging, single photon emission CT, positron emission tomography, ultrasound, and optical imaging. The study results seen in the recent literature provided and discussed the diagnostic performance of imaging modalities for cancer detections and their future directions. With knowledge of the correlation between the application of nanoparticles and medical imaging modalities and with the development of targeted contrast agents or nanoprobes, they may provide better cancer diagnosis in the future.
Collapse
Affiliation(s)
- Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Bita Moradi Khaniabadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
26
|
Dual Drugs Anticancer Nanoformulation using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid. Pharm Res 2019; 36:91. [PMID: 31020429 DOI: 10.1007/s11095-019-2621-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The chemotherapy of cancer has been complicated by poor bioavailability, adverse side effects, high dose requirement, drug resistance and low therapeutic indices. Cancer cells have different ways to inhibit the chemotherapeutic drugs, use of dual/multiple anticancer agents may be achieve better therapeutic effects in particular for drug resistant tumors. Designing a biocompatible delivery system, dual or multiple drugs could addressing these chemotherapy drawbacks and it is the focus of many current biomedical research. METHODS In the present study, graphene oxide-polyethylene glycol (GOPEG) nanocarrier is designed and loaded with two anticancer drugs; Protocatechuic acid (PCA) and Chlorogenic acid (CA). The designed anticancer nanocomposite was further coated with folic acid to target the cancer cells, as their surface membranes are overexpressed with folate receptors. RESULTS The particle size distribution of the designed nanocomposite was found to be narrow, 9-40 nm. The release profiles of the loaded drugs; PCA and CA was conducted in human body simulated PBS solutions of pH 7.4 (blood pH) and pH 4.8 (intracellular lysosomal pH). Anticancer properties were evaluated against cancerous cells i.e. liver cancer, HEPG2 and human colon cancer, HT-29 cells. The cytocompatbility was assessed on normal 3T3 fibroblasts cells. CONCLUSION The size of the final designed anticancer nanocomposite formulation, GOPEG-PCACA-FA was found to be distributed at 9-40 nm with a median of 8 nm. The in vitro release of the drugs PCA and CA was found to be of sustained manner which took more than 100 h for the release. Furthermore, the designed formulation was biocompatible with normal 3T3 cells and showed strong anticancer activity against liver and colon cancer cells.
Collapse
|
27
|
Zhu DY, Lu B, Yin JH, Ke QF, Xu H, Zhang CQ, Guo YP, Gao YS. Gadolinium-doped bioglass scaffolds promote osteogenic differentiation of hBMSC via the Akt/GSK3β pathway and facilitate bone repair in vivo. Int J Nanomedicine 2019; 14:1085-1100. [PMID: 30804672 PMCID: PMC6375113 DOI: 10.2147/ijn.s193576] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Biomaterial-induced osteogenesis is mainly related to hierarchically porous structures and bioactive components. Rare earth elements are well known to promote osteogenesis and stimulate bone repair; however, the underlying biological effects of gadolinium (Gd) element on bone regeneration are not yet known. METHODS In this study, we successfully fabricated gadolinium-doped bioglass (Gd-BG) scaffolds by combining hollow mesoporous Gd-BG microspheres with chitosan and evaluated in vitro effects and underlying mechanisms with Cell Counting Kit-8, scanning electron microscopy, alkaline phosphatase, Alizarin red staining, and polymerase chain reaction. Cranial defect model of rats was constructed to evaluate their in vivo effects. RESULTS The results indicated that Gd-BG scaffolds could promote the proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Mechanistically, the Akt/GSK3β signaling pathway was activated by the Gd-BG scaffolds. The enhancing effect of Gd-BG scaffolds on the osteogenic differentiation of hBMSCs was inhibited by the addition of LY294002, an inhibitor of Akt. Moreover, the in vivo cranial defect model of rats indicated that the Gd-BG scaffolds could effectively promote bone regeneration. CONCLUSION Both in vitro and in vivo results suggested that Gd-BG scaffolds have promising applications in bone tissue engineering.
