1
|
Antal P, Kuchár J, Rigamonti L, Kvasnicová M, Gonzalez G, Rárová L, Strnad M, Kopel P. Co(II), Cu(II), and Zn(II) thio-bis(benzimidazole) complexes induce apoptosis via mitochondrial pathway. J Inorg Biochem 2025; 264:112786. [PMID: 39644804 DOI: 10.1016/j.jinorgbio.2024.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
The copper(II), cobalt(II), and zinc(II) complexes with 2-(1H-benzimidazol-2-ylmethylsulfanylmethyl)-1H-benzimidazole (tbb) and 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole (tebb), [Cu(tbb)Cl2] (1), [Co(tbb)Cl2] (2), [Zn(tbb)Cl2] (3), [Cu(tebb)Cl(H2O)]Cl (4), [Co(tebb)Cl2]n·nCH3OH (5) and [Zn(tebb)Cl(H2O)]Cl (6), have been prepared and evaluated for antiproliferative activity. The structure of (4) was proved by X-ray diffraction crystallography. The coordination compounds were tested for their cytotoxic activities in cancer cell lines in vitro. The lower IC50 values were obtained for Co(II), Cu(II), and Zn(II) complexes with tebb in comparison with tbb complexes. Complex 2 showed strong antiproliferative selectivity for leukemia CEM cells and nontoxicity towards other tested cell lines and normal human cells (BJ and RPE-1). Proapoptotic activity of 2 and 5 were weaker than positive control cisplatin, but the big advantage of these complexes was their zero-cytotoxicity for normal healthy cells in contrast to the high cytotoxicity of cisplatin. The activation of apoptotic initiation phase was detected in neuroblastoma cancer cell line SH-SY5Y where 5 was cytotoxic without fragmentation of cells. Interestingly, complexes 5, 6, and tebb, together with cisplatin, dramatically impaired the mitochondrial membrane potential of SH-SY5Y after 72 h. Taken together, we demonstrated that our compounds trigger apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Peter Antal
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-779 00 Olomouc, Czech Republic
| | - Juraj Kuchár
- Department of Inorganic Chemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovakia
| | - Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| | - Marie Kvasnicová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic; Laboratory of Growth Regulators, Faculty of Science, Palacký University, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Gabriel Gonzalez
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic; Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, CZ-775 20 Olomouc, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic; Laboratory of Growth Regulators, Faculty of Science, Palacký University, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-779 00 Olomouc, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-779 00 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Li Y, Wang M, Bai J, Li X, Xiao S, Song L. Anthocyanins in Black Soybean Coats Promote Apoptosis in Hepatocellular Carcinoma Cells by Regulating the JAK2/STAT3 Pathway. Int J Mol Sci 2025; 26:1070. [PMID: 39940837 PMCID: PMC11817063 DOI: 10.3390/ijms26031070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The use of black soybean (Glycine max L.), an edible crop prevalent in Asia, has attracted attention for its hepatoprotective properties. Notably, the anthocyanin components in black soybean coats have shown potential in inhibiting tumor growth. Here, anthocyanins were extracted from black soybean coats using both microwave and water bath methods. The physicochemical characteristics of black soybean coat anthocyanins (BSCAs) and their biological activities were examined. The results from the MTT and EDU assays demonstrated a dose-dependent inhibitory effect of BSCAs on hepatocellular carcinoma HepG2 cells, while leaving normal cells unaffected. Flow cytometry and mitochondrial membrane potential assays revealed that BSCA treatment induces apoptosis in HepG2 cells. A network pharmacology approach was employed to explore the relationship between hepatocellular carcinoma and the active ingredients of BSCAs, identifying the JAK/STAT signaling pathway as a potential target. Molecular docking studies confirmed the interaction between BSCA components and JAK2/STAT3 targets. Subsequent Western blot and qPCR experiments validated that BSCAs promote apoptosis in HepG2 cells by modulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Miaomiao Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Jinjing Bai