Collapse
Affiliation(s)
- Dao-Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China,
| | - Bin Lu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China,
| | - Jun-Hui Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China,
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China,
| | - He Xu
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China,
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China,
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China,
| | - You-Shui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China,
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
28
|
Hassani A, Hussain SA, Abdullah N, Kamarudin S, Rosli R. Antioxidant Potential and Angiotensin-Converting Enzyme (ACE) Inhibitory Activity of Orotic Acid-Loaded Gum Arabic Nanoparticles. AAPS PharmSciTech 2019; 20:53. [PMID: 30617521 DOI: 10.1208/s12249-018-1238-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Orotic acid (OA) nanoparticles were prepared using the freeze-drying method. The antihypertensive activity and antioxidant capacity of OA and orotic acid-loaded gum arabic nanoparticles (OAGANPs) were examined using the angiotensin-converting enzyme (ACE), 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and β-carotene assays, as well as the quantification of total phenolic content (TPC). The DPPH and NO scavenging activities of OAGANPs were significantly higher than those of the OA solution. The β-carotene bleaching assay of OAGANPs showed a dose-dependent trend, while 500 μg/ml was significantly more effective than the other concentrations, which exerted 63.4% of the antioxidant activity. The in vitro antihypertensive assay revealed that the OAGANPs exhibited the most potent ACE inhibition activity, when compared to the OA solution. Hence, results revealed the potential of preparing the OA as a nanoparticle formulation in enhancing the antioxidant and antihypertensive properties compared to the OA solution.
Collapse
|
29
|
Jiang L, Su C, Ye S, Wu J, Zhu Z, Wen Y, Zhang R, Shao W. Synergistic antibacterial effect of tetracycline hydrochloride loaded functionalized graphene oxide nanostructures. NANOTECHNOLOGY 2018; 29:505102. [PMID: 30251959 DOI: 10.1088/1361-6528/aae424] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With the high demand for developing novel composites with integrated performance, graphene-based nanostructures have been drawing great attention in environmental and biomedical applications because of their extraordinary physicochemical properties and biocompatibility. Although graphene oxide (GO) nanosheets exhibit some antibacterial activities, novel GO based nanostructures with enhanced antibacterial activities are highly desired. To realize this aim, polyethyleneimine (PEI) modified GO as a tetracycline hydrochloride (TCH) carrier and release platform was constructed (pGO-TCH). The nanostructures were fully characterized by TEM, AFM, FTIR and Raman spectra, which demonstrated that TCH were uniformly and compactly deposited on PEI modified GO nanosheets. The antibacterial performances of the prepared nanostructures were investigated by disk diffusion method and bacterial growth kinetics method towards Gram-positive S. aureus and Gram-negative E. coli. Results show that pGO-TCH nanostructures exhibit good antibacterial behavior. The mechanism of antibacterial activity was studied. Moreover, the nanostructures showed good cytocompatibility. This study not only highlights a promising pGO-TCH nanostructure as a candidate of graphene-based antibacterial agent, but also provides us antibacterial mechanism between bacteria and graphene-based nanomaterials.
Collapse
Affiliation(s)
- Lei Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF. A bimodal theranostic nanodelivery system based on [graphene oxide-chlorogenic acid-gadolinium/gold] nanoparticles. PLoS One 2018; 13:e0200760. [PMID: 30044841 PMCID: PMC6059483 DOI: 10.1371/journal.pone.0200760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 01/23/2023] Open
Abstract
We have synthesized a bimodal theranostic nanodelivery system (BIT) that is based on graphene oxide (GO) and composed of a natural chemotherapeutic agent, chlorogenic acid (CA) used as the anticancer agent, while gadolinium (Gd) and gold nanoparticles (AuNPs) were used as contrast agents for magnetic resonance imaging (MRI) modality. The CA and Gd guest agents were simultaneously loaded on the GO nanolayers using chemical interactions, such as hydrogen bonding and π-π non-covalent interactions to form GOGCA nanocomposite. Subsequently, the AuNPs were doped on the surface of the GOGCA by means of electrostatic interactions, which resulted in the BIT. The physico-chemical studies of the BIT affirmed its successful development. The X-ray diffractograms (XRD) collected of the various stages of BIT synthesis showed the successive development of the hybrid system, while 90% of the chlorogenic acid was released in phosphate buffer solution (PBS) at pH 4.8. This was further reaffirmed by the in vitro evaluations, which showed stunted HepG2 cancer cells growth against the above 90% cell growth in the control cells. A reverse case was recorded for the 3T3 normal cells. Further, the acquired T1-weighted image of the BIT doped samples obtained from the MRI indicated contrast enhancement in comparison with the plain Gd and water references. The abovementioned results portray our BIT as a promising future chemotherapeutic for anticancer treatment with diagnostic modalities.
Collapse
Affiliation(s)
- Muhammad Sani Usman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fathinul Fikri Ahmad Saad
- Centre for Diagnostic and Nuclear Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Yi L, Zhang Y, Shi X, Du X, Wang X, Yu A, Zhai G. Recent progress of functionalised graphene oxide in cancer therapy. J Drug Target 2018; 27:125-144. [DOI: 10.1080/1061186x.2018.1474359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lingyun Yi
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Yanan Zhang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Xiaoqun Shi
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Xiyou Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Xinyi Wang
- College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Aihua Yu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, China
| |
Collapse
|
32
|
Chen L, Duan X, Xiang Z. [Recent advances in application of graphene oxide for bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:625-629. [PMID: 29806354 PMCID: PMC8430019 DOI: 10.7507/1002-1892.201712063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 02/05/2023]
Abstract
Objective To review the recent advances in the application of graphene oxide (GO) for bone tissue engineering. Methods The latest literature at home and abroad on the GO used in the bone regeneration and repair was reviewed, including general properties of GO, degradation performance, biocompatibility, and application in bone tissue engineering. Results GO has an abundance of oxygen-containing functionalities, high surface area, and good biocompatibility. In addition, it can promote stem cell adhesion, proliferation, and differentiation. Moreover, GO has many advantages in the construction of new composite scaffolds and improvement of the performance of traditional scaffolds. Conclusion GO has been a hot topic in the field of bone tissue engineering due to its excellent physical and chemical properties. And many problems still need to be solved.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
33
|
Synthesis and characterization of protocatechuic acid-loaded gadolinium-layered double hydroxide and gold nanocomposite for theranostic application. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0752-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Usman MS, Hussein MZ, Kura AU, Fakurazi S, Masarudin MJ, Ahmad Saad FF. Graphene Oxide as a Nanocarrier for a Theranostics Delivery System of Protocatechuic Acid and Gadolinium/Gold Nanoparticles. Molecules 2018; 23:E500. [PMID: 29495251 PMCID: PMC6017407 DOI: 10.3390/molecules23020500] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
We have synthesized a graphene oxide (GO)-based theranostic nanodelivery system (GOTS) for magnetic resonance imaging (MRI) using naturally occurring protocatechuic acid (PA) as an anticancer agent and gadolinium (III) nitrate hexahydrate (Gd) as the starting material for a contrast agent,. Gold nanoparticles (AuNPs) were subsequently used as second diagnostic agent. The GO nanosheets were first prepared from graphite via the improved Hummer's protocol. The conjugation of the GO and the PA was done via hydrogen bonding and π-π stacking interactions, followed by surface adsorption of the AuNPs through electrostatic interactions. GAGPA is the name given to the nanocomposite obtained from Gd and PA conjugation. However, after coating with AuNPs, the name was modified to GAGPAu. The physicochemical properties of the GAGPA and GAGPAu nanohybrids were studied using various characterization techniques. The results from the analyses confirmed the formation of the GOTS. The powder X-ray diffraction (PXRD) results showed the diffractive patterns for pure GO nanolayers, which changed after subsequent conjugation of the Gd and PA. The AuNPs patterns were also recorded after surface adsorption. Cytotoxicity and magnetic resonance imaging (MRI) contrast tests were also carried out on the developed GOTS. The GAGPAu was significantly cytotoxic to the human liver hepatocellular carcinoma cell line (HepG2) but nontoxic to the standard fibroblast cell line (3T3). The GAGPAu also appeared to possess higher T1 contrast compared to the pure Gd and water reference. The GOTS has good prospects of serving as future theranostic platform for cancer chemotherapy and diagnosis.
Collapse
Affiliation(s)
- Muhammad Sani Usman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Aminu Umar Kura
- Pharmacology, Faculty of Basic Health Sciences, Bauchi State University, Bauchi 65, Nigeria.
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mas Jaffri Masarudin
- Department of Cell & Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Fathinul Fikri Ahmad Saad
- Centre for Diagnostic and Nuclear Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
35
|
Nasir S, Hussein MZ, Zainal Z, Yusof NA. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications. MATERIALS 2018; 11:ma11020295. [PMID: 29438327 PMCID: PMC5848992 DOI: 10.3390/ma11020295] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Abstract
Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures.