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Xin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Sheng Xiao
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Li Song
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi Key Laboratory of Biotechnology, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Shanmugapriya K, Kang HW. Cellulose nanocrystals/cellulose nanofibrils-combined astaxanthin nanoemulsion for reinforcement of targeted tumor delivery of gastric cancer cells. Int J Pharm 2024; 667:124944. [PMID: 39532272 DOI: 10.1016/j.ijpharm.2024.124944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Nanoemulsion based nanomaterial (NE) was carried out in the present study to evaluate the efficacy and its antitumor potential of the gastric cancer cells. NE was prepared with astaxanthin/alpha-tocopherol- cellulose nanocrystals/cellulose nanofibrils based nanoemulsions for gastric cancer treatment. The cytotoxic potential was tested against cancer cells and evaluated in terms of its cell proliferation, migration, and cellular uptake by the standard methods. NE was examined for its synergetic effect with photodynamic therapy (PDT) in a xenograft mouse model. The results confirmed the synergetic effect of PDT and NEs in the in vivo animal model. The regulated expression of proteins manifested the reduced toxicity and inhibition of cell proliferation and migration. The antitumor study showed that NE inhibited the growth of human colon cancer in vivo. Immunohistological analysis confirmed the regulation of PI3K/AKT signaling pathway. The present study demonstrates that NEs can enhance anti-cancer effect against human gastric cancer through the immunomodulatory signaling pathway.
Collapse
Affiliation(s)
- Karuppusamy Shanmugapriya
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea; School of Biosystems and Food Engineering, University College Dublin, Dublin D04 V1W8, Belfield, Ireland
| | - Hyun Wook Kang
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea; Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
4
|
Roopashree PG, Shetty SS, Shetty VV, Suhasini PC, Suchetha KN. Inhibitory effects of medium-chain fatty acids on the proliferation of human breast cancer cells via suppression of Akt/mTOR pathway and modulating the Bcl-2 family protein. J Cell Biochem 2024; 125:e30571. [PMID: 38666486 DOI: 10.1002/jcb.30571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 06/12/2024]
Abstract
Medium-chain fatty acids (MCFAs) have 6-12 carbon atoms and are instantly absorbed into the bloodstream before traveling to the portal vein and the liver, where they are immediately used for energy and may have antitumor effects. Its role in breast cancer is poorly understood. To investigate the apoptosis-inducing effect of MCFAs in breast cancer cells, cell viability assay, colony formation assay, cell migration assay, cell invasion assay, nuclear morphology, cell cycle assay, intracellular reactive oxygen species (ROS), matrix metalloproteinase (MMP), apoptosis, RT-qPCR analysis, and Western blot analysis were performed. In the present study, MCFA treatments reduced proliferative capability, increased ROS level, increased the depletion of MMP, induced G0/G1 and S phase cell cycle arrest, and late apoptosis of breast cancer cells in an effective concentration. Besides, MCFA treatment contributed to the upregulation of proapoptotic protein (BAK) and caspase-3, and the downregulation of antiapoptotic protein (Bcl-2). Mechanistically, phosphorylation levels of EGFR, Akt, and mTOR were significantly reduced in breast cancer cells treated with MCFAs. However, no significant changes in apoptosis and signaling-related proteins were observed in lauric acid-treated ER-positive cancer cells. Our findings suggested that MCFAs suppressed breast cancer cell proliferation by modulating the PI3K/Akt/mTOR signaling pathway. MCFAs may be a promising therapeutic drug for treating breast cancer.
Collapse
Affiliation(s)
- P G Roopashree
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Shilpa S Shetty
- Cellomics, Lipidomics and Molecular Genetics Division, Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Vijith Vittal Shetty
- Department of Oncology, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - P C Suhasini
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Kumari N Suchetha
- Department of Biochemistry, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
5
|
Chatnarin S, Thirabunyanon M. Potential bioactivities via anticancer, antioxidant, and immunomodulatory properties of cultured mycelial enriched β-D-glucan polysaccharides from a novel fungus Ophiocordyceps sinensis OS8. Front Immunol 2023; 14:1150287. [PMID: 37114040 PMCID: PMC10126296 DOI: 10.3389/fimmu.2023.1150287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Background Ophiocordyceps sinensis is well-known worldwide as a traditional medicine. An alternative natural source of O. sinensis is provided by mycelial cultivation. However, the bioactivities of cultured mycelial-enriched β-D-glucan polysaccharides from a novel fungus O. sinensis OS8 are still unknown. Methods We investigated the potential bioactivities via anticancer, antioxidant, and immunomodulatory polysaccharides (OS8P) produced from cultured mycelia of O. sinensis OS8. This strain is a novel fungus isolated from natural O. sinensis, which is further cultured by submerged mycelial cultivation for polysaccharide production. Results The yield of mycelial biomass was 23.61 g/l, and it contained 306.1 mg/100 g of adenosine and 3.22 g/100 g of polysaccharides. This OS8P was enriched with β-D-glucan at 56.92% and another form of α-D-glucan at 35.32%. The main components of OS8P were dodecamethyl pentasiloxane, 2,6-bis (methylthiomethyl) pyridine, 2-(4-pyrimidinyl)-1H-Benzimidazole, and 2-Chloro-4-(4-nitroanilino)-6-(O-toluidino)-1,3,5-triazine at the rates of 32.5, 20.0, 17.5, and 16.25%, respectively. The growth of colon cancer cells (HT-29) was significantly inhibited by OS8P, with IC50 value of 202.98 µg/ml, and encouraged apoptosis in HT-29 cells as confirmed by morphological change analysis via AO/PI and DAPI staining, DNA fragmentation, and scanning electron microscopic observations. In addition, significant antioxidant activity was demonstrated by OS8P through DPPH and ABTS assays, with IC50 values of 0.52 and 2.07 mg/ml, respectively. The OS8P also exhibited suitable immunomodulatory activities that significantly enhanced (P< 0.05) the induction of splenocyte proliferation. Conclusion The OS8P enriched with β-D-glucan polysaccharides and produced by submerged mycelial culture of a new fungal strain of O. sinensis OS8 strongly inhibited the proliferation of colon cancer cells without any cytotoxicity against normal cells. The potential effect of the OS8P on the cancer cells was due to the stimulation of apoptosis. Also, the OS8P exhibited good antioxidant and immunomodulatory activities. The results indicate that OS8P has promising applications in the functional food industry and/or therapeutic agents for colon cancer.
Collapse
|
6
|
Imane B, Laila B, Fouzia H, Ismail G, Ahmed E, Kaoutar B, Mohamed EM, Samira E, Jamila B. Chemical characterization, antiproliferative activity and molecular docking of bioactive compounds from brown algae Fucus spiralis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Caponio GR, Cofano M, Lippolis T, Gigante I, De Nunzio V, Difonzo G, Noviello M, Tarricone L, Gambacorta G, Giannelli G, De Angelis M, Notarnicola M. Anti-Proliferative and Pro-Apoptotic Effects of Digested Aglianico Grape Pomace Extract in Human Colorectal Cancer Cells. Molecules 2022; 27:molecules27206791. [PMID: 36296379 PMCID: PMC9611208 DOI: 10.3390/molecules27206791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/12/2022] Open
Abstract
Grape pomace (GP)—the major by-product of winemaking processes—still contains bioactive molecules with known beneficial properties for human health, such as an antiradical scavenging activity or an antiproliferative activity of tumors. In vitro studies have demonstrated that GP polyphenols specifically influence colon cancer cell proliferation. In addition to previously published work, we tested the phenolic compounds of Aglianico GP following an in vitro simulated gastrointestinal digestion on colorectal cancer cell lines at different degrees of differentiation. Our experiments, using HT29 and SW480 cells, confirmed the anti-proliferative effect of GP gastrointestinal digested extract and provided intriguing insights on the way it influences the cancer cell features (i.e., viability, proliferation, and apoptosis). We observed that Aglianico GP extract showed a great ability to affect cell proliferation and apoptosis. Interestingly, both HT29 and SW480 cells produced a significant increase in Bax, and a significant increase in the Bax/Bcl-2 ratio and caspase-3. The gastrointestinal digested GP extract was previously characterized both for antioxidant activity and phenolic composition. As a result, the TPC and the antioxidant activity reached high values in the Aglianico GP digested extract, and the main compounds assessed by UHPLC-DAD were anthocyanins, phenolic acids, and flavonoids. This work shed light on the use of digested GP extract as a dietary ingredient, a very sustainable source of nutritional compounds with potential health benefits for colon cancer cell proliferation.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
- Correspondence: (G.R.C.); (M.D.A.)