Collapse
Affiliation(s)
- Salisu Nasir
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Chemistry, Faculty of Science, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria.
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Zulkarnain Zainal
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
36
|
Rosman R, Saifullah B, Maniam S, Dorniani D, Hussein MZ, Fakurazi S. Improved Anticancer Effect of Magnetite Nanocomposite Formulation of GALLIC Acid (Fe₃O₄-PEG-GA) Against Lung, Breast and Colon Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E83. [PMID: 29393902 PMCID: PMC5853715 DOI: 10.3390/nano8020083] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/09/2023]
Abstract
Lung cancer, breast cancer and colorectal cancer are the most prevalent fatal types of cancers globally. Gallic acid (3,4,5-trihydroxybenzoic acid) is a bioactive compound found in plants and foods, such as white tea, witch hazel and it has been reported to possess anticancer, antioxidant and anti-inflammatory properties. In this study we have redesigned our previously reported anticancer nanocomposite formulation with improved drug loading based on iron oxide magnetite nanoparticles coated with polyethylene glycol and loaded with anticancer drug gallic acid (Fe₃O₄-PEG-GA). The in vitro release profile and percentage drug loading were found to be better than our previously reported formulation. The anticancer activity of pure gallic acid (GA), empty carrier (Fe₃O₄-PEG) nanocarrier and of anticancer nanocomposite (Fe₃O₄-PEG-GA) were screened against human lung cancer cells (A549), human breast cancer cells (MCF-7), human colon cancer cells (HT-29) and normal fibroblast cells (3T3) after incubation of 24, 48 and 72 h using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT assay. The designed formulation (Fe₃O₄-PEG-GA) showed better anticancer activity than free gallic acid (GA). The results of the in vitro studies are highly encouraging to conduct the in vivo studies.
Collapse
Affiliation(s)
- Raihana Rosman
- Institute of Biosciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | - Bullo Saifullah
- Institute of Biosciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | - Dena Dorniani
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK.
| | - Mohd Zobir Hussein
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| | - Sharida Fakurazi
- Institute of Biosciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
37
|
Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System. NANOMATERIALS 2017; 7:nano7090244. [PMID: 28858229 PMCID: PMC5618355 DOI: 10.3390/nano7090244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 01/21/2023]
Abstract
We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO3)3 as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment.
Collapse
|
38
|
Nasir S, Hussein MZ, Yusof NA, Zainal Z. Oil Palm Waste-Based Precursors as a Renewable and Economical Carbon Sources for the Preparation of Reduced Graphene Oxide from Graphene Oxide. NANOMATERIALS 2017; 7:nano7070182. [PMID: 28703757 PMCID: PMC5535248 DOI: 10.3390/nano7070182] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 11/16/2022]
Abstract
Herein, a new approach was proposed to produce reduced graphene oxide (rGO) from graphene oxide (GO) using various oil palm wastes: oil palm leaves (OPL), palm kernel shells (PKS) and empty fruit bunches (EFB). The effect of heating temperature on the formation of graphitic carbon and the yield was examined prior to the GO and rGO synthesis. Carbonization of the starting materials was conducted in a furnace under nitrogen gas for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 °C/min. The GO was further synthesized from the as-carbonized materials using the ‘improved synthesis of graphene oxide’ method. Subsequently, the GO was reduced by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 1 h. The IG/ID ratio calculated from the Raman study increases with the increasing of the degree of the graphitization in the order of rGO from oil palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the as-prepared materials were performed using the Brunauer Emmett Teller-Nitrogen (BET-N2) adsorption-desorption isotherms method. The lower BET surface area of 8 and 15 m2 g−1 observed for rGOCG and rGOOPL, respectively could be due to partial restacking of GO layers and locally-blocked pores. Relatively, this lower BET surface area is inconsequential when compared to rGOPKS and rGOEFB, which have a surface area of 114 and 117 m2 g−1, respectively.
Collapse
Affiliation(s)
- Salisu Nasir
- Materials Synthesis and Characterisation Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
- Department of Chemistry, Faculty of Science, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria.
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterisation Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Nor Azah Yusof
- Materials Synthesis and Characterisation Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| | - Zulkarnain Zainal
- Materials Synthesis and Characterisation Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|