| | - Miriam Cofano
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Tamara Lippolis
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Valentina De Nunzio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Mirella Noviello
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Luigi Tarricone
- Council for Agricultural Research and Economics (CREA), Research Center for Viticulture and Enology, Via Casamassima 148, 70010 Bari, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
- Correspondence: (G.R.C.); (M.D.A.)
| | - Maria Notarnicola
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
8
|
Habib HM, El-Fakharany EM, Kheadr E, Ibrahim WH. Grape seed proanthocyanidin extract inhibits DNA and protein damage and labile iron, enzyme, and cancer cell activities. Sci Rep 2022; 12:12393. [PMID: 35859159 PMCID: PMC9300616 DOI: 10.1038/s41598-022-16608-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/12/2022] [Indexed: 12/23/2022] Open
Abstract
Grape seed extract from (Vitis vinifera) (VGSE) is an excellent source of various polyphenols that exhibit highly potent antioxidant and disease prevention properties. Although numerous biological activities, with potential for improving human health, have been reported for VGSE, there is a lack of data relating to the health benefits of VGSE on DNA damage, protein damage, labile iron activity, and enzyme inhibitory effects. This investigation demonstrated, for the first time, that VGSE inhibits DNA and BSA damage and labile iron activity in-vitro. Moreover, VGSE also inhibited in-vitro activities of AChE, tyrosinase, and α-amylase. VGSE treatment significantly reduced viability of MCF-7, Hep-G2, Caco-2, and Huh-7 cells after 48-h treatments. The results obtained provide additional support for the purported health benefits of VGSE and reinforce its potential in disease prevention and therapy, especially in relation to cancer.
Collapse
Affiliation(s)
- Hosam M Habib
- Functional Foods and Nutraceuticals Laboratory (FFNL), Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEBRI, City for Scientific Research and Technology Applications (SRTA City), New Borg El Arab, Alexandria, 21934, Egypt
| | - E Kheadr
- Functional Foods and Nutraceuticals Laboratory (FFNL), Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Wissam H Ibrahim
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, UAE.
| |
Collapse
|
9
|
Laka K, Mbita Z. P53-Related Anticancer Activities of Drimia calcarata Bulb Extracts Against Lung Cancer. Front Mol Biosci 2022; 9:876213. [PMID: 35769912 PMCID: PMC9235921 DOI: 10.3389/fmolb.2022.876213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
Current lung cancer treatment strategies are ineffective, and lung cancer cases continue to soar; thus, novel anticancer drugs and targets are needed, and medicinal plants are promising to offer better alternatives. This study was aimed at analysing two p53 splice variants during the potential anticancer activities of Drimia calcarata (Dc) methanol and water extracts against different human lung cancer cell lines of varying p53 mutation status, and these included mutant H1573 and mutant H1437 and p53-wild type (A549) cells. The anticancer activities of the Dc extracts were assessed by establishing the cytotoxic effect and the apoptosis-inducing capacity of these extracts, using the MTT assay and Annexin V analysis, respectively, with the latter confirmed using fluorescence microscopy. The molecular mechanisms induced by these extracts were further evaluated using cell cycle analysis and RT-PCR. Both extracts demonstrated safety against noncancerous lung MRC-5 fibroblasts and exhibited significant anticancer potency (p < 0.001) against the H1437 (IC50 values: 62.50 μg/ml methanol extract and 125 μg/ml WE), H1573 (IC50 value: 125 μg/ml for both extracts) and A549 (IC50 value: 500 μg/ml ME). The water extract had no effect on the viability of A549 cells. Treated H1437 cells underwent p53-dependent apoptosis and S-phase cell cycle arrest while H1573 treated cells underwent p53-independed apoptosis and G0/G1 cell cycle arrest through upregulation of p21 mRNA expression levels. The expression levels of STAT1, STAT3, STAT5A and STAT5B genes increased significantly (p < 0.001) following the treatment of H1573 cells with ME and WE. Treatment of H1437 cells with ME upregulated the STAT1, STAT3, STAT5A and STAT5B mRNAs. Our results indicate that the proliferative inhibitory effect of D. calcarata extracts on A549 and H1573 cells is correlated with the suppression of Bcl-2, STAT3 and STAT5B while that is not the case in H1437 cells. Thus, our results suggest that the dysregulation of anti-apoptotic molecules Bcl-2, STAT3, STAT5A and STAT5B in H1437 may play a role in cancer cell survival, which may consequently contribute to the development of p53-mutated non-small human lung cancer. Our results indicate that D. calcarata is a promising source of anticancer agents for the treatment of p53-mutant human non-small lung cancer cells than the p53-wild type human non-small lung cancer cells.
Collapse
|
10
|
Wang R, Hu X, Wang J, Zhou L, Hong Y, Zhang Y, Xiong F, Zhang X, Ye WC, Wang H. Proanthocyanidin A1 promotes the production of platelets to ameliorate chemotherapy-induced thrombocytopenia through activating JAK2/STAT3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153880. [PMID: 34906892 DOI: 10.1016/j.phymed.2021.153880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chemotherapy-induced thrombocytopenia (CIT) is a severe adverse drug reaction, and the main reason for CIT is the destruction of megakaryocytes (MKs, precursor cells of platelet) in bone marrow by chemotherapy. Peanut skin, the seed coat of Arachis hypogaea L., is a traditional Chinese medicine commonly used to treat thrombocytopenia. However, its active compounds and the mechanisms remain unclear. PURPOSE This study aims to clarify the active compounds of peanut skin to exhibit thrombogenic effects against CIT and their underlying mechanisms in vitro and in vivo. STUDY DESIGN The bioassay-guided isolation based on the proliferation of MKs was used to explore the possible platelet-enhancing ingredients in peanut skin. HSCCC technique coupled with preparative HPLC was used to separate the active compounds. Dami cells and carboplatin-treated mice model were used to evaluate the thrombogenic effects of PS-1. Network pharmacology, molecular docking, dynamics simulation studies, kinase activity, surface plasmon resonance (SPR), cellular thermal shift assay (CETSA), isothermal dose-response fingerprint (ITDRFCETSA) and western blot analysis were performed to investigate the mechanisms of PS-1. RESULTS Proanthocyanidin A1 (PS-1) and its stereoisomers (PS-2-4) were demonstrated to promote the proliferation of MKs (Dami cells), especially PS-1 (EC50 = 8.58 μM). Further studies demonstrated that PS-1 could induce the differentiation of Dami cells in dose/time-dependent manner. Biological target analysis showed that PS-1 directly bound to JAK2 (KD = 2.06 μM) to exert potent activating effect (EC50 = 0.66 μM). Oral administration of PS-1 (25 or 50 mg/kg) significantly improved CIT, but this effect was confirmed to be inhibited by JAK2 inhibitor AG490, indicating that PS-1 exerted its efficacy through JAK2 in vivo. CONCLUSION Proanthocyanins (PS-1-4) derived from peanut skin were first clarified as platelet-enhancing ingredients to improve CIT. The underlying mechanism of PS-1 was proved to promote the proliferation and differentiation of MKs via JAK2/STAT3 pathway both in vitro and in vivo.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jingjin Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lina Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu Hong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuanhao Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215028, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiaoqi Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
11
|
Khan MA, Siddiqui S, Ahmad I, Singh R, Mishra DP, Srivastava AN, Ahmad R. Phytochemicals from Ajwa dates pulp extract induce apoptosis in human triple-negative breast cancer by inhibiting AKT/mTOR pathway and modulating Bcl-2 family proteins. Sci Rep 2021; 11:10322. [PMID: 33990623 PMCID: PMC8121835 DOI: 10.1038/s41598-021-89420-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/22/2021] [Indexed: 01/04/2023] Open
Abstract
Ajwa dates (Phoenix dactylifera L.) have been described in traditional and alternative medicine to provide several health benefits, but their mechanism of apoptosis induction against human triple-negative breast cancer MDA-MB-231 cells remains to be investigated. In this study, we analyzed the phytoconstituents in ethanolic Ajwa Dates Pulp Extract (ADPE) by liquid chromatography-mass spectrometry (LC-MS) and investigated anticancer effects against MDA-MB-231 cells. LC-MS analysis revealed that ADPE contained phytocomponents belonging to classes such as carbohydrates, phenolics, flavonoids and terpenoids. MTT assay demonstrated statistically significant dose- and time-dependent inhibition of MDA-MB-231 cells with IC50 values of 17.45 and 16.67 mg/mL at 24 and 48 h, respectively. Hoechst 33342 dye and DNA fragmentation data showed apoptotic cell death while AO/PI and Annexin V-FITC data revealed cells in late apoptosis at higher doses of ADPE. More importantly, ADPE prompted reactive oxygen species (ROS) induced alterations in mitochondrial membrane potential (MMP) in ADPE treated MDA-MB-231 cells. Cell cycle analysis demonstrated that ADPE induced cell arrest in S and G2/M checkpoints. ADPE upregulated the p53, Bax and cleaved caspase-3, thereby leading to the downregulation of Bcl-2 and AKT/mTOR pathway. ADPE did not show any significant toxicity on normal human peripheral blood mononuclear cells which suggests its safe application to biological systems under study. Thus, ADPE has the potential to be used as an adjunct to the mainline of treatment against breast cancer.
Collapse
Affiliation(s)
- Mohsin Ali Khan
- Chancellor, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India.
| | - Imran Ahmad
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Romila Singh
- Cell Death Research Laboratory, LSS-106, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Durga Prasad Mishra
- Cell Death Research Laboratory, LSS-106, Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anand Narain Srivastava
- Department of Pathology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, 226003, India
| |
Collapse
|
12
|
Masaryk L, Tesarova B, Choquesillo-Lazarte D, Milosavljevic V, Heger Z, Kopel P. Structural and biological characterization of anticancer nickel(II) bis(benzimidazole) complex. J Inorg Biochem 2021; 217:111395. [PMID: 33610033 DOI: 10.1016/j.jinorgbio.2021.111395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/15/2022]
Abstract
In the present study, nickel(II) complex with 2-[2-[2-(1H-benzimidazol-2-yl)ethylsulfanyl]ethyl]-1H-benzimidazole (tebb) of formula [Ni(tebb)2](ClO4)2 has been prepared and its structure was proved by X-ray crystallography. The central nickel atom is in deformed octahedral vicinity. Four nitrogen atoms of two ligands form plane of octahedral and sulfur atoms are in apical positions. Perchlorate anions are outside the coordination sphere. The coordination compound was tested for its biological activities in an array of in vitro assays. It was found that the synthesized complex possesses interesting biological activity, which is most likely related to its cell-type related uptake kinetics. The synthesized complex is readily uptaken by malignant MDA-MB-231 and CACO-2 cells with the lowest uptake by healthy Hs27 fibroblasts. The lowest IC50 values were obtained for MDA-MB-231 cells (5.2-12.7 μM), highlighting exceptional differential cytotoxicity (IC50 values for healthy fibroblasts were 38.6-51.5 μM). Furthermore, it was found the complex is capable to cause hydrolytic DNA cleavage, promotes an efficient DNA fragmentation and to trigger an extensive formation of intracellular reactive oxygen species. Overall, current work presents a synthesis of Ni(II) coordination compound with interesting biological behavior and with a promising potential to be further tested in pre-clinical models.
Collapse
Affiliation(s)
- Lukas Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Barbora Tesarova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| |
Collapse
|
13
|
Grape Seed Proanthocyanidins Induce Apoptosis and Cell Cycle Arrest of HepG2 Cells Accompanied by Induction of the MAPK Pathway and NAG-1. Antioxidants (Basel) 2020; 9:antiox9121200. [PMID: 33260632 PMCID: PMC7760884 DOI: 10.3390/antiox9121200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignancies leading to death. Although radiotherapy and chemotherapy have certain effects, their side effects limit their therapeutic effect. Phytochemicals have recently been given more attention as promising resources for cancer chemoprevention or chemotherapy due to their safety. In this study, the effects of grape seed proanthocyanidins (GSPs) on the apoptosis, cell cycle, and mitogen-activated protein kinase (MAPK) pathway-related proteins and non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) expression of HepG2 cells were investigated. The results showed that GSPs inhibited the viability of HepG2 cells in a time- and dose-dependent manner, induced apoptosis and G2/M phase cell cycle arrest, and regulated cell cycle-related proteins, cyclin B1, cyclin-dependent kinase 1, and p21. GSPs also increased reactive oxygen species production and caspase-3 activity. In addition, GSPs also increased the expression of p-ERK, p-JNK, p-p38 MAPK and NAG-1, and GSPs-induced NAG-1 expression was related to the MAPK pathway-related proteins. These data suggest that GSPs may be promising phytochemicals for HCC chemoprevention or chemotherapy.
Collapse
|
14
|
Mani S, Balasubramanian B, Balasubramani R, Chang SW, Ponnusamy P, Esmail GA, Arasu MV, Al-Dhabi NA, Duraipandiyan V. Synthesis and characterization of proanthocyanidin-chitosan nanoparticles: An assessment on human colorectal carcinoma HT-29 cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111966. [PMID: 32711334 DOI: 10.1016/j.jphotobiol.2020.111966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 12/09/2022]
Abstract
Cancer nanotheranostic materials are helpful in monitoring drug delivery and efficacy against tumor cells. Current chemotherapeutic may have adverse side effects and this necessity to discover the new modern therapeutic nano-drugs. In the present study, we designed the new targeted and degradable polymer of bio-active chitosan nanoparticles with proanthocyanidin (PAC-CSNPs) and evaluated its apoptotic effects against human colorectal carcinoma cells (HT-29). The functional groups were characterized by Fourier-transform infrared spectroscopy and transmission electron microscope. Further, their dispersion of spherical form nanoparticle with an average size of 73.43 nm used for drug delivery system. The PAC-CSNPs were targeted to inhibit the cyclin-dependent kinases and prevent cell cycle/cell division in cancer cells. At high concentrations of PAC (25 μg/mL) exposure, cell viability of HT-29 cells was greater than 80%. However, at low concentrations of PAC-CSNPs (6.25 μg/mL) exposure, HT-29 cell mortality was high, which may be due to the efficient drug release by CSNPs. The percentage of reactive oxygen species (ROS) levels were 12 ± 2.52% (control), 39 ± 4.32% (PAC), and 85.06 ± 3.54% (PAC-CSNPs). The over production of ROS by PAC-CSNPs can prompt DNA damage, cell death and apoptosis in HT-29 cells. The in vivo toxicity of synthesized PAC-CSNPs was tested against zebra fish observed at dose-time-dependent intervals. In conclusion, the PAC-CSNPs enhanced HT-29 cell death and shows promise as a novel future nano-therapy for cancer.
Collapse
Affiliation(s)
- Suganya Mani
- Department of Biotechnology, K. S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | | | - Ravindran Balasubramani
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Ponmurugan Ponnusamy
- Department of Botany, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - Galal Ali Esmail
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Veeramuthu Duraipandiyan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Entomology Research Institute, Loyola College, Chennai 600034, Tamilnadu, India
| |
Collapse
|